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A four-dimensional potential energy surface (PES) for the interaction between a rigid carbon diox-
ide molecule and a rigid nitrogen molecule was constructed based on quantum-chemical ab initio
calculations up to the coupled-cluster level with single, double, and perturbative triple excitations.
Interaction energies for a total of 1893 points on the PES were calculated using the counterpoise-
corrected supermolecular approach and basis sets of up to quintuple-zeta quality with bond functions.
The interaction energies were extrapolated to the complete basis set limit, and an analytical site–site
potential function with seven sites for carbon dioxide and five sites for nitrogen was fitted to the
interaction energies. The CO2−−N2 cross second virial coefficient as well as the dilute gas shear vis-
cosity, thermal conductivity, and binary diffusion coefficient of CO2−−N2 mixtures were calculated
for temperatures up to 2000 K to validate the PES and to provide reliable reference values for these
important properties. The calculated values are in very good agreement with the best experimental
data. Published by AIP Publishing. https://doi.org/10.1063/1.5034347

I. INTRODUCTION

Thermophysical properties of low-density gases are
exclusively determined by binary interactions and are thus
directly connected to the intermolecular pair potential energy
surfaces (PESs). Knowledge of the pair potentials enables the
calculation of values for the second virial coefficient and trans-
port properties in the dilute gas limit by means of statistical-
mechanical relations and the kinetic theory of gases, respec-
tively. Accurate pair PESs for small molecules, for instance,
methane,1 water,2 hydrogen,3 hydrogen sulfide,4 nitrogen,5

carbon dioxide,6 ethylene oxide,7 ethane,8 and propane,9 can
be routinely constructed these days using high-level quantum-
chemical ab initio methods to determine the binary interaction
energies.

Recently, Hellmann and co-workers have extended
their work on pure gases1,4–13 to binary mixtures, namely,
CH4−−N2,14,15 CH4−−CO2,16 CH4−−H2S,16 H2S−−CO2,16

CH4−−C3H8,17 and CO2−−C3H8,17 and successfully validated
the respective kinetic theory expressions for the transport
properties.14–16 The extension of the calculations to binary
mixtures provides not only accurate thermophysical property
data for such systems but also all the input data for the cal-
culation of thermophysical properties of any multicomponent
mixture consisting of species for which the binary properties
are available. The addition of the CO2−−N2 system will allow
for a better characterization of thermophysical properties of
a number of industrially important gas mixtures, in particu-
lar, for (i) flue gas and process streams used in capturing and

a)Electronic mail: robert.hellmann@uni-rostock.de

cleaning of CO2 before injection into reservoirs as part of the
carbon capture and storage (CCS) process; (ii) natural gas,
where the recent discoveries of CO2-rich reservoirs with non-
negligible amounts of N2 require updating and extending the
existing thermophysical data; and (iii) combustion modeling.
Furthermore, thermophysical data for both species and their
mixtures are needed for modeling of Earth’s and other planets’
atmospheres.

To determine properties of low-density CO2−−N2 gas mix-
tures, pair potentials for all three distinct binary interactions
are required, i.e., CO2−−CO2, N2−−N2, and the unlike interac-
tion CO2−−N2. Hellmann has already published accurate pair
potentials for the pure components.5,6 Hence, only a CO2−−N2

potential of similar quality needed to be developed. A litera-
ture search indicated that in 2015 Nasri et al.18 developed a
CO2−−N2 pair potential of comparable quality; however, their
paper does not provide the details necessary to reproduce the
PES, and the attempts by the present authors to obtain these
details were unsuccessful.

