Publications

2025

Alexander Diedrich, Lukas Moddemann, Oliver Niggemann: On validating propositional logic system descriptions for fault diagnosis. Elsevier Engineering Applications of Artificial Intelligence, Volume 165, February 2026, 113379. – Q1 (Scimago)

Sebastian Eilermann, René Heesch, Oliver Niggemann: ConTiCoM-3D: A Continuous-Time Consistency Model for 3D Point Cloud Generation, International Conference on 3D Vision 2026, Vancouver, Kanada

Alexander Diedrich, Mattias Krysander, René Heesch, Oliver Niggemann: Modelling Cyber-Physical Systems for Fault Diagnosis, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2025 – SJR 3.254 / Q1 (Scimago)

Jonas Ehrhardt, Johannes Schmidt, René Heesch, Oliver Niggemann: Using Gradient-based Optimization for Planning with Deep Q-Networks in Parametrized Action Spaces, ECAI Workshop on AI-based Planning for Complex Real-World Applications (CAIPI’25), Bologna, Italy, 2025 – unranked / parent conference: A (CORE23)

Mark Tappe, Lukas Moddemann, Henrik Steude et al.: A supervised AI-based toolchain for anomaly detection, diagnosis, and reconfiguration for the life-support system of the COLUMBUS module of the ISS, In CEAS Space Journal, Springer Nature, 2025. https://doi.org/10.1007/s12567-025-00654-3 – SJR 0.512 / Q2 (Scimago)

René Heesch, Sebastian Eilermann, Alexander Windmann, Alexander Diedrich, Oliver Niggemann: Evaluating Large Language Models for Real-World Engineering Tasks, Australasian Joint Conference on Artificial Intelligence 2025, Canberra, Australia, 2025 – B (CORE23)

René Heesch, Björn Ludwig, Jonas Ehrhardt, Alexander Diedrich, Oliver Niggemann: Learning Sound and Complete Preconditions in Complex Real-World Domains, ECAI Workshop on AI-based Planning for Complex Real-World Applications (CAIPI’25), Bologna, Italy, 2025 – unranked / parent conference: A (CORE23)

Alexander Windmann, Henrik Steude, Daniel Boschmann, Oliver Niggemann: Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems, 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Porto, Portugal, 2025 – SJR 0.335 / B2 (Qualis)

Daniel Vranješ, Oliver Niggemann: On the Impact of Instance- and Type-Level Modeling on Neural Network-Based Anomaly Detection for Cyber-Physical Systems, 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Porto, Portugal, 2025 – SJR 0.335 / B2 (Qualis)

Li, R.; Wittke, C.; Ludwigs, R.; Lingohr, P.; Heimes, H; Niggemann, O.; Kampker, A..: Data-Efficient Characterization of Battery Slurry Viscosity Using Uncertainty-Based Active Learning with Neural Networks, European Production Technology Summit (EPTS), 2025 – unranked

Eduard Klatt, Bernd Zimmering, Oliver Niggemann, Natalie Rauter: Machine-Learning-Enabled Comparative Modelling of the Creep Behaviour of Unreinforced PBT and Short-Fibre Reinforced PBT Using Prony and Fractional Derivative Models, Applied Mechanics, 2025, https://doi.org/10.3390/applmech6030060 – SJR 0.362 / Q2 (Scimago)

Benjamin Kelm, Mark Tappe, Stephan Myschik, Oliver Niggemann: Erweiterung eines modellbasierten Rekonfigurationsansatzes für hybride Systeme am Beispiel des Lebenserhaltungssystems (ECLSS) des Columbus-Moduls der ISS, In: Deutscher Luft- und Raumfahrtkongress 2023, Deutsche Gesellschaft für Luft- und Raumfahrt – Lilienthal-Oberth e.V., Bonn, 2025, https://doi.org/ 10.25967/610351 – not peer-reviewed

Mark Tappe, Aaron Wickers, Benjamin Kelm, Stephan Myschik, Oliver Niggemann: Verwendung eines qualitativen Systemmodells zum maschinellen Lernens des Flugverhaltens eines Multicopters, In: Deutscher Luft- und Raumfahrtkongress 2023, Deutsche Gesellschaft für Luft- und Raumfahrt – Lilienthal-Oberth e.V., Bonn, 2025, https://doi.org/10.25967/610214 – not peer-reviewed

Malte Ramonat, Bernd Zimmering, Silke Merkelbach, Felix Gehlhoff, Oliver Niggemann, Alexander Fay: A Fluid Mixing Benchmark for Anomaly Detection in CPS with Real & Simulated Data, IEEE Access, 2025, https://doi.org/10.1109/ACCESS.2025.3592815 – SJR 0.849 / Q1 (Scimago)

Tim Rensmeyer, Oliver Niggemann: On the Convergence of Locally Adaptive and Scalable Diffusion-Based Sampling Methods for Deep Bayesian Neural Network Posteriors, The 28th International Conference on Artificial Intelligence and Statistics, Mai Khao, Thailand, 2025 – A (CORE23)

Sztyber-Betley, A.; Chanthery, E..; Travé-Massuyès, L..; Merkelbach, S.; Kukla, K.; Glotin, M.; Diedrich, A.; Niggemann, O.: Are diagnostic concepts within the reach of LLMs?, The 36th International Conference on Principles of Diagnosis and Resilient Systems (DX’25), Nashville, TN, USA, 2025 – unranked

Richard Jaufmann, Niklas Widulle, Jonas Ehrhardt, Daniel Vranješ, Oliver Niggemann: On the Impact of Pretraining with Simulated Data on Anomaly Detection in CPS – A Case Study, 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Porto, Portugal, 2025 – B1 (Qualis)

Michael Hohmann, Adili Yiming, Lars Penter, Steffen Ihlenfeldt, Oliver Niggemann: A Data-Driven Approach for Automating the Design Process of Deep Drawing Tools, The 13th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Process (NUMISHEET), Munich, Germany, 2025 – SJR 0.187

Björn Ludwig, Jonas Ehrhardt, Oliver Niggemann: Creating Virtual Sensors Using Neural Networks, 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Porto, Portugal, 2025 – B1 (Qualis)

Björn Ludwig, Maria Maleshkova, Oliver Niggemann, O.: CPSWatch: Lightweight Ontology for System Description and Diagnosis, 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Porto, Portugal, 2025 – B1 (Qualis)

Lukas Moddemann, Jonas Ehrhardt, Alexander Diedrich, Oliver Niggemann: The HAI-CPPS Benchmark: Evaluating AI Capabilities across Hybrid Data Spaces, 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Porto, Portugal, September 2025 – B1 (Qualis)

Robert Ludwigs, Christian Wittke, Henrik Born, Lukas Augustin, Oliver Niggemann, Achim Kampker: KI-basierte Partikelgrößenbestimmung in Suspensionen, Zeitschrift für wirtschaftlichen Fabrikbetrieb, 120(s1): 219–223, 2025, https://doi.org/10.1515/zwf-2024-0144 – SJR 0.271 / Q3 (Scimago)

Christian Wittke, Robert Ludwigs, Mark Tappe, Markus Schatz, Achim Kampker, Oliver Niggemann: Challenges and Opportunities in Developing INN-Based Control Systems for Modular Drones, Machine Learning for Cyber-Physical Systems – Proceedings of the ML4CPS 2025 Conference, Berlin, Deutschland: openHSU, 2025, pp. 69–78, https://doi.org/10.24405/20026 – unranked

Bernd Zimmering, Cecilia Coelho, Vaibhav Gupta, Maria Maleshkova, Oliver Niggemann: Breaking Free: Decoupling Forced Systems with Laplace Neural Networks, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Porto, Portugal, 2025 – A1 (Qualis)

Oliver Niggemann, Jürgen Beyerer, Görschwin Fey, Achim Kampker, Alexander Diedrich, Christian Kühnert, Alois Kritl: ML4CPS 2025 Workshop Proceedings, 2025, https://doi.org/10.24405/20018 – unranked

René Heesch, Sebastian Eilermann, Alexander Windmann, Alexander Diedrich, Phillip Rosenthal, Oliver Niggemann: Evaluating Large Language Models for Real-World Engineering Tasks, 2025, https://doi.org/10.48550/arXiv.2505.13484 – not peer-reviewed

Alexander Diedrich, Christian Kühnert, Georg Maier, Joshua Schraven, Oliver Niggemann: AITwin: A Uniform Digital Twin Interface for Artificial Intelligence Applications, In: Schulz, D., Bauckhage, C. (eds) Informed Machine Learning. Cognitive Technologies, Springer, Cham., 2025, https://doi.org/10.1007/978-3-031-83097-6_3 – unranked

Michael Hohmann, Adili Yiming, Lars Penter, Steffen Ihlenfeldt, Oliver Niggemann: An AI approach for predicting the active surface of deep drawing tools in try-out, at – Automatisierungstechnik, 73(4): 251-260, 2025, https://doi.org/10.1515/auto-2024-0130 – SJR 03.09 / Q3 (Scimago)

