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Kinetic theory of gases is extended from linear molecules to asymmetric tops. The integration

over the velocity of the centre of mass is carried out explicitly and the results are expressed in a

form suitable for classical evaluation. These results can also be employed for spherical and

symmetric tops.

1. Introduction

Dilute-gas transport properties, such as the shear viscosity and
the thermal conductivity, are of great interest, particularly as
absolute values can be measured in favourable cases with an
uncertainty less than !(0.1"0.2)% and !(0.3"0.5)%, respec-
tively.1 The kinetic theory of dilute gases allows the calculation
of these and other transport and relaxation properties from a
set of effective cross sections, known as Omega integrals for
atomic gases. These cross sections can be determined from a
given intermolecular potential energy hypersurface and the
quality of the surface can be tested by comparison with
measurements of the transport properties calculated employ-
ing it. Typically, the best measurements are made at room
temperature but, depending on the molecule of interest, results
may be available over a wide range of temperatures, albeit
with varying accuracy. Kinetic theory can also be used to
predict the transport properties at temperatures outside the
working range of most instruments, especially at high tem-
peratures.
The kinetic theory of dilute monatomic gases has been very

successfully applied to calculate reference values for the
transport properties of helium to be used for the calibration
of measuring instruments. Prerequisites for such a calibration
are that the kinetic theory for monatomic gases requires
only minimal approximations to be implemented practically,
and that a highly precise interatomic potential has been
determined.2

For linear molecules Curtiss3 has provided the necessary
kinetic theory in a form amenable to numerical evaluation.
Using this, calculations have been performed for nitrogen,4,5

carbon monoxide,6,7 and carbon dioxide.8–10 These calcula-
tions were based on a classical description of the two-molecule
scattering process with rigid monomers and resulted in the
successful evaluation of a number of transport properties and
of magnetic-field effects on these properties, as well as of
relaxation properties. All three molecules are relatively rigid
due to their double or triple bonds and have sufficiently large
masses and moments of inertia that a classical description with
rigid molecules is justified for most of the transport and

relaxation properties. However, in order to describe ade-
quately the thermal conductivity and thermo-magnetic effects,
vibrational modes of motion have had to be taken into
account by a physically reasonable correction.9,11 Since the
thermomagnetic, viscomagnetic and relaxation properties van-
ish for a spherically symmetric potential, these properties are
direct indicators of the anisotropy of the potential surfaces.
Extending kinetic theory to rigid molecules of arbitrary

structure, asymmetric tops, and implementing it in a computer
code using a similar classical rigid-molecule scattering descrip-
tion, is the next evolutionary step in this development. The
present paper is concerned with deriving the necessary expres-
sions. This development will allow the calculation, for the first
time, of the transport and relaxation properties of molecules
such as dilute gas-phase water, using different intermolecular
potential hypersurfaces reported in the literature, e.g. ref. 12
and 13. Furthermore, since symmetric tops and spherical tops
can be considered as special cases of asymmetric tops, this
development will allow transport and relaxation properties of
important molecules such as benzene, methane and sulfur
hexafluoride to be calculated. However, molecules such as
ethane and ammonia, which are not completely rigid, may still
present additional problems, due to internal rotation for the
former and ‘‘umbrella’’ inversion for the latter.

2. Theory

2.1 Boltzmann equation

Dilute gas transport theory is based on solving the linearised
Boltzmann equation for the relevant perturbation.14 The
classical Boltzmann equation for linear molecules was derived
by Curtiss15 and later extended by him to non-reacting mole-
cules of arbitrary structure.16 However, while he provided a
detailed description of the calculation of effective cross sec-
tions for linear molecules,3 no such description is available for
asymmetric tops.
For the classical coordinates for the asymmetric top of

interest here we employ J, K, M, qJ, qK, qM, where J is the
magnitude of the angular momentum vector, J, of the top, K
and M are its projections on the body-fixed and space-fixed z
axes, respectively, and qJ, qK and qM are the corresponding
conjugate angle variables. A useful figure illustrating these
angles can be found in ref. 17 or in ref. 18. (Note that these
coordinates for an asymmetric top are identical to those for a
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symmetric top.) For free motion of the top J, M and qM are
constant. For the special case of a symmetric top, K is also
constant and qJ and qK increase linearly with time, while for a
spherical top qK is also constant.
We assume that for an asymmetric-top molecule the dis-

tribution function, fa, depends on K and qK only implicitly
through the internal energy of the top, given by19,20

EaðJ;K; qKÞ ¼J2 cos2 qK
2Iax

þ sin2 qK
2Iay

 !