We have therefore developed a new CO2−−N2 pair poten-
tial in this paper. It is based on a total of 1893 points on the
PES for which ab initio calculations up to the coupled-cluster
level with single, double, and perturbative triple excitations
[CCSD(T)]19 have been performed using the supermolecu-
lar approach.20 An analytical site–site potential with seven
and five sites for CO2 and N2, respectively, has been fitted to
the computed interaction energies. Calculation of the cross
second virial coefficient for CO2−−N2 and, in conjunction
with the two pure-species pair potentials, transport proper-
ties of dilute CO2−−N2 gas mixtures served to validate the
new PES and to provide valuable reference data for these
properties.
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Section II details the ab initio calculations for the
CO2−−N2 molecule pair and the development of the analytical
potential function. In Sec. III, we discuss the cross second virial
coefficient and compare with experimental data. Section IV
contains the results of the transport property calculations and
a comparison with data from the literature. A summary and
conclusions are given in Sec. V.

II. INTERMOLECULAR POTENTIAL
A. Ab initio calculations

The CO2 and N2 molecules were treated as rigid rotors in
all ab initio calculations. To maintain consistency with the
pair potentials for CO2−−CO2

6 and N2−−N2,5 we used the
same bond lengths, i.e., a C−−O bond length of 1.1625 Å and
an N−−N bond length of 1.1014 Å in all quantum-chemical
calculations. These bond length values reflect the zero-point
vibrationally averaged geometries. The configurations of the
two rigid molecules are described as a function of the center-
of-mass distance R between molecule 1 (CO2) and molecule
2 (N2) and the three angles θ1, θ2, and φ as illustrated in
Fig. 1(a); see also the supplementary material.

A total of 93 distinct angular configurations and up to
22 center-of-mass separations between 1.75 Å and 10.0 Å
were considered. Of the resulting 2046 (93 × 22) points, 155
were discarded because of a strong overlap of the molecules at
small distances or failing quantum-chemical calculations for
points in the strongly repulsive region of the PES due to near-
linear dependencies in the basis sets. The interaction energies
V (R, θ1, θ2, φ) were determined following the supermolecular
approach accounting for the full counterpoise correction20 at
the frozen-core resolution of identity Møller-Plesset perturba-
tion theory of second order (RI-MP2)21,22 level of theory. The
RI-JK approximation23,24 was used for the Hartree–Fock (HF)
part. For the calculations, we employed the aug-cc-pVXZ25

basis sets with X = 4 (Q) and X = 5 together with the auxiliary
basis sets aug-cc-pV5Z-JKFIT26 and aug-cc-pV5Z-MP2FIT27

for both basis set levels. Additionally, bond functions have
been placed midway along the R axis of each configuration.
Following Patkowski,28 these bond functions are the hydro-
genic functions of the respective basis set and auxiliary basis

FIG. 1. (a) Internal coordinates of the CO2−−N2 system. (b) Visualization of
the positions of the interaction sites in each molecule used for the analytical
potential function.

set levels as for the other atoms. The results for the interac-
tion energies using the RI-MP2 method differ negligibly from
those obtained using the standard MP2 approach as we have
checked for selected configurations, while the RI-MP2 method
is significantly faster. The correlation parts of the interaction
energies, VRI-MP2 corr, were extrapolated to the complete basis
set (CBS) limit using the well-established two-point scheme
recommended by Halkier et al.,29

VRI-MP2 corr(X) = VCBS
RI-MP2 corr + αX−3. (1)

The HF contributions, on the other hand, were taken from the
X = 5 basis set level where they are effectively converged. Fur-
thermore, we performed counterpoise-corrected supermolecu-
lar calculations at the frozen-core CCSD(T)/aug-cc-pVTZ and
CCSD(T)/aug-cc-pVQZ levels of theory for all points on the
PES to increase the accuracy of the interaction energies. The
differences between the CCSD(T) and MP2 interaction ener-
gies [the latter being a byproduct of the CCSD(T) calculations]
were extrapolated to the CBS limit in an analogous manner as
the VRI-MP2 corr values and added to the RI-MP2/CBS inter-
action energies, thereby obtaining a very good approximation
for the frozen-core CCSD(T)/CBS level. The coupled-cluster
calculations have been performed without any bond functions
because test calculations have shown that this results in a better
convergence of the extrapolated CBS energies. The results of
the ab initio calculations for all points on the PES are given in
the supplementary material. All RI-MP2 and CCSD(T) calcu-
lations were carried out using ORCA 3.0.330 and CFOUR,31

respectively.