Phillip Rosenthal, Artur Liebert, Oliver Niggemann: Finding optimal solution principles in conceptual design, 25th International Conference on Engineering Design (ICED), Dallas, USA, 2025, https://doi.org/10.1017/pds.2025.10194 – B (ERA)

Jan-Philipp Roche, Oliver Niggemann, Jens Friebe: Using Autoencoders and Automatic Differentiation to Reconstruct Missing Variables in a Set of Time Series. Springer Nature Computer Science. 2025 – SJR 0.565 / Q2 (Scimago)

2024

Tim Rensmeyer, Ben Craig, Denis Kramer, Oliver Niggemann: High accuracy uncertainty-aware interatomic force modeling with equivariant Bayesian neural networks, Digital Discovery, 3, 2024 – SJR 1.246 / Q1 (Scimago)

Silke Merkelbach, Alexander Diedrich, Anna Sztyber-Betley, Louise Travé-Massuyès, Elodie Chanthery, Oliver Niggemann, Roman Dumitrescu: Using Multi-modal LLMs to Create Models for Fault Diagnosis, The 35th International Conference on Principles of Diagnosis and Resilient Systems (DX’24), Vienna, Austria, 2024 – unranked

Christian Wittke, Artur Liebert, Andrej Friesen, Holger Flatt, Oliver Niggemann: Potato-Glow: Utilizing Glow for Vision-Based Anomaly Detection in an Industrial Context: A Comparative Benchmarking Approach, Bildverarbeitung in der Automation (BVAu), Lemgo, Deutschland, 2024 – unranked

Manuel Schulz, Alexnder Fay, Oliver Niggemann, Wenzel Matiaske, Detlef Schulz: dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg, Band 2, DTEC.bw, 2024, https://doi.org/10.24405/16768 – not peer-reviewed

Alexander Diedrich, René Heesch, Marco Bozzano, Björn Ludwig, Alessandro Cimatti, Oliver Niggemann: Inferring Sensor Placement Using Critical Pairs and Satisfiability Modulo Theory, The 35th International Conference on Principles of Diagnosis and Resilient Systems, Vienna, Austria, November 2024 – unranked

Daniel Vranješ, Jonas Ehrhardt, René Heesch, Lukas Moddemann, Henrik Steude, Oliver Niggemann: Design Principles for Falsifiable, Replicable and Reproducible Empirical Machine Learning Research, The 35th International Conference on Principles of Diagnosis and Resilient Systems, Vienna, Austria, November 2024 – unranked

René Heesch, Alessandro Cimatti, Jonas Ehrhardt, Alexander Diedrich, Oliver Niggemann: Summary of A Lazy Approach to Neural Numerical Planning with Control Parameters, The 35th International Conference on Principles of Diagnosis and Resilient Systems, Vienna, Austria, November 2024 – unranked

Alexander Diedrich, Stefan Windmann, Oliver Niggemann: Solving industrial fault diagnosis problems with quantum computers, Quantum Mach. Intell. 6, 66, 2024, https://doi.org/10.1007/s42484-024-00184-x – Q1 (Scimago)

Sebastian Eilermann, Lisa Lüddecke, Michael Hohmann, Bernd Zimmering, Mario Oertel, Oliver Niggemann: A Neural Ordinary Differential Equations Approach for 2D Flow Properties Analysis of Hydraulic Structures, 1st ECAI Workshop on Machine Learning Meets Differential Equations: From Theory to Applications, Santiago de Compostela, Spain, October 2024 – unranked / parent conference: A (CORE23)

Bernd Zimmering, Cecília Coelho, Oliver Niggemann: Optimising Neural Fractional Differential Equations for Performance and Efficiency, 1st ECAI Workshop on Machine Learning Meets Differential Equations: From Theory to Applications, Santiago de Compostela, Spain, October 2024 – workshop unranked / parent conference: A (CORE23)

Artur Liebert, Fabian Dethof, Sylvia Keßler, Oliver Niggemann: Automated Impact Echo Spectrum Anomaly Detection using U-Net Autoencoder, PAIS24, Santiago de Compostela, Spain, October 2024 – parent conference: A (CORE23)

René Heesch, Alessandro Cimatti, Jonas Ehrhardt, Alexander Diedrich, Oliver Niggemann: A Lazy Approach to Neural Numerical Planning with Control Parameters, 27TH European Conference on Artificial Intelligence (ECAI), Santiago de Compostela, Spain, 2024 – SJR 1.170 / A (CORE23)

Daniel Boschmann, Christian Stieghorst, David Knezevic, Louba Kadri, Oliver Niggemann: Automation of PGAA Spectra Analysis with Deep Learning, 22nd IEEE International Conference on Industrial Informatics (INDIN), Beijing, China, 2024 – B3 (Qualis)

Frederic Meyer, Lennart Freitag, Sven Hinrichsen, Oliver Niggemann: Potentials of Large Language Models for Generating Assembly Instructions, 29th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 2024 – B1 (Qualis)

Niklas Widulle, Frederic Meyer, Oliver Niggemann: Generating Assembly Instructions Using Reinforcement Learning in Combination with Large Language Models, 22nd IEEE International Conference on Industrial Informatics (INDIN), Beijing, China, 2024 – B3 (Qualis)

Alexander Windmann, Philipp Wittenberg, Marvin Schieseck, Oliver Niggemann: Artificial Intelligence in Industry 4.0: A Review of Integration Challenges for Industrial Systems. 22nd IEEE International Conference on Industrial Informatics (INDIN), Beijing, China, 2024. – B3 (Qualis)

Lukas Moddemann, Henrik Sebastian Steude, Alexander Diedrich, Ingo Pill, Oliver Niggemann: Extracting Knowledge using Machine Learning for Anomaly Detection and Root-Cause Diagnosis, 29th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 2024 – B1 (Qualis)

Jonas Ehrhardt, Phillip Overlöper, Dainel Vranjes, Henrik Sebastian Steude, Alexander Diedrich, Oliver Niggemann: Using Modular Neural Networks for Anomaly Detection in Cyber-Physical Systems, 29th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 2024 – B1 (Qualis)

Björn Ludwig, Alexander Diedrich, Oliver Niggemann: Using Ontologies to Create Logical System Descriptions for Fault Diagnosis, 29th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 2024 – B1 (Qualis)

Phillip Overlöper, Lukas Moddemann, Nemanja Hranisavljevic, Alexander Windmann, Oliver Niggemann: Discretization of CPS Time Series with Neural Networks, 29th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 2024 – B1 (Qualis)

Bernd Zimmering, Jan-Philipp Roche, Oliver Niggemann: Enhancing Nonlinear Electrical Circuit Modeling with Prior Knowledge-Infused Neural ODEs 29th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 2024 – B1 (Qualis)

Michael Hohmann, Sebastian Eilermann, Willi Großmann, Oliver Niggemann: Design Automation: A Conditional VAE Approach to 3D Object Generation under Conditions, 29th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 2024 – B1 (Qualis)

Lukas Augustin, Oliver Niggemann: Self-Supervised Graph Structure Learning for Cyber-Physical Systems, ,12th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Ferrara, Italy, 2024 – B3 (Qualis)

Daniel Vranješ, Oliver Niggemann: Enhancing Cyber-Physical System Analysis with Structure-Aware Modular Neural Networks, 7th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), St. Louis, USA, 2024 – SJR 0.191

Artur Liebert, Arulnambi Palani, Tim Rensmeyer, Michael Breuer, Oliver Niggemann: CNN-based Temperature Dynamics Approximation for Burning Rooms, SafeProcess24, Ferrara, Italy, June 2024 – B3 (Qualis)

Henrik Sebastian Steude, Christian Geier, Lukas Moddemann, Martin Creutzenberg, Jann Pfeifer, Samo Turk, Oliver Niggemann: End-to-end MLOps Integration: A Case Study with ISS Telemetry Data, ML4CPS – Machine Learning for Cyber-Physical Systems, Berlin, Germany, 2024 – unranked

Philipp Rosenthal, Niels Demke, Frank Mantwill, Oliver Niggemann: Plan-Based Derivation of General Functional Structures in Product Design, 7th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), St. Louis, USA, 2024 – SJR 0.191

Bernd Zimmering, Oliver Niggemann, O.: Integrating continuous-time neural networks in engineering: bridging machine learning and dynamical system modeling,  Machine Learning for Cyber-Physical Systems (ML4CPS), Berlin, Germany, 2024, https://doi.org/10.24405/15313 – unranked

Diedrich, A.; Moddemann, L.; Niggemann: Learning System Descriptions for Cyber-Physical Systems, 12th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Ferrara, Italy, 2024 – B3 (Qualis)

Lukas Moddemann, Henrik Sebastian Steude, Alexander Diedrich, Oliver Niggemann: Discret2Di – Deep Learning based Discretization for Model-based Diagnosis,12th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Ferrara, Italy, 2024 – B3 (Qualis)

