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Abstract

A four-dimensional intermolecular potential energy surface (PES) for two rigid carbon dioxide molecules was determined from
quantum-chemical ab initio calculations. Interaction energies for 1229 CO2–CO2 configurations were computed at the CCSD(T)
level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. An analytical site-site potential function
with seven sites per CO2 molecule was fitted to the interaction energies. The PES was validated by calculating the second virial
coefficient as well as viscosity and thermal conductivity in the dilute-gas limit.
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1. Introduction

The thermophysical properties of a dilute gas are governed
solely by binary interactions and therefore by the intermolec-
ular pair potentials. Today, potential energy surfaces (PESs)
for pairs of small molecules can be determined with very high
accuracy using quantum-chemical ab initio methods. Once the
pair potentials are available, it is possible to calculate, for exam-
ple, second virial coefficients using statistical thermodynamics
or transport and relaxation properties in the dilute-gas limit uti-
lizing the kinetic theory of gases [1].

Several ab initio PESs for the carbon dioxide molecule pair
have been developed in recent years [2–6]. The potentials of
Bock et al. [3] and Oakley and Wheatley [4] were developed
utilizing the supermolecular approach at the MP2 level of the-
ory, whereas symmetry-adapted perturbation theory (SAPT) [7]
was used by Bukowski et al. [2], Yu et al. [5], and Wang et al.
[6]. Wang et al. also employed the highly accurate supermolec-
ular CCSD(T)-F12 approach [8, 9]. The CO2 molecules were
treated as rigid rotors in all of these studies.

In the present Letter, a new four-dimensional rigid-rotor PES
for the carbon dioxide molecule pair is presented. It is based on
supermolecular calculations for a large number of CO2–CO2
configurations using the CCSD(T) method [9]. Basis sets up to
quadruple-zeta quality with bond functions were applied, and
the resulting interaction energies were extrapolated to the com-
plete basis set (CBS) limit. A site-site potential function with
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seven sites per CO2 molecule was fitted to the computed inter-
action energies. Both the site-site interaction parameters and
the positions of the sites were fully optimized. The potential
function was used to calculate the second virial coefficient and
the shear viscosity and thermal conductivity in the dilute-gas
limit. The results are compared with those for the potentials of
Bock et al. and Bukowski et al. as well as with selected experi-
mental data.

2. Intermolecular potential

2.1. Ab initio calculations

In all quantum-chemical ab initio calculations the zero-point
vibrationally averaged geometry of CO2, characterized by a
C–O bond length of 1.1625 Å, was used. We determined this
value as follows. First, a geometry optimization was performed
at the all-electron CCSD(T) level with the cc-pwCVQZ basis
set [10], resulting in an equilibrium bond length of 1.1602 Å.
Then a cubic force field calculation at the same level of theory
was performed, yielding a vibrationally averaged bond length
of 1.1626 Å. The difference between these two values was then
added to a highly accurate ab initio value of 1.1601 Å [11] for
the equilibrium bond length.

Each configuration of two rigid CO2 molecules can be ex-
pressed by the four variables R, θ1, θ2, and φ (illustrated in Fig-
ure 1), where R is the distance between the centers of mass of
the two molecules, θ1 and θ2 are the angles between the R axis
and the bond axes of molecules 1 and 2, respectively, and φ is
the dihedral angle. The range of the angles can be restricted
to 0◦ 6 θ1 6 θ2 6 90◦ and 0◦ 6 φ 6 180◦ due to symmetry. A
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Figure 1: Internal coordinates of the CO2 molecule pair.

total of 60 distinct angular configurations were considered. The
angles θ1 and θ2 were varied in steps of 22.5◦, and φ was var-
ied in steps of 22.5◦ for θ1 > 45◦, of 30◦ for θ1 = 45◦, and of
45◦ for θ1 < 45◦. The number of center-of-mass separations R
considered for each angular configuration varies from 15 in the
range 3.75 Å 6 R 6 12 Å (for θ1 = θ2 = 0◦) to 23 in the range
1.75 Å 6 R 6 12 Å (e.g., for θ1 = θ2 = φ = 90◦). This resulted
in a total of 1229 CO2–CO2 configurations.

