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Classical statistical mechanics in the μV L and μpR ensembles
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Molecular expressions for thermodynamic properties and derivatives of the entropy up to third order in the
adiabatic grand-isochoric μVL and adiabatic grand-isobaric μpR ensembles are systematically derived using the
methodology developed by Lustig for the microcanonical and canonical ensembles [J. Chem. Phys. 100, 3048
(1994); Mol. Phys. 110, 3041 (2012)]. They are expressed by phase-space functions, which represent derivatives
of the entropy with respect to the chemical potential, the volume, and the Hill energy L in the μVL ensemble
and with respect to the chemical potential, the pressure, and the Ray energy R in the μpR ensemble. The derived
expressions are validated for both ensembles by Monte Carlo simulations for the simple Lennard-Jones model
fluid at three selected state points.
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I. INTRODUCTION

In statistical mechanics, eight basic ensembles are avail-
able, in which thermodynamic properties of pure fluids can
be calculated [1]. Each ensemble is characterized by a ther-
modynamic potential, three independent variables, and a
weight factor, which describes the probability distribution
of systems in the ensemble. The well-known microcanon-
ical (NVE ), canonical (NV T ), and grand-canonical (μV T )
ensembles were already introduced by Gibbs [2]. In 1939,
Guggenheim [3] proposed the isobaric-isothermal (NpT )
and generalized (μpT ) ensembles. The canonical, grand-
canonical, isothermal-isobaric, and generalized ensembles are
isothermal ensembles, in which the temperature T of the
system is held constant by exchanging heat with a constant
temperature reservoir. However, the microcanonical ensemble
represents adiabatic systems at constant energy E , which can-
not exchange heat with their environment. A further adiabatic
ensemble, the isoenthalpic-isobaric (NpH) ensemble, in which
the number of particles N , the pressure p, and the enthalpy
H are independent variables, was suggested by Byers Brown
[4] in 1958. After Andersen had proposed an algorithm for
molecular-dynamics simulations in the isoenthalpic-isobaric
ensemble [5], Haile and Graben [6], Ray et al. [7], and Ray
and Graben [8] developed the theory of this second adiabatic
ensemble.

In 1981, Ray et al. [9] introduced a third adiabatic ensem-
ble, the μVL ensemble, in which the chemical potential μ, the
volume V , and the quantity L are the independent variables.
The quantity L is defined by L = E − μN and termed Hill
energy because it was originally introduced by Hill [10].
Since the chemical potential is prescribed and the number
of particles fluctuates, it represents open systems. Ray et al.
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regarded the μVL ensemble as the adiabatic counterpart of the
isothermal grand-canonical ensemble.

A fourth adiabatic ensemble for simulating open systems
at constant pressure, the μpR ensemble, was proposed by Ray
and Graben in 1990 [11]. Here, the chemical potential, the
pressure, and the quantity R are the independent variables.
The prescribed quantity R = E − μN + pV is the Ray en-
ergy. This adiabatic ensemble corresponds to the isothermal
generalized ensemble. Ray and Wolf extended the Metropolis
algorithm for Monte Carlo simulations in the μpR ensemble
[12] and pointed out that the μpR ensemble is the only mean-
ingful ensemble for carrying out simulations of open systems
at constant pressure since in the generalized ensemble only
intensive variables are prescribed and the system size is not
specified [13]. Ray and Graben also provided equations for the
calculation of the isobaric heat capacity, thermal expansion
coefficient, and isentropic compressibility at constant chemi-
cal potential in the μpR ensemble [11].

A common description of the four adiabatic ensembles and
their interrelations was provided by Graben and Ray [14].
In a similar manner, Graben and Ray presented a unified
treatment of all eight basic ensembles of statistical mechanics
and their interrelations by a Laplace-Legendre tranforma-
tion scheme [1]. In all four adiabatic ensembles, the entropy
S is the thermodynamic potential as a function of the in-
dependent variables of the ensemble, i.e., S = S(N,V, E ),
S = S(N, p, H ), S = S(μ,V, L), and S = S(μ, p, R). Ther-
modynamic properties are obtained as combinations of
derivatives of the entropy with respect to the independent
variables.

Some applications of the μVL and μpR ensembles are de-
scribed in the literature. Çagin and Pettitt developed a method
for molecular-dynamics simulations in the μVL ensemble
[15,16] and grand-canonical ensemble [16], which is based
on an extended Lagrangian that accounts for coupling of the
simulated system to a chemical potential reservoir and allows
for dynamical particle insertions and deletions. They provided
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expressions for the calculation of the isochoric heat capac-
ity, the Grüneisen parameter and isentropic compressibility at
constant chemical potential in the μVL ensemble [16]. This
method was subsequently refined by Pettitt and coworkers
[17,18] for the grand-canonical ensemble.

Kristóf and Liszi [19,20] proposed Gibbs ensembles at
constant μVL and μpR for the simulation of the vapor-liquid
equilibria of pure fluids and mixtures. Escobedo [21] devel-
oped a unified framework with which advanced Monte Carlo
methods such as multihistogram reweighting and replica-
exchange methods can be applied to different adiabatic
ensembles including the μVL and μpR ensembles.

Desgranges and Delhommelle examined several applica-
tions of the μpR ensemble [22] in Monte Carlo simulations.
They pointed out that the entropy can be directly calculated
by the relation S = R/T , since the temperature can readily
be computed by the equipartition theorem. Moreover, they
showed how the vapor-liquid coexistence curve of pure fluids
can be mapped by Monte Carlo simulations along isobars
in the temperature–entropy diagram by using model poten-
tials for argon and copper as examples. They also described
the calculation of enthalpy changes in isentropic processes
in the μpR ensemble, which are often encountered in engi-
neering applications. In a subsequent work, Desgranges and
Delhommelle [23] extended the μpR ensemble to mixtures
and applied it to calculate the enthalpy, entropy, and Gibbs
energy of mixing of binary mixtures of the noble gases argon
and neon by Monte Carlo simulations.

Lustig devised a methodology for the systematic derivation
of expressions for thermodynamic properties in the molecular-
dynamics ensemble [24–28], in which in addition to the
number of particles, the volume, and the energy, the total
momentum P and a quantity G, which is related to the center
of mass, are constants of motion. It enables the derivation
of expressions for thermodynamic properties without any ap-
proximations in contrast to fluctuation theory, with which
only approximate expressions can be derived. Key to this
methodology is the introduction of phase-space functions to
systematically represent derivatives of the phase-space vol-
ume of the respective ensemble. Lustig subsequently applied
this methodology to derive expressions for thermodynamic
properties in the microcanonical [28] and canonical [29,30]
ensembles. Recently, we applied the Lustig methodology to
derive expressions for thermodynamic properties and deriva-
tives of the thermodynamic potential up to the third order
in the isothermal-isobaric ensemble [31], the grand-canonical
ensemble [32], and the isoenthalpic-isobaric ensemble [33].
In this article, we continue these works and apply the Lustig
methodology to derive rigorous expressions for thermody-
namic properties and derivatives of the entropy S up to third
order in the μVL and μpR ensembles.

This article is organized as follows. Sections II and III
establish the theoretical background for the calculation of
thermodynamic properties and provide the expressions for
the most important thermodynamic properties and deriva-
tives of the entropy up to third order in the μVL and
μpR ensembles. The derived equations are validated by
Monte Carlo simulations at three state points with the simple
Lennard-Jones model fluid in Sec. IV, and Sec. V presents
conclusions.

II. EXPRESSIONS FOR THERMODYNAMIC PROPERTIES
IN THE μVL ENSEMBLE

In the μVL ensemble, the entropy S is the thermodynamic
potential, and the chemical potential μ, the volume V , and
the Hill energy L = E − μN are the independent variables. In
analogy to the adiabatic NVE and NpH ensembles, the phase-
space volume of the μVL ensemble

�(μ,V, L) =
∞∑

N=0

1

N!h3N

∫∫
�(L + μN − H )drN dpN

(1)

is introduced, where � is the Heaviside step function, h is
the Planck constant, and drN and dpN represent integrations
over the 3N coordinates and 3N momenta of the particles. The
symbol H denotes the Hamiltonian of the microcanonical
ensemble. The phase-space density of the μVL ensemble is
the derivative of the phase-space volume with respect to the
Hill energy ω = d�/dL. It is defined by

ω(μ,V, L) =
∞∑

N=0

1

N!h3N

∫∫
δ(L + μN − H )drN dpN , (2)

in which δ denotes the Dirac δ function. As in all adiabatic
ensembles, the entropy can either be defined with the phase-
space volume by

S(μ,V, L) = kB ln �(μ,V, L) (3)

or with the phase-space density by

S(μ,V, L) = kB ln ω(μ,V, L), (4)

where kB denotes the Boltzmann constant. Both definitions
will yield different expressions for thermodynamic properties.
In the literature, some authors prefer the definition with the
phase-space volume [34–36], while others use the definition
with the phase-space density [25,37,38]. Attempts to provide
evidence for discriminating between both definitions have so
far not been conclusive [27,28,39]. Becker argued that both
definitions become equivalent in the thermodynamic limit
[40]. Lustig [27,28] and Ströker and Meier [33] observed that
numerical results for thermodynamic properties in the ther-
modynamic limit obtained from Monte Carlo simulations in
the microcanonical and isoenthalpic-isobaric ensembles with
expressions based on both definitions agree within their statis-
tical uncertainty. Since this behavior can also be expected in
the μVL ensemble, we derive expressions for thermodynamic
properties for both entropy definitions in the following. The
equivalence of both definitions in the thermodynamic limit
will be discussed in Sec. IV with Monte Carlo simulation
results for the Lennard-Jones model fluid.

