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A new ab initio interatomic potential energy curve for two ground-state xenon atoms is presented. It is
based on supermolecular calculations at the coupled-cluster level with single, double, and perturbative
triple excitations [CCSD(T)] employing basis sets up to sextuple-zeta quality, which were developed
as part of this work. In addition, corrections were determined for higher coupled-cluster levels up to
CCSDTQ as well as for scalar and spin-orbit relativistic effects at the CCSD(T) level. A physically
motivated analytical function was fitted to the calculated interaction energies and used to compute the
vibrational spectrum of the dimer, the second virial coefficient, and the dilute gas transport properties.
The agreement with the best available experimental data for the investigated properties is excellent;
the new potential function is superior not only to previous ab initio potentials but also to the most
popular empirical ones. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4994267]

I. INTRODUCTION

Rare gases are important model substances for studying
van der Waals interactions. This is not only because of the
simple spherically symmetric nature of their pair potentials,
which allows the use of highly accurate theoretical methods
for the calculation of thermophysical and other properties, but
also due to the applicability of high-level quantum-chemical
ab initio approaches. For helium, thermophysical property val-
ues computed from the most accurate ab initio potential energy
curves V (R) are now more reliable than the best experimen-
tal data1–4 and can therefore be used as calibration standards,
e.g., for relative gas viscosity measurements.5–7 For neon, our
group developed a pair potential of reference quality,8 and later
we9 as well as Patkowski and Szalewicz10 thoroughly inves-
tigated the argon atom pair. Recently, highly accurate Kr–Kr
potentials have been developed by Waldrop et al.11 and by our
group.12 The derived thermophysical property data for gaseous
neon,13 argon,4,14,15 and krypton11,12 are again of reference
quality. However, their estimated uncertainties are consider-
ably larger than those for helium because the potential energy
curve of the four-electron He–He system can be determined
much more accurately than the potential energy curves of the
heavier rare gas pairs.

Interactions between two ground-state xenon atoms have
been investigated by means of ab initio methods in several
studies, see, for example, Refs. 16–21. However, to the best
of our knowledge, only the papers of Slavı́ček et al.19 and
of Hanni et al.20 dealt with wide ranges of interatomic sep-
arations and provided analytical potential functions. These
two groups determined the individual interaction energies
using the counterpoise-corrected supermolecular approach22

at the coupled-cluster level with single, double, and pertur-
bative triple excitations [CCSD(T)]23 using a pseudopotential
(PP) to account for relativistic effects and PP basis sets up
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to quadruple-zeta quality with bond functions. Hanni et al.
also applied a core-polarization potential (CPP) to account for
core-valence correlation effects. The potential of Slavı́ček et al.
features a well depth of De = 263.42 K, whereas that of Hanni
et al. is considerably deeper, De = 283.06 K, which is mainly
due to the use of the CPP. The latter value is close to those for
the popular empirical potential curves of Aziz and Slaman24

(De = 282.29 K) and of Dham et al.25 (De = 282.80 K), which
were fitted to the best available experimental data for several
related properties.

In this work, we present a new Xe–Xe potential energy
curve, which is based on counterpoise-corrected supermolec-
ular coupled-cluster calculations up to the CCSDTQ26,27 level
for a large number of interatomic separations R. Corrections
for scalar, spin-(own)-orbit, and spin-other-orbit relativistic
effects were computed at the CCSD(T) level. For all super-
molecular calculations, we employed newly developed nonrel-
ativistic gaussian basis sets up to sextuple-zeta quality, which
are also presented in this paper. An analytical function was
fitted to the calculated interaction energies and used to com-
pute the vibrational spectrum of the xenon dimer as well as the
second virial coefficient and the dilute gas transport properties
of xenon in the temperature range from 100 K to 5000 K.

In Sec. II, we summarize the development of the new gaus-
sian basis sets for xenon. The ab initio calculations and results
for the Xe–Xe interaction energies are presented in Sec. III,
followed in Sec. IV by the discussion of the analytical potential
function and of the computed vibrational spectrum. In Sec. V,
we compare the calculated values of the thermophysical prop-
erties of dilute xenon gas with experimental data. A summary
and conclusions are given in Sec. VI.

II. GAUSSIAN BASIS SETS FOR XENON

In our previous work on the Ne–Ne,8 Ar–Ar,9 and Kr–Kr12

systems, we used correlation-consistent (cc) basis sets28–37 up
to polarized-valence sextuple-zeta size (abbreviated here as
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V6Z) to reach the desired accuracy for the interaction ener-
gies. For krypton, we developed the V6Z basis set as part of our
study.12 When we started the present work on the xenon atom
pair, cc basis sets for xenon were only available for PP calcula-
tions.38 However, employing a PP approach limits the accuracy
that can be achieved for the potential energy curve. Hence, we
decided to construct standard (i.e., all-electron) VDZ to V6Z
basis sets for xenon from scratch in a systematic manner to
ensure smooth extrapolation behavior of the calculated interac-
tion energy contributions to the complete basis set (CBS) limit.
The methodology described below is loosely based on that of
the cc basis sets. Note that standard cc basis sets for xenon
up to quadruple-zeta quality have recently been published
by two research groups.39,40 The cc basis sets of Bross and
Peterson39 were optimized for scalar relativistic calculations,
whereas those of Mahler and Wilson40 were optimized non-
relativistically. The latter use very few primitive functions for
the atomic Hartree–Fock self-consistent-field (SCF) orbitals in
order to improve computational efficiency when using uncon-
tracted basis sets, which is common in relativistic calculations.
In the present work, we have only used our own basis sets,
which are indicated by a prime (′) to distinguish them from
the cc sets.

In the first step, we optimized the exponents of
five primitive sets, (23s16p9d), (25s18p11d), (27s20p13d),
(29s22p15d), and (31s24p17d), by minimizing the atomic SCF
energy. These primitive sets, which are much larger than those
of Mahler and Wilson,40 were then contracted to [5s4p2d], i.e.,
each atomic orbital is represented by a single contracted basis
function.