The interaction energies V(R, θ1, θ2, φ) were computed utiliz-
ing the supermolecular approach including the full counterpoise
correction [12] at the frozen-core CCSD(T) level of theory with
the aug-cc-pVXZ basis sets with X = 3 and X = 4 [13, 14].
Both basis sets were supplemented by a 3s3p2d1f set of bond
functions located midway along the R axis with exponents of
0.1, 0.3, and 0.9 for s and p, 0.25 and 0.75 for d, and 0.45
for f. The correlation contributions to the interaction energies,
VCCSD(T) corr, were extrapolated to the CBS limit using the two-
point extrapolation scheme of Halkier et al. [15],

VCCSD(T) corr(X) = VCBS
CCSD(T) corr + αX−3. (1)

The HF contributions were not extrapolated, since they con-
verge much faster to the CBS limit than the correlation con-
tributions. Therefore the HF interaction energies from the
aug-cc-pVQZ calculations were used to approximate the CBS
limit.

All ab initio calculations were performed using the cfour
program [16]. The computed interaction energies for the 1229
configurations are given in the Supplementary information.

2.2. Analytical potential function
A site-site potential function with seven sites per CO2

molecule was fitted to the calculated interaction energies. This
corresponds to four different types of sites and ten different
types of site-site combinations. The functional form for each
site-site interaction is

Vi j(Ri j) =Ai j exp(−αi jRi j) − f6(bi j,Ri j)
C6 i j

R6
i j

− f8(bi j,Ri j)
C8 i j

R8
i j

+
qiq j

Ri j
, (2)

where Ri j is the distance between site i of molecule 1 and site j
of molecule 2. The damping functions fn are given by [17]

fn(bi j,Ri j) = 1 − exp(−bi jRi j)
n∑

k=0

(bi jRi j)k

k!
. (3)

Table 1: Equilibrium structure of the CO2 dimer (with θ1 = θ2 = θ and φ = 0◦)
for different potential functions.

Pair potential R/Å θ/deg De/K
Bukowski et al. (SAPT-a) [2] 3.54 59.0 696.8
Bock et al. [3] 3.47 59.8 694.6
Oakley and Wheatley (CBS-a) [4] 3.51 58 679
Wang et al. [6] 3.50 56.9 785
This work, VA 3.530 58.64 724.5
This work, VB 3.533 58.60 723.5

The total interaction potential is the sum over all site-site inter-
actions,

V(R, θ1, θ2, φ) =

7∑
i=1

7∑
j=1

Vi j

[
Ri j(R, θ1, θ2, φ)

]
. (4)

The parameters A, α, b, C6, and C8 for the ten different site-site
combinations as well as the site charges q and the positions of
the sites were fully optimized in a non-linear least-squares fit to
the 1229 computed interaction energies. Three constraints were
imposed:

1. The total charge of the monomers had to be zero.
2. The quadrupole moment of the monomers had to be equal

to a value of -3.16323 a.u. resulting from an ab initio cal-
culation at the frozen-core CCSD(T)/aug-cc-pV5Z level.

3. The isotropic average of the C6 dispersion coefficient,
C6 iso =

∑7
i=1

∑7
j=1 C6 i j, had to be equal to the accurate

value of 158.7 a.u. [18] from dipole oscillator strength dis-
tributions (DOSDs).

The potential function thus obtained is denoted by VA. Using
highly accurate experimental data for the second virial coef-
ficient as guidance (see Section 3), we obtained an improved
potential function, VB, by replacing the term αX−3 in Eq. 1
by αX−3.2 and refitting the potential parameters. Figure 2 il-
lustrates the distance dependence of the CCSD(T) interaction
energies in the CBS limit (obtained with the adjusted exponent)
and the fitted potential function VB. The interaction energies are
given in Kelvin, i.e., they have been divided by Boltzmann’s
constant kB. In Figure 3 interaction energies calculated using
VB are plotted against the corresponding CCSD(T)/CBS values
for energies up to 20 000 K. The deviations from a straight line
are very small, demonstrating the high quality of the fit.

The parameters of the equilibrium structure of the CO2 dimer
are listed in Table 1 for the potential functions VA and VB, as
well as for the potentials of Bukowski et al. (SAPT-a fit) [2],
Bock et al. [3], Oakley and Wheatley (CBS-a fit) [4], and Wang
et al. [6]. The equilibrium dissociation energies De for VA and
VB, which differ by only about 1 K, are significantly larger than
those for the other potentials, with the exception of the potential
of Wang et al., for which De is much higher.