The derivation of expressions for thermodynamic proper-
ties proceeds in two steps. First, derivatives of the entropy
with respect to the independent variables and equations for
thermodynamic properties are expressed by phase-space func-
tions. In the second step, equations for the phase-space
functions in terms of ensemble averages of combinations of
powers of instantaneous values of the kinetic energy, volume
derivatives of the potential, and number of particles are de-
rived. This is achieved by comparing derivatives of the phase
space volume with a general equation for an ensemble average
of an arbitrary quantity in the μVL ensemble.
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In the first step, derivatives of the entropy with respect to
the Hill energy, volume and chemical potential are expressed
in a systematic way by derivatives of the phase-space volume
� or phase-space density ω with respect to L, V , and μ.
Derivatives of the entropy are abbreviated by

Smno
�= ∂m+n+o ln �

∂Lm∂V n∂μo
, m, n, o = 0, 1, 2, . . . (5)

and

Smno
ω= ∂m+n+o ln ω

∂Lm∂V n∂μo
, m, n, o = 0, 1, 2, . . . , (6)

where the notations
�= and

ω= refer to the entropy definitions
with the phase-space volume and phase-space density, respec-
tively. The phase-space functions of the μVL ensemble are
defined by

�mno = 1

ω

∂m+n+o�

∂Lm∂V n∂μo
, m, n, o = 0, 1, 2, . . . . (7)

Note the special case

�100 = 1

ω

∂�

∂L
= 1. (8)

By applying the product rule on Eq. (7), the three recur-
rence relations

∂�mno

∂L
= �m+1,n,o − �200�mno, m + n + o � 1, (9)

∂�mno

∂V
= �m,n+1,o − �110�mno, m + n + o � 1, (10)

∂�mno

∂μ
= �m,n,o+1 − �101�mno, m + n + o � 1, (11)

can be established. They are useful for calculating higher-
order derivatives of phase-space functions with respect to L,
V , and μ.

In the formalism for the entropy definition with the phase-
space volume, the first derivative of the entropy with respect
to the Hill energy yields

S100
�= ∂ ln �

∂L
= 1

�

∂�

∂L
= ω

�
= �−1

000, (12)

where ω = ∂�/∂L and Eq. (7) have been used. Similarly, the
derivatives with respect to volume and chemical potential are
obtained as

S010
�= ∂ ln �

∂V
= 1

�

∂�

∂V
= 1

�

ω

ω

∂�

∂V
= �−1

000�010 (13)

and

S001
�= ∂ ln �

∂μ
= 1

�

∂�

∂μ
= 1

�

ω

ω

∂�

∂μ
= �−1

000�001. (14)

If the definition of the entropy with the phase-space density is
used, the first partial derivatives are given by

S100
ω= ∂ ln ω

∂L
= 1

ω

∂ω

∂L
= 1

ω

∂2�

∂L2
= �200, (15)

S010
ω= ∂ ln ω

∂V
= 1

ω

∂ω

∂V
= 1

ω

∂2�

∂V ∂L
= �110, (16)

S001
ω= ∂ ln ω

∂μ
= 1

ω

∂ω

∂μ
= 1

ω

∂2�

∂μ∂L
= �101. (17)

Starting with the first-order derivatives, the recurrence re-
lations can be used to readily calculate derivatives of higher
orders. Derivatives up to third order for both entropy defini-
tions are listed in Table I. The expressions in the right column
of Table I simplify because �100 = 1. The expressions for the
derivatives of the entropy with respect to the Hill energy and
the volume have the same mathematical structure as the corre-
sponding relations for derivatives of the entropy in the micro-
canonical ensemble with respect to the energy and the volume
[30]. However, in the μVL ensemble additionally derivatives
with respect to the third independent variable, the chemical
potential μ, must be formed because they are required when
transforming partial derivatives at constant chemical potential
into derivatives at constant number of particles.

The expressions for the derivatives of the entropy Smno

and all thermodynamic properties for both entropy definitions
are interrelated because the same definition of phase-space
functions is used in the expressions derived with both entropy
definitions and the phase-space density is the derivative of
the phase-space volume. For this reason, they can be trans-
formed into each other. The transformation of expressions
for the entropy definition with the phase-space volume into
those for the entropy definition with the space-space density
is performed by replacing each phase-space function �mno

by �m+1,n,o�
−1
200. Similarly, the inverse transformation of an

expression for the entropy definition with ω into one for � is
carried out by replacing each phase-space function �mno by
�m−1,n,o�

−1
000. These transformation rules are similar to those

described by Lustig [25,28] for the microcanonical ensemble
and by Ströker et al. [33] for the NpH ensemble. A proof
of the transformation rules was already given in our previous
work on the N pH ensemble [33] and is therefore omitted here.
In the following, expressions for thermodynamic properties
are only derived in detail for the entropy definition with the
phase-space volume since the expressions for the entropy def-
inition with the phase-space density can readily be obtained
by applying the transformation rule.

First, expressions for the temperature, the pressure, and
the number of particles in terms of the phase-space functions
are derived. These three quantities are related to first-order
derivatives of the entropy and are required for the derivation
of expressions for other thermodynamic properties. The total
differential of the thermodynamic potential S = S(μ,V, L) is
given by [1]

dS = 1

T
dL + p

T
dV + N

T
dμ. (18)

The inverse temperature is the derivative of entropy with re-
spect to the Hill energy at constant chemical potential and
volume and can be related to the phase space function �000
by

1

T
=
(

∂S

∂L

)
V,μ

= kBS100
�= kB�−1

000. (19)

Thus, the expression for the temperature follows as

T
�= k−1

B �000. (20)

Using Eq. (20) and the expression for S010 from Table I, the
expression for the pressure reads

p = T

(
∂S

∂V

)
L,μ

= T kBS010
�= �010. (21)
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TABLE I. Expressions for partial derivatives Smno of ln �(μ,V, L) and ln ω(μ,V, L) up to third order in terms of phase-space functions
�mno. The expressions for partial derivatives Smno of ln �(μ, p, R) and ln ω(μ, p, R) in the μpR ensemble are identical with the first index m
referring to the Ray energy R and the second index n to the pressure p.

S
�= kB ln � S

ω= kB ln ω

S100
�= �−1

000 S100
ω= �200

S200
�= −�−2

000 + �−1
000�200 S200

ω= −�2
200 + �300

S300
�= 2�−3

000 − 3�−2
000�200 + �−1

000�300 S300
ω= 2�3

200 − 3�200�300 + �400

S010
�= �−1

000�010 S010
ω= �110

S020
�= −�−2

000�
2
010 + �−1

000�020 S020
ω= −�2

110 + �120

S030
�= 2�−3

000�
3
010 − 3�−2

000�020�010 + �−1
000�030 S030

ω= 2�3
110 − 3�120�110 + �130

S001
�= �−1

000�001 S001
ω= �101

S002
�= −�−2

000�
2
001 + �−1

000�002 S002
ω= −�2

101 + �102

S003
�= 2�−3

000�
3
001 − 3�−2

000�002�001 + �−1
000�003 S003

ω= 2�3
101 − 3�102�101 + �103

S110
�= −�−2

000�010 + �−1
000�110 S110

ω= −�200�110 + �210

S101
�= −�−2

000�001 + �−1
000�101 S101

ω= −�200�101 + �201

S011
�= −�−2

000�010�001 + �−1
000�011 S011

ω= −�110�101 + �111

S120
�= 2�−3

000�
2
010 − 2�−2

000�110�010 − �−2
000�020 + �−1

000�120 S120
ω= 2�200�

2
110 − 2�210�110 − �200�120 + �220

S210
�= 2�−3

000�010 − �−2
000�200�010 − 2�−2

000�110 + �−1
000�210 S210

ω= 2�2
200�110 − �300�110 − 2�200�210 + �310

S102
�= 2�−3

000�
2
001 − 2�−2

000�101�001 − �−2
000�002 + �−1

000�102 S102
ω= 2�200�

2
101 − 2�201�101 − �200�102 + �202

S201
�= 2�−3

000�001 − �−2
000�200�001 − 2�−2

000�101 + �−1
000�201 S201

ω= 2�2
200�101 − �300�101 − 2�200�201 + �301

S012
�= 2�−3

000�
2
001�010 − �−2

000(2�011�001 + �002�010 ) + �−1
000�012 S012

ω= 2�101(�101�110 − �111) − �102�110 + �112

S021
�= 2�−3

000�
2
010�001 − �−2

000(2�011�010 + �020�001) + �−1
000�021 S021

ω= 2�110(�110�101 − �111) − �120�101 + �121

S111
�= 2�−3

000�010�001 − �−2
000(�110�001 + �010�101 + �011) + �−1

000�111 S111
ω= �200(2�101�110 − �111) − �210�101 − �110�201 + �211

Similarly, the expression for the number of particles

N = T

(
∂S

∂μ

)
L,V

= T kBS001
�= �001 (22)

is found. By applying the recurrence relations, Eqs. (9) to (11),
to Eqs. (20) to (22), expressions for the derivatives of the
temperature, pressure, and number of particles with respect
to L, V , and μ in terms of phase-space functions can be
obtained. These expressions are summarized for both entropy
definitions in Table II.

With the equations in Table II, expressions for further
thermodynamic properties can be established. Since all major

thermodynamic properties are defined at a constant number of
particles, but in the μVL ensemble the chemical potential is
an independent variable, partial derivatives at constant chem-
ical potential must be transformed into derivatives at constant
number of particles. This transformation is performed by the
method of Jacobian determinants described by Münster [41],
which was also used by Lustig [30] and us [31–33] in the
derivation of expressions for thermodynamic properties in
other ensembles. As the volume is an independent variable
in the μVL ensemble, expressions for isochoric properties can
readily be obtained. The defining equation for the isochoric
heat capacity can be transformed into

CV =
(

∂E

∂T

)
V,N

= ∂ (E , N )

∂ (T, N )
=

∂ (E , N )

∂ (L, μ)
∂ (T, N )

∂ (L, μ)

=

∣∣∣∣∣∣∣
(

∂E
∂L

)
V,μ

(
∂E
∂μ

)
L,V(

∂N
∂L

)
V,μ

(
∂N
∂μ

)
L,V

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(

∂T
∂L

)
V,μ

(
∂T
∂μ

)
L,V(

∂N
∂L

)
V,μ

(
∂N
∂μ

)
L,V

∣∣∣∣∣∣∣
=

(
∂N
∂μ

)
L,V

− N
(

∂N
∂L

)
V,μ(

∂T
∂L

)
V,μ

(
∂N
∂μ

)
L,V

− (
∂N
∂L

)
V,μ

(
∂T
∂μ

)
L,V

, (23)

in which E denotes the internal energy. When the number of particles and the partial derivatives are replaced by the expressions
in Table II, an equation for the isochoric heat capacity in terms of phase-space functions is found. This step is omitted here since
it results in a lengthy equation for CV . If the isochoric heat capacity is calculated in a simulation, a stepwise procedure should
be applied. First, the number of particles and all partial derivatives are calculated by the equations in Table II, and the numerical
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TABLE II. Expressions for the temperature T , the pressure p, and the number of particles N and their partial derivatives with respect to
Hill energy L, volume V , and chemical potential μ in terms of phase-space functions �mno for both entropy definitions in the μVL ensemble.
The corresponding expressions for the μpR ensemble are obtained by exchanging V with p and L with R.