The VDZ′, VTZ′, VQZ′, V5Z′, and V6Z′ basis sets were
obtained by adding a (1s1p1d) set to the (23s16p9d)/[5s4p2d]
set, a (2s2p2d1f ) set to the (25s18p11d)/[5s4p2d] set,
a (3s3p3d2f 1g) set to the (27s20p13d)/[5s4p2d] set, a
(4s4p4d3f 2g1h) set to the (29s22p15d)/[5s4p2d] set, and
a (5s5p5d4f 3g2h1i) set to the (31s24p17d)/[5s4p2d] set,
respectively. The exponents of functions of the same type
(symmetry) were chosen to be even-tempered, resulting in 3
(VDZ′) to 13 (V6Z′) adjustable parameters, which were opti-
mized by minimizing the atomic energy at the configuration
interaction with single and double excitations (CISD) level of
theory within the frozen-core (FC) approximation (only 5s and
5p electrons correlated).

Augmented basis sets, denoted as aVXZ′ with X ∈

{D, T, Q, 5, 6}, were constructed by adding one primitive func-
tion of each type. The exponents were obtained by simply
multiplying the exponent of the most diffuse function of each
type by a factor of 0.5. Doubly augmented sets, daVXZ′, were
obtained from the aVXZ′ sets in the same manner.

Core-valence basis sets, CVXZ′ with X ∈ {D, T, Q}, were
constructed by adding a (1s1p1d2f 1g) set to VDZ′, a
(2s2p2d3f 2g1h) set to VTZ′, and a (3s3p3d4f 3g2h1i) set to
VQZ′. The exponents of functions of the same type were again
chosen to be even-tempered. The resulting adjustable param-
eters were optimized by minimizing the atomic energy at the
CISD level of theory with an inner core consisting of the 1s,
2s, 2p, 3s, 3p, and 3d electrons treated as frozen (denoted as
IFC approximation). The previously optimized valence expo-
nents of the VXZ′ basis sets were not altered during the

optimization. To obtain aCVXZ′ and daCVXZ′ basis sets, the
diffuse functions of the respective aVXZ′ and daVXZ′ basis
sets were added.

Uncontracted versions of the aVXZ′ (with X 6 5) and
aCVXZ′ basis sets, denoted as uaVXZ′ and uaCVXZ′, respec-
tively, were also used in this work. However, to avoid near-
linear dependencies in the basis sets, all primitive s, p, and d
functions that were added to the initially optimized SCF sets
were removed and replaced by (1s1p2d) sets, whose exponents
were determined from the lowest s, p, and d exponents in the
SCF sets by multiplying them by 0.5 for the s and p functions
and by 0.5 and 0.25 for the d functions.

For all-electron (AE) correlation calculations, additional
(2f 2g) and (2f 2g2h) sets were added to the uaCVDZ′ and
uaCVTZ′ basis sets, respectively. The two additional func-
tions of each type were generated by multiplying the highest
respective exponents in the uaCVDZ′ and uaCVTZ′ basis
sets by factors of 3 and 9. The resulting sets are denoted as
uaCVDZmod′ and uaCVTZmod′.

The NWChem41 and PSI342 programs were employed
for the development of the basis sets. The exponents and
contraction coefficients of all basis sets are provided in the
supplementary material.

III. CALCULATION OF INTERACTION ENERGIES

All Xe–Xe interaction energies presented in this work
were calculated using the supermolecular approach including
the full counterpoise correction.22 In most of the calculations,
we supplemented the atomic basis sets by a (4s4p3d3f 2g) or
(3s3p2d1f ) set of bond functions located in the center of the
atom pair, which greatly reduces the basis set incompleteness
error. The larger set, denoted as bf1, is characterized by expo-
nents of 0.06, 0.18, 0.54, and 1.62 for the s and p functions,
0.15, 0.45, and 1.35 for the d and f functions, and 0.3 and 0.9
for the g functions. The exponents of the smaller set, which is
denoted as bf2, are 0.1, 0.3, and 0.9 for the s and p functions,
0.25 and 0.75 for the d functions, and 0.45 for the f function.

Extrapolation of the correlation part of the interaction
energy to the CBS limit was conducted by means of the
two-point scheme recommended by Halkier et al.,43

VCBS
corr =

l3
maxV lmax

corr − (lmax − 1)3V lmax−1
corr

l3
max − (lmax − 1)3

, (1)

where lmax is the highest angular momentum quantum number
in the larger of the two basis sets. Thus, we have lmax = X + 2
for the core-valence basis sets and lmax = X otherwise. The
SCF contribution was not extrapolated because it converges
much faster to the CBS limit than the correlation contribution.
Therefore, the total interaction energy in the CBS limit was
approximated as the sum of the extrapolated correlation contri-
bution and the SCF contribution obtained using the larger basis
set. We also applied Eq. (1) for the CBS extrapolation of corre-
lation energy differences between two levels of theory as well
as for the CBS extrapolation of the relativistic corrections. The
latter also have SCF contributions, which are, however, only
very weakly dependent on X. Thus, extrapolation of the total
relativistic corrections yields almost the same results as extrap-
olation of only their correlation parts. Note that using the same

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-023728
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set of bond functions for both basis set levels in Eq. (1) does
not appear to significantly affect the approximate proportion-
ality of the basis set incompleteness error to l−3

max (on which
this extrapolation scheme is based) for the Xe–Xe correlation
interaction energy contributions.

The interaction energy was determined at 39 separations
R in the range from 2.4 Å to 15 Å as the sum of three major
contributions,

Vtotal = VCCSD(T) + Vrel-CCSD(T) + Vpost-CCSD(T), (2)

where VCCSD(T), Vrel-CCSD(T), and Vpost-CCSD(T) denote the non-
relativistic CCSD(T) interaction energy, its relativistic cor-
rection, and the nonrelativistically calculated contribution of
higher coupled-cluster terms up to CCSDTQ, respectively. We
discuss each of the three contributions in the following sub-
sections. All interaction energies and their individual contri-
butions are given in Kelvin, i.e., as V /kB, where the Boltzmann
constant kB is omitted for brevity.