The parameters of the potential functions VA and VB, the in-
teraction energies calculated with these functions for all 1229
investigated configurations, as well as a Fortran 90 code for
evaluating VA and VB are provided in the Supplementary in-
formation.
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Figure 2: CO2–CO2 pair potential as a function of the distance R for various angular configurations. The CCSD(T) interaction energies in the CBS limit are
represented by symbols and the fitted analytical potential function VB by solid lines.

Figure 3: Interaction energies from the fitted analytical potential function VB
versus the corresponding CCSD(T)/CBS values.

3. Second virial coefficient

The classical second virial coefficient for a gas composed of
rigid molecules is given by

Bcl(T ) = −
NA

2

∫ ∞

0

〈
f12

〉
Ω1,Ω2

dR, (5)

with

f12 = exp
[
−

V(R,Ω1,Ω2)
kBT

]
− 1, (6)

where R is the distance vector between the centers of mass of
the two molecules, Ω1 and Ω2 represent the angular orientations
of molecules 1 and 2, respectively, and the angle brackets de-
note an average over Ω1 and Ω2. Quantum effects can be taken
into account by replacing the pair potential V in Eq. 6 by the
quadratic Feynman–Hibbs (QFH) effective pair potential [19].
For identical rigid linear molecules it can be written as

VQFH(T ) =V +
~2

12kBT

[
1
m

(
∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2

)
+

1
2I

2∑
i=1

(
∂2V
∂ψ2

i,a

+
∂2V
∂ψ2

i,b

)]
, (7)

where m and I are the molecular mass and moment of inertia,
respectively, x, y, z are the Cartesian components of R, and
the angles ψi,a and ψi,b correspond to rotations around two ar-
bitrarily chosen principal axes a and b of molecule i, with the
restriction that a and b are perpendicular to each other.

The second virial coefficient of carbon dioxide was com-
puted for 89 temperatures in the range from 150 K to 2000 K
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Figure 4: Deviations, ∆ = B − BVB
QFH, of experimental data and calculated val-

ues for the second virial coefficient of CO2 from values computed using the
potential function VB. The dotted lines indicate the estimated uncertainties of
BVB

QFH.

using the Mayer-sampling Monte Carlo (MSMC) approach of
Singh and Kofke [20]. Results for all temperatures were ob-
tained simultaneously by performing multi-temperature simula-
tions [20–22] with a sampling temperature of 150 K and 5×1010

trial moves. In each MC trial move one of the molecules was
displaced and rotated, and the maximum step size for the moves
was adjusted in short equilibration periods to achieve accep-
tance rates of 50%. The second derivatives of the pair potential
in Eq. 7 were evaluated analytically. As a reference system,
the hard-sphere fluid with σ = 4.5 Å was chosen. Calculated
virial coefficients from 16 independent simulation runs were av-
eraged. The final results are converged within 0.02 cm3 mol−1

for all temperatures. They are listed for both VA and VB in the
Supplementary information.

In Figure 4 selected experimental data [23–26] for the sec-
ond virial coefficient of carbon dioxide are compared with the
computed values BVA

QFH and BVB
QFH (interpolated for the experi-

mental temperatures). The values of Vukalovich and Masalov
[23] were taken from Ref. [27]. Data close to room temperature
of Jaeschke [25] and Duschek et al. [26] were used as reference
for the fine tuning of the PES (see Section 2.2). The agreement
between the experimental data and both BVA

QFH and BVB
QFH is ex-

cellent over most of the temperature range. Our estimate of the
uncertainties of BVB

QFH is given by

δBVB
QFH = max

(
a1

∣∣∣∣BVB
QFH − BVA

QFH

∣∣∣∣ , a2, a3T
)
, (8)

where a1 = 4, a2 = 0.5 cm3 mol−1, and a3 = 5 ×
10−4 cm3 mol−1 K−1.

Figure 4 also shows deviations for second virial coefficients

calculated by Bock [28] for the potentials of Bukowski et al.
[2] and Bock et al. [3]. Bock used the approach of Pack [29] to
account for quantum effects instead of the QFH approach em-
ployed in the present work. However, this should only have a
very small effect on the resulting virial coefficients. The po-
tential of Bukowski et al. yields second virial coefficients that
are too positive at low temperatures and too negative at high
temperatures. For the potential of Bock et al. the virial coeffi-
cients are mostly within experimental error bars, but at higher
temperatures they are also too negative.