T =
[(

∂S

∂L

)
V,μ

]−1
�= k−1

B �000 p = T

(
∂S

∂V

)
L,μ

�= �010 N = T

(
∂S

∂μ

)
L,V

�= �001

(
∂T

∂L

)
V,μ

�= k−1
B (1 − �000�200 )

(
∂ p

∂L

)
V,μ

�= �110 − �010�200

(
∂N

∂L

)
V,μ

�= �101 − �001�200

(
∂T

∂V

)
L,μ

�= k−1
B (�010 − �000�110)

(
∂ p

∂V

)
L,μ

�= �020 − �010�110

(
∂N

∂V

)
L,μ

�= �011 − �001�110

(
∂T

∂μ

)
L,V

�= k−1
B (�001 − �000�101)

(
∂ p

∂μ

)
L,V

�= �011 − �010�101

(
∂N

∂μ

)
L,V

�= �002 − �001�101

T =
[(

∂S

∂L

)
V,μ

]−1
ω= k−1

B

1

�200
p = T

(
∂S

∂V

)
L,μ

ω= �110

�200
N = T

(
∂S

∂μ

)
L,V

ω= �101

�200(
∂T

∂L

)
V,μ

ω= k−1
B

(
1 − �300

�2
200

) (
∂ p

∂L

)
V,μ

ω= �210

�200
− �110�300

�2
200

(
∂N

∂L

)
V,μ

ω= �201

�200
− �101�300

�2
200(

∂T

∂V

)
L,μ

ω= k−1
B

(
�110

�200
− �210

�2
200

) (
∂ p

∂V

)
L,μ

ω= �120

�200
− �110�210

�2
200

(
∂N

∂V

)
L,μ

ω= �111

�200
− �101�210

�2
200(

∂T

∂μ

)
L,V

ω= k−1
B

(
�101

�200
− �201

�2
200

) (
∂ p

∂μ

)
L,V

ω= �111

�200
− �110�201

�2
200

(
∂N

∂μ

)
L,V

ω= �102

�200
− �101�201

�2
200

results are inserted into Eq. (23) to obtain the value for CV . This procedure should also be applied to calculate all other properties
that are related to second-order derivatives in the remainder of this section and Sec. III.

By an analogous transformation, an expression for the thermal pressure coefficient is obtained as

γV =
(

∂ p

∂T

)
V,N

= ∂ (p, N )

∂ (T, N )
=

∂ (p,N )
∂ (L,μ)
∂ (T,N )
∂ (L,μ)

=

∣∣∣∣∣∣∣
(

∂ p
∂L

)
V,μ

(
∂ p
∂μ

)
L,V(

∂N
∂L

)
V,μ

(
∂N
∂μ

)
L,V

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(

∂T
∂L

)
V,μ

(
∂T
∂μ

)
L,V(

∂N
∂L

)
V,μ

(
∂N
∂μ

)
L,V

∣∣∣∣∣∣∣
=

(
∂ p
∂L

)
V,μ

(
∂N
∂μ

)
L,V

− (
∂N
∂L

)
V,μ

(
∂ p
∂μ

)
L,V(

∂T
∂L

)
V,μ

(
∂N
∂μ

)
L,V

− (
∂N
∂L

)
V,μ

(
∂T
∂μ

)
L,V

. (24)

The derivation of an expression for the isothermal compressibility βT = −V −1(∂V/∂ p)T,N is more complex since the method
of Jacobian determinants must be applied twice to transform the derivative at constant temperature into derivatives at constant
Hill energy and in the second step derivatives at constant number of particles into derivatives at constant chemical potential. The
result for the inverse isothermal compressibility after the twofold transformation reads

β−1
T = −V

⎡
⎢⎣
(

∂ p

∂V

)
L,μ

+
(

∂ p

∂L

)
V,μ

(
∂T
∂V

)
L,μ

(
∂N
∂μ

)
L,V

−
(

∂T
∂μ

)
L,V

(
∂N
∂V

)
L,μ(

∂N
∂L

)
V,μ

(
∂T
∂μ

)
L,V

− (
∂T
∂L

)
V,μ

(
∂N
∂μ

)
L,μ

+
(

∂ p

∂μ

)
L,V

(
∂T
∂L

)
V,μ

(
∂N
∂V

)
L,μ

− (
∂T
∂V

)
L,μ

(
∂N
∂L

)
V,μ(

∂N
∂L

)
V,μ

(
∂T
∂μ

)
L,V

− (
∂T
∂L

)
V,μ

(
∂N
∂μ

)
L,μ

⎤
⎥⎦.

(25)

Further properties, e.g., the isobaric thermal expansivity
αp, isobaric heat capacity Cp, isentropic compressibility βs,
speed of sound w, and Joule–Thomson coefficient μJT, which
are related to second-order derivatives of the entropy, can be
calculated by these three quantities by standard thermody-
namic relations [41], which are presented in Table III.

In the second part, the phase-space functions are related
to ensemble averages, which comprise combinations of the
instantaneous values of the kinetic energy K = L + μN −

U (rN ), where U is the potential energy, volume derivatives
of the potential energy ∂nU/∂V n, and the number of parti-
cles N . To retain clarity, only systems of pure fluids which
consist of spherical particles with three translational degrees
of freedom are considered in this work. Expressions for the
thermodynamic properties of systems of particles with addi-
tional rotational degrees of freedom are readily obtained by
replacing 3N in all equations in the remainder of this article
by the total number of degrees of freedom f N , where f is the
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TABLE III. General relations for important thermodynamic
properties.

Isochoric heat capacity CV =
(

∂E

∂T

)
V,N

Thermal pressure coefficient γV =
(

∂ p

∂T

)
V,N

Isothermal compressibility βT = − 1

V

(
∂V

∂ p

)
T,N

Isobaric thermal expansivity αp = 1

V

(
∂V

∂T

)
p,N

= βT γV

Isobaric heat capacity Cp =
(

∂H

∂T

)
p,N

= CV + V T βT γ 2
V

Isentropic compressibility βS = − 1

V

(
∂V

∂ p

)
S,N

= βT
CV

Cp

Speed of sound w2 = − V 2

NM

(
∂ p

∂V

)
S,N

= V

NMβS

Joule–Thomson coefficient μJT =
(

∂T

∂ p

)
H,N

= V

Cp
(T αp − 1)

number of degrees of freedom of one molecule. The general-
ization to mixtures is also straightforward and therefore not
pursued here.

For systems of spherical particles, the phase-space volume
of the μVL ensemble is given by Eq. (1). If the potential
energy is a function of the particle coordinates only, the energy
E can be separated into the kinetic energy K = ∑

p2
i /2m

and the potential energy. The integrals over the momenta of
the particles can be evaluated by the Laplace transforma-
tion technique originally developed by Pearson et al. [35]
for the microcanonical ensemble. Moreover, to remove the
dependence of the integral over the particle coordinates on
volume, the coordinates are transformed into dimensionless
coordinates r′ by r′ = V −1/3r. This yields

�(μ,V, L) =
∞∑

N=0

1

N!h3N

(2πm)
3N
2

�
(

3N
2 + 1

)∫ V N (L + μN − U )
3N
2

× �(L + μN − U )dr′N , (26)

in which �(x) represents the gamma function. In a similar
manner, the phase-space density is transformed into

ω(μ,V, L) =
∞∑

N=0

1

N!h3N

(2πm)
3N
2

�
(

3N
2

) ∫
V N (L + μN − U )

3N
2 −1

× �(L + μN − U )dr′N , (27)

where the recurrence relation for the gamma function �(x +
1) = x�(x) has been used.

The ensemble average of an arbitrary quantity A(rN , pN ) is
defined by

〈A〉 = 1

ω

∞∑
N=0

1

N!h3N

∫∫
A(rN , pN )δ(L+ μN − H )drN dpN .

(28)

Since the potential energy depends only on the coordinates
of the particles and K = L + μN − U (rN ), the kinetic energy
can be considered as a function of the particle coordinates
only. Therefore, the instantaneous values of an arbitrary
property A also depend on the particle coordinates only. Con-
sequently, the Laplace transform technique can be applied to
evaluate the integrals over the momenta of the particles in
Eq. (28), which results in

〈A〉 = 1

ω

∞∑
N=0

1

N!h3N

(2πm)
3N
2

�
(

3N
2

) ∫
A(r′N )V N

× (L + μN − U )
3N
2 −1�(L + μN − U )dr′N . (29)

Expressions for phase-space functions �mno in terms of
ensemble averages can now be derived by calculating deriva-
tives of the phase-space volume, Eq. (26), multiplying the
result by the inverse phase-space density, and comparing it
to the general equation for an ensemble average, Eq. (29). For
instance, the phase-space function �000 can be written as

�000 = �

ω
= 1

ω

∞∑
N=0

1

N!h3N

(2πm)
3N
2

�
(

3N
2

)
3N
2

×
∫

V N (L + μN − U )
3N
2 �(L + μN − U )dr′N .

(30)

Comparing Eq. (30) to Eq. (29) yields

�000 =
〈(

3N

2

)−1

(L + μN − U )

〉
. (31)

Due to the definition of the phase-space functions by
Eq. (7), �100 is unity because the derivative of the phase-space
volume with respect to the Hill energy is the phase-space
density.

Analogously, an expression for the phase-space function
related to the partial derivative of the phase-space volume with
respect to volume �010 is obtained as

�010 = 1

ω

∂�

∂V
= 1

ω

∞∑
N=0

1

N!h3N

(2πm)
3N
2

�
(

3N
2

)
3N
2

∫
NV N−1(L + μN − U )

3N
2 �(L + μN − U )dr′N

+ 1

ω

∞∑
N=0

1

N!h3N

(2πm)
3N
2

�
(

3N
2

) ∫
V N (L + μN − U )

3N
2 −1

(
−∂U

∂V

)
�(L + μN − U )dr′N . (32)

The comparison with Eq. (29) results in

�010 = 2

3V
〈L + μN − U 〉 −

〈
∂U

∂V

〉
= 2

3V
〈K〉 −

〈
∂U

∂V

〉
. (33)
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The expression exhibits the same structure as the equations for the pressure in the microcanonical, canonical, and grand-canonical
ensembles [28,31,32]. The first term is the ideal gas part of the pressure, while the ensemble average of the derivative of the
potential energy with respect to volume in the second term describes the residual contribution to the pressure.