A. Nonrelativistic CCSD(T) interaction energy

The nonrelativistic CCSD(T) interaction energy was
treated as the sum of four terms,

VCCSD(T) = VSCF + Vcorr/FC + VIFC–FC + VAE–IFC. (3)

The terms VSCF and V corr/FC denote the SCF part and
the correlation contribution within the FC approximation,
respectively. They were calculated using daVXZ′ basis
sets supplemented by the bf1 set of bond functions. The
resulting interaction energy contributions are denoted as
VdaVXZ′+bf1

SCF and VdaVXZ′+bf1
corr/FC . The latter was extrapolated

to the CBS limit using the results for X = 5 and X = 6,
with the CBS value being denoted as VdaV(56)Z′+bf1

corr/FC . At
R = 4.4 Å, which is close to the minimum of the potential
energy curve, we obtained VdaV5Z′+bf1

SCF = 294.69 K, VdaV6Z′+bf1
SCF

= 294.57 K,VdaV5Z′+bf1
corr/FC =−547.03 K,VdaV6Z′+bf1

corr/FC =−548.20 K,

and VdaV(56)Z′+bf1
corr/FC =−549.80 K. This shows that, in contrast to

the correlation contribution, the SCF part is sufficiently well
converged at the X = 6 basis set level and does not need to be
extrapolated. At very small interatomic separations, R 6 2.8 Å,
we had to use the singly augmented basis sets due to near-linear
dependencies. However, at R = 3.0 Å, the smallest distance
at which calculations with the doubly augmented sets could
be successfully performed, this affects the total interaction
energy, V (d)aV(56)Z′+bf1

FC = V (d)aV6Z′+bf1
SCF +V (d)aV(56)Z′+bf1

corr/FC , by only
0.012%.

The third term in Eq. (3), V IFC�FC, denotes the correc-
tion for core-core and core-valence correlation effects aris-
ing from including also the 4s, 4p, and 4d electrons in the
correlation treatment (IFC approximation). It was computed
as the CBS extrapolated difference between the CCSD(T)
interaction energies at the IFC and FC levels obtained using
the daCVTZ′+bf2 and daCVQZ′+bf2 basis sets. For the test
geometry R = 4.4 Å, this yields VdaCVTZ′+bf2

IFC–FC =−21.15 K,

VdaCVQZ′+bf2
IFC–FC =−21.07 K, and VdaCV(TQ)Z′+bf2

IFC–FC =−20.96 K.
The final term in Eq. (3), VAE�IFC, denotes the cor-

rection arising from including all electrons in the correla-
tion treatment that were not already included at the IFC
level. This term was calculated using the uaCVDZmod′+bf2

and uaCVTZmod′+bf2 basis sets and was also extrap-
olated to the CBS limit. At R = 4.4 Å, we obtained
VuaCVDZmod′+bf2

AE–IFC =−0.346 K, VuaCVTZmod′+bf2
AE–IFC =−0.353 K, and

VuaCV(DT)Zmod′+bf2
AE–IFC =−0.360 K, yielding VCCSD(T) =�276.55 K.

All terms contributing to VCCSD(T) were computed using the
CFOUR program.44

B. Relativistic correction

We determined the relativistic correction to the Xe–Xe
interaction energy at the CCSD(T) level of theory using the
same basic approach as in our study of the Kr–Kr potential,12

Vrel-CCSD(T) = VDPT2/FC + VDPT2/IFC–FC + V4cDC–DPT2/FC

+ VGaunt/FC. (4)

The terms VDPT2/FC and VDPT2/IFC�FC denote the scalar rela-
tivistic correction determined by means of second-order direct
perturbation theory (DPT2)45,46 within the FC approximation
and its correction for core-core and core-valence correlation
effects at the IFC level, respectively. Both terms were calcu-
lated using uncontracted basis sets. At R = 4.4 Å, we obtained
VuaVQZ′+bf2

DPT2/FC = −11.09 K, VuaV5Z′+bf2
DPT2/FC = −10.46 K, and

VuaV(Q5)Z′+bf2
DPT2/FC = −9.79 K as well as VuaCVTZ′+bf2

DPT2/IFC–FC = 0.96 K,

VuaCVQZ′+bf2
DPT2/IFC–FC = 0.91 K, and VuaCV(TQ)Z′+bf2

DPT2/IFC–FC = 0.85 K.
The term V4cDC�DPT2/FC denotes the difference between

the interaction energies obtained from four-component Dirac–
Coulomb and DPT2 computations within the FC approxima-
tion and accounts mainly for spin-(own)-orbit effects. Using
again uncontracted basis sets, we obtained VuaVDZ′+bf2

4cDC–DPT2/FC

= −2.03 K, VuaVTZ′+bf2
4cDC–DPT2/FC = −2.36 K, and VuaV(DT)Z′+bf2

4cDC–DPT2/FC
= −2.50 K for the test geometry.

The last term in Eq. (4), VGaunt/FC, is the Gaunt
(spin-other-orbit) contribution. It was determined by tak-
ing the difference between interaction energies calculated
with the four-component Dirac–Coulomb–Gaunt and Dirac–
Coulomb Hamiltonians within the molecular mean-field
approximation (see Ref. 47 and references therein) at the
FC level. We used the same basis sets as for V4cDC�DPT2/FC,
yielding VuaVDZ′+bf2

Gaunt/FC =−0.27 K, VuaVTZ′+bf2
Gaunt/FC =−0.43 K, and

VuaV(DT)Z′+bf2
Gaunt/FC =−0.49 K at R = 4.4 Å. The resulting total

relativistic correction Vrel-CCSD(T) at this separation is
�11.94 K.

The four-component computations were performed using
the DIRAC program48 with explicit calculation of the two-
electron (SS|SS) integrals over the small component. All other
calculations pertaining to Vrel-CCSD(T) were carried out using
CFOUR.44

C. Post-CCSD(T) contributions

The correction for higher coupled-cluster levels up to
CCSDTQ was calculated as the sum of five terms,

Vpost-CCSD(T) = VT–(T)/FC + V(Q)–T/FC + VQ–(Q)/FC

+ VT–(T)/IFC′−FC + V(Q)–T/IFC′−FC. (5)

The first three terms, VT�(T)/FC, V (Q)�T/FC, and VQ�(Q)/FC,
denote the differences between the CCSDT49 and CCSD(T)
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levels, the CCSDT(Q)50 and CCSDT levels, and the CCSDTQ
and CCSDT(Q) levels, respectively, within the FC approxi-
mation. For VT�(T)/FC at R = 4.4 Å, we obtained VdaVQZ′+bf2

T–(T)/FC

= 5.97 K, VdaV5Z′+bf2
T–(T)/FC = 6.40 K, and VdaV(Q5)Z′+bf2

T–(T)/FC = 6.85 K.