B. Analytical potential function

A site–site potential function with seven sites for CO2 and
five sites for N2 was fitted to the final CCSD(T)/CBS inter-
action energies. Each isotropic site–site interaction is given
by

Vij(Rij) = Aij exp(−αijRij) − f6(bij, Rij)
C6 ij

R6
ij

+
qiqj

Rij
, (2)

where Rij is the distance between site i in the CO2 molecule
and site j in the N2 molecule. The damping function f 6 is given
as32

f6(bij, Rij) = 1 − exp(−bijRij)
6∑

k=0

(bijRij)k

k!
. (3)

The total potential is then obtained as the sum over all
individual site–site interactions,

V (R, θ1, θ2, φ) =
7∑

i=1

5∑
j=1

Vij

[
Rij(R, θ1, θ2, φ)

]
. (4)

To remain consistent with the potential functions of
Hellmann5,6 for the like-species interactions and to allow for
easy implementation into computer codes, the site positions
and site charges of the two molecules were chosen to be
identical to those of the interaction potentials of the pure
components. The site positions are visualized in Fig. 1(b).
Due to symmetry, there are only four distinct types of sites

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-004822
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-004822
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FIG. 2. CO2−−N2 pair potential as a function of the center-of-mass distance R for 8 of the 93 considered angular configurations. The ab initio calculated values
are represented by symbols, and the fitted analytical potential function is represented by solid lines. The orientations of the two minima of the PES correspond
to the T-shaped configurations.

in CO2 and three in N2. The parameters A, α, b, and C6

for the resulting 12 types of site–site interactions were opti-
mized in a non-linear least-squares fit to the 1891 ab initio
interaction energies. The C6 parameters were constrained to
give an isotropic average of the C6 dispersion coefficient for
CO2−−N2, C6 iso =

∑7
i=1

∑5
j=1 C6 ij, equal to the accurate value

of 107.9 a.u. obtained by Jhanwar and Meath33 from the
dipole oscillator strength distribution (DOSD). Initially, an
exploratory fit of the PES was performed. The two mini-
mum configurations of that exploratory potential function were
then identified, and quantum-chemical calculations were per-
formed for these two configurations in the same manner as for
the other 1891 points before. Assuming these configurations
to be close to the true minima of the PES, they served to refine
the final fit of the potential function, now based on a total of
1893 points. During the fit, all values were weighted by

w =
exp

[
0.005

(
R/Å

)3
]

[
1 + 10−6(V/K + 500)2

]2
. (5)

The denominator of this function ensures that the weight of
configurations increases with the interaction energy decreasing
toward its most negative values (V > −500 K for all calcu-
lated interaction energies), whereas the numerator ensures an
adequate fit quality at large R values, which is of particular
importance for the calculation of the second virial coefficient.
Similar weighting functions were already employed by Hell-
mann in previous studies.8,9,17 An additional weight factor of
100 was used for the energies of both minimum configurations
to ensure a perfect match.

Figure 2 shows the distance dependence of the ab initio
interaction energies and of the fitted analytical potential func-
tion for 8 of the 93 considered angular configurations. In Fig. 3,

the fitted interaction energies are plotted against the corre-
sponding ab initio values for energies up to 50 000 K. The
deviations from a straight line are very small, demonstrating
the high quality of the fit. We calculated the mean absolute error
(MAE) of the fit to be 1.04 K for negative interaction energies,
6.36 K for positive ones up to 2000 K, and 29.4 K between
2000 K and 10 000 K. The MAE increases even further in the

FIG. 3. Interaction energies from the fitted analytical potential function
versus the corresponding ab initio values.
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TABLE I. Comparison of the two minima of the present PES for the CO2−−N2
molecule pair with the minima identified by Nasri et al. (Ref. 18).

