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Virial coefficients of anisotropic hard solids of revolution:
The detailed influence of the particle geometry
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We provide analytical expressions for the second virial coefficients of differently shaped hard solids
of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard
solids, which are the orientational averages of the mutual excluded volume, are derived from volume,
surface, and mean radii of curvature employing the Isihara–Hadwiger theorem. Virial coefficients of
both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio.
The influence of one- and two-dimensional removable singularities of the surface curvature to the
mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long
prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their
dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry
of the particles. Published by AIP Publishing. https://doi.org/10.1063/1.5004687

I. INTRODUCTION

The interaction of hard bodies is of tremendous impor-
tance for condensed matter physics since the self-organization
of matter at high volume fractions is essentially influenced
by the mutual excluded volume. Although the virial series
was introduced by Kamerlingh Onnes1 originally to provide
an equation of state for imperfect gases at comparatively
small number densities, it later gained importance for den-
sity expansions in liquid state theory.2–4 Moreover, the virial
equation of state, due to its connection to the free energy
of many-particle systems, plays an important role in classi-
cal density functional theory (DFT) used to investigate the
phase behavior of condensed matter.5,6 Although the infinite
sequence of the virial equation is needed for the estima-
tion of the free energy, the knowledge of the second virial
coefficient is an essential starting point since the relation of
higher virial coefficients to the second one can approximately
be expressed by a recursion relation proposed by Carnahan
and Starling.7 This geometric series describes the equation
of state for hard spheres surprisingly well and leads to a
comparatively simple expression for the free energy. Several
DFT studies concerning the phase behavior of anisotropic
particles approximate the free energy via the second virial
coefficient of anisotropic particles, while the Carnahan–
Starling series is used for the contributions of higher virial
coefficients.8–10

The starting point of understanding the phase behavior
of anisotropic particles is the seminal work of Onsager11

predicting an isotropic-nematic phase transition for hard
spherocylinders of sufficiently large aspect ratio. Onsager
derived an analytical expression for the second virial coef-
ficient of hard spherocylinders, while analytical expressions
for the virial coefficients of cylinders and prolate and oblate
ellipsoids were derived by Isihara.12 Geometric measures
needed to calculate second virial coefficients of several hard

convex bodies were compiled by Boublı́k and Nezbeda.13

The comparison of these geometries already shows a detailed
influence of the particles’ geometry beyond their aspect
ratio.

With the advent of computer simulations, hard anisotropic
particles attracted increasing interest in recent decades.
Frenkel et al. studied the phase behavior of hard ellipsoids
by means of Monte Carlo methods.14 In subsequent studies,
the influence of additional short-range interactions was inves-
tigated.15,16 In addition to hard oblate particles, hard platelets
were also investigated by means of Monte Carlo simulations,17

whose predictions were verified by experiments using gibbsite
platelets as a model system.18

The availability of differently shaped colloidal model
systems like spindles,19,20 plates,21,22 hypercubes,23 and poly-
hedrons24 has driven the interest in the phase behavior of
unusually shaped hard particles.25–30 The virial coefficients
of hard ellipsoids up to the fifth order were calculated by
Vega.31

The aim of this contribution is to provide analytical
expressions for the second virial coefficients of different
geometries in dependence on their aspect ratio. We show that
singularities in the surface curvature of convex solids can be
removed by continuously completing solids of revolution by
segments of spheres or ellipsoids in the vicinity of singulari-
ties and analyzing the limit of these contributions for infinitely
small sphere segments and infinitely thin ellipsoids. By this
approach, analytical expressions for the second virial coeffi-
cients of different prolate and oblate solids of revolution such
as double cones, spindles, lenses, cones, truncated cones, and
sphere segments are accessible.

This contribution is organized as follows: in Sec. II, we
calculate the volume, surface, and mean radius of curvature
from the meridian curve of solids of revolution by means of
differential geometry. In Sec. III, we briefly review the results
for ellipsoids and spherocylinders as examples of geometries
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without singularities of their surface curvature since seg-
ments of ellipsoids are needed to remove discontinuities in
the derivatives of meridian curves describing solids contain-
ing singularities which might influence the mean radius of
curvature. With this approach, analytical second virial coeffi-
cients for geometries containing singularities in their surface
are derived. In Sec. IV, the results for different prolate and
oblate geometries in dependence on their aspect ratio are
compared.

II. THEORETICAL BACKGROUND
A. Second virial coefficient

The thermal equation of state of a gaseous or supercritical
many-particle system can be expressed as an infinite power
series in the particle number density %,

p
kBT
= % + B2 %

2 + B3 %
3 + B4 %

4 + · · · = % +
∞∑

i=2

Bi%
i , (1)

where p is the pressure, T is the temperature, and kB is Boltz-
mann’s constant. The expansion coefficients Bi are the virial
coefficients of order i.

Truncating Eq. (1) after the linear term leads to the equa-
tion of state of an ideal gas. The first contribution accounting
for deviations from the ideal gas behavior is the second virial
coefficient B2, which is related to pair interactions, while con-
tributions of higher powers in % are related to three-body
interactions, four-body interactions, etc.

In terms of statistical mechanics, the second virial coeffi-
cient B2 of axially symmetric, anisotropic particles with their
orientations denoted by the unit vectors û1 and û2 can be
expressed as

B2 = −
1

2V
1

16π2

	
4π

	
4π

∫
V

∫
V

f (r1, û1, r2, û2)

× d3r1 d3û1d3r2 d3û2, (2)

where r1 and r2 are the center-of-mass coordinates of both
particles and V is the volume of the many-particle system. In
Eq. (2), f (r1, û1, r2, û2) denotes the Mayer f -function,

f (r1, û1, r2, û2) = exp

[
−

u(r1, û1, r2, û2)
kBT

]
− 1, (3)

with the pair interaction energy u(r1, û1, r2, û2). The inter-
action energy depends only on the relative particle distance
r12 = r2 � r1 and the inner products r̂12.û1, r̂12.û2, and
û1.û2 as rotational invariants with r̂12 denoting a unit vec-
tor in the direction of the interdistance r12. Hence, we can
choose r1 as the coordinate system’s origin and obtain with
f (r1, û1, r2, û2) = f (r12, û1, û2) and by performing the trivial
integration over d3r1 (yielding the volume V ),

B2 = −
1
2

1

16π2

	
4π

	
4π

∫
V

f (r12, û1, û2) d3r12 d3û1d3û2

= −
1
2

∫
V

〈f (r12, û1, û2)〉û1,û2 d3r12. (4)

Hence, the second virial coefficient is proportional to the
integral over the canonical orientation average of the Mayer
f -function.

For particles interacting via hard-body exclusion, the
potential and the resulting Mayer f -function can be written
as

u(r12) =



∞ : |r12 | ≤ rc(r̂12, û1, û2)

0 : |r12 | > rc(r̂12, û1, û2)
, (5a)

f (r12) =



−1 : |r12 | ≤ rc(r̂12, û1, û2)

0 : |r12 | > rc(r̂12, û1, û2)
, (5b)

where rc(r̂12, û1, û2) denotes the contact distance of the con-
figuration with the orientations û1 and û2 and the direction r̂12

of the distance vector. The determination of contact distances
rc of arbitrarily shaped objects is a nontrivial problem.