The phase-space function �001, which is related to the first derivative of the phase-space volume with respect to the chemical
potential, is

�001 = 1

ω

∂�

∂μ
= 1

ω

∞∑
N=0

1

N!h3N

(2πm)
3N
2

�
(

3N
2

) ∫
V N (L + μN − U )

3N
2 −1 N �(L + μN − U )dr′N . (34)

Comparing it with Eq. (29) yields the simple result

�001 = 〈N〉. (35)

In the same way, further expressions for phase-space functions of higher and mixed order can be obtained. The expressions for
phase-space functions up to third order are listed in Table IV.

By mathematical induction, a general expression for the phase-space functions of arbitrary order,

�mno =
〈(

N

V

)n

No

[
P−N

n P−3N/2
m+o

(
L + μN − U

3N/2

)1−m−o

+ (1 − δ0n)
n∑

i=1

(
n

i

)
P−N

n−i

i∑
l=1

P−3N/2
m+l+o

1

Ni−l

(
L + μN − U

3N/2

)1−m−l−o kmax(i,l )∑
k=1

cilk
V iWilk

Nl

]〉
, (36)

can be established. The symbol PX
x denotes the Pochhammer

polynomials [42], which were defined by Lustig as [30]

PX
x =

⎧⎨
⎩

1, for x = 0 or x = 1,(
1 + 1

X

)
...

(
1 + x − 1

X

)
, otherwise.

(37)

and δi j is the Kronecker δ defined by δi j = 1 if i = j and δi j =
0 if i �= j.

The structure of the terms cilkWilk in Eq. (36) can be
described by multinomials on the basis of combinatorial anal-
ysis. A multinomial coefficient

cilk = i!

a1!(1!)a1 a2!(2!)a2 . . . ai!(i!)ai
(38)

is the number of ways of partitioning a set of

i = a1 + 2a2 + . . . + iai (39)

objects into a1 subsets containing one object, a2 subsets con-
taining two objects, . . ., ai subsets containing i objects [43]. In
other words, one looks for all possible solutions to Eq. (39).
Each solution yields the structure of one term cilkWilk for
a given triplet (i, l, k). Each Wilk is a product of various
powers of negative volume derivatives of the potential energy
−∂nU/∂V n. A derivative of order n occurs an times as a factor
in this product. The index l = a1 + a2 + . . . + ai in cilk and
Wilk corresponds to the number of factors in the product, and
i is the sum of the orders of the derivatives in one term. For
some l there are several different solutions to Eq. (39), which
are enumerated by k, and kmax(i, l ) is the number of solutions
for a given pair of i and l , i.e., the degeneracy. With this
background, the correspondences between the combinatorial
problem and the structure of the terms become clear. The i
objects are the orders of derivatives to be partitioned into sub-
sets; i.e., each object corresponds to one order of derivative,
n is the order of a derivative in a subset, and the number of

subsets an corresponds to the number of times the derivative
occurs in this term as a factor, i.e., an is the exponent of the
derivative.

To illustrate the construction of a term cilkWilk , it is instruc-
tive to consider an example. For i = 2 there are two possible
solutions to Eq. (39), for (l = 1, k = 1) 1 × 0 + 2 × 1 = 2,
which yields the term −∂2U/∂V 2 and c211 = 1, and for (l =
2, k = 1) 1 × 2 + 2 × 0 = 2, which yields (−∂U/∂V )2 and
c221 = 1. A complete list of the first few terms was given by
Lustig [24,28] and Meier and Kabelac [34].

III. EXPRESSIONS FOR THERMODYNAMIC
PROPERTIES IN THE μpR ENSEMBLE

In the μpR ensemble, also the entropy is the thermo-
dynamic potential, and the independent variables are the
chemical potential, the pressure, and the Ray energy R, which
is defined by R = E + pV − μN and was introduced by Ray
[11]. Since the procedure for the derivation of expressions for
thermodynamic properties in the μpR ensemble is similar to
the one applied in Sec. II to the μVL ensemble and the struc-
ture of many equations to be derived in this section resembles
that of equations for the μVL ensemble, the description is kept
brief when appropriate. The phase-space volume of the μpR
ensemble is defined by

�(μ, p, R) =
∞∑

N=0

1

N!h3N

∫ ∞

0

∫ ∫
N

V
�(R − pV + μN − H )

× drN dpN dV (40)

and the phase-space density by

ω(μ, p, R) =
∞∑

N=0

1

N!h3N

∫ ∞

0

∫ ∫
N

V
δ(R − pV + μN − H )

× drN dpN dV. (41)
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TABLE IV. Expressions for phase-space functions �mno up to third order in terms of ensemble averages in the μVL ensemble.

�000 =
〈(

3N

2

)−1

(L + μN − U )

〉

�100 = 1

�200 =
〈(

3N

2
− 1

)
(L + μN − U )−1

〉

�300 =
〈(

3N

2
− 1

)(
3N

2
− 2

)
(L + μN − U )−2

〉

�010 = 2

3V
〈L + μN − U 〉 −

〈
∂U

∂V

〉

�020 =
〈

2(N − 1)

3V 2
(L + μN − U )

〉
−
〈
2

N

V

∂U

∂V

〉
+
〈(

3N

2
− 1

)
(L + μN − U )−1

(
∂U

∂V

)2
〉

−
〈
∂2U

∂V 2

〉

�030 =
〈

2(N − 1)(N − 2)

3V 3
(L + μN − U )

〉
−
〈
3

N (N − 1)

V 2

∂U

∂V

〉
−
〈
3

N

V

∂2U

∂V 2

〉
+
〈

3

(
3N

2
− 1

)
N

V
(L + μN − U )−1

(
∂U

∂V

)2
〉

+
〈
3

(
3N

2
− 1

)
(L + μN − U )−1 ∂U

∂V

∂2U

∂V 2

〉
−
〈(

3N

2
− 1

)(
3N

2
− 2

)
(L + μN − U )−2

(
∂U

∂V

)3
〉

−
〈
∂3U

∂V 3

〉
�001 = 〈N〉
�002 =

〈(
3N

2
− 1

)
(L + μN − U )−1N2

〉

�003 =
〈(

3N

2
− 1

)(
3N

2
− 2

)
(L + μN − U )−2N3

〉

�110 =
〈

N

V

〉
−
〈(

3N

2
− 1

)
(L + μN − U )−1 ∂U

∂V

〉

�101 =
〈(

3N

2
− 1

)
(L + μN − U )−1N

〉

�011 =
〈

N2

V

〉
−
〈(

3N

2
− 1

)
(L + μN − U )−1 ∂U

∂V
N

〉

�120 =
〈

N2 − N

V 2

〉
−
〈
2

N

V

∂U

∂V

(
3N

2
− 1

)
(L + μN − U )−1

〉
+
〈(

3N

2
− 1

)(
3N

2
− 2

)
(L + μN − U )−2

(
∂U

∂V

)2
〉

−
〈(

3N

2
− 1

)
(L + μN − U )−1 ∂2U

∂V 2

〉

�210 =
〈

N

V

(
3N

2
− 1

)
(L + μN − U )−1

〉
−
〈(

3N

2
− 1

)(
3N

2
− 2

)
(L + μN − U )−2 ∂U

∂V

〉

�012 =
〈

N3

V

(
3N

2
− 1

)
(L + μN − U )−1

〉
−
〈(

3N

2
− 1

)(
3N

2
− 2

)
(L + μN − U )−2 ∂U

∂V
N2

〉

�021 =
〈

N3 − N2

V 2

〉
−
〈
2

N2

V

∂U

∂V

(
3N

2
− 1

)
(L + μN − U )−1

〉
+
〈(

3N

2
− 1

)(
3N

2
− 2

)
(L + μN − U )−2

(
∂U

∂V

)2

N

〉

−
〈(

3N

2
− 1

)
(L + μN − U )−1 ∂2U

∂V 2
N

〉

�102 =
〈(

3N

2
− 1

)(
3N

2
− 2

)
(L + μN − U )−2N2

〉

�201 =
〈(

3N

2
− 1

)(
3N

2
− 2

)
(L + μN − U )−2N

〉

�111 =
〈

N2

V

(
3N

2
− 1

)
(L + μN − U )−1

〉
−
〈(

3N

2
− 1

)(
3N

2
− 2

)
(L + μN − U )−2 ∂U

∂V
N

〉

Since the volume is not constant, but fluctuates in the μpR
ensemble, both phase-space volume and phase-space density
include an additional integration over all volumes that are
accessible to the system, that is from zero to infinity. This
additional integration introduces the unit of volume into the
phase-space volume and phase-space density, which must be
compensated for by an appropriate volume scale. Han and Son
[44] showed that in molecular simulations of homogeneous
systems within periodic boundary conditions the factor N/V
is an appropriate volume scale. It was already used in the
partition functions of the NpT and NpH ensembles in our
previous works [31,33] and is therefore also applied here

in the phase-space volume and phase-space density of the
μpR ensemble. It should be noted that this volume scale was
already derived earlier by Attard using information theory
[45]. The volume scale has no influence on the equations for
thermodynamic properties, but must be taken into account in
the acceptance criterion for volume changes in Metropolis
Monte Carlo simulations in the μpR ensemble. Its influence
is largest for small systems, but vanishes for large systems in
the thermodynamic limit N → ∞.