Henrik Sebastian Steude, Lukas Moddemann, Alexander Diedrich, Jonas Ehrhardt, Oliver Niggemann: Diagnosis driven Anomaly Detection for Cyber-Physical Systems, 12th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Ferrara, Italy, 2024 – B3 (Qualis)

Tim Rensmeyer, Willi Großmann, Denis Kramer, Oliver Niggemann, O.: Bayesian Transfer Learning of Neural Network-Based Interatomic Force Models, The 38th Annual AAAI Conference on Artificial Intelligence | Workshop on AI to Accelerate Science and Engineering, Vancouver, Canada, 2024 – unranked / parent conference: A* (CORE23)

Silke Merkelbach, Alexander Diedrich, Sebastian von Enzberg, Oliver Niggemann, Roman Dumitrescu: Towards the Generation of Models for Fault Diagnosis of CPS using VQA Models, Machine Learning for Cyber-Physical Systems (ML4CPS), Berlin, Germany, 2024 – unranked

Willi Großmann, Sebastian Eilermann, Tim Rensmeyer, Artur Liebert, Michael Hohmann, Christian Wittke, Oliver Niggemann: Position Paper on Materials Design — A Modern Approach, The 38th Annual AAAI Conference on Artificial Intelligence | Workshop on AI to Accelerate Science and Engineering, Vancouver, Canada, 2024, DOI: 10.48550/arXiv.2312.10996 – unranked / parent conference: A* (CORE23)

2023

Mark Tappe, Benjamin Kelm, Oliver Niggemann, Stephan Myschik: Qualitative Monitoring of the Consequences of AI Solutions in Safety-Critical Systems, In: Proceedings of the QR 2023, 36th International Workshop on Qualitative Reasoning, Co-located with the European Conference on Artificial Intelligence (ECAI), Krakow, Poland, October, 2023 – unranked / parend conference: A (CORE23)

Henrik Sebastian Steude, Lukas Moddemann, Alexander Diedrich, Jonas Ehrhardt, Oliver Niggemann: Diagnosis Driven Anomaly Detection for CPS, Preprint, 2023 – not peer-reviewed

Christoph Petroll, Sebastian Eilermann, Philipp Hofer, Oliver Niggemann: A Generative Neural Network Approach for 3D Multi-Criteria Design and Optimization of an Engine Mount for an Unmanned Air Vehicle, Preprint, 2023 – not peer-reviewed

Daniel Hinck, Jonas Schöttler, Maria Krantz, Niklas Widulle, Katharina-Sophie Issleif, Oliver Niggemann: A next generation protective emblem: Cross-frequency protective options for non-combatants in the context of (fully) autonomous warfare, The International Review of the Red Cross, 2023 – SJR 0.455

Sebastian Eilermann, Leon Wehmeier, Oliver Niggemann, Andreas Deuter: KIAAA: An AI Assistant for Teaching Programming in the Field of Automation, 2023 IEEE 21st International Conference on Industrial Informatics (INDIN), Lemgo, Germany, 2023, pp. 1-7, DOI: 10.1109/INDIN51400.2023.10218157 – SJR 0.257

Lukas Moddemann, Henrik Sebastian Steude, Oliver Niggemann: Discret2Di – Deep Learning based Discretization for Model-based Diagnosis. 34th International Workshop on Principle of Diagnosis, Loma Mar, USA, 2023 – unranked

Henrik Sebastian Steude, Lukas Moddemann, Alexander Diedrich, Jonas Ehrhardt, Oliver Niggemann: Diagnosis driven Anomaly Detection for CPS. 34th International Workshop on Principle of Diagnosis, Loma Mar, USA, 2023 – unranked

René Heesch, Jonas Ehrhardt, Oliver Niggemann: Integrating Machine Learning into an SMT-based Planning Approach for Production Planning in Cyber-Physical Production Systems. International Workshop on Hybrid Models for Coupling Deductive and Inductive Reasoning (HYDRA), ECAI 2023 – European Conference on Artificial Intelligence, Krakau, Poland – unranked / parent conferenc: A (CORE23)

Jonas Ehrhardt, René Heesch, Oliver Niggemann: Learning Process Steps as Dynamical Systems for a Sub-Symbolic Approach of Process Planning in Cyber-Physical Production Systems. International Workshop on Hybrid Models for Coupling Deductive and Inductive Reasoning (HYDRA), ECAI 2023 – European Conference on Artificial Intelligence, Krakau, Poland – unranked / parent conference: A (CORE23)

Alexander Windmann, Henrik Sebastian Steude, Oliver Niggemann: Robustness and Generalization Performance of Deep Learning Models on Cyber-Physical Systems: A Comparative Study. Workshop of Artificial Intelligence for Time Series Analysis (AI4TS), IJCAI 2023 – International Joint Conference on Artificial Intelligence, Macao, China – unranked / parent conference: A* (CORE23)

Niklas Widulle, Oliver Niggemann: Using Reverse Reinforcement Learning for Assembly Tasks, PRL Workshop – Bridging the Gap Between AI Planning and Reinforcement Learning, IJCAI 2023 – International Joint Conference on Artificial Intelligence, Macao, China – unranked / parent conference: A* (CORE23)

Artur Liebert, Christian Wittke, Jonas Ehrhardt, Richard Jaufmann, Niklas Widulle, Sebastian Eilermann, Maria Krantz, Oliver Niggemann: Using FliPSi to Generate Data for Machine Learning Algorithms, IEEE ETFA 2023 – IEEE International Conference on Emerging Technologies and Factory Automation, Siana, Romania – B1 (Qualis)

Maria Krantz, Niklas Widulle, Oliver Niggemann: Game Design Tools for ML Data Generation in CPS. In: 2023 9th International Conference on Automation, Robotics and Applications (ICARA), February 2023, to be published In: 2023 9th International Conference on Automation, Robotics and Applications (ICARA) Conference Proceedings, IEEE Xplore – unranked

Schöttler, J. J.; Bürklin, C.; Niggemann, O.: 54 Shapes of [naval] grey: AI based eo-sensor image classification of warships, NATO SET SET-311, NATO RESTRICTED, 2023 – unranked

Schöttler, J. J.; Bürklin, C.; Niggemann, O.: Y inside: AI-based mapping of deinterleaved radar to a database, NATO SET SET-311, NATO RESTRICTED, 2023 – unranked

Luis Miguel Viera da Silva, René Heesch, Aljosha Köcher, Alexander Fay: Transformation eines Fähigkeitsmodells in einen PDDL-Planungsansatz, at-Automatisierungstechnik 71.2, 2023, 105-115, DOI: 10.1515/auto-2022-0112 – SJR 0.310 / Q3 (Scimago)

Oliver Niggemann, Bernd Zimmering, Henrik Sebastian Steude, Lukas Augustin, Alexander Windmann, Samim Multaheb: Machine Learning for Cyber-Physical Systems. In: Vogel-Heuser, B.; Wimmer, M. (eds) Digital Transformation. Springer Vieweg, Berlin, Heidelberg, 2023, https://doi.org/10.1007/978-3-662-65004-2_17 – unranked

Benjamin Kiefer, Matej Kristan, Janez Perš, lojze Žust, Fabio Poiesi, Fabio Andrade, Alexandre Bernardino, Matthew Dawkins, Jenni Raitoharju, Yitong Quan, Adem Atmaca, Timon Hofer, Qiming Zhang, Yufei Xu, Jing Zhang, Dacheng Tao, LarsSommer, Raphael Spraul, Hangyue Zhao, Hongpu Zhang, Yanyun Zhao, Lukas Augustin, Eui-ik Jeon, Impyeong Lee, Luca Zedda, Andrea Loddo, Cecilia Di Ruberto, Sagar Verma, Siddharth Gupta, Shishir Muralidhara, Niharika Hegde, Daitao Xing, Nikolaos Evangeliou, Anthony Tzes, Vojtěch Bartl, Jakub Špaňhel, Adam Herout, Neelanjan Bhowmik, Toby P. Breckon, Shivanand Kundargi, Tejas Anvekar, Chaitra Desai, Ramesh Ashok Tabib, Uma Mudengudi, Arpita Vats, Yang Song, Delong Liu, Yonglin Li, Shuman Li, Chenhao Tan, Long Lan, Vladimir Somers, Christophe De Vleeschouwer, Alexandre Alahi, Hsiang-Wei Huang, Cheng-Yen Yang, Jenq-Neng Hwang, Pyong-Kun Kim, Kwangju Kim, Kyoungoh Lee, Shuai Jiang, Haiwen Li, Zheng Ziqiang, Tuan-Anh Vu, Hai Nguyen-Truong, Sai-Kit Yeung, Zhuang Jia, Sophia Yang, Chih-Chung Hsu, Xiu-Yu Hou, Yu-An Jhang, Simon Yang, Mau-Tsuen Yang: 1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results, Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshops (pp. 265-302), 2023 – unranked