B. Isihara–Hadwiger theorem

Isihara12,32,33 and Hadwiger34 have independently shown
that the second virial coefficient of hard convex bodies can
be determined analytically from the volume VP, the surface
SP, and the mean radius of curvature R̃P of the particle. The
latter quantity is the reciprocal of the integral mean curvature
HP. The second virial coefficient B2 of convex bodies can,
employing the Isihara–Hadwiger theorem, be written as

B2 = VP + R̃PSP. (6)

For hard bodies, the second virial coefficient B2 is the ori-
entational average of the mutual excluded volume. Since the
dimension of the second virial coefficient is a volume, a
reduced second virial coefficient can be defined as

B∗2 =
B2

VP
= 1 +

R̃PSP

VP
. (7)

The quantities VP, R̃P, and SP in Eq. (6) can be calculated ana-
lytically by methods of differential geometry if the meridian
curve r(z) of a solid of revolution is known.

Let us parameterize the surface of an axially symmetric
solid of revolution as

Ψ(ϕ, z) =
*....
,

r(z) cos ϕ

r(z) sin ϕ

z

+////
-

(8)

with the meridian curve r(z) and the azimuth ϕ. Its volume is
given by

VP =

∫
πr2(z)dz. (9)

The surface is

SP =

∫
2πr(z) ds (10)

with the arc length ds =
{
[dr(z)]2 + [dz]2

}1/2
, which can be

written as

ds =



[
dr(z)

dz

]2

+ 1



1/2

dz =
[
ṙ2(z) + 1

]1/2
dz, (11)

resulting in

SP = 2π
∫

r(z)
[
ṙ2(z) + 1

]1/2
dz. (12)
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The mean curvature HP can be obtained from the trace of
the Weingarten tensor W,

HP =
1
2

Tr
(
W

)
=

1
2

Tr
(
I−1

P
II

P

)
, (13)

where the tensors I
P

and II
P

are the first and second funda-
mental form of the particle’s surfaceΨ(ϕ, z). The fundamental
forms are

I
P
=



(
∂Ψ

∂ϕ

)
.

(
∂Ψ

∂ϕ

) (
∂Ψ

∂ϕ

)
.

(
∂Ψ

∂z

)
(
∂Ψ

∂z

)
.

(
∂Ψ

∂ϕ

) (
∂Ψ

∂z

)
.

(
∂Ψ

∂z

)


(14)

and

II
P
=



n̂ .

(
∂2Ψ

∂ϕ2

)
n̂ .

(
∂2Ψ

∂ϕ∂z

)

n̂ .

(
∂2Ψ

∂z∂ϕ

)
n̂ .

(
∂2Ψ

∂z2

)


, (15)

where n̂ ≡ n̂(ϕ, z) denotes the normal field,

n̂(ϕ, z) =

(
∂Ψ

∂ϕ

)
×

(
∂Ψ

∂z

)


(
∂Ψ

∂ϕ

)
×

(
∂Ψ

∂z

)

, (16)

of the particle surface. With the first derivatives

(
∂Ψ

∂ϕ

)
=

*....
,

−r(z) sin ϕ

r(z) cos ϕ

0

+////
-

, (17a)

(
∂Ψ

∂z

)
=

*....
,

ṙ(z) cos ϕ

ṙ(z) sin ϕ

1

+////
-

, (17b)

the normal field of a solid’s of revolution surface can be written
as

n̂(ϕ, z) =
1(

1 + ṙ2(z)
)1/2

*....
,

cos ϕ

sin ϕ

−ṙ(z)

+////
-

. (18)

Employing the same derivatives, the first fundamental form
results in

I
P
=

*.
,

r2(z) 0

0 1 + ṙ2(z)

+/
-

. (19)

Since the first fundamental form is a diagonal matrix, its
inverse can directly be written as

I−1
P
=

*.....
,

1

r2(z)
0

0
1

1 + ṙ2(z)

+/////
-

. (20)

With the second derivatives

∂2Ψ

∂ϕ2
=

*....
,

−r(z) cos ϕ

−r(z) sin ϕ

0

+////
-

, (21a)

∂2Ψ

∂ϕ∂z
=

*....
,

−ṙ(z) sin ϕ

ṙ(z) cos ϕ

0

+////
-

, (21b)

∂2Ψ

∂z2
=

*....
,

r̈(z) cos ϕ

r̈(z) sin ϕ

0

+////
-

, (21c)

and the normal field n̂(ϕ, z), the diagonal matrix

II
P
=

1(
1 + ṙ2(z)

)1/2
*
,

r(z) 0

0 r̈(z)
+
-

(22)

is obtained as the second fundamental form of a solid of rev-
olution. With Eqs. (20) and (22), the Weingarten tensor of a
solid of revolution reads as

W =

*......
,

1

r(z)
[
1 + ṙ2(z)

]1/2
0

0
r̈(z)[

1 + ṙ2(z)
]3/2

+//////
-

. (23)

The eigenvalues of this Weingarten tensor are its diagonal ele-
ments indicating the main curvatures κ1 and κ2. The main radii
of curvature R1 and R2 are connected to the main curvatures
κ1 and κ2 via

R1 =
1
κ1
= r(z)

[
1 + ṙ2(z)

]1/2
, (24a)

R2 =
1
κ2
=

[
1 + ṙ2(z)

]3/2

r̈(z)
. (24b)

WithΩ= (ϑ, ϕ) denoting generalized polar coordinates and the
mean radii of curvature R1(Ω) and R2(Ω), the integral mean
radius of curvature R̃P can be written as

R̃P =
1

4π

	
4π

1
2

[R1(Ω) + R2(Ω)] dΩ

=
1

4π

2π∫
0

1∫
−1

1
2

[
R1(ϑ, ϕ) + R2(ϑ, ϕ)

]
d cos ϑ d ϕ. (25)

The latter expression can be expanded as

R̃P =
1

4π

2π∫
0

1∫
−1

1
2

R1(ϑ, ϕ) + R2(ϑ, ϕ)
R1(ϑ, ϕ)R2(ϑ, ϕ)

×R2(ϑ, ϕ)d cos ϑ R1(ϑ, ϕ)dϕ, (26)

where d S = R2(ϑ, ϕ) d cos ϑR1(ϑ, ϕ) dϕ denotes the infinites-
imal surface element. The remaining integrand
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1
2

R1(ϑ, ϕ) + R2(ϑ, ϕ)
R1(ϑ, ϕ) R2(ϑ, ϕ)

= κ̄(ϑ, ϕ) (27)

is the mean curvature at (ϑ, ϕ). Hereby, the integral mean radius
of curvature R̃P can be expressed as the surface integral over
the mean curvature κ̄(ϑ, ϕ),

R̃P =
1

4π

∫ ∫
S

1
2

[
1

R1(ϑ, ϕ)
+

1
R2(ϑ, ϕ)

]
d2S. (28)

In cylinder coordinates, we can write the infinitesimal surface
element dS = ds r(z)dϕ with the radius r(z) of the meridian
curve, the infinitesimal azimuthal angle element dϕ, and the
infinitesimal curve length element ds of the meridian curve
r(z). With Eq. (11), the integral mean radius of curvature R̃P,
Eq. (28), can be rewritten as

R̃P =
1

4π

2π∫
0

νreq∫
−νreq

1
2

[
1

R1(z)
+

1
R2(z)

]

× r(z) dϕ
[
1 + ṙ2(z)

]1/2
dz, (29)

where req denotes the equatorial radius and ν denotes the aspect
ratio of the considered geometric object. Using Eq. (24a) and
performing the integration over the azimuthal angle ϕ, which
yields a factor 2π, one finally obtains

R̃P =
1
4

νreq∫
−νreq

[
1 +

R1(z)
R2(z)

]
dz (30)

since the radii of curvature are independent of the azimuthal
angle ϕ and depend only on the height z due to axial symmetry.
For solids of revolution with an equatorial mirror plane with

the parity r(z) = r(�z), the integral radius of curvature can be
written as

R̃P =
1
2

νreq∫
0

[
1 +

R1(z)
R2(z)

]
dz. (31)

The precondition for the existence of the integrals (30) and
(31) is the absence of singularities in the curvature, which
would result in discontinuities in the meridian curve r(z) and
its derivatives ṙ(z) and r̈(z).