θ1 = 90◦, θ2 = 0◦ θ1 = 0◦, θ2 = 90◦

R (Å) V (K) R (Å) V (K)

Reference 18, relaxed 3.683 �467.65 4.456 �229.66
Reference 18, rigid 3.694 �462.19 4.482 �228.62
This work, rigid 3.677 �475.76 4.460 �228.77

interval between 10 000 K and the highest interaction energies
of almost 200 000 K. However, these interaction energies are
of very little importance unless dealing with applications at
extremely high temperatures.

The two symmetry-distinct minima of the analytical PES
resemble perfect T-shaped angular orientations (both shown
in Fig. 2) with interaction energies of −228.77 K (θ1 = 0◦,
θ2 = 90◦) and −475.76 K (θ1 = 90◦, θ2 = 0◦). This is in
agreement with the findings of Nasri et al.,18 who performed
supermolecular CCSD(T)-F12a34/aug-cc-pVTZ calculations,
both for the case that all degrees of freedom are relaxed and for
the case that rigid equilibrium structures of the two monomers
are used to identify the two minima. Since we used zero-point
vibrationally averaged monomer geometries in the present
work, small differences when comparing the results are to be
expected. The minimum distances and their respective energy
values are given in Table I.

The parameters of the new analytical PES and a Fortran
90 routine that evaluates it are given in the supplementary
material.

III. CROSS SECOND VIRIAL COEFFICIENT

For rigid molecules, the classical expression for the cross
second virial coefficient as a function of temperature is

Bcl
12 = −

NA

2

∫ ∞
0

〈
f12

〉
Ω1,Ω2

dR, (6)

with

f12 = exp

[
−

V (R,Ω1,Ω2)
kBT

]
− 1. (7)

Here, R is the distance vector between the centers of mass
of the two molecules, Ω1 and Ω2 represent the angular ori-
entations of molecules 1 and 2, respectively, and the angle
brackets denote an average over Ω1 and Ω2. To account for
quantum effects, the intermolecular pair potential V in Eq. (7)
was replaced by the quadratic Feynman–Hibbs (QFH) effec-
tive pair potential,35 which, for the CO2−−N2 molecule pair,
can be written as

VQFH = V +
~2

24kBT

[
1
µ

(
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2

)
+

1
I1

(
∂2V

∂ψ2
1,a

+
∂2V

∂ψ2
1,b

)
+

1
I2

(
∂2V

∂ψ2
2,a

+
∂2V

∂ψ2
2,b

)]
, (8)

where µ denotes the reduced mass of the molecule pair, x, y,
and z are the Cartesian components of R, I i is the moment of
inertia of molecule i, and the angles ψi ,a and ψi ,b correspond
to rotations around the principal axes of molecule i.

The Mayer-sampling Monte Carlo (MSMC) approach
of Singh and Kofke36 was employed to compute the cross
second virial coefficient at 187 temperatures between 100 K
and 2000 K using the hard-sphere fluid with σ = 4.5 Å
as the reference system. The results for all temperatures
were obtained simultaneously in multi-temperature simula-
tions5,36,37 with a sampling temperature of 100 K and 5 × 1010

trial moves. In each MC trial move, one of the molecules was
rotated and displaced. The maximum step sizes for the MC
moves were adjusted initially in short equilibration periods
to achieve acceptance rates of 50%. All derivatives of the pair
potential in Eq. (8) were evaluated analytically. Computed val-
ues for the virial coefficient from 16 independent simulation
runs were averaged. The precision of the final results is better
than 0.004 cm3/mol at all temperatures.