Kaja Balzereit, Oliver Niggemann: AutoConf: A New Algorithm for Reconfiguration of Cyber-Physical Production Systems,  IEEE Transactions on Industrial Informatics, January 2023 – SJR 4.002 / Q1 (Scimago)

2022

Jan-Philipp Roche, Jens Friebe, Oliver Niggemann: Knowledge Based Grey Box Modeling of Inaccessible Circuits for System EMC-Simulation in Time Domain, 24th European Conference on Power Electronics and Applications (EPE’22 ECCE Europe), Hannover, Germany, September 2022. – SJR 0.323

Samim Multaheb, Fabian Bauer, Peter Bretschneider, Oliver Niggemann: Learning physically meaningful representations of energy systems with variational autoencoders, 27th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2022, Stuttgart, Germany, September 6 ‐ 9, 2022 – SJR 0.335

Tim Rensmeyer, Samim Multaheb, Julian Putzke, Bernd Zimmering, Oliver Niggemann: Using domain-knowledge to improve machine learning: A survey of recent advances, atp Magazin 8/2022, Vulkan Verlag – unranked

Anna Nordhausen, Jonas Ehrhardt, Nantwin Möller: LaiLa Modellfabrik-Eine Validierungsplattform für Künstliche Intelligenz im Bereich Cyber-Physischer Produktionssysteme im Leichtbau, In: dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg: Forschungsaktivitäten im Zentrum für Digitalisierungs- und Technologieforschung der Bundeswehr dtec.bw – Band 1 · 2022, Seiten 230-234, DOI: https://doi.org/10.24405/14522 – not peer-reviewed

Niklas Widulle, Jonas Ehrhardt, Maria Krantz, Artur Liebert, Anna Nordhausen, Oliver Niggemann: Eine Simulationsumgebung für flexible Cyber-Physische Produktionssysteme zur Generierung realistischer Datensätze für maschinelle Lernverfahren, In: VDI-Berichte – Leitkongress Automation 2022 – Band 2399 · 2022, Seiten 533-545, ISSN: 0083-5560 – unranked

Benjamin Kelm, Stephan Myschik, Mark Tappe, Oliver Niggemann: Anwendung eines modellbasierten Rekonfigurationsansatzes und Vorstellung eines Konzeptes zur qualitativen Systemüberwachung für das Lebenserhaltungssystems (ECLSS) des COLUMBUS-Moduls der ISS. In: dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg: Forschungsaktivitäten im Zentrum für Digitalisierungs- und Technologieforschung der Bundeswehr dtec.bw – Band 1 · 2022, Seiten 117-122, DOI: https://doi.org/10.24405/14539 – not peer-reviewed

Pavle Ivanovic, Jonas Schöttler, Alexander Windmann, Philipp Neumann: SmartShip – AI-based Assistance Systems for the Maritime Sector. Forschungsaktivitäten im Zentrum für Digitalisierungs- und Technologieforschung der Bundeswehr 1 292-296, 2022 – not peer-reviewed

Niklas Widulle, Luis Miguel Vieira da Silva, René Heesch, Julian Putzke, Oliver Niggemann: Investigating the Use of AI Planning Methods in Real-World CPS Use Cases. In: dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg: Forschungsaktivitäten im Zentrum für Digitalisierungs- und Technologieforschung der Bundeswehr dtec.bw – Band 1 · 2022, Seiten 168-173, DOI: https://doi.org/10.24405/14547 – not peer-reviewed

René Heesch, Julian Putzke, Simon Althoff, Philip Topalis, Marvin Schieseck, Alexander Fay, Oliver Niggemann: Anforderungen an eine Engineering-Plattform für die KI-basierte Automation. In: dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg: Forschungsaktivitäten im Zentrum für Digitalisierungs- und Technologieforschung der Bundeswehr dtec.bw – Band 1 · 2022, Seiten 162-167, DOI: https://doi.org/10.24405/14546 – not peer-reviewed

Marvin Schieseck, Philip Topalis, René Heesch, JulianPutzke, Alexander Fay: Beschreibungsmittel für die modellbasierte KI-Entwicklung in Automatisierungssystemen. In: dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg: Forschungsaktivitäten im Zentrum für Digitalisierungs- und Technologieforschung der Bundeswehr dtec.bw – Band 1 · 2022, Seiten 153-161, DOI: https://doi.org/10.24405/14545 – not peer-reviewed

Lukas Moddemann, Henrik Sebastian Steude, Philipp Grashorn, Oliver Niggemann: Automated Anomaly Detection and Diagnosis of the Environmental Control System of the ISS. In: dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg: Forschungsaktivitäten im Zentrum für Digitalisierungs- und Technologieforschung der Bundeswehr dtec.bw – Band 1 · 2022, Seiten 123-128, DOI: https://doi.org/10.24405/14540 – not peer-reviewed

Maria Krantz, Niklas Widulle, Anna Nordhausen, Artur Liebert, Jonas Ehrhardt, Sebastian Eilermann, Oliver Niggemann: FliPSi: Generating Data for the Training of Machine Learning Algorithms for CPPS. In Annual Conference of the PHM Society (Vol. 14, No. 1), Oktober 2022 – SJR 0.182

Willi Großmann, Helena Horn, Oliver Niggemann: Improving remote material classification ability with thermal imagery. Sci Rep 12, 17288, 2022, DOI: https://doi.org/10.1038/s41598-022-21588-4 – Q1 (Scimago)

Maria Krantz, Alexander Windmann, René Heesch, Lukas Moddemann, Oliver Niggemann: “On a Uniform Causality Model for Industrial Automation”, arXiv:2209.09618, 2022 – unranked

Benjamin Kelm, Kaja Balzereit, Lukas Moddemann, Stephan Myschik, Oliver Niggemann: Application of a Model-based Reconfiguration Approach for the ISS Columbus Environmental Control and Life Support System (ECLSS), 33rd International Workshop on Principle of Diagnosis, Toulouse, France, 2022 – unranked

René Heesch, Niklas Widulle, Aljosha Köcher, Anna Nordhausen, Luis Miguel Vieira da Silva, Julian Putzke, Oliver Niggemann: Methoden der künstlichen Intelligenz für die automatisierte Planung von modularen Produktionsprozessen, Automation 2022, 2022 – unranked

Daniel Vranješ, Philip Topalis, Oliver Niggemann: Chancen und Herausforderungen für Künstliche Intelligenz in kleinen und mittelständischen Unternehmen, Automation 2022, 2022 – unranked

Jonas Ehrhardt, Malte Ramonat, René Heesch, Kaja Balzereit, Alexander Diedrich, Oliver Niggemann: An AI benchmark for Diagnosis, Reconfiguration & Planning, 27th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA2022), 2022 – B1 (Qualis)

Jonas Schöttler, Claus Otto, Willi Großmann, Oliver Niggemann: Opportunities of AI for maritime forces in an in- and outward-looking view, ICMCIS2022, Elsevier Procedia, May 2022 – SJR 0.204

Alexander Diedrich, Oliver Niggemann: On Residual-based Diagnosis of Physical Systems. Elsevier Engineering Applications of Artificial Intelligence, Volume 109, March 2022, 104636. – Q1 (Scimago)

Daniel Vranješ, Oliver Niggemann: Anomaly detection based on time series data from industrial automatic sewing machines, The 5th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Coventry, England, 2022. – SJR 0.190

Artur Liebert, Wolfgang Weber, Sebastian Reif, Oliver Niggemann: Anomaly Detection with Autoencoders as a Tool for Detecting Sensor Malfunctions, The 5th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Coventry, England, 2022. – SJR 0.190

Aljosha Köcher, René Heesch, Niklas Widulle, Anna Nordhausen, Julian Putzke, Alexander Windmann, Oliver Niggemann: A Research Agenda for AI Planning in the Field of Flexible Production Systems, The 5th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Coventry, England, 2022. – SJR 0.190

Henrik Sebastian Steude, Alexander Windmann, Oliver Niggemann: Learning Physical Concepts in Cyber-Physical Systems: A Case Study, The 11th IFAC Symposium on Fault Detection, Supervision, and Safety of Technical Processes (SAFEPROCESS 2022), Pafos, Cyprus, June 2022 – C (CORE23)

2021

Alexander Dietrich, Oliver Niggemann: Diagnosing Systems through Approximated Information, Proceedings of the Annual Conference of the PHM Society, 2021. – SJR 0.180

Kaja Balzereit, Oliver Niggemann: Sound and Complete Reconfiguration for a Class of Hybrid Systems, 32nd International Workshop on Principle of Diagnosis, 2021, Hamburg, Germany – unranked

Jan-Philipp Roche, Jens Friebe, Oliver Niggemann: Neural Network Modeling of Nonlinear Filters for EMC Simulation in Discrete Time Domain, 47th Annual Conference of the IEEE Industrial Electronics Society (IECON 2021), Toronto, Canada, 2021. – SJR 0.205