The entropy can also be defined with the phase-space vol-
ume or the phase-space density by Eqs. (3) or (4) as in the μVL
ensemble. In the μpR ensemble, the phase-space functions are
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defined by

�mno = 1

ω

∂m+n+o�

∂Rm∂ pn∂μo
, m, n, o = 0, 1, 2, . . . , (42)

with the special case �100 = 1. The recurrence relations for
the space-space functions and the expressions for derivatives
of the entropy S�

mno and Sω
mno have the same structure as in the

μVL ensemble. They can be obtained from Eqs. (9) to (11)
and the equations in Table I by replacing L by R and V by p.
The total differential of the entropy S = S(μ, p, R) is given by
[1]

dS = 1

T
dR − V

T
d p + N

T
dμ (43)

and serves as starting point for deriving expressions of prop-
erties that are related to first-order derivatives of the entropy
in terms of phase-space functions. Thus, for the inverse tem-
perature the expression

T −1 =
(

∂S

∂R

)
p,μ

= kBS100
�= kB�−1

000 (44)

is obtained, which leads to

T
�= k−1

B �000. (45)

The volume is related to the derivative of the entropy with
respect to pressure by

V = −T

(
∂S

∂ p

)
R,μ

= −T kBS010
�= −�010, (46)

while the number of particles is related to the derivative of the
entropy with respect to chemical potential by

N = T

(
∂S

∂μ

)
R,V

= T kBS001
�= �001. (47)

Equations for the isobaric heat capacity, the isobaric ther-
mal expansivity, and the isothermal compressibility can be
found by using the method of Jacobian determinants again.
The resulting equations have the same mathematical structure
as Eqs. (23)–(25). Thus, the equation for the isobaric heat
capacity,

Cp =
(

∂H

∂T

)
p,N

=

(
∂N
∂μ

)
R,p

− N
(

∂N
∂R

)
p,μ(

∂T
∂R

)
p,μ

(
∂N
∂μ

)
R,p

− (
∂N
∂R

)
p,μ

(
∂T
∂μ

)
R,p

,

(48)

is obtained by replacing the internal energy E by the enthalpy
H , the volume V by the pressure p, and the Hill energy L
by the Ray energy R in Eq. (23). Similarly, retaining the
factor V −1, exchanging the volume V and the pressure p, and
replacing the Hill energy L by the Ray energy R in all partial
derivatives in Eq. (24) yields the equation for the isobaric
thermal expansivity

αp = 1

V

(
∂V

∂T

)
p,N

= 1

V

(
∂V
∂R

)
p,μ

(
∂N
∂μ

)
R,p

− (
∂N
∂R

)
p,μ

(
∂V
∂μ

)
R,p(

∂T
∂R

)
p,μ

(
∂N
∂μ

)
R,p

− (
∂N
∂R

)
p,μ

(
∂T
∂μ

)
R,p

.

(49)

Finally, the equation for the thermal compressibility

βT = − 1

V

⎧⎪⎨
⎪⎩
(

∂V

∂ p

)
R,μ

+
(

∂V

∂R

)
p,μ

(
∂T
∂ p

)
R,μ

(
∂N
∂μ

)
R,p

−
(

∂T
∂μ

)
R,p

(
∂N
∂ p

)
R,μ(

∂N
∂R

)
p,μ

(
∂T
∂μ

)
R,p

− (
∂T
∂R

)
p,μ

(
∂N
∂μ

)
R,p

+
(

∂V

∂μ

)
R,p

(
∂T
∂R

)
p,μ

(
∂N
∂ p

)
R,μ

−
(

∂T
∂ p

)
R,μ

(
∂N
∂R

)
p,μ(

∂N
∂R

)
p,μ

(
∂T
∂μ

)
R,p

− (
∂T
∂R

)
p,μ

(
∂N
∂μ

)
R,p

⎫⎪⎬
⎪⎭
(50)

is obtained by changing the factor V to V −1, exchanging the volume V and the pressure p, and replacing the Hill energy L by
the Ray energy R in all partial derivatives in Eq. (25). Since the partial derivatives in the μpR ensemble directly correspond to
those in the μVL ensemble, the expressions for the isobaric heat capacity, isobaric thermal expansion coefficient, and isothermal
compressibility in terms of phase-space functions in the μpR ensemble correspond to those for the isochoric heat capacity,
thermal pressure coefficient, and inverse thermal compressibility in the μVL ensemble. As the resulting expressions are rather
lengthy, they are omitted here. For the calculation of thermodynamic properties in the μpR ensemble, a stepwise procedure
should be applied as already suggested for the μVL ensemble in Sec. II. Further important thermodynamic properties, which are
related to second-order derivatives of the thermodynamic potential, e.g., the isochoric heat capacity, thermal pressure coefficient,
isentropic compressibility, speed of sound, and Joule–Thomson coefficient, can be calculated in terms of these three quantities
using the results for Cp, αp, and βT with the thermodynamic relations listed in Table III.

In the second step, expressions for the phase-space functions in terms of ensemble averages are derived along the same lines
as for the μVL ensemble in Sec. II. The integrals over the momenta in the phase-space volume and density are evaluated by
the Laplace transform technique of Pearson et al. [35]. Moreover, scaled coordinates r′ = V −1/3r are introduced to remove the
dependence of the integrals over the particle coordinates on volume. This leads to the equations

�(μ, p, R) =
∞∑

N=0

N

N!h3N

(2πm)
3N
2

�
(

3N
2 + 1

) ∫ ∞

0

∫
V N−1(R − pV + μN − U )

3N
2 �(R − pV + μN − U )dr′N dV (51)

for the phase-space volume and

ω(μ, p, R) =
∞∑

N=0

N

N!h3N

(2πm)
3N
2

�
(

3N
2

) ∫ ∞

0

∫
V N−1(R − pV + μN − U )

3N
2 −1 �(R − pV + μN − U )dr′N dV (52)
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for the phase-space density. The equation for an ensemble average of an arbitrary quantity A after evaluation of the integrals over
the momenta and introduction of scaled coordinates reads

〈A〉 = 1

ω

∞∑
N=0

N

N!h3N

(2πm)
3N
2

�
(

3N
2

) ∫
A(r′N )V N−1(R − pV + μN − U )

3N
2 −1�(R − pV + μN − U )dr′N . (53)

Now the expressions for the phase-space functions can be found by inserting derivatives of the phase-space volume, Eq. (51),
into the definition of the phase-space functions, Eq. (7), and comparing the result to Eq. (53). The phase-space function �000 =
�/ω is formed by dividing Eq. (51) by ω, which leads to

�000 = �

ω
= 1

ω

∞∑
N=0

N

N!h3N

(2πm)
3N
2

�
(

3N
2

)
3N
2

∫ ∞

0

∫
V N−1(R − pV + μN − U )

3N
2 �(R − pV + μN − U )dr′N dV. (54)

The comparison with Eq. (53) yields

�000 =
〈(

3N

2

)−1

(R − pV + μN − U )

〉
. (55)

Similarly, the phase-space functions corresponding to the first derivatives of the phase-space volume with respect to pressure
and chemical potential are obtained as

�010 = 1

ω

∞∑
N=0

N

N!h3N

(2πm)
3N
2

�
(

3N
2

) ∫ ∞

0

∫
V N−1(R − pV + μN − U )

3N
2 −1(−V )�(R − pV + μN − U )dr′N dV (56)

and

�001 = 1

ω

∞∑
N=0

N

N!h3N

(2πm)
3N
2

�
(

3N
2

) ∫ ∞

0

∫
V N−1(R − pV + μN − U )

3N
2 −1 N �(R − pV + μN − U )dr′N dV. (57)

Hence,

�010 = −〈V 〉 (58)

and

�001 = 〈N〉. (59)

Further expressions for phase-space functions corresponding
to partial derivatives of the phase-space volume up to third
order are summarized in Table V.

Finally, a general equation for phase-space functions of
arbitrary order can be established. In the μpR ensemble, it
is given by

�mno =
〈
P−3N/2

m+n+o

(
R − pV + μN − U

3N/2

)1−m−n−o

(−V )nNo

〉
,

(60)

where the symbol PX
x denotes the Pochhammer polynomials

defined by Eq. (37). The structure of the phase-space func-
tions in the μpR ensemble is much simpler than that of the
corresponding functions in the μVL ensemble because here
not the volume, but the pressure is an independent variable.
Consequently, no derivatives of the potential energy with re-
spect to volume appear in the expressions for the phase-space
functions.

IV. VALIDATION BY MONTE CARLO SIMULATIONS
OF A MODEL FLUID

The expressions for thermodynamic properties derived in
Secs. II and III were validated by Monte Carlo simulations

of the simple Lennard-Jones model fluid at three state points
in both ensembles. We applied the Metropolis Monte Carlo
algorithm [46] as modified by Ray [47] for simulations in
adiabatic ensembles. In general, a Monte Carlo move from
an old state m to a new state n in the Metropolis algorithm is
accepted with the probability

Pnm = min

(
1,

Wn

Wm

)
, (61)

where W denotes the weight factor of the ensemble. The
weight factor can be inferred from the phase-space density
ω of the ensemble, which is the normalization factor of the
weight factor.

The weight factor of the μVL ensemble is given by

W = 1

N!h3N

(2πm)
3N
2

�
(

3N
2

) V N (L+ μN − U )
3N
2 −1�(L+ μN − U ).

(62)

In the μVL ensemble, the Markov chain consists of a random
sequence of three different types of trials: particle displace-
ments, particle insertions, and particle deletions. In analogy
to particle displacements in the microcanonical and NpH en-
sembles [33,47], the ratio of the weight factors in Eq. (61) for
a particle displacement reads

Wn

Wm
=
(

L + μN − Un

L + μN − Um

) 3N
2 −1

. (63)
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TABLE V. Expressions for phase-space functions �mno up to
third order in terms of ensemble averages in the μpR ensemble.

�000 =
〈(

3N

2

)−1

(R − pV + μN − U )

〉

�100 = 1

�200 =
〈(

3N

2
− 1

)
(R − pV + μN − U )−1

〉

�300 =
〈(

3N

2
− 1

)(
3N

2
− 2

)
(R − pV + μN − U )−2

〉
�010 = −〈V 〉
�020 =

〈(
3N

2
− 1

)
(R − pV + μN − U )−1V 2

〉

�030 = −
〈(

3N

2
− 1

)(
3N

2
− 2

)
(R − pV + μN − U )−2V 3

〉
�001 = 〈N〉
�002 =

〈(
3N

2
− 1

)
(R − pV + μN − U )−1N2

〉

�003 =
〈(

3N

2
− 1

)(
3N

2
− 2

)
(R − pV + μN − U )−2N3

〉

�110 = −
〈(

3N

2
− 1

)
(R − pV + μN − U )−1V

〉

�101 =
〈(

3N

2
− 1

)
(R − pV + μN − U )−1N

〉

�011 = −
〈(

3N

2
− 1

)
(R − pV + μN − U )−1V N

〉

�120 =
〈(

3N

2
− 1

)(
3N

2
− 2

)
(R − pV + μN − U )−2V 2

〉

�210 = −
〈(

3N

2
− 1

)(
3N

2
− 2

)
(R − pV + μN − U )−2V

〉

�012 = −
〈(

3N

2
− 1

)(
3N

2
− 2

)
(R − pV + μN − U )−2V N2

〉

�021 =
〈(

3N

2
− 1

)(
3N

2
− 2

)
(R − pV + μN − U )−2V 2N

〉

�102 =
〈(

3N

2
− 1

)(
3N

2
− 2

)
(R − pV + μN − U )−2N2

〉

�201 =
〈(

3N

2
− 1

)(
3N

2
− 2

)
(R − pV + μN − U )−2N

〉

�111 = −
〈(

3N

2
− 1

)(
3N

2
− 2

)
(R − pV + μN − U )−2V N

〉

Accordingly, the ratios of the weight factor for the insertion
or deletion of a particle are given by

Wn

Wm
= V (2πm)3/2

(N + 1)h3

�
(

3N
2

)
�
(

3N+3
2

) [L + μ(N + 1) − Un]
3N+3

2 −1

(L + μN − Um)
3N
2 −1

(64)

and

Wn

Wm
= Nh3

V (2πm)3/2

�
(

3N
2

)
�
(

3N−3
2

) [L + μ(N − 1) − Un]
3N−3

2 −1

(L + μN − Um)
3N
2 −1

,

(65)

respectively.