III. ANALYTICAL SECOND VIRIAL COEFFICIENTS
FOR DIFFERENTLY SHAPED SOLIDS
OF REVOLUTION
A. Geometric objects with continuous
surface curvature
1. Ellipsoid

The meridian curve of an ellipsoid with the equatorial
radius r(ell)

eq and the aspect ratio ν(ell) is

r(ell)(z) =

(
r2,(ell)

eq −
z2

ν2,(ell)

)1/2

. (32)

The meridian curve and its derivatives,

ṙ(ell)(z) =
dr(ell)(z)

dz
= −

z

ν(ell)
(
ν2,(ell)r2,(ell)

eq − z2
)1/2

, (33a)

r̈(ell)(z) =
d2r(ell)(z)

dz2
= −

ν(ell)r2,(ell)
eq(

ν2,(ell)r2,(ell)
eq − z2

)3/2
, (33b)

are continuous on the entire surface, i.e., for −ν(ell)r(ell)
eq

≤ z ≤ ν(ell)r(ell)
eq . The volume of an ellipsoid of revolution

is V (ell) = 4πν(ell)r3,(ell)
eq /3, and its surface is

S(ell)(ν(ell), r(ell)
eq ) =




2πr2,(ell)
eq(

ν2,(ell) − 1
)1/2


ν2,(ell) arcsin

*..
,

(
ν2,(ell) − 1

)1/2

ν(ell)

+//
-

+
(
ν2,(ell) − 1

)1/2


ν(ell) ≥ 1

2πr2,(ell)
eq(

1 − ν2,(ell))1/2


ν2,(ell) ln

*..
,

1 +
(
1 − ν2,(ell)

)1/2

ν(ell)

+//
-

+
(
1 − ν2,(ell)

)1/2


ν(ell) ≤ 1

(34)

for prolate (ν(ell) ≥ 1) and oblate (ν(ell) ≤ 1) ellipsoids of rev-
olution. In the limit of a sphere (ν(ell) = 1) with both branches
of Eq. (34),

lim
ν(ell)→1+

S(ell)(ν(ell), r(ell)
eq ) = lim

ν(ell)→1−
S(ell)(ν(ell), r(ell)

eq )

= 4πr2,(ell)
eq , (35)

as the surface of a sphere with the radius r(ell)
eq is obtained. Also

in the limit ν(ell)→ 0+, as expected, the surface of an infinitely
thin cylinder of radius r(ell)

eq ,

lim
ν(ell)→0+

S(ν(ell), r(ell)
eq ) = 2πr2,(ell)

eq , (36)

results. Employing Eqs. (24), (32), and (33), an ellipsoid’s radii
of curvature can be written as

R(ell)
1 =

(
ν4,(ell)r2,(ell)

eq −
(
ν2,(ell) − 1

)
z2

)1/2

ν2,(ell)
, (37a)

R(ell)
2 =

(
ν4,(ell)r2,(ell)

eq −
(
ν2,(ell) − 1

)
z2

)3/2

ν4,(ell)r2,(ell)
eq

. (37b)

With Eq. (31), the mean radius of curvature of an ellipsoid of
revolution reads as
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R̃(ell) =

ν(ell)r(ell)
eq∫

0

1
2


1 +

ν2,(ell)r2,(ell)
eq

ν4,(ell)r2,(ell)
eq −

(
ν2,(ell) − 1

)
z2


dz (38)

with the analytical result

R̃(ell) =




ν(ell)r(ell)
eq

2
+

r(ell)
eq

2
(
ν2,(ell) − 1

)1/2
arctanh

*..
,

(
ν2,(ell) − 1

)1/2

ν(ell)

+//
-

ν(ell) ≥ 1

ν(ell)r(ell)
eq

2
+

r(ell)
eq

2
(
1 − ν2,(ell))1/2

arctan
*..
,

(
1 − ν2,(ell)

)1/2

ν(ell)

+//
-

ν(ell) ≤ 1

. (39)

For both branches of Eq. (39), the mean radius of a sphere with
the equatorial radius r(ell)

eq ,

lim
ν(ell)→1−

R̃(ell)(ν(ell)) = lim
ν(ell)→1+

R̃(ell)(ν(ell)) = r(ell)
eq , (40)

is obtained in the limit ν(ell) → 1. In the limit of an infinitely
thin cylinder with ν(ell) → 0+, the limit

lim
ν(ell)→0+

R̃(ell)(ν(ell)) =
π

4
r(ell)

eq (41)

is obtained, which is identical to the result of Isihara12 for a
cylinder derived in a different way.

With the volume, surface, and mean radius of curvature,
the reduced second virial coefficient B∗,(ell)

2 (ν(ell), r(ell)
eq ) of an

ellipsoid is analytically obtained, both for prolate and oblate
ellipsoids of revolution.

2. Spherocylinder

A second geometry without singularities in its surface
curvature is a spherocylinder with the meridian curve

r(sc)(z) =




[
r2,(sc)

eq −
(
z − (ν(sc) − 1)r(sc)

eq

)2
]1/2

(ν(sc) − 1)r(sc)
eq < z ≤ ν(sc)r(sc)

eq

r(sc)
eq −(ν(sc) − 1)r(sc)

eq ≤ z ≤ (ν(sc) − 1)r(sc)
eq

[
r2,(sc)

eq +
(
z − (ν(sc) − 1)r(sc)

eq

)2
]1/2

−ν(sc)r(sc)
eq ≤ z < −(ν(sc) − 1)r(sc)

eq

, (42)

i.e., a cylinder of radius r(sc)
eq and length 2(ν(sc)−1)r(sc)

eq contin-

ued with two hemispheres of radius r(sc)
eq at the top and bottom

circle. Its volume is given by

V (sc) = 2πr3,(sc)
eq

(
ν(sc) −

1
3

)
(43)

and its surface by

S(sc) = 4πr2,(sc)
eq ν(sc). (44)

Employing Eq. (31), the mean radius of curvature R̃(sc) can
easily be obtained from simple geometrical considerations. In
the cylindrical part, one radius of curvature is r(sc)

eq , and the
second one is infinite since the meridian curve is straight in
this region. Within the hemispheres, both radii of curvature are
identical, R1 = R2 = r(sc)

eq . Hence, R̃(sc) can be written as

R̃(sc) = r(sc)
eq +

1
2

(ν(sc) − 1)r(sc)
eq =

ν(sc) + 1
2

r(sc)
eq . (45)

In the limit ν(sc) → 1+, spherocylinder and ellipsoid of rev-
olution approach a sphere with radius req. For a sphere, the

reduced second virial coefficient

B∗,(sph)
2 = 1 +

4πr2
eqreq

4
3
πr3

eq

= 4 (46)

results, which already has been derived by van der Waals.

B. Second virial coefficients of bodies
with singularities of their surface curvature

The calculation of the mean radius of curvature R̃P with
Eq. (31) needs particular care if the geometry contains singu-
larities in its surface curvature. For convex solids of revolution,
this occurs if the first derivative of the meridian curve ṙ(z)
is not continuous, e.g., in the case of a cylinder. These dis-
continuities, however, are removable for convex bodies of
revolution.

