Peer-reviewed journal articles

(last updated 03/2024)

2024

Cross Second and Third Virial Coefficients and Dilute Gas Transport Properties of the (H2O + Ar) System from First-Principles Calculations
Author: R. Hellmann
J. Chem. Eng. Data 69, 942-957 (2024).

2023

Cross Second Virial Coefficients of the H2O–H2 and H2S–H2 Systems from First-Principles
Author: R. Hellmann

J. Chem. Eng. Data 68, 2212–2222 (2023) (Open Access).

Ab initio potential energy surfaces for the O2–O2 system and derived thermophysical properties
Author: R. Hellmann

J. Chem. Phys. 159, 104303 (2023) (Open Access).

Ab Initio Calculation of Fluid Properties for Precision Metrology
Authors: G. Garberoglio, C. Gaiser, R. M. Gavioso, A. H. Harvey, R. Hellmann, B. Jeziorski, K. Meier,

M. R. Moldover, L. Pitre, K. Szalewicz, R. Underwood
J. Phys. Chem. Ref. Data 52, 031502 (2023) (Open Access).

Determination of the Binary Diffusion Coefficients and Interaction Viscosities of the Systems Carbon Dioxide–Nitrogen and Ethane–Methane in the Dilute Gas Phase from Accurate Experimental Viscosity Data Using the Kinetic Theory of Gases
Authors: E. Vogel, E. Bich, R. Hellmann

Int. J. Thermophys. 44, 129 (2023).

Cross second virial coefficients of the H2O–H2S and H2O–SO2 systems from first principles
Author: R. Hellmann

J. Chem. Eng. Data 68, 108-117 (2023).

2022

Thermodynamic properties of krypton from Monte Carlo simulations using ab initio potentials
Authors: P. Ströker, R. Hellmann, K. Meier

J. Chem. Phys. 157, 114504 (2022)

Thermodynamic properties of argon from Monte Carlo simulations using ab initio potentials
Authors: P. Ströker, R. Hellmann, K. Meier

Phys. Rev. E 105, 064129 (2022).

Eighth-Order Virial Equation of State for Methane from Accurate Two-Body and Nonadditive Three-Body Intermolecular Potentials
Author: R. Hellmann
J. Phys. Chem. B 126, 3920-3930 (2022).

New International Formulation for the Thermal Conductivity of Heavy Water
Authors: M. L. Huber, R. A. Perkins, M. J. Assael, S. A. Monogenidou, R. Hellmann, J. V. Sengers

J. Phys. Chem. Ref. Data 51, 013102 (2022).

Ab initio determination of the polarizability of neon
Author: R. Hellmann

Phys. Rev. A 105, 022809 (2022).

Cross Second Virial Coefficient of the H2O–CO System from a New Ab Initio Pair Potential
Author: R. Hellmann

Int. J. Thermophys. 43, 25 (2022) (Open Access).

2021

Calculation of third to eighth virial coefficients of hard lenses and hard, oblate ellipsoids of revolution employing an efficient algorithm
Authors: P. Marienhagen, R. Hellmann, J. Wagner

Phys. Rev. E 104, 015308 (2021).

Thermophysical properties of low-density neon gas from highly accurate first-principles calculations and dielectric-constant gas thermometry measurements
Authors: R. Hellmann, C. Gaiser, B. Fellmuth, T. Vasyltsova, E. Bich
J. Chem. Phys. 154, 164304 (2021).

First‐Principles Diffusivity Ratios for Atmospheric Isotope Fractionation on Mars and Titan
Authors: R. Hellmann, A. H. Harvey
J. Geophys. Res. Planets 126, e2021JE006857 (2021) (Open Access).

Systematic formulation of thermodynamic properties in the NpT ensemble
Authors: P. Ströker, R. Hellmann, K. Meier
Phys. Rev. E 103, 023305 (2021).

2020

First‐Principles Diffusivity Ratios for Kinetic Isotope Fractionation of Water in Air
Authors: R. Hellmann, A. H. Harvey
Geophys. Res. Lett. 47, e2020GL089999 (2020) (Open Access).

Cross Second Virial Coefficients and Dilute Gas Transport Properties of the Systems (N2+ C3H8), (C2H6 + C3H8), and (H2S + C3H8) from Ab Initio-Based Intermolecular Potentials
Author: R. Hellmann
J. Chem. Eng. Data 65, 4712–4724 (2020).