The Markov chain of a Monte Carlo simulation in the
μpR ensemble consists of a random sequence of four types
of moves. In addition to particle displacements, particle in-
sertions, and particle deletions, volume changes form the
fourth type of trial. The acceptance criteria for particle dis-
placements, particle insertions, and particle deletions can be
adopted from those for the μVL ensemble by replacing L with
R − pV in Eqs. (63) to (65). The ratio of the weight factors
for a volume change can be inferred from Eq. (52) and reads

Wn

Wm
=
(

Vn

Vm

)N−1( R − pVn + μN − Un

R − pVm + μN − Um

) 3N
2 −1

. (66)

In contrast to the acceptance criterium for volume changes
used by other authors [12,22], where the ratio (Vn/Vm)N ap-
pears instead of (Vn/Vm)N−1, the volume scale introduced in
Sec. II reduces the exponent N of the ratio by unity. In the
thermodynamic limit N → ∞, this difference vanishes, but it
must be taken into account when small systems are simulated.

A Fortran 90 software for Monte Carlo simulations in the
μVL and μpR ensembles was developed from the codes used
in our previous works on the NpT ensemble [31], the grand-
canonical ensemble [32], and NpH ensemble [33], which are
based on code segments published as attachments to the book
of Allen and Tildesley [48].

Since the implementation of the acceptance criteria for
particle insertions and deletions might cause numerical prob-
lems, some hints for their implementation are in place. To
avoid raising a large number to a power of the order of the
number of particles, it is useful to transform the ratios of the
kinetic energies in the acceptance criteria. For example, in the
criterion for the insertion of a particle in the μVL ensemble,
the ratio of the kinetic energies can be transformed into

[L + μ(N + 1) − Un]
3N+3

2 −1

[L + μN − Um]
3N
2 −1

=
[

L + μ(N + 1) − Un

L + μN − Um

] 3N
2 −1

[L + μ(N + 1) − Un]
3
2 .

(67)

In the transformed expression, the ratio of the kinetic
energies in the square brackets is close to unity, and the kinetic
energy in the second parentheses is risen only to the power
of 3/2. Before evaluating the acceptance criterion, it must be
checked if the kinetic energy Kn = L + μ(N + 1) − Un of the
new configuration is negative. In this case, the trial move must
be discarded without evaluation of the acceptance criterion.

Moreover, to avoid the evaluation of the gamma function
for large arguments, the recurrence formula �(x + 1) = x�(x)
and Stirling’s approximation

�(z) =
√

2π

z

( z

e

)z
[1 + O (z−1)] (68)

can be applied [49]. Applying these relations to the ratio of
the gamma functions in Eq. (64) yields

�
(

3N
2

)
�
(

3N+3
2

) = 2

3N + 1

(
3N

3N + 1

) 3N
2
√

2e

3N
, (69)
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the numerical evaluation of which provides no problem be-
cause the ratio 3N/(3N + 1) is always close to unity. In a
similar manner, the acceptance criterion for a particle deletion
can be modified.

In the remainder of this section, all symbols represent
dimensionless quantities in the usual Lennard-Jones dimen-
sionless quantity system, in which all quantities are reduced
by the length parameter σ and well depth ε of the Lennard-
Jones potential, which is given by

u(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]
, (70)

where r is the distance between a pair of particles. The re-
duced quantities are defined by T ∗ = T kB/ε, p∗ = pσ 3/ε,
ρ∗ = ρσ 3, E∗ = E/ε, H∗ = H/ε, L∗ = L/ε, R∗ = R/ε,
C∗

V = CV /kB, C∗
p = Cp/kB, γ ∗

V = γVσ 3/kB, α∗
p = αpkB/ε,

β∗
T = βT σ 3/ε, β∗

S = βSσ
3/ε, w∗ = w(NM/ε)1/2, and μ∗

JT =
μJTkB/σ 3, where M denotes the molar mass. Since only re-
duced quantities will be discussed in the remainder of this
section, the asterisks are omitted for brevity in the following.

For both ensembles, simulations were carried out at three
characteristic state points. For the simulations in the μVL
ensemble, the state points (μ = −7.65, V = 60 000, L =
26 244) in the gas region, (μ = −5.3, V = 3750, L = 3645)
in the liquid region, and (μ = −12.0, V = 5000, L = 37 908)
in the supercritical region were chosen. For the simulations
in the μpR ensemble, the state points (μ = −7.65, p =
0.05, R = 29 160) in the gas region, (μ = −5.3, p = 1.0,
R = 7290) in the liquid region, and (μ = −12, p = 3.0, R =
53 946) in the supercritical region were selected. The values
of the independent variables for the simulations were calcu-
lated with the empirical Thol et al. equation of state (EOS)
[50] for the Lennard-Jones model fluid and chosen such that
approximately the same states are simulated in the gas, liquid,
and supercritical regions in both ensembles.

As is common practice in empirical equations of state,
the zero points of the enthalpy and entropy of the EOS are
defined according to conventions in a particular industry or
in accordance with recommendations of the IUPAC [51]. In
the Thol et al. EOS, the state (T0 = 0.8, p0 = 0.001) was
chosen as reference state such that the enthalpy and entropy
of the ideal gas are zero at this state and the corresponding
density of the ideal gas ρ0 = p0/T0 [50]. However, since the
ideal gas parts of the chemical potential, Hill energy, and Ray
energy do not cancel in the acceptance criteria for particle
insertions and deletions in simulations in the μVL and μpR
ensembles, their prescribed values must be consistent with the
statistical-mechanical convention for the enthalpy and entropy
of the ideal gas [40]. The adaption of the enthalpy and entropy
of the ideal gas of the EOS in the reference state to the
statistical-mechanical convention is described in detail in the
Appendix.

All simulations were carried out in a cubic simulation box
under the usual periodic boundary conditions and minimum
image convention. They were performed with 2916 particles
and started from a cubic face-centered lattice configuration.
The number of particle was chosen rather large to obtain simu-
lation results that are close to the values in the thermodynamic
limit.

The Markov chain of each simulation was divided into cy-
cles. Each cycle comprised N trials, where N changed during
the simulation due to particle insertions and deletions. Each
simulation comprised an equilibration phase of 105 cycles and
a production phase of 2 × 107 cycles. To fulfill the condition
of detailed balance, the type of trial was chosen randomly by
a random number generated from a uniform distribution in the
interval [0, 1]. Random numbers were generated throughout
all simulations with the random number generator ran2 [52].
In the μVL ensemble, the Markov chain consists of particle
displacements, particle deletions, and particle insertions. If the
random number was smaller than 1/N , a change in particle
number, otherwise a particle displacement was attempted. If
the former was chosen, a second random number was gener-
ated. If the second random number was smaller than 0.5, a
particle deletion, otherwise a particle insertion was attempted.
If a deletion was attempted, the particle to be deleted was
chosen by a third random number. For a particle insertion,
the new particle was inserted at a random position in the
cubic box. If a particle displacement was attempted, a second
random number was generated to determine the particle to be
displaced.

In the μpR ensemble, the Markov chain additionally con-
tains trials of volume changes. If the first random number was
smaller than 1/N , a change in particle number was attempted
as described for the μVL ensemble. If the random number
was larger than 1 − 1/N , a volume change was attempted.
Otherwise, a particle displacement was attempted.

In all simulations, the cutoff radius was set to half the box
length. To account for interactions between pairs of particles
whose distance is larger than the cutoff radius, a long-range
correction for the potential energy and in the μVL ensemble
also for derivatives of the potential with respect to volume was
applied as described by Lustig [29] and Meier and Kabelac
[34]. When a particle was inserted or deleted or the volume
was changed in the μpR ensemble, the cutoff radius and
the long-range corrections were adapted. The uncertainty of
the simulation results was estimated by the standard block
method.

The application of the equations derived in Secs. II and III
for the calculation of thermodynamic properties in a Monte
Carlo simulation is straightforward. During the production
phase of the simulation, the instantaneous values of all com-
binations of quantities which are required to calculate the
phase-space functions of the μVL ensemble in Table IV and
of the μpR ensemble in Table V are accumulated after each
cycle. After the production phase has been completed, en-
semble averages, and with them the phase-space functions,
are calculated. The thermodynamic properties can then be
obtained using the equations in Table II for the temperature,
pressure or volume, average particle number, and their deriva-
tives with respect to Hill or Ray energy, volume or pressure,
and chemical potential. These results are used to calculate
the isochoric heat capacity, the thermal pressure coefficient,
and the isothermal compressibility by Eqs. (23)–(25) in the
μVL ensemble or the isobaric heat capacity, isobaric thermal
expansivity, and isothermal compressibility by Eqs. (48), (49),
and (50) in the μpR ensemble, respectively. Further properties
are then calculated by the thermodynamic relations provided
in Table III. In both ensembles, all thermodynamic properties
were calculated for both entropy definitions.
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TABLE VI. Monte Carlo simulation results for the μVL ensemble, their expanded uncertainty (at the 0.95 confidence level), and values
calculated with the empirical equation of state of Thol et al. [50] for 14 thermodynamic properties at three state points of the Lennard-Jones
model fluid using both entropy definitions S = kB ln � and S = kB ln ω. The production phase of each simulation comprised 2 × 107 cycles.
The values of the equation of state were calculated with the simulation results for the temperature and density. The numbers in parentheses
denote expanded uncertainties (at the 0.95 confidence level) in the rightmost digits, i.e., 1.516(6) means that the value 1.516 has an expanded
uncertainty of 0.006.