Figure 4 shows the results for the cross second virial
coefficient compared with experimental data from the liter-
ature38–50 and with the correlation of Dymond et al.51 The
figure also displays our estimate of the combined standard
uncertainty (i.e., coverage factor k = 1). We based this esti-
mate on the difference in the values for the cross second virial
coefficient resulting from using the proposed PES and a PES
that we fitted to the interaction energies resulting from the
highest computed levels of theory, but without extrapolation
of the two correlation energy contributions to the CBS limit.
The values obtained using the non-extrapolated PES have been
used to define the upper uncertainty bound and have then been
mirrored to give the lower uncertainty bound. With increas-
ing temperature, this uncertainty estimate becomes increas-
ingly smaller, and we recommend a minimum uncertainty of
0.5 cm3/mol. Hence, we have

u(BQFH
12 ) = max

(���B
QFH
12,CBS − BQFH

12,non-extr.
���, 0.5 cm3/mol

)
. (9)

Brugge et al.48 derived very accurate data for the cross second
virial coefficient from isothermal pVT measurements using
a Burnett apparatus, which are in close agreement with our
ab initio calculated values. We note that we have reanalyzed
the measurements of Martin et al.46 using the more accurate
values provided by Hellmann5,6 for the pure-component virial
coefficients, leading to excellent agreement. Several other data
sets39,40,47,50 agree within our stated uncertainty. However,
the few available experimental data below ambient temper-
ature often lie significantly outside our uncertainty interval, in
particular, the data of Brewer,43 of Ng,44 and, at very low tem-
peratures, of Yakimenko et al.45 At ambient and higher tem-
peratures, the data of Cottrell et al.41 and the datum of Edwards
and Roseveare38 deviate quite strongly not only from our cal-
culated values but from the consensus of other experimental
data as well.

Figure 4 also shows the results for the classical cross sec-
ond virial coefficient. The deviations from the semiclassical
values obtained with the QFH effective pair potential decrease
rapidly with temperature from −15.09 cm3/mol at 100 K to
only −0.02 cm3/mol at 2000 K.

The electronic supplementary material lists both the clas-
sically calculated values (Bcl

12) and the semiclassically calcu-

lated ones (BQFH
12 ). The uncertainties u(BQFH

12 ) are also given
therein.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-004822
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-004822
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-004822
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FIG. 4. Deviations, ∆ = B12 − BQFH
12, , of experimental data,38–50 the correlation of Dymond et al.,51 and results from the classical statistical treatment (Bcl

12)

for the CO2−−N2 cross second virial coefficient from values obtained with Eq. (10). Both the data and the uncertainties of Ng44 are as given by Dymond
et al.51

An analytical expression for the cross second virial coef-
ficient was found by fitting a polynomial in (T ∗)−1/2 with
T ∗ = T /(100 K) to the 187 values for BQFH

12 . The struc-
ture of the polynomial was optimized using the symbolic
regression software Eureqa (version 1.24.0).52 The resulting
expression,

BQFH
12

cm3/mol
= 24.025 + 128.09 (T ∗)−0.5

− 400.27 (T ∗)−1

− 303.38 (T ∗)−3.5 + 150.02 (T ∗)−4.5

− 71.935 (T ∗)−6, (10)

reproduces the calculated values within ±0.026 cm3/mol.

IV. TRANSPORT PROPERTIES
A. Theory and computational details

The transport properties of a dilute gas mixture can
be determined using the kinetic theory of molecular
gases.14–16,53–60 Each transport property is obtained by solv-
ing a system of linear equations, the coefficients of which are
related to so-called generalized cross sections. The general-
ized cross sections are determined by the binary collisions of
two molecules, which thus connects them directly to the inter-
molecular PES. The approach employed to determine values
for transport properties from the generalized cross sections in
the present work is the same as in previous studies.14–16 There-
fore, we do not repeat it here. In this work, we present results
for the shear viscosity η in the third-order approximation,
for the thermal conductivity λ (under steady-state conditions,

see Ref. 15 for details) in the second-order approximation,
and for the product of molar density and binary diffusion
coefficient, ρmD, in the third-order approximation. Note that
ρmD is almost independent of composition and determined
almost entirely by the unlike interaction, i.e., the CO2−−N2

PES.
The determination of values for the thermal conductivity

requires knowledge of the vibrational contributions to the ideal
gas heat capacities of the pure gases, which were obtained
from the current reference correlations61,62 by subtracting the
translational and classical rotational contributions. Hellmann
used the same correlations in his studies on pure CO2