þ K2 1

2Iaz
" cos2 qK

2Iax
" sin2 qK

2Iay

 !

;

ð2:1Þ

where Iax, I
a
y and Iaz are the principal moments of inertia (Iaz Z

Iay Z Iax). Here we are following Liu et al.17 and Yang et al.18

in using the ‘‘y-convention’’ of Goldstein et al.21 for the
definition of the conventional Euler angles used to define the
orientation of the top. This choice leads to the interchange of
sinqK and cosqK in the expression of Augustin and Miller19 for
the energy of the top, our eqn (2.1). For a symmetric top we
take Iax = Iay, regardless of the relative size of Iaz.
Ideally, as well as this implicit dependence on K and qK, an

explicit dependence would also be introduced. This would
complicate the development significantly, requiring two addi-
tional indices in the basis functions used to represent the
distribution function. In turn, four additional indices would
be required for the effective cross sections. Hence inclusion of
this K and qK dependence is deferred until there is clear
experimental evidence that inclusion is required and we solve
for the distribution function averaged over K and qK. Such
averaging is equivalent to taking the lowest term in a more
general expansion of fa which allows for the explicit depen-
dence on K and qK. However, the K dependence might be
relevant for studying electric-field effects on transport proper-
ties, since, in general, the energy of an asymmetric top in an
electric field depends on the value of K.
As for a linear molecule, we assume also that fa is indepen-

dent of qJ and of R, the position of the molecule centre of
mass.
The Boltzmann equation for the distribution function for an

asymmetric top, species a, in collision with an asymmetric top,
species b, is16

@

@t
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) dqJb dqKb
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dqJa dðcos yKaÞdqKa ;

ð2:2Þ

where ma and Pa are the molecular mass and momentum of
species a, respectively and generally subscripts a and b denote
properties of species a and b, respectively. Here g and b are the
relative velocity and impact-parameter vectors, respectively,
fb is the azimuthal angle of b about g, cosyMa

=Ma/Ja and the
right-hand side has been averaged over the variables qJa, Ka

and qKa
, extending the averaging over qJa used by Curtiss15 for

the linear-molecule case. For convenience, the average over Ka

is replaced by an average over yKa
, the angle between Ja and

the body-fixed z axis, and similarly for the integral over Kb. We
assume no ambiguity results from the use of b to denote both
the impact parameter and a species label.
The zero-order equilibrium solution for the distribution

function is

f ð0Þa ½Pa;EaðJa;Ka; qKaÞ;T + ¼ na

ð2pmakBTÞ3=2Za

) exp " P2
a

2makBT
" Ea

kBT

! "
;

ð2:3Þ

where T is the temperature, na is the number of molecules of
species a, Za = (2pkBT)

3/2 (IaxI
a
yI

a
z)
1/2 is proportional to the

classical internal state partition function and kB is Boltz-
mann’s constant.
The normalization is

Z
f ð0Þa ½Pa;EaðJ;K ; qKÞ;T + dPa dJ dM dqM

dK

2

dqK
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¼ na:

ð2:4Þ

To verify the normalization we note that
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where g(E) is an arbitrary function of E.