1. Spindle

A spindle contains singularities of curvature at its apices.
A spindle’s meridional curve can with

α =
r(sp)

eq

(
1 + ν2,(sp)

)
2

(47)
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be written as

r(sp)(z) = r(sp)
eq − α +

(
α2 − z2

)1/2
. (48)

In the limit ν(sp) → 1, also a spindle approaches a sphere of
radius r(sp)

eq . For aspect ratios ν(sp) > 1, however, apices at

z = ±ν(sp)r(sp)
eq with r(± ν(sp)r(sp)

eq ) = 0 exist. The derivatives
of the meridian curve are

ṙ(sp)(z) = −
z(

α2 − z2)1/2
, (49a)

r̈(sp)(z) = −
α2(

α2 − z2)3/2
, (49b)

leading with Eqs. (24) to a spindle’s radii of curvature

R(sp)
1 = α



r(sp)
eq − α(

α2 − z2)1/2
+ 1


, (50a)

R(sp)
2 = α. (50b)

The radius of curvature R(sp)
2 does not depend on z since the

meridian curve is an arc with radius α. Employing Eq. (12),
the surface of a spindle reads as

S(sp) = 2πr2,(sp)
eq

[
ν(sp)

(
ν2,(sp) + 1

)
+

1 − ν4,(sp)

2
arcsin

(
2ν(sp)

ν2,(sp) + 1

)]
, (51)

and its volume20 is

V (sp) =
πr3,(sp)

eq

12

[
6ν5,(sp) + 4ν3,(sp) + 6ν(sp)

− 3
(
ν6,(sp) + ν4,(sp) − ν2,(sp) − 1

)
× arcsin

(
2ν(sp)

ν2,(sp) + 1

)]
. (52)

Except both apices at z = ±ν(sp)r(sp)
eq , the principal radii of

curvature are continuous. In the limits −ν(sp)r(sp)
eq + ε < z

< ν(sp)r(sp)
eq − ε, employing Eq. (31), the mean radius of

curvature is

R̃′(sp)(ε) =
1
2

ν(sp)r(sp)
eq −ε∫

0


2 +

r(sp)
eq − α(

α2 − z2)1/2


dz

= ν(sp)r(sp)
eq − ε −

r(sp)
eq

(
ν2,(sp) − 1

)
4

× arcsin



2
(
ν(sp)r(sp)

eq + ε
)

r(sp)
eq

(
ν2,(sp) + 1

) 
. (53)

The contribution of the singularity can be obtained by replac-
ing the spindle’s meridional curve in the limits ν(sp)r(sp)

eq − ε

< z < ν(sp)r(sp)
eq by the meridian curve of a sphere with

r(sp)(ν(sp)r(sp)
eq − ε) = r(sph)(ν(sp)r(sp)

eq − ε) (54)

and
ṙ(sp)(ν(sp)r(sp)

eq − ε) = ṙ(sph)(ν(sp)r(sp)
eq − ε), (55)

resulting in a continuous meridian curve and a continuous first
derivative of the meridian curve at z = ν(sp)r(sp)

eq −ε (Fig. 1). For

FIG. 1. Removing the singularities of surface curvature at a spindle’s apices.
Within the distance ε to each apex, the meridional curve of the spindle is
replaced by that of a sphere ensuring continuity of the meridian curve and its
first derivative in the distance ε to each apex. The crosses indicate the centers
of spheres located at z0(ε).

convenience, a sphere with equatorial radius r(sph)
eq centered at

z0 is used to continuously complete the spindle shape in the
limit ε→ 0. The sphere’s meridional curve reads as

r(sph)(z, ε) =
[
r2,(sph)

eq (ε) − (z − z0(ε))2
]1/2

, (56)

with the parameters r(sph)
eq (ε) and z0(ε) given in Eqs. (A1) and

(A2). Since both radii of curvature of the sphere are identical,
its main radius of curvature R̃′′(sp) above ν(sp)r(sp)

eq − ε reads,
using Eq. (30), as

R̃′′(sp) =
1
2

[
r(sph)

eq −
(
ν(sp)r(sp)

eq − ε − z0

)]
. (57)

In the limit ε → 0, when the geometry approaches a spindle,
with Eqs. (A3) and (A4),

lim
ε→0

R̃′′(sp) = 0 (58)

results. Thus, the contribution of apices to the mean radius
of curvature is R̃′′(sph) = R̃′′(sp) = 0, and the mean radius of
curvature of a spindle can be written as

R̃(sp) = lim
ε→0

[
R̃′(sp)(ε) + R̃′′(sp)(ε)

]

= r(sp)
eq

[
ν(sp) −

ν2,(sp) − 1
4

arcsin

(
2ν(sp)

ν2,(sp) + 1

)]
. (59)

Since the curvature discontinuity of any geometry with apical
singularities can be removed using segments of a sphere with
vanishing radius, apical singularities do not contribute to the
mean radius of curvature.

2. Lens

Unlike a spindle with two one-dimensional singularities
at its apices, a lens has a two-dimensional singularity in its
equatorial plane. A lens as an oblate solid of revolution with
ν(lens) ≤ 1 and the equatorial radius r(lens)

eq is composed of two
segments of a sphere (Fig. 2) with radius

R0 = r(lens)
eq

1 + ν2,(lens)

2ν(lens)
. (60)
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FIG. 2. Section of a lens as a solid of revolution composed of two sphere
segments with sphere radius R0 connected to the equatorial radius r(lens)

eq and

its aspect ratio ν(lens).

In the limit ν(lens) → 1, a lens approaches a sphere. Its
meridional curve can be written as

r(lens)(z) = *
,

|z |r(lens)
eq (ν2,(lens) − 1) + ν(lens)(r2,(lens)

eq − z2)

ν(lens)
+
-

1/2

.

(61)
The lens’ volume is given by

V (lens) = πr3,(lens)
eq

(
ν(lens) +

ν3,(lens)

3

)
(62)

and its surface by

S(lens) = 2πr2,(lens)
eq

(
1 + ν2,(lens)

)
. (63)

The first derivative of the meridian curve, which is negative
due to ν ≤ 1 for z > 0, reads as

ṙ(lens)(z) =
dr(lens)(z)

dz

=
r(lens)

eq (ν2,(lens) − 1) − 2ν2,(lens)z

2ν(lens)r(lens)(z)
. (64a)

The second derivative, which is negative due to the concave
down curvature in the upper sphere segment, can be written as

r̈(lens)(z) =
d2r(lens)(z)

dz2
= −

1
4

r2,(lens)
eq

(
ν2,(lens) + 1

)2

ν2,(lens)r3,(lens)(z)

= −
R2

0

r3,(lens)(z)
. (64b)

Using


1 +

(
dr(lens)(z)

dz

)2

1/2

= ±
1
2

r(lens)
eq

(
ν2,(lens) + 1

)
ν(lens)r(lens)(z)

= ±
R0

r(lens)(z)
, (65)

we can easily calculate the principal radii of curvature,

R(lens)
1 = r(lens)(z)


1 +

(
dr(lens)(z)

dz

)2

1/2

= R0, (66a)

R(lens)
2 =

−


1 +

(
dr(lens)(z)

dz

)2

3/2

d2r(lens)(z)

dz2

=

−
R3

0

r3,(lens)(z)

−
R2

0

r3,(lens)(z)