6 and
pure N2.5

The generalized cross sections for binary collisions
between CO2 and N2 were determined within the rigid-rotor
approximation by means of the proven classical trajectory
method using a modified version of the TRAJECT computer
code.59 The collision trajectories were obtained by integrat-
ing Hamilton’s equations from pre- to postcollisional values.
To avoid any cutoff effects, we used a very large initial and
final separation of 500 Å. Total-energy-dependent general-
ized cross sections in the center-of-mass frame, which are
9-dimensional integrals over the initial states of the trajec-
tories, were calculated by means of a simple Monte Carlo
integration scheme using quasi-random numbers. The com-
putations were performed for 33 values of the total energy,
E = Etr + Erot, divided into the three ranges 60 K 6 E 6 300 K,
300 K 6 E 6 3000 K, and 3000 K 6 E 6 60 000 K.
In each range, the energies were chosen as the pivot points
for Chebyshev interpolation of the cross sections as a
function of ln(E); the cross sections are smooth functions
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of energy. Up to 8 × 106 trajectories were calculated at
each total energy value. Below 300 K, the number of tra-
jectories was gradually reduced down to 800 000 at 60 K
because of the increasing computational cost of calculating
trajectories with the desired accuracy at lower energies. A
weighted integration over the total energy yielded temperature-
dependent generalized cross sections in the center-of-mass
frame at temperatures from 150 K to 2000 K. The center-
of-mass cross sections were then converted to the labora-
tory frame cross sections needed to determine the transport
properties.

The generalized cross sections for the pure species col-
lisions, i.e., those between two CO2 and between two N2

molecules, were obtained in a similar manner, the details of
which have been published previously.6,14

B. Results and discussion

The values obtained for the shear viscosity, the thermal
conductivity, and the binary diffusion coefficient of dilute gas
mixtures of CO2 and N2 are provided at 173 temperatures from
150 K to 2000 K and for 11 mole fractions in the supplementary
material. The variation of the product of molar density and
binary diffusion coefficient with mole fraction does not exceed
0.45% at any temperature. We estimate the precision of the
computed transport property values to be better than 0.1% for
shear viscosity and diffusion and better than 0.2% for thermal
conductivity. These values are based on precision estimates
generated by TRAJECT for the individual generalized cross
sections; see Ref. 63 for details.

We recommend a small scaling of the calculated viscosity
values (as suggested by Hellmann for CO2

6 and by Hellmann
et al. for N2

14), which is based on highly accurate measure-
ments of Vogel64,65 for the two pure substances. Assuming
a simple linear dependence of the correction on the mole
fraction, we have

η = ηcal(1.0055 xCO2 + 1.0024 xN2 ), (11)

where the scaling factors 1.0055 and 1.0024 correspond to
those given in Refs. 6 and 14. The computed values for viscos-
ity as well as the scaled ones are compared in Fig. 5 against the
available experimental data.64–70 The best experimental data
are those of Kestin and co-workers66,67,69 close to room tem-
perature and the recently reported data of Humberg et al.,70

which lie mostly within ±0.25% of our proposed scaled vis-
cosity values. The high-temperature data (T > 298 K) of Kestin
and Ro are known to suffer from a design flaw71 in their
viscometer that resulted in viscosity values that are always
systematically too high above room temperature by up to
about 1%.5,10,13,14,16,17,65 This is consistent with the observed
deviations.

We conservatively estimate the combined standard uncer-
tainty of the scaled values to vary from 0.2% for pure CO2 to
0.15% for pure N2 between 300 K and 700 K, increasing to
1% for pure CO2 and 0.5% for pure N2, respectively, outside
of this temperature range.