The results for V (Q)�T/FC at this separation are V aVTZ′+bf2
(Q)–T/FC

= −3.80 K, V aVQZ′+bf2
(Q)–T/FC = −4.45 K, and V aV(TQ)Z′+bf2

(Q)–T/FC =

−4.93 K, and those for VQ�(Q)/FC, which could only be com-
puted using basis sets up to aVTZ′ without bond functions,
are V aVDZ′

Q–(Q)/FC = 0.56 K, V aVTZ′
Q–(Q)/FC = −0.21 K, and V aV(DT)Z′

Q–(Q)/FC
= −0.54 K. We also computed the difference between the
CCSDTQ(P)51 and CCSDTQ levels of theory for the test
geometry using the aVDZ′ basis set. The resulting correction
of �0.05 K can only be regarded as a rough estimate, and the
behavior might be different for other interatomic distances.
Nevertheless, it provides strong evidence that the coupled-
cluster series truncated at the CCSDTQ level is sufficiently
converged.

The terms VT–(T)/IFC′–FC and V(Q)–T/IFC′–FC correct the
terms VT�(T)/FC and V (Q)�T/FC for the inclusion of the 4d
electrons in the correlation treatment (denoted as IFC′ approx-
imation). It was not possible to use the IFC approximation
in post-CCSD(T) calculations due to the very high compu-
tational costs. However, at the CCSD(T) level, the IFC and
IFC′ approximations yield very similar results (as already
noted by Shee et al.21). For VT–(T)/IFC′–FC at R = 4.4 Å, we
obtained surprisingly large values, V aCVDZ′+bf2

T–(T)/IFC′–FC
= 6.64 K,

V aCVTZ′+bf2
T–(T)/IFC′–FC

= 8.40 K, and V aCV(DT)Z′+bf2
T–(T)/IFC′–FC

= 10.25 K. The
term V (Q)�T/FC could only be computed at the aCVDZ′+bf2
level, making it the only post-SCF contribution to the potential
energy curve that could not be extrapolated to the CBS limit.
For the test geometry, we obtained V aCVDZ′+bf2

(Q)–T/IFC′–FC
= −2.79 K.

The resulting post-CCSD(T) correction Vpost-CCSD(T) at
R = 4.4 Å is 8.85 K.

The CCSDT, CCSDT(Q), and CCSDTQ calculations
were performed using either the new NCC module of
CFOUR44,52 or the MRCC code.53 The latter was also used
for the CCSDTQ(P) test calculations. All CCSD(T) calcula-
tions needed to determine the post-CCSD(T) corrections were
performed using CFOUR.

D. Uncertainty budget

The combined uncertainties of the ab initio interaction
energies V total were determined as the square roots of the
sums of the squared uncertainties resulting from the individ-
ual contributions in accordance with the standard procedure
for the evaluation of measurement uncertainties. We esti-
mated the uncertainties of contributions that were extrapolated
to the CBS limit as half the absolute values of the differ-
ences between the CBS extrapolated values and the values
resulting for the basis set with the highest cardinal number
X. For VSCF, we used the absolute values of the differences
between the X = 6 and X = 5 levels, and for V(Q)–T/IFC′–FC,
we assumed a relative uncertainty of 50%. To account for the
neglect of relativistic corrections to the post-CCSD(T) terms
and other neglected contributions, we increased the resulting
estimate of the combined uncertainty of V total by a further
25%.

In the case of the Kr–Kr potential,12 we regarded the
combined uncertainties resulting from a similar procedure as
standard uncertainties, corresponding approximately to a 68%
confidence level. However, based on the analysis of the quality
of the new Xe–Xe potential given in Secs. IV and V, we regard
the present estimates as expanded uncertainties with coverage

TABLE I. Individual contributions to the Xe–Xe interaction energy, see Eqs. (2)–(5), and their estimated
uncertainties at R = 3.2 Å, R = 4.4 Å, and R = 6.0 Å. All energies are in Kelvin.

R = 3.2 Å R = 4.4 Å R = 6.0 Å

Contribution Basis set level Value Uncertainty Value Uncertainty Value Uncertainty

SCF daV6Z′+bf1 10015.13 11.94 294.57 0.12 1.85 0.00
Corr/FC daV(56)Z′+bf1 −3404.69 19.35 −549.80 0.80 −64.60 0.04
IFC�FC daCV(TQ)Z′+bf2 −480.07 17.10 −20.96 0.06 −0.61 0.08
AE�IFC uaCV(DT)Zmod′+bf2 −11.91 0.43 −0.36 0.00 0.02 0.00

CCSD(T) 6118.46 28.46 −276.55 0.81 −63.34 0.09

DPT2/FC uaV(Q5)Z′+bf2 −782.86 3.06 −9.79 0.33 2.00 0.03
DPT2/IFC�FC uaCV(TQ)Z′+bf2 15.04 0.44 0.85 0.03 −0.07 0.00
4cDC�DPT2/FC uaV(DT)Z′+bf2 −22.11 0.43 −2.50 0.07 −0.66 0.01
Gaunt/FC uaV(DT)Z′+bf2 24.81 0.23 −0.49 0.03 −0.25 0.00

Rel-CCSD(T) −765.12 3.13 −11.94 0.34 1.03 0.03

T�(T)/FC daV(Q5)Z′+bf2 39.62 1.12 6.85 0.23 0.93 0.03
(Q)�T/FC aV(TQ)Z′+bf2 −27.73 1.14 −4.93 0.24 −0.61 0.04
Q�(Q)/FC aV(DT)Z′ −1.24 0.65 −0.54 0.16 −0.10 0.03
T�(T)/IFC′−FC aCV(DT)Z′+bf2 52.26 5.19 10.25 0.93 1.33 0.12
(Q)�T/IFC′−FC aCVDZ′+bf2 −11.36 5.68 −2.79 1.39 −0.41 0.21

Post-CCSD(T) 51.55 7.89 8.85 1.71 1.14 0.24

Total 5404.88 37.12 −279.63 2.41 −61.18 0.33
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TABLE II. Total Xe–Xe interaction energy, its estimated uncertainty, the
interaction energy resulting from the fitted analytical function, and the dif-
ference between the fitted and calculated interaction energy as a function of
the interatomic distance. All energies are in Kelvin.