2.2 Basis functions

The solution of the linearized Boltzmann equation is expressed
in terms of suitable basis functions. We make minor modifica-
tions to the basis functions introduced for linear molecules in
Curtiss.3 We have introduced a phase change, multiplying by a
factor of ðiÞpþq; i ¼

ffiffiffiffiffiffiffi
"1

p
; to ensure all effective cross sections

are real.4 This choice gives the same phase convention as that
employed by McCourt et al.14 The second change involved
alteration of one of the indices of the Associated Laguerre
polynomial used for the internal energy arising from asym-
metric tops requiring three generalized coordinates while the
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linear molecules used previously required two.

Bpqst
km ðW ; e; ĴÞ ¼ð"1Þk"mðiÞpþq2p3=2ð2kþ 1Þ1=2

)Wp !L
pþ1=2
s ðW2Þeq=2 !L

qþ1=2
t ðeÞ

)
X

mn

p q k

m n "m

 !

Ym
p ðŴÞYn

q ðĴÞ:

ð2:6Þ

The dimensionless linear momentum, Wa, and rotational
energy, ea, are given by

Wa ¼
Pa

ð2makBTÞ1=2
; ea ¼

Ea

kBT
; ð2:7Þ

where Ea is given by eqn (2.1). Here !Lm
n (x) is the normalised

Associated Laguerre polynomial satisfying3

Z 1

0
xa expð"xÞ !L

a
nðxÞ !L

a
n0 ðxÞdx ¼ dn;n0 ; ð2:8Þ

( ( (
( ( (

! "
denotes a 3 " j symbol and Ym

l (R̂) denotes a

spherical harmonic. Since we are following Curtiss,3 eqn
(2.6) uses the conventions of Hirschfelder et al.22 for spherical
harmonics.
The Bpqst

km (W, e, Ĵ) form an orthonormal set with weight
function f(0)a :

1

na

Z
f ð0Þa ½P;EðJ;K ; qK Þ;TÞ+Bp0q0s0t0

k0m0 ðW ; e; ĴÞ,

) Bpqst
km ðW ; e; ĴÞdPJdJ dĴ

dK

2

dqK
2p

¼ dðpqstkmjp0q0s0t0k0m0Þ;

ð2:9Þ

where Z* denotes the complex conjugate of Z and
d(i1i2( ( (|i3i4( ( () is a shorthand for di1,i3di2,i4. . .. Because Ĵ is
independent of K and qK, (see Child,20 p. 87) or the figure in
Liu et al.17 or in Yang et al.18) the integration over Ĵ proceeds
as for linear molecules. Also the integration over J, K, M and
qK proceeds as in eqn (2.5).

2.3 Effective cross sections

2.3.1 Laboratory frame cross sections. Using these basis
functions from eqn (2.6) we then define, following Curtiss,3

temperature-dependent effective cross sections in the labora-
tory reference frame, as

s0
p q s t

p0 q0 s0 t0

 !ðkÞ

ðTÞ ¼ "½64p4nanb!g+"1

) 1
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h i
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2
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ð0Þ
a dR

ð0Þ
b dPadPbdr̂Ka dr̂Kb

;

ð2:10Þ

and

s00
p q s t
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ð2:11Þ

where !g denotes the mean relative speed and

dRð0Þ
a ¼ d Ĵa dqJa ; dr̂Ka ¼ dðcos yKaÞdqKa ; a - a; b:

ð2:12Þ

The overall normalization of these expressions for the cross
sections is chosen so that if all the terms in B are replaced by

PðbÞ ¼ 1; 0 . b . b0; PðbÞ ¼ 0 elsewhere;

then s0 = s00 = pb20. Equivalently, the cross section can be
defined, analogously to quantal effective cross sections, in
terms of the classical cross section differential in solid angle
and in final rotor action variables.
We recall that Curtiss3 uses primes for pre-collision values

and, in Curtiss and Tonsager,23 regards initial values as
functions of final values. The classical trajectory (CT) linear-
molecule code24 reverses this convention. As in that paper, we
shall use primes to denote post-collision values and regard
final dynamical variables as functions of their pre-collision
values. Note that, because of the absence of a preferred
direction in space, each term in the sum in eqns (2.10) and
(2.11) is independent of m.
We have used the notation

s0 p q s t
p0 q0 s0 t0

! "ðkÞ
ðTÞ

and

s00 p q s t
p0 q0 s0 t0

! "ðkÞ
ðTÞ

to keep as close to Curtiss3 as possible and to keep the
notation as compact as possible. In terms of the notation used
by McCourt et al. (see ref.14, section 2.3.2 and 5.2).