We also propose a scaling of the calculated thermal
conductivity values,

λ = λcal(1.011 xCO2 + xN2 ), (12)

FIG. 5. Deviations, ∆ = (ηexp − ηcal)/ηcal, of experimental viscosity data64–70 for dilute CO2−−N2 mixtures and the pure components from the calculated values.
For clarity of the figure, the stated uncertainties for the data of Kestin and Ro69 (<0.3%), Vogel64,65 (<0.4%), and Humberg et al.70 (<0.4%) are not indicated
by error bars. The dashed line indicates the recommended values given by Eq. (11).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-004822
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-004822
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with the scaling parameter 1.011 recommended by Hellmann6

based on the comparison with the accurate measurements by
Haarman72 for pure CO2. The combined standard uncertainty
for the scaled values is estimated to vary from 1% for pure CO2

to 0.5% for pure N2 between 300 K and 700 K, increasing to
2% for pure CO2 and 1% for pure N2 outside of this tempera-
ture range. Figure 6 compares the available experimental data
from the literature with our calculated and proposed scaled
values. We observe that the available experimental data73–79

exhibit a large scatter, which is not possible to reconcile with
the claimed uncertainties of different workers. In light of the
experimental data situation and proven track record of results
obtained from kinetic theory in conjunction with accurate ab
initio potentials, it is safe to say that the proposed scaled val-
ues can be considered the most accurate available data for the
thermal conductivity of low-density gas mixtures of carbon
dioxide and nitrogen.

The results for the binary diffusion coefficient are com-
pared with several experimental data sets80–92 in Fig. 7. Our
results are corroborated particularly by the data of Robjohns
and Dunlop92 (provided in the form of a smoothing function).
The agreement is within ±0.2% over the whole temperature
range (277 K to 323 K) of the experimental data. Binary
diffusion coefficients measured by the Dunlop group are
consistently in excellent agreement with theoretically calcu-
lated values, as illustrated for other dilute gas systems.17,93

The other experimental data shown in Fig. 7 exhibit larger
scatter and have larger uncertainties than that of Robjohns
and Dunlop, especially the high-temperature data of Pakurar

and Ferron, which have quoted uncertainties of 10%. Nev-
ertheless, they do generally support the temperature trend of
our calculated values. We conservatively estimate the com-
bined standard uncertainties of our calculated values to be 1%
between 300 K and 700 K and 1.5% below 300 K and above
700 K. Finally, for completeness, we have also evaluated the
parameter A∗ that appears in kinetic theory and is proportional
to the ratio of the binary diffusion coefficient and the interac-
tion viscosity.14,58 It is a function of the unlike interaction only,
and for the CO2−−N2 system, it exhibits the typical behavior
already observed for other polyatomic gases.8,94 It increases
with temperature from 1.136 at 150 K to 1.160 at 200 K and
then remains relatively constant, reaching a value of 1.180 at
2000 K.

C. Correlation for the binary diffusion coefficient

We have developed a correlation for the binary diffusion
coefficient of the CO2−−N2 system in the dilute gas limit based
on the calculated values of the present work. For ease of use,
we neglected the very small composition dependence and fitted
the correlation to the values for an equimolar mixture. The
correlation is of the form

104 × ρmD

mol m−1 s−1
=

T
1/2

S(T )
, (13)

where T = T/K and S(T ) is a function that would be propor-
tional to a single generalized cross section if ρmD were to be

FIG. 6. Deviations, ∆ = (λexp − λcal)/λcal, of experimental thermal conductivity data72–79 for dilute CO2−−N2 mixtures and the pure components from the
calculated values. For clarity of the figure, the stated uncertainties for the data of Barua et al.78 (1% for the pure gases and 2% for the mixtures) and Haarman72

(0.3%) are not indicated by error bars. The dashed line indicates the recommended values given by Eq. (12).
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FIG. 7. Deviations, ∆ = (ρmDexp − ρmDcal)/ρmDcal, of experimental values80–92 for the binary diffusion coefficient of a dilute CO2−−N2 mixture from the
calculated values. For clarity of the figure, the stated uncertainty for the data of Pakurar and Ferron89 (10%) is not indicated by error bars.