R/Å V total u(V total) Vfit Vfit � V total

2.4 67 031.245 409.930 67 028.080 −3.165
2.6 37 578.501 209.222 37 582.273 3.772
2.8 20 522.124 112.767 20 521.635 −0.489
3.0 10 810.352 63.434 10 809.878 −0.474
3.2 5 404.877 37.123 5 404.520 −0.357
3.4 2 481.019 22.141 2 480.950 −0.069
3.5 1 592.042 17.185 1 592.036 −0.006
3.6 958.642 13.388 958.744 0.102
3.7 514.265 10.482 514.368 0.103
3.8 208.418 8.250 208.529 0.111
3.9 3.312 6.537 3.391 0.079
4.0 −129.334 5.221 −129.296 0.038
4.1 −210.472 4.214 −210.487 −0.015
4.2 −255.560 3.444 −255.616 −0.056
4.3 −275.892 2.858 −275.965 −0.073
4.4 −279.634 2.408 −279.700 −0.066
4.5 −272.638 2.056 −272.678 −0.040
4.6 −259.034 1.774 −259.045 −0.011
4.7 −241.706 1.544 −241.693 0.013
4.8 −222.630 1.352 −222.601 0.029
4.9 −203.141 1.189 −203.090 0.051
5.0 −184.042 1.050 −184.015 0.027
5.2 −149.040 0.824 −149.030 0.010
5.4 −119.495 0.651 −119.491 0.004
5.6 −95.464 0.516 −95.464 0.000
5.8 −76.301 0.410 −76.309 −0.008
6.0 −61.180 0.327 −61.190 −0.010
6.2 −49.288 0.262 −49.300 −0.012
6.4 −39.932 0.211 −39.947 −0.015
6.6 −32.569 0.170 −32.568 0.001
6.9 −24.262 0.126 −24.260 0.002
7.2 −18.336 0.094 −18.324 0.012
7.5 −14.034 0.072 −14.025 0.009
8.0 −9.223 0.048 −9.225 −0.002
8.5 −6.248 0.033 −6.251 −0.003
9.0 −4.343 0.023 −4.345 −0.002
10.0 −2.237 0.012 −2.239 −0.002
12.0 −0.724 0.004 −0.723 0.001
15.0 −0.184 0.001 −0.184 0.000

factor k = 2, corresponding approximately to a 95% confidence
level.

Table I lists the individual contributions to the interac-
tion energy and their estimated uncertainties at three inter-
atomic distances. The total interaction energies and their
uncertainties for all 39 investigated interatomic separations
are given in Table II. Detailed results for the individual con-
tributions at all separations are provided in the supplementary
material.

IV. ANALYTICAL POTENTIAL FUNCTION AND
VIBRATIONAL SPECTRUM OF THE XENON DIMER

A modified Tang–Toennies potential function54 was fitted
to the 39 calculated interaction energies V total,

V (R) = A exp
(
a1R + a2R2 + a−1R−1 + a−2R−2

)
−

8∑
n=3

C2n

R2n


1 − exp(−bR)

2n∑
k=0

(bR)k

k!


. (6)

The parameters A, a1, a2, a
�1, a

�2, and b as well as the disper-
sion coefficients C6, C8, and C10 were treated as independent
fit parameters, whereas the higher dispersion coefficients C12,
C14, and C16 were tied to the lower ones by an approximate
recursion formula,54

C2n = C2n−6

(
C2n−2

C2n−4

)3

, n ≥ 6. (7)

The interaction energies computed using the analytical func-
tion at all 39 investigated separations R as well as their devia-
tions from V total are provided in Table II, while the optimized
values of the potential parameters are listed in Table III. Addi-
tional sets of parameters were determined from fits to inter-
action energies perturbed by adding or subtracting the uncer-
tainty estimates at each separation, VU1 = V total + u(V total) and
VU2 = V total � u(V total). Two further potential energy curves,
VU3 and VU4, were obtained in a similar manner as VU1 and
VU2, respectively, but with u(V total) at R < 5 Å multiplied
by −cos[π(R/Å− 2.4)/(5.0− 2.4)]. Thus, VU3 = VU1 and VU4

= VU2 for R > 5 Å, but VU3 = VU2 and VU4 = VU1 at R = 2.4 Å.
The crossing of VU3 and VU4 (i.e., VU3 = VU4 = V total) occurs
at R = 3.7 Å. The parameters of the perturbed potentials are
provided in the supplementary material.

TABLE III. Parameters of the fitted analytical potential function, C6 and
C8 dispersion coefficients from the literature,16,19,20,55 and well depth and
equilibrium bond length of the present potential function and values from the
literature.19–21,24,25,56

Parameter Unit Value Lit. values Reference

A K 0.579 317 071 × 108

a1 Å�1 −0.208 311 994 × 101

a2 Å�2
�0.147 746 919

a
�1 Å −0.289 687 722 × 101

a
�2 Å2 0.258 976 595 × 101

b Å�1 0.244 337 880 × 101

C6 K Å6 0.200 298 034 × 107 0.199 98 × 107 16
0.197 21 × 107 19
0.197 34 × 107 20
0.199 35 × 107 55

C8 K Å8 0.199 130 481 × 108 0.221 16 × 108 16
0.235 92 × 108 20

C10 K Å10 0.286 841 040 × 109

De K 279.975 282.29 24
282.80 25
263.42 19
283.06 20
300.95 21

Re Å 4.377 98 4.3627 24
4.3656 25
4.4213 19
4.3818 20
4.3773 56
4.347 21

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-023728
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-023728
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-023728
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The well depth of the present potential energy curve is
De = (279.98±2.52) K, where the uncertainty was determined
from the perturbed potentials. The equilibrium bond length is
Re = (4.3780±0.0036) Å, which is in almost perfect agreement
with the experimental value Re = (4.3773 ± 0.0049) Å deter-
mined from the rotational constants of the vibrational states
v = 0 and v = 1 of the dimer 129Xe–132Xe by Wüest et al.56 Our
values for De and Re are also in close agreement with those of
the empirical potentials of Aziz and Slaman24 (De = 282.29 K,
Re = 4.3627 Å) and of Dham et al.25 (De = 282.80 K,
Re = 4.3656 Å) as well as with those of the ab initio poten-
tial of Hanni et al.20 (De = 283.06 K, Re = 4.3818 Å). Further
selected results from the literature for these two parame-
ters19,21 and for the C6 and C8 dispersion coefficients16,19,20,55