s0
p q s t

p0 q0 s0 t0

 !ðkÞ

ðTÞ -S
p q s t j a

p0 q0 s0 t0 j a

 !

ab

;

s00
p q s t

p0 q0 s0 t0

 !ðkÞ

ðTÞ -S
p q s t j a

p0 q0 s0 t0 j b

 !

ab

:

Thus, following McCourt et al.,14 (see section 2.3.2) s0

accounts for the production of Bpqst
km (W, e, Ĵ) in species a from

Bp0q0s0t0
km (W, e, Ĵ) in species a by collisions between species a and

b, while s00 accounts for the production of Bpqst
km (W, e, Ĵ) in

species a from Bp0q0s0t0
km (W, e, Ĵ) in species b by collisions
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between the two species. This distinction between the primed
and double-primed quantities is maintained throughout the
paper.
For a full discussion of a gas mixture one would need a s0

cross section for the production of Bpqst
km (W,e,Ĵ) in

species b fromBp0q0s0t0
km (W,e,Ĵ) in species b by collisions between

species a and b. The derivation of this will mirror that for the
species a case discussed here.
Substituting in eqns (2.10) and (2.11) for the equilibrium

distribution functions from eqn (2.3) we obtain
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p0 q0 s0 t0
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and with a similar expression for s00 p q s t
p0 q0 s0 t0

! "ðkÞ
ðTÞ.

Again following Curtiss,3 since the dynamics of the collision
are independent of the velocity of the centre of mass, we
transform from Pa and Pb to the relative velocity, g, and the
centre-of-mass velocity, G, yielding:
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0
aÞ "Bpqst

km ðWa; ea; ĴaÞ+
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ð2:14Þ

where M = ma + mb, m denotes the reduced mass and a
similar expression exists for

s00 p q s t
p0 q0 s0 t0

! "ðkÞ
ðTÞ :

2.3.2 Integration over the centre of mass velocity. Now,
following Curtiss,3 eqn (22), we transform the translational
part of the integrand to centre-of-mass and relative coordi-
nates. Fortunately, this proceeds exactly as for linear mole-
cules since the internal structure of the molecules is not

involved. For asymmetric-top molecules we have
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where

( ( (
( ( (

& '

denotes a 6 " j symbol, I(k)lnl0n0;psps(ya, yb) denotes the Talmi
coefficient used by Curtiss,3 eqn (27), y2a = ma/M, a - a, b, X0

is as defined by Curtiss,3 eqn (28), and where in X0(lq|l0q0)k
(0)

all primed dynamical variables are replaced by their unprimed
equivalents. (Note that the indices nln0l0 of I(k) have been
transposed in Curtiss’s eqns (30), (36–37) and (40–41).25) In
eqn (2.15) the first term in parentheses on the right-hand side is
the additional factor arising from the change in the numerical
factors in the basis functions between linear molecules and
asymmetric-top molecules. Similarly
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and X00 is defined by Curtiss,3 eqn (29), and where in
X00(lq|l0q0)(0)k all primed dynamical variables are replaced by their
unprimed equivalents and where the scaled relative velocity

c ¼ m
2kBT

! "1=2
g; ð2:17Þ
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has been introduced. Changing from integration over Ja and
Jb to ea and eb, respectively, and employing eqn (30) from
Curtiss,3 for asymmetric-top molecules we have, where the
change of variables proceeds as in eqn (2.5),
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Here dR̂Ka
has been redefined from eqn (2.12) and no longer

has the geometric interpretation introduced there. Note that
for spherical and symmetric tops h = 1 and that for asym-
metric tops !h ¼ 2
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ffiffiffiffiffiffiffiffi
IxIy

p

IzðIx sin2 qK þ Iy cos2 qK Þ sin2 yK þ IxIy cos2 yK
:

ð2:21Þ

For a spherical top h̃ = 1 and for a symmetric top h̃ is
independent of qK.