obtained from the first-order kinetic theory. This generalized
cross section is known to decrease monotonically with temper-
ature and, for rigid molecules, to approach a constant value at
very high temperatures (hard-sphere behavior). To find a func-
tional form for S(T ) that obeys these constraints, while being
both simple and accurate, we used again the symbolic regres-
sion software Eureqa. Hellmann correlated the self-diffusion
coefficient of ethane in a similar way.8 He allowed T to appear

solely in integer powers of T
1/6

. In addition, only constants,
exponential functions, and the operators addition, subtrac-
tion, multiplication, division, and negation were allowed to
occur. Following this approach, we obtained a three-parameter
function that fulfills all requirements,

FIG. 8. Correlation for the product of the molar density and the binary dif-
fusion coefficient of dilute CO2−−N2 gas mixtures as given by Eqs. (13) and
(14). The correlation is colored in blue within its range of validity and in red
outside of this range.

S(T ) = 0.102 61 + 5.5239 T
−1/6

+ 94.161 T
1/6

exp
(
−T

1/3
)
.

(14)

The correlation reproduces the calculated values within
±0.1%. Its uncertainty corresponds approximately to that of
the calculated values (see above). Figure 8 shows that the cor-
relation extrapolates in a physically reasonable manner down
to zero kelvin and up to several thousand kelvin.

V. SUMMARY AND CONCLUSIONS

A new intermolecular PES for the CO2−−N2 molecule
pair was determined from counterpoise-corrected supermolec-
ular ab initio calculations at the RI-MP2 and CCSD(T) lev-
els of theory with basis sets of up to quintuple-zeta quality
and quadruple-zeta quality, respectively. In total, interaction
energies for 1893 distinct geometries of the molecule pair
were computed and extrapolated to the CBS limit. An ana-
lytical site–site potential function with seven sites for the
CO2 molecule and five sites for the N2 molecule was fit-
ted to the interaction energies. The PES exhibits two dis-
tinct minima, corresponding to the two possible T-shaped
configurations, with interaction energies of −228.77 K and
−475.76 K.

The analytical PES was used to calculate the CO2−−N2

cross second virial coefficient using classical statistical
mechanics in conjunction with an effective pair potential fol-
lowing Feynman and Hibbs35 to account for quantum effects.
The respective integral expression was solved numerically by
means of the MSMC method.36 The comparison with the best
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available experimental data shows a highly satisfactory level
of agreement.

Furthermore, we determined transport properties of the
CO2−−N2 system at low gas densities in the temperature range
from 150 K to 2000 K using the classical trajectory method in
conjunction with the kinetic theory of molecular gases.53–60

The new PES was used to calculate the required general-
ized cross sections for the collisions of a CO2 molecule with
an N2 molecule, while the generalized cross sections for the
like-species interactions were taken from prior studies.6,14

Based on the comparison with the best available experimen-
tal data for the pure gases, we propose a small correction
to our calculated values for both shear viscosity and ther-
mal conductivity using a temperature-independent scaling
factor. We provide error estimates for our proposed trans-
port property values, which, depending on the property, tem-
perature, and mole fraction, range from 0.15% to 2%. All
calculated values for the cross second virial coefficient and
the three transport properties are listed in the supplementary
material.

For the cross second virial coefficient and the binary
diffusion coefficient, we also developed simple but accurate
correlations, which are based entirely on our calculated val-
ues. The very small composition dependence of the binary
diffusion coefficient is neglected in the correlation.

In conclusion, the newly developed PES for the CO2−−N2

molecule pair has been successfully validated by the compar-
ison of the resulting thermophysical property values with the
best available experimental data. Given the lack of reliable
and accurate thermophysical property data in a wide range
of composition and temperature, especially for the thermal
conductivity and the binary diffusion coefficient, the current
calculated values constitute a reliable and accurate set of ther-
mophysical property data valid for all CO2−−N2 mixture com-
positions and temperatures as low as 150 K and as high as
2000 K.

SUPPLEMENTARY MATERIAL

See supplementary material for the details of the internal
coordinates of the CO2−−N2 system, the results of the ab initio
calculations for the 1893 investigated PES points, a Fortran
90 routine computing the analytical potential function, and
tables of the thermophysical property values calculated in this
work.
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