are given in Table III. The reference value for C6 is that
of Kumar and Thakkar,55 which was determined with an
uncertainty of 1% from the dipole oscillator strength dis-
tribution (DOSD) and differs from our fitted value by only
�0.47%.

As a further test of the quality of the new potential, the
spacings ∆Gv+1/2 between the vibrational states v and v + 1
for the electronic and rotational ground state of the xenon
dimer were calculated by solving the one-dimensional radial
Schrödinger equation using the LEVEL program (version 7.7)
of Le Roy.57 The only experimental data available for ∆Gv+1/2

over a larger range of v values are those of Freeman et al.,58

which were measured up to v = 9 and could not be isotopically
resolved. For consistency with their data, we calculated the
∆Gv+1/2 values for all 45 combinations of the nine naturally
occurring isotopes and averaged the results,

〈
∆Gv+1/2

〉
=

∑
i

x2
i ∆Gv+1/2;i,i + 2

∑
i< j

xixj∆Gv+1/2;i, j, (8)

where xi is the mole fraction of the ith isotope in naturally
occurring xenon.59 A calculation for a hypothetical dimer
with atomic masses corresponding to the average isotopic
mass (131.293 u) yields ∆Gv+1/2 values that differ from those
obtained using Eq. (8) by at most 0.01% for v 6 9. The results
for the present potential (with uncertainties estimated utilizing
VU1 to VU4) and for the potentials of Aziz and Slaman,24 of
Dham et al.,25 of Slavı́ček et al.,19 and of Hanni et al.20 are
listed along with the data of Freeman et al. in Table IV. The
uncertainties of the present results are more than three times
smaller than those of the experimental data. For v > 2, the
agreement is within (and for v = 1 almost within) the mutual
uncertainty, but the disagreement for v = 0 between our value,
〈∆G1/2〉 = (19.31 ± 0.08) cm�1, and that of Freeman et al.,
〈∆G1/2〉 = (19.90± 0.3) cm�1, is striking. However, our value
is fully consistent with the extremely accurate value of Wüest
et al.,56 〈∆G1/2〉 = (19.3485 ± 0.0005) cm�1, which is based
on measurements of ∆G1/2 for the dimers 129Xe–132Xe and
131Xe–136Xe converted to the isotopically averaged value by
means of a potential model, see Ref. 56 for details. Aziz and
Slaman24 and Dham et al.25 employed the data of Freeman
et al. (the measurements of Wüest et al. were not yet avail-
able at the time) in the multi-property fits of their potentials,
which both yield 〈∆G1/2〉 = 19.61 cm�1. The ab initio poten-
tial of Hanni et al.20 yields 〈∆Gv+1/2〉 values that almost fall

TABLE IV. Isotopically averaged vibrational spacings 〈∆Gv+1/2〉 (in cm�1)
of the xenon dimer up to v = 9 for the potential energy curves of the present
work, of Aziz and Slaman,24 of Dham et al.,25 of Slavı́ček et al.,19 and of
Hanni et al.20 The experimental values are those of Freeman et al.58

Literature potentials
Experiment

v This work Ref. 24 Ref. 25 Ref. 19 Ref. 20 Ref. 58

0 19.31 ± 0.08 19.61 19.61 18.69 19.39 19.90 ± 0.3
1 18.15 ± 0.08 18.41 18.45 17.53 18.23 18.55 ± 0.3
2 16.99 ± 0.09 17.21 17.28 16.37 17.08 17.20 ± 0.3
3 15.83 ± 0.09 16.02 16.09 15.21 15.93 16.17 ± 0.3
4 14.68 ± 0.09 14.83 14.89 14.07 14.79 14.63 ± 0.3
5 13.54 ± 0.09 13.66 13.71 12.92 13.65 13.70 ± 0.3
6 12.41 ± 0.09 12.50 12.54 11.79 12.52 12.63 ± 0.3
7 11.29 ± 0.09 11.35 11.40 10.68 11.41 11.33 ± 0.3
8 10.19 ± 0.09 10.23 10.27 9.58 10.32 10.15 ± 0.3
9 9.12 ± 0.09 9.14 9.16 8.51 9.25 8.95 ± 0.3

within the uncertainty ranges of our values, whereas the val-
ues obtained using the ab initio potential of Slavı́ček et al.19

are systematically too small due to the potential well being
too shallow. The ∆Gv+1/2 values obtained using the present
potential for all 45 isotopic combinations are provided in the
supplementary material.

V. THERMOPHYSICAL PROPERTIES OF DILUTE
XENON GAS
A. Second virial coefficient

The second virial coefficient B2 was computed semiclas-
sically as the sum of the classical contribution and the first-
and second-order quantum corrections,

B2(T ) = Bcl
2 (T ) + λBqm,1

2 (T ) + λ2Bqm,2
2 (T ), (9)

where λ = ~2 β/12m, β = (kBT )−1, m is the average isotopic
mass of naturally occurring xenon, and ~ is Planck’s constant
divided by 2π. The explicit formulae for Bcl

2 (T ), Bqm,1
2 (T ), and

Bqm,2
2 (T ) are summarized, for example, in Ref. 13 and are

therefore not repeated here. All integrals needed to compute
B2(T ) were solved by means of standard numerical integra-
tion methods. The contribution of the second-order quantum
correction λ2Bqm,2

2 is extremely small. Even at the lowest
temperature considered here, T = 100 K, it amounts to only
�0.011 cm3 mol�1 or about 0.001%. Calculated values of B2

at temperatures up to 5000 K are listed in the supplementary
material along with their estimated uncertainties, which were
obtained utilizing the perturbed potentials (see Sec. IV).