Philipp Rosenthal, Oliver Niggemann: Problem examination for AI methods in conceptual product design, IJCAI 2021 Workshop – AI and Product Design, Montreal, Canada, 2021. – unranked / parent conference: A* (CORE23)

Kaja Balzereit, Alexander Diedrich, Jonas Ginster, Oliver Niggemann: An Ensemble of Benchmarks for the Evaluation of AI Methods for Fault Handling in CPPS, IEEE International Conference on Industrial Informatics (INDIN 2021), Palma de Mallorca, Spain, 2021 – B3 (Qualis)

Kaja Balzereit, Oliver Niggemann: Gradient-based Reconfiguration of Cyber-Physical Production Systems, IEEE International Conference on Industrial Cyber-Physical Systems (ICPS 2021), Victoria, BC, Canada, 2021. – SJR 0.191

Bernd Zimmering, Oliver Niggemann, Constanze Hasterok, Erik Pfannstiel, Dario Ramming, Julius Pfrommer: Generating Artificial Sensor Data for the Comparison of Unsupervised Machine Learning Methods, Journal Sensors 2021, 21(7), 2397, DOI: https://doi.org/10.3390/s21072397 – SJR 0.764 / Q1 (Scimago

Oliver Niggemann, Alexander Diedrich, Erik Pfannstiel, joshua Schraven, Christian Kühnert: A Generic DigitalTwin Model for Artificial Intelligence Applications, IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Victoria, BC, Canada, May 2021 – B2 (Qualis)

Samim Multaheb, Bernd Zimmering, Oliver Niggemann: Expressing uncertainty in neural networks for production systems, at – Automatisierungstechnik 69(3):221-230, DOI: 10.1515/auto-2020-0122, March 2021 – SJR 0.309 / Q3 (Scimago)

Jürgen Beyerer, Alexander Maier, Oliver Niggemann: Machine Learning for Cyber Physical Systems Selected papers from the International Conference ML4CPS 2020: Selected papers from the International Conference ML4CPS 2020, January 2021, DOI: https://doi.org/10.1007/978-3-662-62746-4 – unranked

2020

Jan-Philipp Roche, Jens Friebe, Oliver Niggemann: Machine Learning for Grey Box Modeling of Electric Components for Circuit- and EMC-Simulation, PCIM Europe Conference, 2020.

Oliver Niggemann, Gautam Biswas, John Kinnebrew, Andreas Bunte, Nemanja Hranisavljevic: Handbuch Industrie 4.0 – Konzeptualisierung als Kernfrage des Maschinellen Lernens in der Produktion, Springer Verlag, 2020

Andreas Bunte, Peng Li, Oliver Niggemann: Learned Abstraction: Knowledge Based Concept Learning for Cyber Physical Systems, Machine Learning for Cyber Physical Systems – Selected papers from the International Conference ML4CPS, DOI: https://doi.org/10.1007/978-3-662-59084-3_6, Springer Vieweg, January 2020

Kaja Balzereit, Oliver Niggemann: Modeling Quantitative Effects for the Reconfiguration of Hybrid Systems, 31st International Workshop on Principles of Diagnosis DX, 2020

Alexander Diedrich, Kaja Balzereit, Oliver Niggemann: First Approaches to Automatically Diagnose and Reconfigure Hybrid Cyber-Physical Systems, Machine Learning for Cyber Physical Systems – Selected papers from the International Conference ML4CPS, Springer Vieweg, January 2020

Kaja Balzereit, Marta Fullen, Oliver Niggemann: A Concept for the Automated Reconfiguration of Quadcopters, Conference LWDA 2020, September 2020

Carlo Voß, Benedikt Eiteneuer, Oliver Niggemann, Oliver: Incorporating Uncertainty into Unsupervised Machine Learning for Cyber-Physical Systems, 3rd IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Tampere, Finland, June 2020

Kaja Balzereit, Oliver Niggemann: Automated Reconfiguration of Cyber-Physical Production Systems using Satisfiability Modulo Theories, 3rd IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Tampere, Finland, June 2020

Peng Li; Oliver Niggemann, Oliver: A Non-Convex Archetypal Analysis for One-class Classification based Anomaly Detection in Cyber-Physical Systems, IEEE Transactions on Industrial Informatics PP(99):1-1, DOI: https://doi.org/10.1109/TII.2020.3009106, July 2020

Nemanja Hranisavljevic, Alexander Maier, Oliver Niggemann: Discretization of hybrid CPPS data into timed automaton using restricted Boltzmann machines, Engineering Applications of Artificial Intelligence 95:103826, August 2020

Katharina Giese, Jens Eickmeyer, Oliver Niggemann: Differential Evolution in Production Process Optimization of Cyber Physical Systems, In book: Machine Learning for Cyber Physical Systems, Springer Vieweg, January 2020, DOI: https://doi.org/10.1007/978-3-662-59084-3_3

Marta Fullen, Peter Schüller, Oliver Niggemann: Semi-supervised Case-based Reasoning Approach to Alarm Flood Analysis, In book: Machine Learning for Cyber Physical Systems, Springer Vieweg, January 2020, DOI: https://doi.org/10.1007/978-3-662-59084-3_7

Andreas Bunte, Peng Li, Oliver Niggemann: Learned Abstraction: Knowledge Based Concept Learning for Cyber Physical Systems. In book: Machine Learning for Cyber Physical Systems – Selected papers from the International Conference ML4CPS, Springer Vieweg, January 2020, DOI: https://doi.org/10.1007/978-3-662-59084-3_6

2019

Peng Li, Oliver Niggemann: Non-convex hull based anomaly detection in CPPS, Elsevier Engineering Applications of Artificial Intelligence 87, October 2019

Kaja Balzereit, Oliver Niggemann: Automated Reconfiguration of Cyber-Physical Production Systems using Satisfiability Modulo Theories, 30th International Workshop on Principles of Diagnosis (DX-19) November 2019

Andreas Bunte, Paul Wunderlich, Natalia Moriz, Peng Li, André Mankowski, Antje Rogalla, Oliver Niggemann: Why Symbolic AI is a Key Technology for Self-Adaption in the Context of CPPS, IEEE Emerging Technologies and Factory Automation (ETFA), September 2019.

Andreas Bunte, Andreas Fischbach, Jan Strohschein, Thomas Bartz-Beielstein, Heide Faeskorn-Woyke, Oliver Niggemann: Evaluation of Cognitive Architectures for Cyber-Physical Production Systems, 24nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Sept. 2019.

Fan Zhang, Kevin Pinkal, Patrick Wefing, Florian Conradi, Jan Schneider, Oliver Niggemann: Quality Control of Continuous Wort Production through Production Data Analysis in Latent Space. In: 20th IEEE International Conference on Industrial Technology (ICIT), Melbourne, Australia, Feb 2019.

Benedikt Eiteneuer, Nemanja Hranisavljevic, Oliver Niggemann: Dimensionality Reduction and Anomaly Detection for CPPS Data using Autoencoder. In: 20th IEEE International Conference on Industrial Technology (ICIT), Melbourne, Australien, Feb 2019.

Peng Li, Oliver Niggemann, Barbara Hammer: On the Identification of Decision Boundaries for Anomaly Detection in CPPS. In: 20th IEEE International Conference on Industrial Technology (ICIT 2019) Melbourne, Australia, Feb 2019.

Alexander Diedrich, Oliver Niggemann: Model-based Diagnosis of Hybrid Systems using Satisfiability Modulo Theory. Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), Hawaii, USA, Jan 2019.

Andreas Bunte, Benno Stein, Oliver Niggemann: Model-Based Diagnosis for Cyber-Physical Production Systems Based on Machine Learning and Residual-Based Diagnosis Models. Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), Hawaii, USA, Jan 2019.

Stefan Windmann, Kaja Balzereit, Oliver Niggemann: Model-based routing in flexible manufacturing systems. at – Automatisierungstechnik, 67(2), 2019

Kaja Balzereit, Alexander Maier, Björn Barig, Oliver Niggemann: Data-driven Identification of Causal Dependencies in Cyber-Physical Production Systems, 11th International Conference on Agents and Artificial Intelligence, Prague, Czech Republic, February 2019

2018

Li, Peng; Niggemann, Oliver; Hammer, Barbara: A Geometric Approach to Clustering Based Anomaly Detection for Industrial Applications. In: 44th Annual Conference of the IEEE Industrial Electronics Society (IECON) Oct 2018.

Li, Peng; Niggemann, Oliver: A Data Provenance based Architecture to Enhance the Reliability of Data Analysis for Industry 4.0. In: 23th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Sep 2018.

Rogalla, Antje; Fay, Alexander; Niggemann, Oliver: Improved Domain Modeling for Realistic Automated Planning and Scheduling in Discrete Manufacturing. In: 23th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Sep 2018.