= R0,

(66b)

which must of course be identical R0. The integral mean radius
of curvature except the singularity at z = 0 is

R̃′(lens) =

ν(lens)r(lens)
eq∫

ε

1
2

*
,
1 +

R(lens)
1

R(lens)
2

+
-

dz = ν(lens)r(lens)
eq − ε. (67)

To calculate the contribution of the singularity, which dis-
appears in the limit of a sphere with ν(lens) = 1, we approximate
a lens in the limits �ε < z < ε by an oblate ellipsoid with the
equatorial diameter r(ell)

eq (ε) and the aspect ratio ν(ell) (ε) such
that

r(lens)(±ε) = r(ell)(±ε) (68a)

and

ṙ(lens)(±ε) = ṙ(ell)(±ε), (68b)

i.e., the meridian curve and its first derivative are continuous
(Fig. 3). The contribution to the mean radius of curvature orig-
inating from the singularity in the equatorial plane can with
Eqs. (30), (37a), and (37b) be expressed as

R̃ ′′(lens) =

ε∫
−ε

1
4


1 +

ν2,(ell)r2,(ell)
eq

ν4,(ell)r2,(ell)
eq −

(
ν2,(ell) − 1

)
z2


dz. (69)

Using Eqs. (B1) and (B2), the latter integral can be solved
analytically [cf. Eq. (39)]. With Eq. (B5), a lens’ mean radius

FIG. 3. Continuous completion of a cut-out lens by an
ellipsoid. The continuity of the meridian curve and its
first derivative can be seen in the magnified section on
the right-hand side. The contribution of the equatorial
singularity to the mean radius of curvature is obtained
in the limit ε → 0 with an infinitely thin ellipsoid with
r(ell)

eq = r(lens)
eq .
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of curvature in the limit ε→ 0 can be written as

R̃(lens) = lim
ε→0

[
R̃′(lens)(ε) + R̃′′(lens)(ε)

]

= r(lens)
eq

[
ν(lens) +

1
2

arctan

(
1 − ν2,(lens)

2ν(lens)

)]
. (70)

In the limit ν(lens) → 1, as expected, the mean radius of cur-
vature R̃(lens) = r(sph)

eq of a sphere with radius r(sph)
eq results,

while in the limit ν(lens) → 0+, an infinitely thin cylinder’s
mean radius of curvature R̃(lens) = πr(lens)

eq /4 is obtained. Note
that

tan ξ = lim
z→0+

�����
dr(lens)(z)

dz

�����
=

1 − ν2,(lens)

2ν(lens)
(71)

is the tangent of the angle enclosed between the z-direction
and the first derivative of the meridian curve ṙ(lens) (z → 0+)
(Fig. 4). As a consequence, the angle between the meridian
curves’ tangents at z → 0+ and z → 0� is ζ = π � 2ξ. Using
Eq. (70), the contribution of the singularity at z = 0 with radius
r(lens)(0) = r(lens)

eq can be written as

R̃′′(lens) =
r(lens)

eq

2
ξ =

r(lens)
eq

4
(π − ζ) . (72)

3. Double cone

Similar to a lens, also a double cone, which exists both
as a prolate and oblate solid of revolution, possesses a two-
dimensional singularity of surface curvature at its equator in
addition to one-dimensional singularities at its apices. In the
same manner as already shown for a spindle, a truncated double
cone can be continuously completed by spheres with vanishing
radii close to an apex, whose contribution to the mean radius
of curvature vanishes, too.

FIG. 4. The contribution of a lens’ singularity in its surface curvature can be
expressed by the angle ζ enclosed between the meridian curve’s tangents at
z → 0+ and z → 0� and the equatorial radius r(lens)(0) = r(lens)

eq . In the limit

of a sphere, with ζ = π, the singularity disappears and with R̃′′(lens) = 0 does
not contribute to the mean radius of curvature. In contrast, with ζ = 0, in the
limit of an infinitely thin lens, R̃′′(lens) = πr(lens)

eq /4 is the only contribution to
the mean radius of curvature.

The surface and volume of a double cone are

S(dc) = 2π
(
1 + ν2,(dc)

)1/2
r2,(dc)

eq (73)

and

V (dc) =
2
3
πν(dc)r3,(dc)

eq . (74)

Let us analyze in analogy to a lens the contribution of the
two-dimensional singularity to the mean radius of curvature by
a continuous completion of a cut-out double cone. Details are
deposited in the supplementary material (Sec. S-I). Since the
meridian curve of a double cone is straight, the principal radius
of curvature R (dc)

2 is infinite. Thus, except the singularity, we
obtain with Eq. (31)

R̃′(dc) =
1
2

ν(dc)r(dc)
eq∫

0

dz =
ν(dc)r(dc)

eq

2
(75)

as mean radius of curvature. A double cone encloses at its
equatorial singularity with radius r(dc)

eq the angle ξ = arctan(ν�1)
with the z-direction. Hence the contribution of this singularity
to the mean radius of curvature is

R̃′′ =
r(dc)

eq

2
arctan

(
1

ν (dc)

)
. (76)

As a consequence, a double cone’s mean radius of curvature
can be written as35

R̃(dc) =
ν(dc)r(dc)

eq

2
+

r(dc)
eq

2
arctan

(
1

ν(dc)

)
. (77)

Just as in the case of a lens, a double cone approaches an
infinitely thin plate in the limit ν(dc) → 0 with the expected
mean radius of curvature

R̃(dc) = lim
ν(dc)→0+



ν(dc)r(dc)
eq

2
+

r(dc)
eq

2
arctan

(
1

ν(dc)

)

=
πr(dc)

eq

4
. (78)

In contrast, for ν(dc) → ∞, the singularity in the equatorial
plane disappears and the mean radius of curvature approaches
that of an infinitely long cylinder.

C. Cylinder

A cylinder with the meridian curve

r(cyl)(z) = r(cyl)
eq (79)

possesses two singularities of surface curvature at
z = ±ν(cyl)r(cyl)

eq . A cylinder can easily be completed contin-
uously by the upper half of an ellipsoid at the top face and
the lower half of an ellipsoid at its bottom face. The equato-
rial radii of the half-ellipsoids equal the cylinder radius with
r(ell)

eq = r(cyl)
eq . The volume of a cylinder with an aspect ratio

ν(cyl) is
V (cyl) = 2πr3,(cyl)

eq ν(cyl), (80)

and its surface is

S(cyl) = 2πr2,(cyl)
eq

(
1 + 2ν(cyl)

)
. (81)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-026742
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Similar to the double cone, the meridian curve of the cylinder
is straight and both derivatives ṙ(cyl) (z) = 0 and r̈(cyl)(z) = 0
vanish. Hence, the principal radii of curvature are R(cyl)

1 = r(cyl)
eq

and R(cyl)
2 = ∞.

Except the singularities at z = ±ν(cyl)r(cyl)
eq , a cylinder’s

mean radius of curvature is according to Eq. (31)

R̃′(cyl) =
1
2

ν(cyl)r(cyl)
eq −ε∫

−ν(cyl)r(cyl)
eq +ε

dz =
ν(cyl)r(cyl)

eq

2
(1 − ε) . (82)

In the limit ν(cyl) → 0+, employing Eq. (41), a contribu-
tion R̃′′(cyl) = πr(cyl)

eq /8 results from each circular singular-
ity, independent of the cylinder’s aspect ratio. Hence, the
total mean radius of curvature of a cylinder can be written
as

R̃(cyl) = r(cyl)
eq

(
ν(cyl)

2
+
π

4

)
. (83)

Also in the case of a cylinder, the contribution of both singu-
larities can be expressed using the moduli |dr(cyl) (z)/dz| = ∞

at z →
(
ν(cyl)r(cyl)

eq

)+
and z →

(
ν(cyl)r(cyl)

eq

)−
. For both singu-

larities together, with ξ = π/2, the contribution R̃′′ = πr(cyl)
eq /4

to the mean radius of curvature results.