Similarly

s00
p q s t

p0 q0 s0 t0

 !ðkÞ

ðTÞ ¼ "½211p7+"1ð"1Þkþp0 ð"iÞqþq0

)
Z

exp½"g2 " ea " eb+g3ðeaebÞ1=2ð2qþ 1Þ1=2eq=2a eq
0=2
b

)
X

k
ð"1Þkð2kþ 1Þ

q q0 k

p0 p k

( )
X

nln0l0
ilþl0 ya

yb

! "ð4n0þ2l0"2s0"p0Þ

) ð2l þ 1Þ1=2I ðkÞlnl0n0;psp0s0 ðya; ybÞg
l0 !L

l0þ1=2
n0 ðg2Þ !L

q0þ1=2
t0 ðebÞ

) ½ðg0Þl !Llþ1=2
n ðg02Þ !L

qþ1=2
t ðe0aÞX

00ðlqjl0q0Þk

" gl !Llþ1=2
n ðg2Þ !L

qþ1=2
t ðeaÞX 00ðlqjl0q0Þð0Þk +

) hðqKa ; I
a
x ; I

a
y ÞhðqKb

; Ibx ; I
b
y Þbdbdfbdgdĝ

) deadebdRð0Þ
a dR

ð0Þ
b dr̂Ka dr̂Kb

:

ð2:22Þ

Since only relative orientations are important we are free to
choose our space-fixed axes with Oz along g and Ox along b.
Then the integrand is independent of fb and ĝ so performing
the integral over these variables yields a factor of 8p2.

2.3.3 Centre of mass cross sections. Following Curtiss,3 for
asymmetric-top molecules we define angle averages of the
integrands:

R0
l q n t

l0 q0 n0 t0

 !

k

¼ eq=2a

210p6
R
ðg0Þl !Llþ1=2

n ðg02Þ

) !L
qþ1=2
t ðe0aÞX 0ðlqjl0q0ÞkhðqKa ; I

a
x ; I

a
y ÞhðqKb

; Ibx ; I
b
y Þ

) dRð0Þ
a dR

ð0Þ
b dr̂Ka dr̂Kb

:

ð2:23Þ

Similarly, following Curtiss,3 eqn (32), we define

R00 l q n t
l0 q0 n0 t0

! "

k

as in eqn (2.23) but with X0(lq|l0q0)k replaced by X00(lq|l0q0)k.
We now define an energy-dependent cross section in the

centre-of-mass frame:

Q0
l q n t

l0 q0 n0 t0

 !

k

ðea; eb; gÞ ¼ 2p
Z 1

0
bdb

) dl;l0dq;q0dk;0gl !L
lþ1=2
n ðg2Þeq=2a

!L
qþ1=2
t ðeaÞ " R0

l q n t

l0 q0 n0 t0

 !

k

" #
:

ð2:24Þ

In the analogous cross section,

Q00 l q n t
l0 q0 n0 t0

! "

k
ðea; eb; gÞ ;
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in the first term inside the square brackets there is an addi-
tional factor of dq,0 and the second term is replaced by

R00 l q n t
l0 q0 n0 t0

! "

k
:

Next, we introduce the thermally averaged centre-of-mass
cross sections:

s0
l q n t

l0 q0 n0 t0

 !

k

ðTÞ ¼ iq"q0þl"l0
Z

exp½"g2 " ea " eb+

) ðeaebÞ1=2gl
0 !L

l0þ1=2
n0 ðg2Þ !L

q0þ1=2
t0 ðeaÞðeaÞq

0=2

)Q0
l q n t

l0 q0 n0 t0

 !

k

ðea; eb; gÞg2 dðg2Þdeadeb;

ð2:25Þ

and

s00
l q n t

l0 q0 n0 t0

 !