Bunte, Andreas; Niggemann, Oliver; Stein, Benno: Integrating OWL Ontologies for Smart Services into AutomationML and OPC UA. In: 23th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Sep 2018.

Wunderlich, Paul; Niggemann, Oliver: Inference Methods for Detecting the Root Cause of Alarm Floods in Causal Models. In: 23rd International Conference on Methods and Models in Automation and Robotics (MMAR) Międzyzdroje, Poland, Aug 2018.

Eiteneuer, Benedikt; Niggemann, Oliver: LSTM for model-based Anomaly Detection in Cyber-Physical Systems. In: Proceedings of the 29th International Workshop on Principles of Diagnosis Warsaw, Poland, Aug 2018.

von Birgelen, Alexander; Niggemann, Oliver: Enable learning of Hybrid Timed Automata in Absence of Discrete Events through Self-Organizing Maps. S.: 37-54, Springer Vieweg, Aug 2018.

von Birgelen, Alexander; Niggemann, Oliver: Anomaly Detection and Localization for Cyber-Physical Production Systems with Self-Organizing Maps. S.: 55-71, Springer Vieweg, Aug 2018.

Wunderlich, Paul; Niggemann, Oliver: Concept for Alarm Flood Reduction with Bayesian Networks by Identifying the Root Cause. In: IMPROVE – Innovative Modelling Approaches for Production Systems to Raise Validatable Efficiency: Intelligent Methods for the Factory of the Future S.: 111-129, Springer Vieweg, Aug 2018.

Windmann, Stefan; Niggemann, Oliver: A Sampling-Based Method for Robust and Efficient Fault Detection in Industrial Automation Processes. Springer Vieweg, Aug 2018.

Fullen, Marta; Schüller, Peter; Niggemann, Oliver: Validation of similarity measures for industrial alarm flood analysis. Springer Vieweg, Aug 2018.

Niggemann, Oliver; Schüller, Peter: IMPROVE – Innovative Modelling Approaches for Production Systems to Raise Validatable Efficiency. Springer Vieweg, Aug 2018.

Wunderlich, Paul; Niggemann, Oliver: Challenges in Learning Causal Models of Alarms in Industrial Plants. In: 16th IEEE International Conference on Industrial Informatics (INDIN) Porto, Portugal, Jul 2018.

Specht, Felix; Otto, Jens; Niggemann, Oliver; Hammer, Barbara: Generation of Adversarial Examples to Prevent Misclassification of Deep Neural Network based Condition Monitoring Systems for Cyber-Physical Production Systems. In: IEEE 16th International Conference on Industrial Informatics (INDIN) Jul 2018.

Lang, Dorota; Wunderlich, Paul; Heinz, Mario; Wisniewski, Lukasz; Jasperneite, Jürgen; Niggemann, Oliver; Röcker, Carsten: Assistance System to Support Troubleshooting of Complex Industrial Systems. In: 14th IEEE International Workshop on Factory Communication Systems (WFCS) Imperia (Italy), Jun 2018.

von Birgelen, Alexander; Buratti, Davide; Mager, Jens; Niggemann, Oliver: Self-Organizing Maps for Anomaly Localization and Predictive Maintenance in Cyber-Physical Production Systems. In: 51st CIRP Conference on Manufacturing Systems (CIRP CMS 2018) CIRP-CMS, May 2018.

Conradi, Florian; Wefing, Patrick; Pinkal, Kevin; Zhang, Fan; Niggemann, Oliver; Schneider, Jan: Inline progress measurement of the ß-amylase rest in the mashing process employing a near infrared transflectance probe. In: Trends in Brewing, Gent Apr 2018.

Wefing, Patrick; Conradi, Florian; Fuchs, Lukas; Schoppmeier, Jan; Pinkal, Kevin; Niggemann, Oliver; Schneider, Jan: Laboratory Plant for a closed loop-controlled continuous (CLCC) Mashing. In: Trends in Brewing, Gent Apr 2018.

Windmann, Stefan; Niggemann, Oliver; Stichweh, Heiko: Computation of energy efficient driving speeds in conveying systems. In: at – Automatisierungstechnik Mar 2018.

Nisic, Tatjana; Conradi, Florian; Niggemann, Oliver; Pinkal, Kevin; Schneider, Jan; Wefing, Patrick; Zhang, Fan: Food meets IT: der Digitale Zwilling erobert die Lebensmittelindustrie. In: IM+io Mar 2018.

Otto, Jens; Vogel-Heuser, Birgit; Niggemann, Oliver: Automatic Parameter Estimation for Reusable Software Components of Modular and Reconfigurable Cyber Physical Production Systems in the Domain of Discrete Manufacturing. In: IEEE Transactions on Industrial Informatics IEEE, Jan 2018.

Bunte, Andreas; Li, Peng; Niggemann, Oliver: Mapping Data Sets to Concepts Using Machine Learning and a Knowledge Based Approach. In: International Conference on Agents and Artificial Intelligence (ICAART) SCITEPRESS, Madeira, Portugal, Jan 2018.

2017

von Birgelen, Alexander; Niggemann, Oliver: Using Self-Organizing Maps to Learn Hybrid Timed Automata in Absence of Discrete Events. In: 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2017), Sep 2017.

Wunderlich, Paul; Niggemann, Oliver: Structure Learning Methods for Bayesian Networks to Reduce Alarm Floods by Identifying the Root Cause. In: 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2017), Sep 2017.

Rogalla, Antje; Niggemann, Oliver: Automated Process Planning for Cyber-Physical Production Systems. In: 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Sep 2017.

Pethig, Florian; Niggemann, Oliver; Walter, Armin: Towards Industrie 4.0 Compliant Configuration of Condition Monitoring Services. In: 15th IEEE International Conference on Industrial Informatics (INDIN 2017), Jul 2017.

Pinkal, Kevin; Niggemann, Oliver: A New Approach to Model-Based Test Case Generation for Industrial Automation Systems. In: 15th IEEE International Conference on Industrial Informatics (INDIN 2017), Jul 2017.

Fullen, Marta; Schüller, Peter; Niggemann, Oliver: Defining and validating similarity measures for industrial alarm flood analysis. In: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), Jul 2017.

Bunte, Andreas; Li, Peng; Niggemann, Oliver: Learned Abstraction: Knowledge Based Concept Learning for Cyber Physical Systems. In: 3rd Conference on Machine Learning for Cyber Physical Systems and Industry 4.0 (ML4CPS), October 2017.

Windmann, Stefan; Lang, Dorota; Niggemann, Oliver: Learning Parallel Automata of PLCs. In: 22nd IEEE International Conference on Emerging Technologies And Factory Automation, September 2017.

Windmann, Stefan; Niggemann, Oliver: A Self-Configurable Fault Detection System for Industrial Ethernet Networks. In: at – Automatisierungstechnik at – Automatisierungstechnik, May 2017.

Diedrich, Christian; Niggemann, Oliver; Pethig, Florian; Kraft, Andreas; Bock, Jürgen; Gössling, Andreas; Hänisch, Rolf; Reich, Johannes; Vollmar, Friedrich; Wende, Jörg: Interaktionsmodell für Industrie 4.0 Komponenten. In:  At Automatisierungstechnik Jan 2017.

2016

Bunte, Andreas; Diedrich, Alexander; Niggemann, Oliver: Semantics Enable Standardized User Interfaces for Diagnosis in Modular Production Systems. In: International Workshop on the Principles of Diagnosis (DX) Denver, CO, USA, Oct 2016

Hranisavljevic, Nemanja; Niggemann, Oliver; Maier, Alexander: A Novel Anomaly Detection Algorithm for Hybrid Production Systems based on Deep Learning and Timed Automata. In: International Workshop on the Principles of Diagnosis (DX) Denver, Oct 2016

Diedrich, Alexander; Feldman, Alexander ; Perdomo-Ortiz, Alejandro ; Abreu, Rui ; Niggemann, Oliver; de Kleer, Johan: Applying Simulated Annealing to Problems in Model-based Diagnosis. In: International Workshop on the Principles of Diagnosis (DX) Denver, CO, USA, Oct 2016.

Bunte, Andreas; Diedrich, Alexander; Niggemann, Oliver: Integrating Semantics for Diagnosis of Manufacturing Systems. In: 21th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Berlin, Sep 2016.

Henning, Steffen; Niggemann, Oliver; Otto, Jens: Pattern-Based Control-Code Synthesis. In: 14th International IEEE Conference on Industrial Informatics (INDIN), Politiers (France) Jul 2016.

Bunte, Andreas; Diedrich, Alexander; Niggemann, Oliver: Integrating Semantics for Diagnosis of Manufacturing Systems. In: 21th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Berlin, Sep 2016.

Windmann, Stefan; Niggemann, Oliver: A GPU-Based Method for Robust and Efficient Fault Detection in Industrial Automation Processes. In: 14th International IEEE Conference on Industrial Informatics (INDIN), Poltiers (France), Jul 2016.