Reference Values for the Cross Second Virial Coefficients and Dilute Gas Binary Diffusion Coefficients of the Systems (H2O + O2) and (H2O + Air) from First Principles
Author: R. Hellmann
J. Chem. Eng. Data 65, 4130–4141 (2020).

Zero-density limit of the residual entropy scaling of transport properties
Authors: I. H. Bell, R. Hellmann, A. H. Harvey
J. Chem. Eng. Data 65, 1038–1050 (2020).

Cross second virial coefficients and dilute gas transport properties of the systems (CO2 + C2H6) and (H2S + C2H6) from accurate intermolecular potential energy surfaces
Author: R. Hellmann
J. Chem. Eng. Data 65, 968–979 (2020).

2019

First-Principles Calculation of the Cross Second Virial Coefficient and the Dilute Gas Shear Viscosity, Thermal Conductivity, and Binary Diffusion Coefficient of the (H2O + N2) System
Author: R. Hellmann
J. Chem. Eng. Data 64, 5959–5973 (2019); correction: 65, 2251–2252 (2020).

Eighth-order virial equation of state and speed-of-sound measurements for krypton
Authors: A. El Hawary, R. Hellmann, K. Meier, H. Busemann
J. Chem. Phys. 151, 154303 (2019).

Thermal conductivity via entropy scaling: An approach that captures the effect of intramolecular degrees of freedom
Authors: M. Hopp, J. Mele, R. Hellmann, J. Gross
Ind. Eng. Chem. Res. 58, 18432–18438 (2019).

Fick diffusion coefficients of binary fluid mixtures consisting of methane, carbon dioxide, and propane via molecular dynamics simulations based on simplified pair-specific ab initio-derived force fields
Authors: U. A. Higgoda, C. J. Kankanamge, R. Hellmann, T. M. Koller, A. P. Fröba
Fluid Phase Equilibria 502, 112257 (2019).

Enhancement of the predictive power of molecular dynamics simulations for the determination of self-diffusion coefficient and viscosity demonstrated for propane
Authors: U. A. Higgoda, R. Hellmann, T. M. Koller, A. P. Fröba
Fluid Phase Equilibria 496, 69–79 (2019).

Thermophysical properties of gaseous H2S–N2 mixtures from first-principles calculations
Author: R. Hellmann
Z. Phys. Chem. 233, 473–491 (2019).

Cross second virial coefficients and dilute gas transport properties of the systems (CH4 + C2H6) and (N2 + C2H6) from accurate intermolecular potential energy surfaces
Author: R. Hellmann
J. Chem. Thermodyn. 134, 175–186 (2019).

Cross second virial coefficient and dilute gas transport properties of the (H2O + CO2) system from first-principles calculations
Author: R. Hellmann
Fluid Phase Equilibria 485, 251–263 (2019); corrigendum: 518, 112624 (2020).

Self-diffusion coefficient and viscosity of methane and carbon dioxide via molecular dynamics simulations based on new ab initio-derived force fields
Authors: U. A. Higgoda, R. Hellmann, T. M. Koller, A. P. Fröba
Fluid Phase Equilibria 481, 15–27 (2019).

2018

Update: Reference correlation for the viscosity of ethane [J. Phys. Chem. Ref. Data 44, 043101 (2015)]
Authors: S. Herrmann, R. Hellmann, E. Vogel
J. Phys. Chem. Ref. Data 47, 023103 (2018).

Ab initio intermolecular potential energy surface for the CO2–N2 system and related thermophysical properties
Authors: J.-P. Crusius, R. Hellmann, J. C. Castro-Palacio, V. Vesovic
J. Chem. Phys. 148, 214306 (2018).

Reference values for the second virial coefficient and three dilute gas transport properties of ethane from a state-of-the-art intermolecular potential energy surface
Author: R. Hellmann
J. Chem. Eng. Data 63, 470–481 (2018).

Cross second virial coefficients and dilute gas transport properties of the (CH4 + C3H8) and (CO2 + C3H8) systems from accurate intermolecular potential energy Surfaces
Author: R. Hellmann
J. Chem. Eng. Data 63, 246–257 (2018)  (ACS Editors’ Choice, Open Access).

2017

Virial coeficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry
Authors: E. Herold, R. Hellmann, J. Wagner
J. Chem. Phys. 147, 204102 (2017)  (Featured Article und Cover).

State-of-the-art ab initio potential energy curve for the xenon atom pair and related spectroscopic and thermophysical properties
Authors: R. Hellmann, B. Jäger, E. Bich
J. Chem. Phys. 147, 034304 (2017).