IV. RESULTS
A. Prolate geometries

Employing methods of differential geometry, second
virial coefficients of arbitrarily shaped, convex hard solids
of revolution are analytically accessible. Let us first compare
different prolate geometries (Fig. 5).

Since the geometric measures VP, SP, and R̃P in the
limit ν → ∞ have contributions proportional to ν, in the
limit of infinite aspect ratio, a proportionality B(ν) ∝ ν2

results for the second virial coefficient (Fig. 6). As a conse-
quence, constant ratios of the second virial coefficients exist
in the limit ν → ∞. At an infinite aspect ratio, we obtain the
ratios

lim
ν→∞

B(cyl)
2 (ν)

B(ell)
2 (ν)

=
4
π

, (84a)

FIG. 5. Prolate solids of revolution with an aspect ratio ν = 2. From left to
right, a double cone, a spindle, an ellipsoid, a spherocylinder, and a cylinder
are displayed. All shapes to the left of any geometry are strict subsets of their
right neighbors. The spindle, the ellipsoid, and the spherocylinder approach
in the limit ν = 1 a sphere. While spindles and spherocylinders exist only for
aspect ratios ν ≥ 1, oblate analogs of double cones, ellipsoids, and cylinders
with ν < 1 exist.

FIG. 6. Second virial coefficients for prolate solids of revolution with req = 1.
Since in the limit ν→∞ the geometric measures VP, SP, and R̃P are propor-
tional to the aspect ratio, a proportionality B2(ν) ∝ ν2 results for an infinite
aspect ratio. The thin dashed line represents ν2 as a guide to the eye.

lim
ν→∞

B(sc)
2 (ν)

B(ell)
2 (ν)

=
4
π

, (84b)

lim
ν→∞

B(sp)
2 (ν)

B(ell)
2 (ν)

=
8

3π
, (84c)

lim
ν→∞

B(dc)
2 (ν)

B(ell)
2 (ν)

=
2
π

(84d)

for different shapes. As expected, for ν → ∞, the dif-
ference between a spherocylinder and a cylinder vanishes.
With increasing volume, the second virial coefficients as
mutual excluded volume increase, too, in the order B(dc)

2 (∞)

< B(sp)
2 (∞) < B(ell)

2 (∞) < B(sc)
2 (∞) = B(cyl)

2 (∞).
A useful measure for the mutual excluded volume related

to a particle’s volume is the reduced second virial coefficient
B∗2 as given in Eq. (7). Normalization of virial coefficients Bn

of order n to powers n � 1 of the particle volume leads to
a representation of the virial series in powers of the volume
fraction ϕ = %VP,

p
kBT
= %


1 +

B2

VP
ϕ +

B3

V2
P

ϕ2 +
B4

V3
P

ϕ3 + · · ·


= %


1 +

∞∑
n=2

B∗nϕ
n−1


, (85)

with B∗n = Bn/Vn−1
P .

Hence, a comparison of the reduced second virial coef-
ficients can give insights into the mutual excluded volume in
dependence on the aspect ratio at identical volume fraction of
differently shaped particles.

In the limit ν→∞, the proportionality B∗2 ∝ ν is obtained
for the reduced second virial coefficients, whose ratios are

lim
ν→∞

B∗,(cyl)
2 (ν)

B∗,(ell)
2 (ν)

=
8

3π
, (86a)
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lim
ν→∞

B∗,(sc)
2 (ν)

B∗,(ell)
2 (ν)

=
8

3π
, (86b)

lim
ν→∞

B∗,(sp)
2 (ν)

B∗,(ell)
2 (ν)

=
10
3π

, (86c)

lim
ν→∞

B∗,(dc)
2 (ν)

B∗,(ell)
2 (ν)

=
4
π

. (86d)

Normalized to the particle volume, with B∗,(dc)
2 (∞) >

B∗,(sp)
2 (∞) > B∗,(sc)

2 (∞) = B∗,(cyl)
2 (∞), a decreasing series

of reduced second virial coefficients with increasing particle
volume from double cone to cylinder results.

Since ellipsoid, spindle, and spherocylinder approach
a sphere at the aspect ratio ν = 1, the reduced second
virial coefficients for these geometries are identical, B∗,(ell)

2 (1)

= B∗,(sp)
2 (1) = B∗,(sc)

2 (1) = 4 (Fig. 7). With increasing aspect
ratio, the reduced second virial coefficient of a spindle initially
decreases compared to an ellipsoid, while that of a spherocylin-
der initially increases relative to an ellipsoid. The minimum
B∗,(sp)

2 /B∗,(ell)
2 = 0.988 183 2 is reached at the aspect ratio

ν = 2.048 213. For ν > 3.539 816, the reduced second virial
coefficient of a spindle exceeds that of an ellipsoid. In con-
trast, the reduced second virial coefficient of a spherocylinder
initially increases with increasing aspect ratio, approaching a
maximum at ν = 2.143 270 with B∗,(sc)

2 /B∗,(ell)
2 = 1.013 773.

For ν > 3.718 983, the reduced second virial coefficient of a
spherocylinder is smaller than that of an ellipsoid (Fig. 8). Also
the reduced second virial coefficient of a cylinder becomes for
ν > 9.731 169 smaller than that of an ellipsoid and asymptot-
ically approaches that of a spherocylinder for ν→∞.

The maximum ratio of a cylinder’s reduced second
virial coefficient to that of an ellipsoid with B∗,(cyl)

2 /B∗,(ell)
2

= 1.221 161 occurs for slightly prolate cylinders with the
aspect ratio ν = 1.303 961. The minimum ratio of a dou-
ble cone’s reduced second virial coefficient to that of an

FIG. 7. Reduced second virial coefficients B∗2(ν) for different solids of revo-
lution with equatorial radius req = 1 normalized to the reduced second virial

coefficient of ellipsoids B∗,(ell)
2 (ν).

FIG. 8. Reduced second virial coefficients B∗2(ν) for spindles, ellipsoids, and
spherocylinders with equatorial radius req = 1 normalized to the reduced

second virial coefficient of ellipsoids B∗,(ell)
2 (ν).

ellipsoid occurs at ν = 1.971 481 with the ratio B∗,(dc)
2 /B∗,(ell)

2
= 1.130 676. The reduced second virial coefficient of a dou-
ble cone exceeds that of a cylinder for ν > 3.231 733, while
that of a spindle exceeds that of a cylinder for ν > 7.617 511.
The characteristic aspect ratios and related second virial coef-
ficients given in this section are obtained numerically with an
arbitrary precision algorithm and rounded to six decimal places
since analytical expressions for ν could not be obtained.

B. Oblate geometries

As oblate geometries, double cones, lenses, ellipsoids,
and cylinders (Fig. 9) are compared. For ν = 1, lenses and
ellipsoids are spheres. All geometries except lenses also exist
as prolate solids. Again, double cones are strict subsets of
all other geometries, lenses of ellipsoids and cylinders, and,
finally, ellipsoids of cylinders.