Li, Peng; Niggemann, Oliver: Improving Clustering Based Anomaly Detection with Concave Hull: An Application in Condition Monitoring of Wind Turbines. In: 14th IEEE International Conference on Industrial Informatics (INDIN 2016), Poltiers (France) Jul 2016.

Niggemann, Oliver; Biswas, Gautam; Khorasgani, Hamed; Volgmann, Sören; Bunte, Andreas: Datenanalyse in der intelligenten Fabrik. Springer Berlin Heidelberg, Berlin, Heidelberg, Jun 2016.

Maier, Alexander; Schriegel, Sebastian; Niggemann, Oliver: Big Data and Machine Learning for the Smart Factory – Solutions for Condition Monitoring, Diagnosis and Optimization. In: Industrial Internet of Things: Cybermanufacturing Systems, Springer Verlag, Jun 2016.

2015

Niggemann, Oliver; Frey, Christian: Data-Driven Anomaly Detection in Cyber-Physical Production Systems,, at – Automatisierungstechnik(63) S.: 821–832, Oct 2015

Vogel-Heuser, Birgit; Schütz, Daniel ; Schöler, Thorsten ; Pröll , Sebastian ; Jeschke, Sabina ; Ewert , Daniel ; Niggemann, Oliver; Windmann, Stefan; Berger, Ulrich ; Lehmann, Christian : Agentenbasierte cyber-physische Produktionssysteme – Anwendungen für Industrie 4.0. In: atp edition, DIV Vulkan-Verlag, München, Sep 2015.

Shrestha, Ganesh Man; Niggemann, Oliver: Hybrid Approach Combining Bayesian Network and Rule-based Systems for Resource Optimization in Industrial Cleaning Processes. In: 20th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2015) Luxembourg, Sep 2015.

Windmann, Stefan; Jungbluth, Florian ; Niggemann, Oliver: A HMM-Based Fault Detection Method for Piecewise Stationary Industrial Processes. In: IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2015) Luxembourg, Sep 2015.

Windmann, Stefan; Niggemann, Oliver: MapReduce Algorithms for Efficient Generation of CPS Models from Large Historical Data Sets. In: IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2015) Luxembourg, Sep 2015.

Specht, Felix; Flatt, Holger; Eickmeyer, Jens; Niggemann, Oliver: Exploiting Multicore Processors in PLCs using Libraries for IEC 61131-3. In: IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2015) Luxembourg , Sep 2015.

Eickmeyer, Jens; Li, Peng; Pethig, Florian; Niggemann, Oliver: Data Driven Modeling for System-Level Condition Monitoring on Wind Power Plants. In: International Workshop on the Principles of Diagnosis (DX) Paris, France, Aug 2015.

Maier, Alexander; Niggemann, Oliver: On the Learning of Timing Behavior for Anomaly Detection in Cyber-Physical Production Systems. In: International Workshop on the Principles of Diagnosis (DX) Paris, France, Aug 2015.

Niggemann, Oliver; Biswas, Gautam; Kinnebrew, John S.; Khorasgani, Hamed; Volgmann, Sören; Bunte, Andreas: Data-Driven Monitoring of Cyber-Physical Systems Leveraging on Big Data and the Internet-of-Things for Diagnosis and Control. In: International Workshop on the Principles of Diagnosis (DX); Paris, France In: International Workshop on the Principles of Diagnosis (DX) Paris, France, Aug 2015.

Windmann, Stefan; Niggemann, Oliver: Efficient Fault Detection for Industrial Automation Processes with Observable Process Variables. In: IEEE International Conference on Industrial Informatics (INDIN 2015) Cambridge, UK, Jul 2015.

Windmann, Stefan; Niggemann, Oliver; Stichweh, Heiko: Energy efficiency optimization by automatic coordination of motor speeds in conveying systems. In: IEEE International Conference on Industrial Technology (ICIT 2015) Mar 2015.

Windmann, Stefan; Niggemann, Oliver: Automatic model separation and application to diagnosis in industrial automation systems. In: IEEE International Conference on Industrial Technology (ICIT 2015) Mar 2015.

Lohweg, Volker; Niggemann, Oliver: On the Diagnosis of Cyber-Physical Production Systems – State-of-the-Art and Research Agenda. In: Twenty-Ninth Conference on Artificial Intelligence (AAAI-15) Austin, Texas, USA, Jan 2015.

2014

Henning, Steffen; Otto, Jens; Niggemann, Oliver; Schriegel, Sebastian: A Descriptive Engineering Approach for Cyber-Physical Systems. In: 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Barcelona, Spain, Sep 2014.

Niggemann, Oliver; Kroll, Bjoern: On the applicability of model based software development to cyber physical production systems. In: CyPhERS 2nd Experts Workshop CPSWeek 2014 CPSWeek 2014, Berlin, Germany, April 14 2014 , Apr 2014.

Kroll, Bjoern; Schaffranek, David; Schriegel, Sebastian; Niggemann, Oliver: System modeling based on machine learning for anomaly detection and predictive maintenance in industrial plants. In: 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Sep 2014.

Niggemann, Oliver; Windmann, Stefan; Volgmann, Sören; Bunte, Andreas; Stein, Benno: Using Learned Models for the Root Cause Analysis of Cyber-Physical Production Systems. In: International Workshop on the Principles of Diagnosis (DX) Graz, Austria, Sep 2014.

Shrestha, Ganesh Man; Niggemann, Oliver: A Bayesian Predictive Assistance System for Resource Optimization – A Case Study in Industrial Cleaning Process. In: 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Barcelona, Sep 2014.

Moriz, Natalia; Böttcher, Björn; Niggemann, Oliver; Lackhove, Josef: Assisted Design for Automation Systems – from Formal Requirements to Final Designs. In: 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Barcelona, Spain, Sep 2014.

Frey, Christian; Heinzmann, Michael; Jasperneite, Jürgen; Niggemann, Oliver; Sauer, Olaf; Schleipen, Miriam; Usländer, Thomas: IKT in der Fabrik der Zukunft – Ein Diskussionsbeitrag zu Industrie 4.0. In: atp edition DIV Vulkan Verlag, München, Aug 2014.

Volgmann, Sören; Rangel, Francisco; Niggemann, Oliver; Rosso, Paolo: Emotional Trends in Social Media – A State Space Approach. In: 21st European Conference on Artificial Intelligence Frontiers in Artificial Intelligence and Applications, 2014 S.: Vol. 263, pp. 1123-1124, IOS Press, Aug 2014.

Böttcher, Björn; Moriz, Natalia; Niggemann, Oliver: From Formal Requirements on Technical Systems to Complete Designs – A Holistic Approach. In: 21st European Conference on Artificial Intelligence (ECAI 2014) In: 21st European Conference on Artificial Intelligence Frontiers in Artificial Intelligence and Applications, 2014 S.: pp. 977-978, Vol. 263, Prague, Czech Republic, Aug 2014.

Niggemann, Oliver; Jasperneite, Jürgen: Konzepte und Anwendungsfälle für die intelligente Fabrik. In: Bauernhansl, Thomas; ten Hompel, Michael; Vogel-Heuser, Birgit (Hrsg.): Industrie 4.0 in Produktion, Automatisierung und Logistik Springer-Verlag, Jun 2014.

Anis, Anas; Schäfer, Wilhelm; Niggemann, Oliver: A Comparison of Modeling Approaches for Planning in Cyber Physical Production Systems. In: 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Barcelona, Jun 2014.

Niggemann, Oliver: Industrie 4.0 ohne modellbasierte Softwareentwicklung – Und warum es ohne Modelle nicht gehen wird. In: atp edition(Ausgabe 05 ) May 2014.

Windmann, Stefan; Niggemann, Oliver: Intelligente Assistenzsysteme für die Automation – Menschen bei der Prozessführung besser unterstützen. In: atp edition – Ausgabe 04 2014 Apr 2014.

Frey, Christian; Heinzmann, Michael; Jasperneite, Jürgen; Niggemann, Oliver; Sauer, Olaf; Schleipen, Miriam; Usländer, Thomas; Voit, Michael: IKT in der Fabrik der Zukunft – Ein Diskussionsbeitrag zu Industrie 4.0. In: atp edition Mar 2014.

2013

Niggemann, Oliver; Vodenčarević, Asmir; Maier, Alexander; Windmann, Stefan; Kleine Büning, Hans: A Learning Anomaly Detection Algorithm for Hybrid Manufacturing Systems. In: The 24th International Workshop on Principles of Diagnosis (DX-2013) Jerusalem, Israel, Oct 2013.

Kroll, Bjoern; Schriegel, Sebastian; Niggemann, Oliver: A Software Architecture for the Analysis of Energy- and Process-Data. In: 18th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Sep 2013.

Böttcher, Björn; Badinger, Johann; Moriz, Natalia; Niggemann, Oliver: Design of Industrial Automation Systems – Formal Requirements in the Engineering Process. In: 18thIEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Cagliari, Italy, Sep 2013.