Transport properties of dilute D2O vapour from first principles
Authors: R. Hellmann, E. Bich
Mol. Phys. 115,1057–1064 (2017).

Intermolecular potential energy surface and thermophysical properties of propane
Author: R. Hellmann
J. Chem. Phys. 146, 114304 (2017).

Nonadditive three-body potential and third to eighth virial coefficients of carbon dioxide
Author: R. Hellmann
J. Chem. Phys. 146, 054302 (2017).

2016

Dilute gas viscosity of n-alkanes represented by rigid Lennard-Jones chains
Authors: J. C. Castro-Palacio, R. Hellmann, V. Vesovic
Mol. Phys. 114, 3171–3182 (2016).

Cross second virial coefficients and dilute gas transport properties of the (CH4 + CO2), (CH4 + H2S), and (H2S + CO2) systems from accurate intermolecular potential energy surfaces
Authors: R. Hellmann, E. Bich, V. Vesovic
J. Chem. Thermodyn. 102, 429–441 (2016).

Calculation of the thermal conductivity of low-density CH4–N2 gas mixtures using an improved kinetic theory approach
Authors: R. Hellmann, E. Bich, V. Vesovic
J. Chem. Phys. 144, 134301 (2016).

State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas
Authors: B. Jäger, R. Hellmann, E. Bich, E. Vogel
J. Chem. Phys. 144, 114304 (2016).

2015

The viscosity of dilute water vapor revisited: New reference values from experiment and theory for temperatures between (250 and 2500) K
Authors: R. Hellmann, E. Vogel
J. Chem. Eng. Data 60, 3600–3605 (2015).

Influence of a magnetic field on the viscosity of a dilute gas consisting of linear molecules
Authors: R. Hellmann, V. Vesovic
J. Chem. Phys. 143, 214303 (2015).

Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide
Authors: J.-P. Crusius, R. Hellmann, E. Hassel, E. Bich
J. Chem. Phys. 142, 244307 (2015).

An improved kinetic theory approach for calculating the thermal conductivity of polyatomic gases
Authors: R. Hellmann, E. Bich
Mol. Phys. 113, 176–183 (2015).

2014

Intermolecular potential energy surface and thermophysical properties of the CH4–N2 system
Authors: R. Hellmann, E. Bich, E. Vogel, V. Vesovic
J. Chem. Phys. 141, 224301 (2014).

Intermolecular potential energy surface and thermophysical properties of ethylene oxide
Authors: J.-P. Crusius, R. Hellmann, E. Hassel, E. Bich
J. Chem. Phys. 141, 164322 (2014).

Ab initio potential energy surface for the carbon dioxide molecule pair and thermophysical properties of dilute carbon dioxide gas
Author: R. Hellmann
Chem. Phys. Lett. 613, 133–138 (2014).

Can an Ab Initio Three-Body Virial Equation Describe the Mercury Gas Phase?
Authors: J. Wiebke, M. Wormit, R. Hellmann, E. Pahl, P. Schwerdtfeger
J. Phys. Chem. B 118, 3392–3400 (2014).

2013

Calculation of the relaxation properties of a dilute gas consisting of Lennard-Jones chains
Authors: R. Hellmann, N. Riesco, V. Vesovic
Chem. Phys. Lett. 574, 37–41 (2013).

Calculation of the transport properties of a dilute gas consisting of Lennard-Jones chains
Authors: R. Hellmann, N. Riesco, V. Vesovic
J. Chem. Phys. 138, 084309 (2013).

Ab initio potential energy surface for the nitrogen molecule pair and thermophysical properties of nitrogen gas
Author: R. Hellmann
Mol. Phys. 111, 387–401 (2013).

2012

New international formulation for the thermal conductivity of H2O
Authors: M. L. Huber, R. A. Perkins, D. G. Friend, J. V. Sengers, M. J. Assael, I. N. Metaxa, K. Miyagawa, R. Hellmann, E. Vogel
J. Phys. Chem. Ref. Data 41, 033102 (2012).

Thermophysical properties of dilute hydrogen sulfide gas
Authors: R. Hellmann, E. Bich, E. Vogel, V. Vesovic
J. Chem. Eng. Data 57, 1312–1317 (2012).

2011

Ionic liquids containing the triply negatively charged tricyanomelaminate anion and a B(C6F5)3 adduct anion
Authors: K. Voss, M. Becker, A. Villinger, V. N. Emel’yanenko, R. Hellmann, B. Kirchner, F. Uhlig, S. P. Verevkin, A. Schulz
Chem. Eur. J. 17, 13526–13537 (2011).