Gas Liquid Supercritical
μ = −7.65, V = 60000, μ = −5.3, V = 3750 μ = −12.0, V = 5000,

L = 26244 L = 3645 L = 37908

Property Simulation EOS Simulation EOS Simulation EOS

S = kB ln �

N 2906.43(6) 3007.1(5) 2820.0(5)
T 1.19236(9) 1.19236 0.98185(26) 0.98185 3.0749(10) 3.0749
ρ 0.0484405(20) 0.0484405 0.80190(14) 0.80190 0.56399(10) 0.56399
p 0.047261(9) 0.047256 0.9702(34) 0.9635 3.19070(25) 3.19162
E/N 1.37974(36) 1.37996 −4.08786(21) −4.08911 1.4431(24) 1.4408
H/N 2.3555(6) 2.3555 −2.8783(39) −2.8876 7.1007(38) 7.0998
CV /N 1.7072(17) 1.7032 2.3992(20) 2.3899 1.82206(39) 1.82410
Cp/N 3.807(9) 3.793 4.863(26) 4.822 3.490(8) 3.488
γV 0.056266(47) 0.056211 4.935(10) 4.922 1.5473(14) 1.5455
αp 1.516(6) 1.511 0.4078(32) 0.4035 0.1977(7) 0.1975
βT 26.95(10) 26.87 0.08262(48) 0.08198 0.12777(38) 0.12778
βS 12.083(21) 12.067 0.04076(6) 0.04063 0.06671(6) 0.06682
w 1.3071(11) 1.3080 5.5312(40) 5.5398 5.1554(23) 5.1511
μJT 4.380(27) 4.360 −0.1538(15) −0.1562 −0.1992(16) −0.1997

S = kB ln ω

N 2906.58(12) 3007.1(5) 2820.1(5)
T 1.19234(18) 1.19234 0.98195(26) 0.98195 3.0752(10) 3.0752
ρ 0.0484430(19) 0.0484430 0.80188(14) 0.80188 0.56402(10) 0.56402
p 0.047261(9) 0.047257 0.9704(34) 0.9637 3.19156(25) 3.19248
E/N 1.37974(36) 1.37992 −4.08786(21) −4.08875 1.4431(24) 1.4412
H/N 2.3554(6) 2.3554 −2.8783(39) −2.8870 7.1007(38) 7.1015
CV /N 1.7068(17) 1.7032 2.3988(20) 2.3898 1.82172(39) 1.82412
Cp/N 3.807(9) 3.794 4.863(26) 4.822 3.489(8) 3.488
γV 0.056270(47) 0.056214 4.935(10) 4.922 1.5474(14) 1.5456
αp 1.516(6) 1.511 0.4077(32) 0.4035 0.1976(7) 0.1974
βT 26.95(10) 26.87 0.08262(48) 0.08199 0.12773(38) 0.12774
βS 12.082(21) 12.066 0.04076(6) 0.04064 0.06669(6) 0.06681
w 1.3071(14) 1.3080 5.5314(39) 5.5398 5.1562(17) 5.1516
μJT 4.381(27) 4.361 −0.1538(15) −0.1562 −0.1993(16) −0.1997

The results of the simulations in the μVL ensemble and
μpR ensemble and their uncertainties (at the 0.95 confidence
level) are reported in Tables VI and VII, respectively. The first
result to note is that the values calculated using the entropy
definitions with the phase-space volume or phase-space den-
sity agree with each other within their mutual uncertainties.
Moreover, the uncertainty of the values obtained for both
entropy definitions is very similar. Similar observations were
made in our previous work on the NpH ensemble. In that
work, simulations for the Lennard-Jones model fluid were
carried out with different particle numbers for both entropy
definitions and the results were extrapolated to the thermo-
dynamic limit. The results for both entropy definitions in
the thermodynamic limit agreed well within their uncertainty.
Thus, the equations for both entropy definitions are equally
well suitable for the calculation of thermodynamic properties
in the μVL and μpR ensembles if the number of particles
is chosen large enough or simulation results obtained for

different particle numbers are extrapolated to the thermody-
namic limit.

In the remainder of this section, we compare our simulation
results with the empirical EOS by Thol et al. [50], which has
been shown by Stephan et al. [53] to be among the most ac-
curate representations of the properties of the Lennard-Jones
model fluid. According to Thol et al. [50], the uncertainty of
the EOS in density amounts to 0.1% in the liquid region, 1.0%
in the gas region, and 0.15–0.3% in the supercritical region.
For other properties, it is 0.5% in the isochoric heat capacity,
1.0% in the isobaric heat capacity, speed of sound, and ther-
mal pressure coefficient, 2.5%–10% in the Joule–Thomson
coefficient, 3% in the isothermal compressibility, and 15%
in the isobaric thermal expansivity. In the μVL ensemble,
the EOS was evaluated with the simulation results for the
temperature and density, whereas in the μpR ensemble the
prescribed pressure and simulation result for the temperature
were used.
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TABLE VII. Monte Carlo simulation results for the μpR ensemble, their expanded uncertainty (at the 0.95 confidence level), and values
calculated with the empirical equation of state of Thol et al. [50] for 13 thermodynamic properties at three state points of the Lennard-Jones
model fluid using both entropy definitions S = kB ln � and S = kB ln ω. The production phase of each simulation comprised 2 × 107 cycles.
The values of the equation of state were calculated with the prescribed pressure and the simulation result for the temperature. The numbers in
parentheses denote expanded uncertainties (at the 0.95 confidence level) in the rightmost digits, i.e., 1.574(8) means that the value 1.574 has
an expanded uncertainty of 0.008.

Gas Liquid Supercritical
μ = −7.65, p = 0.05, μ = −5.3, p = 1.0, μ = −12.0, p = 3.0,

R = 29160 R = 7290 R = 53946

Property Simulation EOS Simulation EOS Simulation EOS

S = kB ln �

N 2922.41(21) 2996.2(1.2) 2870.9(6)
T 1.19736(17) 1.19736 0.97975(21) 0.97975 3.0245(12) 3.0245
ρ 0.051706(15) 0.051673 0.80463(6) 0.80495 0.55575(13) 0.55545
E/N 1.36071(47) 1.36133 −4.1095(9) −4.1124 1.3925(28) 1.3915
H/N 2.3283(7) 2.3290 −2.8667(10) −2.8701 6.7910(41) 6.7928
CV /N 1.7198(19) 1.7163 2.4056(19) 2.3985 1.81571(37) 1.81743
Cp/N 3.929(13) 3.907 4.841(22) 4.808 3.522(8) 3.513
γV 0.06058(7) 0.06048 4.981(9) 4.978 1.5052(13) 1.5026
αp 1.574(8) 1.563 0.4016(28) 0.3977 0.2083(9) 0.2072
βT 25.98(13) 25.85 0.08064(44) 0.07989 0.1384(6) 0.1379
βS 11.371(25) 11.354 0.04007(7) 0.03985 0.07134(13) 0.07134
w 1.3045(15) 1.3056 5.5694(48) 5.5835 5.0221(45) 5.0234
μJT 4.356(35) 4.318 −0.1557(14) −0.1577 −0.1890(10) −0.1914

S = kB ln ω

N 2922.55(22) 2996.3(1.2) 2871.1(6)
T 1.19734(17) 1.19734 0.97980(21) 0.97980 3.0245(12) 3.0245
ρ 0.051681(15) 0.051674 0.80463(6) 0.80493 0.55573(13) 0.55546
E/N 1.36071(47) 1.36130 −4.1095(9) −4.1122 1.3925(28) 1.3914
H/N 2.3283(7) 2.3289 −2.8667(10) −2.8699 6.7910(41) 6.7924
CV /N 1.7194(19) 1.7163 2.4053(19) 2.3985 1.81536(37) 1.81743
Cp/N 3.929(13) 3.907 4.841(22) 4.808 3.522(8) 3.513
γV 0.06059(7) 0.06048 4.980(9) 4.978 1.5052(13) 1.5026
αp 1.574(8) 1.563 0.4017(28) 0.3977 0.2083(10) 0.2072
βT 25.98(13) 25.85 0.08065(44) 0.07989 0.1384(6) 0.1379
βS 11.370(25) 11.354 0.04007(7) 0.03985 0.07134(13) 0.07134
w 1.3045(15) 1.3056 5.5693(49) 5.5834 5.0223(45) 5.0234
μJT 4.357(35) 4.318 −0.1557(14) −0.1577 −0.1890(18) −0.1914

First, we discuss the results of the simulations in the μVL
ensemble. In general, for all properties for which Thol et al.
report uncertainties of the EOS our results agree with the
EOS well within its uncertainty. The results for the isochoric
heat capacity, isobaric heat capacity, thermal pressure co-
efficient, and speed of sound exhibit only small deviations
between 0.06% and 0.4% from the EOS. The deviations of the
isobaric thermal expansivity and isothermal compressibility
from the EOS range between −0.008% and +1%, which is
well within the uncertainty of the EOS of 15% and 3%. The
largest deviation of +1.5% from the EOS is observed for
the Joule–Thomson coefficient at the liquid state, which is
also well within the rather high uncertainty of the EOS of
2.5%–10%. At the gas and supercritical states, the deviations
of the results for the Joule–Thomson coefficient are much
smaller and amount to +0.5% and +0.05%, respectively. The
results for the pressure at the gaseous and supercritical states
agree with the EOS within 0.05%, but at the liquid state a
deviation of +0.70% is observed, although the uncertainty of
the simulated value is only 0.35%. This rather large deviation

is probably due to the steep rise of the isotherms in the liquid
region. We note that Thol et al. do not report an uncertainty
of the EOS for the pressure, which is usually not done for an
empirical equation of state.

In the μpR ensemble, one property less than in the μVL
ensemble is calculated because the pressure is prescribed. The
uncertainty of the results for the density is somewhat larger
than that of the results in the μVL ensemble. It amounts to
0.03% at the gaseous state, 0.0075% at the liquid state, and
0.023% at the supercritical state, while the corresponding
uncertainties in the μVL ensemble are 0.0041%, 0.017%, and
0.018%, respectively. This is probably due to the fact that both
particle number and volume fluctuate in the μpR ensemble,
whereas in the μVL ensemble only the number of particles
fluctuates. The results for the density agree with the EOS
within 0.05%, which is much less than the uncertainty of the
EOS of 0.1%–1.0%.

As in the μVL ensemble, all other properties agree with
the EOS well within the uncertainty of the EOS. The results
for the isochoric heat capacity, thermal pressure coefficient,
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and speed of sound show deviations between −0.025% and
+0.3%, while those of the isobaric heat capacity, isobaric
thermal expansivity, and isothermal compressibility are some-
what larger and amount to between +0.1% and +1.0%.
Again, the largest deviations from the EOS are observed for
the Joule–Thomson coefficient. Here, they lie between +0.9%
and +1.3%. Overall, the very good agreement between the
simulation results and the EOS proves that the equations de-
rived in Secs. II and III are correct.