In Fig. 1, the values calculated using the present poten-
tial are compared with selected experimental data,60–65 with
the correlation of Dymond et al.,66 and with values calculated
using the potentials of Aziz and Slaman,24 of Dham et al.,25 of
Slavı́ček et al.,19 and of Hanni et al.20 The figure shows that
the agreement between the values for the present potential and
those for the two empirical ones24,25 is excellent. Only at the
very lowest temperatures, the larger well depths of the latter
result in slightly more negative values for the second virial
coefficient. In contrast, the potential of Slavı́ček et al. yields

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-023728
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-023728
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-023728
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FIG. 1. Deviations, ∆ = B2 −B2,calc, of selected experi-
mental data,60–65 of the correlation of Dymond et al.,66

and of values obtained using pair potentials from the lit-
erature19,20,24,25 for the second virial coefficient of xenon
from values calculated using the present potential energy
curve as a function of temperature. The dotted lines
indicate the uncertainty interval of the present values.

values that are clearly too positive due to its underestimated
well depth, whereas the values obtained using the potential of
Hanni et al. are somewhat too negative. It can also be seen that
the scatter of the experimental data is much larger than the
deviations between the present results and those for the two
empirical potentials. We believe that the most accurate data set
is that of Hurly et al.65 for temperatures from 273 K to 358 K,
which was obtained from both pρT measurements with a Bur-
nett apparatus and speed-of-sound measurements and is also
the most recent one. Their data deviate from our values by at
most 0.15 cm3 mol�1, which is more than an order of magni-
tude smaller than the uncertainty estimates of our values in this
temperature range obtained from the perturbed potentials. The
figure also shows that Dymond et al.66 based their correlation
solely on the available experimental data and not on values
obtained from the empirical potentials. The uncertainty esti-
mates given by Dymond et al., which correspond to expanded
uncertainties with k = 2, are far too optimistic at the highest
temperatures.

B. Transport properties

The shear viscosity η, the thermal conductivity λ, and
the product of molar density and self-diffusion coefficient,
ρmDself , of naturally occurring xenon (approximated as a pure
gas) in the low-density limit were calculated using the kinetic
theory of monatomic gases.67 All three properties were com-
puted in the fifth-order approximation using formulations in
terms of generalized cross sections S

(
ps
ps′

)
,4,12,68 which can

be related to the more traditional collision integrals Ω(l,m),67

see Ref. 12 and references therein for details. We calculated
the collision integrals classically using a modified version
of the program code developed by O’Hara and Smith.69,70

All computed transport property values are converged to
within 0.001% with respect to the order of the kinetic theory
approximation. Calculated values with estimated uncertainties
(again obtained from the perturbed potentials) at temperatures
from 100 K to 5000 K are provided in the supplementary
material.

FIG. 2. Relative deviations, ∆ = (η − ηcalc)/ηcalc, of
selected experimental data,71–76 of a recommended value
at 298.15 K by Berg and Moldover,5 and of values
obtained using pair potentials from the literature19,20,24,25

for the shear viscosity of dilute xenon from values cal-
culated using the present potential energy curve as a
function of temperature. The dotted lines indicate the
uncertainty interval of the present values.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-023728
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-023728
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FIG. 3. Relative deviations, ∆ = (λ − λcalc)/λcalc, of
selected experimental data79–88 and of values obtained
using pair potentials from the literature19,20,24,25 for the
thermal conductivity of dilute xenon from values cal-
culated using the present potential energy curve as a
function of temperature. The dotted lines indicate the
uncertainty interval of the present values.

In Fig. 2, the viscosity values obtained using the present
potential energy curve are compared with selected experimen-
tal data,71–76 with a recommended value at 298.15 K by Berg
and Moldover,5 and with values determined using the poten-
tials of Aziz and Slaman,24 of Dham et al.,25 of Slavı́ček
et al.,19 and of Hanni et al.20 The most accurate data sets are
those of May et al.,74 of Lin et al.,75 and of Vogel.76 Only the
viscosity values obtained using the present potential are fully
consistent with these three data sets within the experimental
uncertainty; the agreement with the data of May et al. and of
Lin et al. is essentially perfect. The data of Vogel, which were
obtained by a reanalysis of measurements published in 1984,77

have a noticeably different temperature dependence at the two
highest temperatures. This is due to problems with the thermo-
stat78 and also affected the measurements at the two highest
temperatures for argon and krypton from the same paper77 (as
can be seen in Fig. 4 of Ref. 14 and in Fig. 3 of Ref. 12, respec-
tively). All later measurements with the same instrument were
performed using an improved thermostat and are therefore not
affected by this problem.78

Berg and Moldover5 critically reviewed reliable viscos-
ity data from the literature for dilute xenon near 298.15 K
and corrected them to zero density. They used viscosity ratios
related to different gases and anchored them to the ab ini-
tio viscosity value for helium.3 Their recommended value has
a standard uncertainty of only 0.031% and differs from our
value by �0.045%. In contrast, the values for the potentials of
Aziz and Slaman,24 of Dham et al.,25 of Slavı́ček et al.,19 and
of Hanni et al.20 differ from our value by +0.26%, +0.34%,
+0.89%, and �0.67%, respectively.