4. Shear viscosity and thermal conductivity

Transport properties in the dilute-gas limit can be calculated
using the kinetic theory of molecular gases [1]. The shear vis-
cosity η is given as

η(T ) =
kBT
〈v〉0

f (n)
η

S(2000)
, (9)

where 〈v〉0 = 4(kBT/πm)1/2 is the average relative thermal
speed, and S(2000) is a temperature-dependent generalized
cross section. The quantity f (n)

η is an nth-order correction factor
that accounts for higher basis function terms in the perturbation
series expansion of the solution of the Boltzmann equation [1].
It is given by

f (n)
η = S(2000)

S (n)
11

S (n) , (10)

where S (n) is a determinant of cross sections and S (n)
11 its minor.

In the second-order approximation, which results from includ-
ing the basis functionsΦ2000,Φ2010,Φ2001, andΦ0200, we have
[30, 31]

S (2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S(2000) S
(

2000
2010

)
S
(

2000
2001

)
S
(

2000
0200

)
S
(

2010
2000

)
S(2010) S

(
2010
2001

)
S
(

2010
0200

)
S
(

2001
2000

)
S
(

2001
2010

)
S(2001) S

(
2001
0200

)
S
(

0200
2000

)
S
(

0200
2010

)
S
(

0200
2001

)
S(0200)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (11)

In the present work, we employ a third-order approximation
that includes the basis functions Φ2000, Φ2010, Φ2001, Φ0200,
Φ2020, Φ2011, Φ2002, Φ2100

2 , and Φ2200
2 . This results in a 9 × 9

determinant S (3) similar in structure to S (2). Note that the ba-
sis functions Φ2100

2 and Φ2200
2 were not considered in the third-

order approximation given in Ref. [31].
The thermal conductivity λ was evaluated in a second-order

approximation using a recently derived expression in terms of
generalized cross sections [32] that takes the contributions of
the vibrational degrees of freedom more accurately into ac-
count than the previous approach given in Refs. [33] and [34].
Both approaches require knowledge of the vibrational contri-
bution to the isochoric heat capacity in the ideal-gas limit,
C0

vib = C0
V − 5kB/2. Values of C0

V for CO2 were obtained from
the equation of state of Span and Wagner [35].
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The generalized cross sections needed to evaluate viscosity
and thermal conductivity were computed by means of classi-
cal trajectories using a modified version of the traject software
code [36]. For a given total energy, E = Etr + Erot, classical tra-
jectories describing the collision process of two molecules were
obtained by integrating Hamilton’s equations for linear rigid ro-
tors from pre- to post-collisional values (initial and final sepa-
ration: 500 Å). The total-energy-dependent generalized cross
sections can be represented as nine-dimensional integrals over
the initial states. They were calculated for 33 values of E, rang-
ing from 60 K to 60 000 K, by means of a simple Monte Carlo
procedure, in which the initial states were generated utilizing
quasi-random numbers. Up to 4 × 106 trajectories were com-
puted at each energy. The number of trajectories had to be re-
duced significantly for low energies, because the computational
demand to achieve a sufficient accuracy for a particular trajec-
tory increases as the energy decreases. The final integration
over E to obtain the temperature-dependent generalized cross
sections was performed using Chebyshev quadrature. We esti-
mate the precision of the resulting transport property values to
be 0.1% for viscosity and 0.2% for thermal conductivity. Values
obtained for both properties with the potential function VB are
given in the Supplementary information for 173 temperatures
between 150 K and 2000 K. The corresponding values for VA
agree within ±0.02% for all temperatures with those for VB.

In Figure 5 selected experimental data [37–39] and a corre-
lation [40] for the shear viscosity of dilute CO2 are compared
with values obtained for the potential function VB. Maitland
and Smith [37] measured the viscosity of CO2 relative to that
of nitrogen at each temperature. We reanalyzed these mea-
surements using viscosity values for nitrogen recommended in
Ref. [22]. The viscosity values of Hendl et al. [39] were mea-
sured with an oscillating-disk viscometer, which was calibrated
using an old reference value for the viscosity of CO2 at room
temperature. These measurements were reevaluated by Vogel
[41] using a highly accurate ab initio value for the viscosity of
helium at room temperature [42].