V. CONCLUSIONS

We applied the methodology developed by Lustig for the
microcanonical and canonical ensembles to derive expres-
sions for the calculation of thermodynamic properties of fluids
in the adiabatic μVL and μpR ensembles in Monte Carlo
and molecular-dynamics simulations. Explicit expressions for
all common thermodynamic properties and derivatives of the
entropy up to third order were obtained by introducing phase-
space functions to systematically represent derivatives of the
phase-space volume. Equations for phase-space functions of
arbitrary order are provided for both ensembles, which allow
in principle the calculation of derivatives of the entropy of
arbitrary order. The expressions for thermodynamic properties
and entropy derivatives were derived for the entropy defini-
tions with the phase-space volume and phase-space density.
The equations were explicitly developed for spherical parti-
cles, but can readily be adopted for systems of rigid linear
or rigid nonlinear molecules as well as mixtures. The equa-
tions can also directly be applied in simulations in which
quantum corrections are accounted for semiclassically, e.g.,
by the Feynman-Hibbs corrections because no derivatives
with respect to temperature are formed in both ensembles.

The expressions for thermodynamic properties in the μpR
ensemble contain terms with the number of particles, the
volume, and the potential energy, but no volume derivatives
of the potential energy. This is advantageous in simulations
with empirical force fields or ab initio potential energy sur-
faces, which are more complex than the simple Lennard-Jones
model potential because the computational effort for the cal-
culation of properties such as the isothermal compressibility
or speed of sound is smaller than in ensembles in which the
volume is an independent variable.

The derived equations were validated by Monte Carlo sim-
ulations of the simple Lennard-Jones model fluid at three
characteristic state points in both ensembles. The simulation
results obtained for all properties agree with the accurate
Thol et al. EOS for the Lennard-Jones fluid well within the
uncertainty of the EOS, which demonstrates that our expres-
sions are correct. The results of these simulations also showed
that results for thermodynamic properties obtained with both
entropy definitions for large systems agree with each other
within their mutual uncertainties. Thus, both entropy defini-
tions can be applied to calculate thermodynamic properties if
large systems are simulated.

With the equations for thermodynamic properties derived
in this work by the Lustig methodology for the μVL and
μpR ensembles, the complete framework for the calculation
of thermodynamic properties in the most important seven of
the eight basic ensembles of statistical mechanics is available.

We also applied the Lustig methodology to derive expressions
for thermodynamic properties in the eighth basic ensemble,
the generalized (μpT ) ensemble. That work is described in
Ref. [54] and will be published in a separate paper.

APPENDIX: ADAPTATION OF THE REFERENCE STATE
OF THE EOS TO THE CONVENTIONS OF STATISTICAL

MECHANICS

This Appendix describes the adaptation of the reference
state of the empirical EOS of Thol et al. [50] for the Lennard-
Jones model fluid to the conventions of statistical mechanics
for the enthalpy and entropy of the ideal gas. In statistical me-
chanics, the enthalpy per particle of an ideal gas of spherical
particles is given by

hid = 5

2
kBT, (A1)

and the entropy per particle is described by the Sackur-Tetrode
equation [40]

sid = kB

(
ln

(2πmkB)3/2

h3
+ 5

2
+ 3

2
ln T − ln ρ

)
, (A2)

where it has been used that the isobaric heat capacity of an
ideal gas of spherical particles per particle is (5/2)kB. In
phenomenological thermodynamics, however, the enthalpy of
the ideal gas is represented by

hid = h0
id +

∫ T

T0

cp,iddT = h0
id + 5

2
kB(T − T0), (A3)

and the entropy of the ideal gas by

sid = s0
id +

∫ T

T0

cp,id

T
dT − kB ln

ρT

ρ0T0

= s0
id + 3

2
kB ln

T

T0
− kB ln

ρ

ρ0
, (A4)

in which T0 and ρ0 denote the temperature and density of the
reference state and h0

id and s0
id are the enthalpy and entropy per

particle in the reference state, respectively. If the Thol et al.
EOS is used to calculate μ, E , H , L, and R, the values of the
EOS parameters that fix the values of the enthalpy and entropy
to zero in the reference state must be changed such that the
enthalpy and entropy of the ideal gas calculated with the EOS
agree with Eqs. (A1) and (A2).

The EOS represents the Helmholtz energy of the Lennard-
Jones model fluid per particle a as a function of temperature
and density. It is formulated in reduced quantities, i.e., in
the reduced Helmholtz energy α = a/kBT as a function of
the reduced temperature τ = Tc/T and the reduced density
δ = ρ/ρc, where Tc = 1.32 and ρc = 0.31 are the critical
temperature and density, respectively. The ideal part of the
reduced Helmholtz energy in the EOS has the form

αid = a1 + a2τ + ln δ + 3
2 ln τ, (A5)

in which a1 and a2 are adjustable parameters, whose values
were determined such that the enthalpy and entropy of the
ideal gas are zero at the reference state. Forming the ideal part
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of the reduced Helmholtz energy

αid = aid

kBT
= hid

kBT
− 1 − sid

kB
(A6)

by using Eqs. (A3) and (A4) leads to

αid =
(

h0
id

kBTc
− 5

2τ0

)
τ + 3

2
− s0

id

kB
− 3

2
ln τ0 − ln δ0

+ ln δ + 3

2
ln τ. (A7)

Comparing Eq. (A5) to Eq. (A7) yields

a1 = − s0
id

kB
+ 3

2
− 3

2
ln τ0 − ln δ0 (A8)

and

a2 = h0
id

kBTc
− 5

2τ0
. (A9)

Agreement of the equations for the ideal gas enthalpy,
Eqs. (A1) and (A3), and for the ideal gas entropy, Eqs. (A2)
and (A4), requires that

h0
id = 5

2 kBT0 (A10)

and

s0
id = kB

(
5

2
− ln ρ0 + 3

2
ln

2πmkBT0

h2

)
. (A11)

Inserting these results into Eqs. (A8) and (A9),

a1 = ln ρc − ln
(2πmkBTc)3/2

h3
− 1, (A12)

and a2 = 0 is obtained. In the system of dimensionless
Lennard-Jones quantities, the Planck constant h, particle mass
m, and Boltzmann constant are set to unity. Inserting further
the values of the critical temperature and density, yields a1 =
−5.344446186. With these choices for a1 and a2, values for all
thermodynamic properties calculated with the EOS are con-
sistent with those calculated in the Monte Carlo simulations.
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[36] T. Çaǧin and J. R. Ray, Phys. Rev. A 37, 247 (1988).
[37] M. Litniewski, J. Phys. Chem. 94, 6472 (1990).
[38] A. Münster, Statistische Thermodynamik (Springer, Berlin,

1956).
[39] R. Lustig, J. Chem. Phys. 150, 074303 (2019).
[40] R. Becker, Theory of Heat, 2nd ed. (Springer, New York, 1967).
[41] A. Münster, Classical Thermodynamics (Wiley, London, 1970).
[42] K. B. Oldham, J. C. Myland, and J. Spanier, An Atlas of Func-

tions, 2nd ed. (Springer, New York, 2009).
[43] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark,

NIST Handbook of Mathematical Functions (Cambridge Uni-
versity Press, Cambridge, UK, 2010).

[44] K.-K. Han and H. S. Son, J. Chem. Phys. 115, 7793
(2001).

[45] P. Attard, J. Chem. Phys. 103, 9884 (1995).
[46] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.

Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
[47] J. R. Ray, Phys. Rev. A 44, 4061 (1991).

064112-16

https://doi.org/10.1080/00268979300102971
https://doi.org/10.1063/1.1750386
https://doi.org/10.1080/00268975800100091
https://doi.org/10.1063/1.439486
https://doi.org/10.1080/00268978000102391
https://doi.org/10.1007/BF02903282
https://doi.org/10.1103/PhysRevA.34.2517
https://doi.org/10.1063/1.442566
https://doi.org/10.1063/1.458710
https://doi.org/10.1063/1.464207
https://doi.org/10.1103/PhysRevA.43.4100
https://doi.org/10.1080/00268979100100111
https://doi.org/10.1080/08927029108022137
https://doi.org/10.1063/1.475012
https://doi.org/10.1080/00268979400100654
https://doi.org/10.1016/0009-2614(96)01012-3
https://doi.org/10.1080/002689798168024
https://doi.org/10.1063/1.1938190
https://doi.org/10.1063/5.0021488
https://doi.org/10.1063/5.0083458
https://doi.org/10.1063/1.466446
https://doi.org/10.1063/1.466447
https://doi.org/10.1063/1.466448
https://doi.org/10.1063/1.477552
https://doi.org/10.1080/08927022.2011.552244
https://doi.org/10.1080/00268976.2012.695032
https://doi.org/10.1103/PhysRevE.103.023305
https://doi.org/10.1103/PhysRevE.104.014117
https://doi.org/10.1103/PhysRevE.105.035301
https://doi.org/10.1063/1.2162889
https://doi.org/10.1103/PhysRevA.32.3030
https://doi.org/10.1103/PhysRevA.37.247
https://doi.org/10.1021/j100379a058
https://doi.org/10.1063/1.5080314
https://doi.org/10.1063/1.1407295
https://doi.org/10.1063/1.469956
https://doi.org/10.1063/1.1699114
https://doi.org/10.1103/PhysRevA.44.4061


CLASSICAL STATISTICAL MECHANICS IN THE … PHYSICAL REVIEW E 107, 064112 (2023)

[48] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
(Clarendon, Oxford, UK, 1987).

[49] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1965).

[50] M. Thol, G. Rutkai, A. Köster, R. Lustig, R. Span, and J.
Vrabec, J. Phys. Chem. Ref. Data 45, 023101 (2016).

[51] E. W. Lemmon and R. Span, J. Chem. Eng. Data 51, 785
(2006).

[52] W. H. Press, S. A. Teucholsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in Fortran 77 (Cambridge Uni-
versity Press, Cambridge, UK, 1992).

[53] S. Stephan, M. Thol, J. Vrabec, and H. Hasse, J. Chem. Inf.
Model. 59, 4248 (2019).

[54] P. Ströker, Ph.D. thesis, Helmut-Schmidt-Universität/
Universität der Bundeswehr Hamburg, Hamburg, 2023,
https://openhsu.ub.hsu-hh.de/handle/10.24405/15004.

064112-17

https://doi.org/10.1063/1.4945000
https://doi.org/10.1021/je050186n
https://doi.org/10.1021/acs.jcim.9b00620
https://openhsu.ub.hsu-hh.de/handle/10.24405/15004