Ab initio virial equation of state for argon using a new nonadditive three-body potential
Authors: B. Jäger, R. Hellmann, E. Bich, E. Vogel
J. Chem. Phys. 135, 084308 (2011).

A systematic formulation of the virial expansion for nonadditive interaction potentials
Authors: R. Hellmann, E. Bich
J. Chem. Phys. 135, 084117 (2011).

The Kirkwood correlation factor of dense methanol as a function of temperature and pressure under isochoric conditions and its statistical mechanical treatment
Authors: J.-P. Crusius, R. Hellmann, A. Heintz
Mol. Phys. 109, 1749–1757 (2011).

Ab initio intermolecular potential energy surface and thermophysical properties of hydrogen sulfide
Authors: R. Hellmann, E. Bich, E. Vogel, V. Vesovic
Phys. Chem. Chem. Phys. 13, 13749–13758 (2011).

2010

Ab initio pair potential energy curve for the argon atom pair and thermophysical properties for the dilute argon gas. II. Thermophysical properties for low-density argon
Authors: E. Vogel, B. Jäger, R. Hellmann, E. Bich
Mol. Phys. 108, 3335–3352 (2010).

2009

Ab initio pair potential energy curve for the argon atom pair and thermophysical properties of the dilute argon gas. I. Argon-argon interatomic potential and rovibrational spectra
Authors: B. Jäger, R. Hellmann, E. Bich, E. Vogel
Mol. Phys. 107, 2181–2188 (2009); Corrigendum: 108, 105 (2010).

Contributions of multipolar polarizabilities to the isotropic and anisotropic light scattering induced by molecular interactions in gaseous methane
Authors: M. S. A. El-Kader, S. M. El-Sheikh, T. Bancewicz, R. Hellmann
J. Chem. Phys. 131, 044314 (2009).

Calculation of the transport and relaxation properties of dilute water vapor
Authors: R. Hellmann, E. Bich, E. Vogel, A. S. Dickinson, V. Vesovic

J. Chem. Phys. 131, 014303 (2009).

Synthesis, structure, and bonding of weakly coordinating anions based on CN adducts
Authors: A. Bernsdorf, H. Brand, R. Hellmann, M. Köckerling, A. Schulz, A. Villinger, K. Voss
J. Am. Chem. Soc. 131, 8958–8970 (2009).

Calculation of the transport and relaxation properties of methane. II. Thermal conductivity, thermomagnetic effects, volume viscosity, and nuclear-spin relaxation
Authors: R. Hellmann, E. Bich, E. Vogel, A. S. Dickinson, V. Vesovic
J. Chem. Phys. 130, 124309 (2009).

2008

Calculation of the transport and relaxation properties of methane. I. Shear viscosity, viscomagnetic effects, and self-diffusion
Authors: R. Hellmann, E. Bich, E. Vogel, A. S. Dickinson, V. Vesovic
J. Chem. Phys. 129, 064302 (2008).

Ab initio intermolecular potential energy surface and second pressure virial coefficients of methane
Authors: R. Hellmann, E. Bich, E. Vogel
J. Chem. Phys. 128, 214303 (2008).

Ab initio potential energy curve for the neon atom pair and thermophysical properties of the dilute neon gas. II. Thermophysical properties for low-density neon
Authors: E. Bich, R. Hellmann, E. Vogel
Mol. Phys. 106, 1107–1122 (2008).

Ab initio potential energy curve for the neon atom pair and thermophysical properties of the dilute neon gas. I. Neon-neon interatomic potential and rovibrational spectra
Authors: R. Hellmann, E. Bich, E. Vogel
Mol. Phys. 106, 133–140 (2008).

2007

Ab initio potential energy curve for the helium atom pair and thermophysical properties of the dilute helium gas. II. Thermophysical standard values for low-density helium
Authors: E. Bich, R. Hellmann, E. Vogel
Mol. Phys. 105, 3035–3049 (2007).

Ab initio potential energy curve for the helium atom pair and thermophysical properties of dilute helium gas. I. Helium-helium interatomic potential
Authors: R. Hellmann, E. Bich, E. Vogel
Mol. Phys. 105, 3013–3023 (2007).

Transport properties of asymmetric-top molecules
Authors: A. S. Dickinson, R. Hellmann, E. Bich, E. Vogel
Phys. Chem. Chem. Phys. 9, 2836–2843 (2007).

HSU

Letzte Änderung: 25. March 2024