Gilani, Syed Sheraz; Windmann, Stefan; Pethig, Florian; Kroll, Bjoern; Niggemann, Oliver: The Importance of Model-Learning for the Analysis of the Energy Consumption of Production Plant. In: 18th IEEE International Conference on Emerging Technologies & Factory Automation (ETFA), Cagliari, Italy Sep 2013.

Windmann, Stefan; Jiao, Shuo; Niggemann, Oliver; Borcherding, Holger: A Stochastic Method for the Detection of Anomalous Energy Consumption in Hybrid Industrial Systems. In: 11th International IEEE Conference on Industrial Informatics 2013 Bochum, Germany, May 2013.

Faltinski, Sebastian ; Jäger, Michael; Niggemann, Oliver; Marek, Frank: Auf dem Weg vom Spielzeug zum Werkzeug. In: atp edition May 2013.

Schetinin, Nikolai; Moriz, Natalia; Kumar, Barath; Faltinski, Sebastian ; Niggemann, Oliver; Maier, Alexander: Why do verification approaches in automation rarely use HIL-test? In: IEEE International Conference on Industrial Technology (ICIT) 25.-27. February 2013, Cape Town, South Africa, Feb 2013.

Maier, Alexander; Köster, Markus; Paiz Gatica, Carlos; Niggemann, Oliver: Automated Generation of Timing Models in Distributed Production Plants. In: IEEE International Conference on Industrial Technology (ICIT 2013), Cape Town, South Africa, Feb 2013 Feb 2013.

2012

Pethig, Florian; Kroll, Bjoern; Niggemann, Oliver; Maier, Alexander; Tack, Tim: A Generic Synchronized Data Acquisition Solution for Distributed Automation Systems. In: 18th IEEE International Conference on Emerging Technologies and Factory Automation Krakow, Poland, Sep 2012.

Jasperneite, Jürgen; Niggemann, Oliver: Intelligente Assistenzsysteme zur Beherrschung der Systemkomplexität in der Automation. In: ATP edition – Automatisierungstechnische Praxis 9/2012 Oldenbourg Verlag, München, Sep 2012.

Niggemann, Oliver; Stein, Benno; Vodenčarević, Asmir; Maier, Alexander; Kleine Büning, Hans: Learning Behavior Models for Hybrid Timed Systems. In: Twenty-Sixth Conference on Artificial Intelligence (AAAI-12) Jul 2012.

Faltinski, Sebastian ; Flatt, Holger; Pethig, Florian; Kroll, Bjoern; Vodenčarević, Asmir; Maier, Alexander; Niggemann, Oliver: Detecting Anomalous Energy Consumptions in Distributed Manufacturing Systems. In: IEEE 10th International Conference on Industrial Informatics (INDIN), 2012 Beijing, China, Jul 2012.

Faltinski, Sebastian ; Niggemann, Oliver; Moriz, Natalia; Mankowski, Andre: AutomationML: From Data Exchange to System Planning and Simulation.. In: 2012 IEEE International Conference on Industrial Technology (ICIT) Athen, Griechenland, Mar 2012.

2011

Vodenčarević, Asmir; Kleine Büning, Hans; Niggemann, Oliver; Maier, Alexander: Identifying Behavior Models for Process Plants. In: 16th IEEE International Conference on Emerging Technologies and Factory Automation ETFA’2011, Toulouse, France, 2011 In: 16th IEEE International Conference on Emerging Technologies & Factory Automation (ETFA) Sep 2011.

Jäger, Michael; Just, Roman; Niggemann, Oliver: Using automatic Topology Discovery to diagnose PROFINET networks. In: 16th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2011) Toulouse, France, Sep 2011.

Wienke, Michael; Faltinski, Sebastian  Niggemann, Oliver; Jasperneite, Jürgen: mINA-DL: A Novel Description Language Enabling Dynamic Reconfiguration in Industrial Automation. In: 16th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2011) Toulouse, France, Sep 2011.

2010

Niggemann, Oliver; Lohweg, Volker; Tack, Tim: A Probabilistic MajorClust Variant for the Clustering of Near-Homogeneous Graphs. In: 33rd Annual German Conference on Artificial Intelligence (KI 2010) Sep 2010.

Niggemann, Oliver: System-Level Design and Simulation of Automation Systems. In: 8th IEEE International Workshop on Factory Communication Systems – COMMUNICATION in AUTOMATION (WFCS 2010) May 2010.

2009

Kumar, Barath; Niggemann, Oliver; Jasperneite, Jürgen: Timed Automata for Modeling Network Traffic. In: Machine Learning in Real-Time Applications (MLRTA 09) (in conjunction with 32nd Annual Conference on Artificial Intelligence (KI 2009)) Paderborn, Germany, Sep 2009.

Niggemann, Oliver et al.: Using Simulation to Verify Diagnosis Algorithms of Electronic Systems. To be published in SAE World Congress, 2009. , Mar 2009.

2008

Niggemann, Oliver et al.: Durchgängige Systemtests von der virtuellen Integration bis zum Verbundtest.. In: ATZ elektronik Nov 2008.

Stichling, Dirk; Niggemann, Oliver; Fleischer, Dirk: Combining Automotive System and Function Models to support Code Generation and Early System Verification. Convergence 2008, October 20-22, 2008, Detroit, Michigan, USA , Oct 2008.

Otterbach, Rainer; Niggemann, Oliver; Fleischer, Dirk; Jogi, Santhosh: Using Software Architecture Models in Automotive Development Processes. SAE 2008 Commercial Vehicle Engineering Congress, October 7-9, 2008, Rosemont, Illinois, USA, Oct 2008.

Niggemann, Oliver; Stroop, Joachim: Models for Model’s Sake. Proceedings of the 30th International Conference on Software Engineering (ICSE) – Experience Track on Automotive Systems, Leipzig, Germany, 10 – 18 May 2008 , May 2008.

2007

Niggemann, Oliver; Eisemann, Ulrich; Beine, Michael; Kiffmeier, Ulrich: Behavior Modeling Tools in an Architecture-Driven Development Process – From Function Models to AUTOSAR. SAE World Congress & Exhibition, April 2007, Detroit, USA , Apr 2007.

2006

Stein, Benno; Niggemann, Oliver; Balzer, Heinrich: Diagnosis in Automotive Applications. 3rd Monet Workshop on Model-Based Systems (MBS-06) at the ECAI 06 at Riva de Gard, Italy, 2006 , Aug 2006.

Stein, Benno; Niggemann, Oliver; Lettmann, Theodor: Speeding up Model-based Diagnosis by a Heuristic Approach to Solving SAT. In Proceedings of the IASTED International Conference on Artificial Intelligence and Applications (AIA 06), Innsbruck, Austria, Anaheim, Calgary, Zurich, February 2006. , Feb 2006.

2002

Bach, Roland; Zeller, Vitus; Cheleg, Alexei; Niggemann, Oliver: Assessing the Influence of Linear/Nonlinear Effects on Different Q-Factor Measurement Methods. 18th National Fiber Optic Engineer Conference (NFOEC), Dallas, USA, 2002 , Jul 2002.

2001

Niggemann, Oliver; Stein, Benno: Generation of Similarity Measures from Different Sources. The Fourteenth International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE-2001). Springer-Verlag (Lecture Notes in the Computer Science/Lecture Notes in Artificial Intelligence), 2001 , Sep 2001.

Niggemann, Oliver; Stein, Benno; Tölle, Jens: Visualization of Traffic Structures. IEEE International Conference on Communications (ICC) 2001, Helsinki, Finland , Aug 2001.

Niggemann, Oliver: Visual Data Mining of Graph-Based Data. University of Paderborn, 2001. An electronic copy is available from the library of the University of Paderborn (http://ubdata.uni-paderborn.de/ediss/17/2001/niggeman/). , Jun 2001.

Lappe, Michael; Parl, Jong; Niggemann, Oliver; Holm, Liisa: Generating Protein Interaction Maps from Incomplete Data: Application to Fold Assignment. “9th International Conference on Intelligent Systems for Molecular Biology”. “9th International Conference on Intelligent Systems for Molecular Biology”, Copenhagen, Denmark, 2001 , Mar 2001.

1997-2000

Niggemann, Oliver; Stein, Benno: Learning the optimal Graph-Drawing Method for clustered Graphs. In Advanced Visual Interfaces 2000, ACM , Jul 2000.

B. Stein and O. Niggemann. On the nature of structure and its identification. In 25th International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes In Computer Science, Springer Verlag, 1999

Oliver Niggemann, Benno Stein and Michael Suermann. Network Configuration: Approaches for Solving the Cable Management Problem. International Symposium on Mathematical Programming (ISMP 97). Swiss Federal Institute of Technology, Lausanne (EPFL), August 1997.

HSU

Letzte Änderung: 2. December 2025