The comparison with the experimental data reveals that the
calculated values are too small, but have the correct tempera-
ture dependence. The average deviation of the reevaluated data
of Hendl et al. from the calculated values is +0.55%. Hence,
for practical applications, we propose a simple scaling of the
calculated values by a factor of 1.0055. We estimate the un-
certainty of the scaled values to be 0.2% between 300 K and
700 K, increasing to about 1% at both 150 K and 2000 K.

Also shown in Figure 5 are the deviations for viscosity values
computed by Bock et al. [40] for the potentials of Bukowski et
al. [2] and of Bock et al. [3] using the traject code [36]. The
values for the potential of Bukowski et al. show nearly the same
temperature dependence as the values for the potential function
VB and agree even better with the experimental data, whereas
the values for the potential of Bock et al. exhibit a different tem-
perature dependence than the experimental data and the values
obtained with the other two potential functions.

In Figure 6 selected experimental data [43–47] for the ther-
mal conductivity of dilute CO2, as well as a correlation [48]
and values computed by Bock et al. [34] for the potentials of

Figure 5: Relative deviations, ∆ = (η − ηVB )/ηVB , of experimental data, a
correlation, and calculated values for the shear viscosity of dilute CO2 from
values computed using the potential function VB.

Bukowski et al. [2] and of Bock et al. [3] are compared with
values obtained for the potential function VB. The figure re-
veals that most of the experimental data sets are not mutually
consistent within their stated uncertainties. We believe that the
most reliable data are those reported by Haarman [44] and Li
et al. [47], since their thermal conductivity data for argon and
nitrogen, which are reported in the same papers, agree within
±0.5% with values obtained for highly accurate pair potentials
[22, 49]. As in the case of the viscosity, we propose a scal-
ing of the calculated values. A scaling factor of 1.011 seems to
be optimal, as it results in thermal conductivity values that are
consistent with the data of Haarman [44] and Li et al. [47], as
well as with most of the data of Johnston and Grilly [43] and
with the datum closest to room temperature of Millat et al. [46].
We estimate the uncertainty of the scaled values to be 1% be-
tween 300 K and 700 K, increasing to 2% at both 150 K and
2000 K. This uncertainty estimate does not take into account
the increase of the thermal conductivity due to partial dissocia-
tion [50] of CO2 at high temperatures.

The deviations of the thermal conductivity values computed
by Bock et al. [34] for the potentials of Bukowski et al. [2] and
of Bock et al. [3] are similar to those observed for viscosity.
The values obtained for the potential of Bukowski et al. [2] are
slightly closer to the experimental data than the values calcu-
lated for the potential function VB.

5. Summary and conclusions

A new four-dimensional intermolecular potential for two
rigid carbon dioxide molecules was determined utilizing
quantum-chemical ab initio calculations. Interaction ener-
gies were computed for 1229 CO2–CO2 configurations at the
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Figure 6: Relative deviations, ∆ = (λ − λVB )/λVB , of experimental data, a
correlation, and calculated values for the thermal conductivity of dilute CO2
from values computed using the potential function VB.

CCSD(T) level of theory. Basis sets up to aug-cc-pVQZ, sup-
plemented by bond functions between the two molecules, were
employed and the resulting interaction energies were extrapo-
lated to the complete basis set limit. A site-site potential func-
tion with seven sites per molecule and isotropic site-site inter-
actions was fitted to the calculated interaction energies.

To validate the new potential function, the second virial co-
efficient as well as shear viscosity and thermal conductivity
in the dilute-gas limit were computed for temperatures be-
tween 150 K and 2000 K. For the second virial coefficient, very
good agreement was obtained with highly accurate experimen-
tal data. These data were also used for a fine tuning of the po-
tential. In the case of the two transport properties, the compar-
ison with the most accurate experimental data suggests that the
computed values for viscosity and thermal conductivity are too
low by about 0.5% and 1%, respectively. These deviations are
probably caused primarily by the deficiencies of the rigid-rotor
approximation. Since the relative deviations are only weakly
temperature dependent, a simple scaling of the computed trans-
port property values is proposed to obtain highly accurate val-
ues for practical applications.
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