In the limit ν → 0, all solids of revolution approach an
infinitely thin circular plate, resulting in identical second virial
coefficients,

lim
ν→0+

B(dc)
2 (ν) = lim

ν→0+
B(lens)

2 (ν) = lim
ν→0+

B(ell)
2 (ν)

= lim
ν→0+

B(cyl)
2 (ν) =

π2r3
eq

2
, (87)

as displayed in Fig. 10. Although the volume vanishes for
ν→ 0, the surface S = 2πr2

eq and the mean radius of curvature
R̃ = πreq/4 are finite.

Since in the limit ν→ 0+ the volume of all oblate geome-
tries is proportional to ν, the reduced second virial coefficients

FIG. 9. Oblate solids of revolution with an aspect ratio of ν = 1/2. From left
to right a double cone, a lens, an ellipsoid, and a cylinder are displayed. All
shapes to the left of a given geometry are strict subsets of their right neighbors.
The lens and the ellipsoid approach in the limit ν → 1 a sphere. While a lens
does only exist with aspect ratios ν ≤ 1, prolate analogs of double cones,
ellipsoids, and cylinders with ν > 1 exist.
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FIG. 10. Second virial coefficients of oblate double cones, lenses, ellipsoids,
and cylinders with equatorial radius req = 1. In the limit ν → 0, the second
virial coefficients of all objects approach the limit B2(ν → 0) = π2r3

eq/2.

diverge as B∗2(ν → 0+) ∝ ν−1. We obtain in the limit ν → 0+

the ratios

lim
ν→0+

B∗,(dc)
2

B∗,(ell)
2

= 2, (88a)

lim
ν→0+

B∗,(lens)
2

B∗,(ell)
2

=
4
3

, (88b)

lim
ν→0+

B∗,(cyl)
2

B∗,(ell)
2

=
2
3

, (88c)

which are the reciprocal ratios of the volumes for ν → 0+. In
analogy to the prolate geometries, the geometries with a larger
volume exhibit the smallest reduced second virial coefficients
in the limit of proportionality B∗2 ∝ ν

−1.
At the aspect ratio ν = 1, both the lens and the ellip-

soid approach a sphere with the identical reduced sec-
ond virial coefficient B∗,(lens)

2 (1)=B∗,(ell)
2 (1)= 4. A cylinder

FIG. 11. Reduced second virial coefficients B∗2(ν) for double cones, lenses,

and cylinders normalized to the second virial coefficient of ellipsoids B∗,(ell)
2 (ν)

with identical equatorial radius req.

FIG. 12. Reduced second virial coefficients for prolate and oblate double
cones, ellipsoids, and cylinders. In the limitν→∞, a proportionality B∗2(ν)∝ν

and in the limit ν → 0+, a proportionality B∗2(ν) ∝ ν−1 is found for all

geometries. For ellipsoids, the relation B∗,(ell)
2 (ν) = B∗,(ell)

2 (ν−1) holds.

with an aspect ratio ν = 1 with B∗,(cyl)
2 (1)= (3π + 10)/16

= 1.214 049 has a slightly larger reduced second virial coef-
ficient than a double cone with B∗,(dc)

2 (1) = (3π + 12)
√

2/32

+ 1/4 = 1.196 850. While the ratios B∗,(dc)
2 (ν)/B∗,(ell)

2 (ν) and

B∗,(lens)
2 (ν)/B∗,(ell)

2 (ν) increase with decreasing aspect ratio, the

ratio B∗,(cyl)
2 (ν)/B∗,(ell)

2 (ν) drops with decreasing aspect ratio.
The reduced second virial coefficient of a cylinder be-

comes smaller than that of a double cone for ν < 0.940 101,
smaller than that of a lens for ν < 0.399 489 and smaller than
that of an ellipsoid for ν < 0.252 962 (Fig. 11).

FIG. 13. Reduced second virial coefficients of cylinders and double cones
normalized to those of ellipsoids. In the range 0.252 964 < ν < 9.731 169,
the reduced virial coefficients of cylinders exceed those of ellipsoids, while
for sufficiently large and sufficiently small aspect ratios, the ratio of excluded
volume to particle volume is for cylinders the smallest of the geometries
existing both as prolate and oblate objects. For double cones, this ratio is
for any aspect ratio larger than for ellipsoids, while in the range 0.9401 < ν
< 3.2317, this ratio is for cylinders even larger than for double cones.
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Double cones, ellipsoids, and cylinders exist both as
prolate and oblate solids of revolution. For ellipsoids, the
symmetry relation B∗,(ell)

2 (ν) = B∗,(ell)
2 (1/ν) is found as vis-

ible in Fig. 12. The reduced second virial coefficient of a
double cone is for any aspect ratio larger than that of an ellip-
soid. For sufficiently large and sufficiently small aspect ratios,
the reduced second virial coefficients of cylinders are smaller
than those of ellipsoids, while in the range 0.252 964 < ν
< 9.731 169, the virial coefficients of cylinders exceed those
of ellipsoids. In the range 0.940 101 < ν < 3.231 733, B∗,(cyl)

2

exceeds B∗,(dc)
2 (Fig. 13).

V. CONCLUSIONS

Employing the Isihara–Hadwiger theorem, analytical
expressions for the second virial coefficient can be derived for
various convex geometries with hard-body interaction. The
geometric measures needed to calculate these second virial
coefficients are compiled in Tables I and II. Singularities in
the surface curvature can be removed for convex solids of rev-
olution when the meridian curve in the vicinity of a singularity
is continuously completed by those of segments of spheres or
ellipsoids. Ellipsoids and spheres, as ellipsoids with an aspect
ratio ν = 1, are continuous with respect to the curvature at

the entire particle surface. The influence of a singularity is
obtained in the limit of infinitely small spheres or infinitely
thin ellipsoids.

Apices as one-dimensional singularities located at the
symmetry axis of solids of revolution do not contribute to the
mean radius of curvature. In contrast, the contribution of two-
dimensional singularities is the product of the singularity’s
radius and the angle (π � ζ)/4, where ζ is the angle enclosed
between the tangents at both sides of the singularity.

Beyond the influence of the aspect ratio, the virial coef-
ficients of hard solids of revolution depend on the detailed
geometry of the particles. The reduced second virial coeffi-
cients of all geometries show a proportionality B∗2(ν → ∞) ∝ ν
with constant ratios between different geometries in the limit
of infinitely large aspect ratios. The same holds for oblate
geometries in the limit ν→ 0+, however, with a proportionality
B∗2(ν → 0+) ∝ ν−1. Hence, even in the limit of very large or
very small aspect ratios, the detailed geometry leads to signif-
icantly different orientational averages of the mutual excluded
volume.

The aim of future work will be to calculate higher virial
coefficients of hard ellipsoids and spindles in dependence on
their aspect ratio. A suitable and efficient approach is the
Mayer-sampling Monte Carlo method.36,37

TABLE I. Geometric measures for centrosymmetric solids of revolution.