In Figs. 3 and 4, selected experimental data for the thermal
conductivity79–88 and the few available experimental data for
the product of molar density and self-diffusion coefficient,89–91

respectively, are compared with the corresponding values
obtained using the present potential and the four potentials
from the literature.19,20,24,25 The relative differences between

the thermal conductivity results for the different potentials are
almost identical to those obtained for the shear viscosity since
both properties are directly linked in the first-order kinetic the-
ory approximation for monatomic gases.67 Such a link does
not exist between the self-diffusion coefficient and the other
two properties, but the relative differences are still similar. It
is clear from the two figures that an assessment of the qual-
ity of the potential energy curves based on a comparison with
experimental data is almost impossible due to the much lower
accuracy of the available data compared with those for vis-
cosity. The only exceptions are the two thermal conductivity
data points close to room temperature of Kestin et al.85 and of
Assael et al.,86 which were obtained by means of the transient

FIG. 4. Relative deviations, ∆ = (ρmDself − ρmDself,calc)/ρmDself,calc, of the
available experimental data89–91 and of values obtained using pair potentials
from the literature19,20,24,25 for the product of molar density and self-diffusion
coefficient of dilute xenon from values calculated using the present poten-
tial energy curve as a function of temperature. The dotted lines indicate the
uncertainty interval of the present values.
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hot-wire technique with claimed uncertainties of 0.3% and
0.2%, respectively. Only the present potential energy curve
yields values that agree with both data points within these
uncertainties.

VI. SUMMARY AND CONCLUSIONS

A new ab initio potential energy curve for the xenon atom
pair in the electronic ground state has been developed. It is
based on supermolecular CCSD(T) calculations for 39 inter-
atomic separations using newly developed basis sets up to
sextuple-zeta quality. Corrections for scalar, spin-(own)-orbit,
and spin-other-orbit relativistic effects were determined by a
combination of DPT2 and four-component Dirac–Coulomb
and Dirac–Coulomb–Gaunt calculations at the CCSD(T) level.
Furthermore, corrections for higher coupled-cluster levels up
to CCSDTQ were computed nonrelativistically. The two pre-
vious ab initio potential energy curves for this system,19,20

which were published more than a decade ago, are based on
supermolecular CCSD(T) calculations using only basis sets up
to quadruple-zeta quality and employing the less accurate PP
approach to account for relativistic effects.

A modified Tang–Toennies function54 was fitted to the cal-
culated interaction energies. It is characterized by a well depth
of De = (279.98 ± 2.52) K and an equilibrium bond length of
Re = (4.3780± 0.0036) Å. The new potential function as well
as the two previous ab initio potential functions19,20 and the
two most popular empirical ones24,25 were used to compute
the vibrational spectrum of the xenon dimer, the second virial
coefficient, and the dilute gas transport properties. From the
comparison with the best available experimental data for these
properties and for the equilibrium bond length, we conclude
that the new potential function is by far the most accurate rep-
resentation of the Xe–Xe interaction potential to date. In fact, it
appears to be of similar quality as our ab initio potential func-
tions for the less challenging systems Ne–Ne,8,13 Ar–Ar,9,14

and Kr–Kr.12

SUPPLEMENTARY MATERIAL

See supplementary material for the exponents and con-
traction coefficients of the basis sets employed in this work, for
detailed results of the quantum-chemical ab initio calculations
at all 39 investigated interatomic separations, for the param-
eters of the perturbed potentials, and for calculated values of
∆Gv+1/2 for all isotopic combinations and of the second virial
coefficient and the dilute gas transport properties of naturally
occurring xenon at temperatures from 100 K to 5000 K.
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034304-10 Hellmann, Jäger, and Bich J. Chem. Phys. 147, 034304 (2017)

43A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, and
A. K. Wilson, Chem. Phys. Lett. 286, 243 (1998).

44CFOUR, Coupled-Cluster techniques for Computational Chemistry, a
quantum-chemical program package by J. F. Stanton, J. Gauss, M. E.
Harding, and P. G. Szalay with contributions from A. A. Auer, R. J. Bartlett,
U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O.
Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson,
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Wüllen. For the current version, see http://www.cfour.de.

45W. Kutzelnigg, E. Ottschofski, and R. Franke, J. Chem. Phys. 102, 1740
(1995).

46W. Klopper, J. Comput. Chem. 18, 20 (1997).
47J. Sikkema, L. Visscher, T. Saue, and M. Iliaš, J. Chem. Phys. 131, 124116
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51M. Kállay and J. Gauss, J. Chem. Phys. 123, 214105 (2005).
52D. A. Matthews and J. F. Stanton, J. Chem. Phys. 142, 064108 (2015).
53MRCC, a string-based general coupled cluster program suite written by
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librium Phenomena in Polyatomic Gases, Vol. I: Dilute Gases (Clarendon
Press, Oxford, 1990).

69H. O’Hara and F. J. Smith, J. Comput. Phys. 5, 328 (1970).
70H. O’Hara and F. J. Smith, Comput. Phys. Commun. 2, 47 (1971).
71A. G. Clarke and E. B. Smith, J. Chem. Phys. 48, 3988 (1968).
72R. A. Dawe and E. B. Smith, J. Chem. Phys. 52, 693 (1970).
73M. Goldblatt and W. E. Wageman, Phys. Fluids 14, 1024 (1971).
74E. F. May, R. F. Berg, and M. R. Moldover, Int. J. Thermophys. 28, 1085

(2007).
75H. Lin, J. Che, J. T. Zhang, and X. J. Feng, Fluid Phase Equilib. 418, 198

(2016).
76E. Vogel, Int. J. Thermophys. 37, 63 (2016).
77E. Vogel, Ber. Bunsenges. Phys. Chem. 88, 997 (1984).
78E. Vogel, private communication (2017).
79W. G. Kannuluik and E. H. Carman, Proc. Phys. Soc., London, Sect. B 65,

701 (1952).
80B. N. Srivastava and A. K. Barua, J. Chem. Phys. 32, 427 (1960).
81S. C. Saxena and F. E. Davis, J. Phys. E 4, 681 (1971).
82N. B. Vargaftik and L. V. Yakush, J. Eng. Phys. 21, 1156 (1971).
83G. S. Springer and E. W. Wingeier, J. Chem. Phys. 59, 2747 (1973).
84A. G. Shashkov, N. A. Nesterov, V. M. Sudnik, and V. I. Aleinikova, J. Eng.

Phys. 30, 439 (1976).
85J. Kestin, R. Paul, A. A. Clifford, and W. A. Wakeham, Physica A 100, 349

(1980).
86M. J. Assael, M. Dix, A. Lucas, and W. A. Wakeham, J. Chem. Soc., Faraday

Trans. 1 77, 439 (1981).
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