Ellipsoid prolate (ν ≥ 1) V =
4π
3
ν(ell)r3,(ell)

eq S =
2πr2,(ell)

eq(
ν2,(ell) − 1

)1/2


ν2,(ell) arcsin

*..
,

(
ν2,(ell) − 1

)1/2

ν(ell)

+//
-

+
(
ν2,(ell) − 1

)1/2


R̃ =
ν(ell)r(ell)

eq

2
+

r(ell)
eq

2
(
ν2,(ell) − 1

)1/2
arctanh

*..
,

(
ν2,(ell) − 1

)1/2

ν(ell)

+//
-

Ellipsoid oblate (ν ≤ 1) V =
4π
3
ν(ell)r3,(ell)

eq S =
2πr2,(ell)

eq(
1 − ν2,(ell)

)1/2


ν2,(ell) ln

*..
,

1 +
(
1 − ν2,(ell)

)1/2

ν(ell)

+//
-

+
(
1 − ν2,(ell)

)1/2


R̃ =
ν(ell)r(ell)

eq

2
+

r(ell)
eq

2
(
1 − ν2,(ell)

)1/2
arctan

*..
,

(
1 − ν2,(ell)

)1/2

ν(ell)

+//
-

Spherocylinder V = 2πr3,(sc)
eq

(
ν(sc) −

1
3

)
S = 4πr2,(sc)

eq ν(sc)

R̃ =
ν(sc) + 1

2
r (sc)

eq

Spindle

V =
πr3,(sp)

eq

12

[
6ν5,(sp) + 4ν3,(sp) + 6ν(sp)

−3
(
ν6,(sp) + ν4,(sp) − ν2,(sp) − 1

)
× arcsin

(
2ν(sp)

ν2,(sp) + 1

)]

S = 2πr2,(sp)
eq

[
ν(sp)

(
ν2,(sp) + 1

)
+

1 − ν4,(sp)

2
arcsin

(
2ν(sp)

ν2,(sp) + 1

)]

R̃ = r(sp)
eq

[
ν(sp) −

ν2,(sp) − 1
4

arcsin

(
2ν(sp)

ν2,(sp) + 1

)]

Lens V = πr3,(lens)
eq

(
ν(lens) +

ν3,(lens)

3

)
S = 2πr2,(lens)

eq

(
1 + ν2,(lens)

)
R̃ = r(lens)

eq

[
ν(lens) +

1
2

arctan

(
1 − ν2,(lens)

2ν (lens)

)]

Double cone V =
2
3
πν(dc)r3,(dc)

eq S = 2π
(
1 + ν2,(dc)

)1/2
r2,(dc)

eq

R̃ =
req

2

[
ν(dc) + arctan

(
1

ν(dc)

)]

Cylinder V = 2πr3,(cyl)
eq ν(cyl) S = 2πr2,(cyl)

eq

(
1 + 2ν (cyl)

)
R̃ =

(
ν(cyl)

2
+
π

4

)
r(cyl)

eq
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TABLE II. Geometric measures for solids of revolution without inversion symmetry.

Cone V =
π

3
ν(c)r3,(c)

0 S = π
[
1 +

(
1 + ν2,(c)

)1/2
]

r2,(c)
0

R̃ =
r(c)

0

4

[
ν(c) +

π

2
+ arctan

(
1

ν(c)

)]

Truncated cone V = πh


r2,(tc)

0 −
hr (tc)

0

ν(tc)
+

1
3

(
h

ν (tc)

)2
S = π

[
1 −

(
1 + ν2,(tc)

)1/2
] 

(
h

ν(tc)

)2

− 2r(tc)
0

h

ν(tc)


+ 2πr2,(tc)

0

ν(tc) =
h

r(tc)
0 − r1

ξ = arctan

(
1

ν(tc)

)
R̃ =

h
4

+
r(tc)

0

4

(
π

2
+ ξ

)
+

r1

4

(
π

2
− ξ

)
Sphere segment (h ≤ r(seg)

0 ) V =
πr3,(seg)

0

2

(
ν(seg) +

ν3,(seg)

3

)
S = πr2,(seg)

0

(
1 + ν2,(seg)

)
ν(seg) =

h

r(seg)
0

R̃ =
r(seg)

0

2

[
ν(seg) +

π

4
+

1
2

arctan

(
1 − ν2,(seg)

2ν(seg)

)]

Sphere segment (h ≥ r(seg)
0 ) V =

4πr3
0

3
−
πr3,(seg)

0

2

(
ν(seg) +

ν3,(seg)

3

)
S = 4πr2

0 − πr2,(seg)
0

(
1 + ν2,(seg)

)
r0 =

ν(seg)r(seg)
0 + h

2
R̃ = r0 −

r(seg)
0

4

[
π

2
− ν (seg) − arctan

(
1 − ν2,(seg)

2ν(seg)

)]

SUPPLEMENTARY MATERIAL

See supplementary material for details concerning a dou-
ble cone’s mean radius of curvature (Sec. S-I) and for the
second virial coefficients of solids of revolution without inver-
sion symmetry such as cones, truncated cones, and sphere
segments (Sec. S-II).

APPENDIX A: CONTINUOUS COMPLETION
OF A TRUNCATED SPINDLE

Using Eqs. (54) and (55), at z = νreq � ε, the equatorial

radius r(sph)
eq and center z0 of the sphere, Eq. (56), are related

by

r(sph)
eq = r(sp)

eq
ν2 + 1

2




1 +
r(sp)

eq

(
1 − ν2

)
[(
ν2 + 1

)2 r2,(sp)
eq − 4z′2

]1/2




(A1)

with z′ = νr(sp)
eq − ε. The sphere’s center is located at

z0 = r(sp)
eq

(
ν2 − 1

)
z′

[(
ν2 + 1

)2 r2,(sp)
eq − 4z′2

]1/2
. (A2)

In the limit ε→ 0, i.e., z′ → νr(sp)
eq , we obtain

lim
z′→νr(sp)

eq

r(sph)
eq = 0 (A3)

and
lim

z′→νr(sp)
eq

z0(z′) = νr(sp)
eq . (A4)

APPENDIX B: CONTINUOUS COMPLETION
OF A CUT-OUT LENS

Using Eqs. (68), the aspect ratio of an ellipsoid which
continuously completes a lens with the equatorial radius r(lens)

eq

and the aspect ratio ν(lens) cut out for �ε ≤ z ≤ ε is

ν(ell) =

{
2ν(lens)ε

[
2ν(lens)ε −

(
ν2,(lens) − 1

)
r (lens)

eq

] }1/2

(
ν2,(lens) − 1

)
r(lens)

eq − 2ν(lens)ε
.

(B1)

Its equatorial radius can be written as

r(ell)
eq =

1
2




2r(lens)
eq

[
2ν(lens)r(lens)

eq

(
ν2,(lens) − 1

)
ε

]

ν(lens)




1/2

. (B2)

With ν(ell) and r(ell)
eq , the contribution of the continuous comple-

tion to the mean radius of curvature, Eq. (69), can be expressed
as

R̃′′(lens) =
1

2λ

{
arctan

(
κ

λ

) [
2r2,(lens)

eq ν(lens)
(
ν2,(lens) − 1

)
+ εr(lens)

eq

(
ν4,(lens) − 6ν2,(lens) + 1

)
− 2ε2ν(lens)

(
ν2,(lens) − 1

)] }
+
ε

2
(B3)

with the abbreviations

κ = 2εν(lens)
(
ν2,(lens) − 1

)
− r(lens)

eq

(
ν2,(lens) − 1

)2
(B4a)

and

λ =
{
2ν(lens)

(
1 − ν2,(lens)

) [
2ν(lens)

(
1 − ν2,(lens)

)
r2,(lens)

eq

− ε
(
ν4,(lens) − 6ν2,(lens) + 1

)
r(lens)

eq

− 2ε2ν(lens)
(
1 − ν2,(lens)

)] }1/2
. (B4b)

In the limit ε→ 0, one obtains

lim
ε→0

R̃′′(lens) =
r(lens)

eq

2
arctan

(
1 − ν2,(lens)

2ν(lens)

)
. (B5)
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