k

ðTÞ ¼ iq"q0þl"l0
Z

exp½"g2 " ea " eb+

) ðeaebÞ1=2gl
0 !L

l0þ1=2
n0 ðg2Þ !L

q0þ1=2
t0 ðebÞðebÞq

0=2

) Q00
l q n t

l0 q0 n0 t0

 !

k

ðea; eb; gÞg2 dðg2Þdeadeb:

ð2:26Þ

The introduction of the leading factor in i on the right-hand
side ensures that s0 and s00 are always real because X0(lq|l0q0)k
is real or imaginary as (q " q0 + l " l0) is even or odd,
respectively.
Finally we can relate the lab and centre-of-mass temperature-

dependent cross sections. We have, from eqns (2.18) and (2.25),

s0
p q s t

p0 q0 s0 t0

 !ðkÞ

ðTÞ ¼ ð"1Þkþqþp0 ð2qþ 1Þ1=2

)
X

k
ð"1Þkð2kþ 1Þ

q q0 k

p0 p k

( )

)
X

nln0l0
ð2l þ 1Þ1=2I ðkÞlnl0n0;psp0s0 ðya; ybÞs

0
l q n t

l0 q0 n0 t0

 !

k

ðTÞ;

ð2:27Þ

with, for

s00 p q s t
p0 q0 s0 t0

! "ðkÞ
ðTÞ ;

an additional factor of ("1)l
0
(ya/yb)

(4n
0
+2l

0
–2s

0
–p

0
) inside the

second summation and

s0 l q n t
l0 q0 n0 t0

! "

k
ðTÞ

replaced by

s00 l q n t
l0 q0 n0 t0

! "

k
ðTÞ :

Hence we now have the necessary relations to determine the
effective cross sections employed in kinetic theory from the
detailed dynamical treatment of the collisions. Practical details
concerning the implementation are discussed in the Appendix.

2.4 Semiclassical aspects

While this description is entirely classical, we note here some
connections with semiclassical aspects for symmetric and
asymmetric tops. For the symmetric top K is a good quantum
number. Hence the methods used by Liu and Dickinson26 can
be employed to establish the connection between classical
effective cross sections and quantal cross sections approxi-
mated using the classical S-matrix theory.27,28

For asymmetric tops, however, K is not a constant of the
motion and transitions are described in the classical S-matrix
theory by Augustin and Miller19 in terms of the angular-
momentum-like variable Z where, in our notation,

Z2 ¼ð1þ kÞK2 " ð1" kÞðJ2 " K2Þ cos2 qK ;

k ¼ 2IxIz " IyðIx þ IzÞ
IyðIz " IxÞ

:
ð2:28Þ

Here k denotes the usual asymmetry parameter for asymmetric
tops, rather than the tensor rank index introduced in eqn
(2.15). Thus for a semiclassical description19 the natural vari-
ables are J, M, Z, qJ, qM, qZ and transition amplitudes are
calculated assuming a uniform distribution in qZ, the angle
variable conjugate to Z. Effective cross sections involve sums
over the quantized values of Z and, in a semiclassical approx-
imation, these sums are converted to integrals over Z. Since the
transformation between the canonical pairs (Z, qZ) and (K, qK)
has Jacobian one, the resulting expressions can equally be
evaluated in the K, qK representation, as employed in our fully
classical description.
A further issue concerns quantal effects in the energies of the

asymmetric top. The quantization of the Z variable involves
motion in a symmetric double-well potential, qualitatively
similar to that giving the inversion splitting in ammonia.
Colwell et al.29 have shown that a uniform semiclassical
approximation, including allowance for tunnelling, gives much
improved results over the standard WKB approximation
ignoring tunnelling. As tunnelling leads to a splitting of
otherwise degenerate levels and, for low tunnelling frequencies
this splitting is approximately symmetric about the degenerate
level, the overall effect can be expected to be quite small when
a thermal average is required. Clearly this effect can be
expected to be strongest for hydrides.

3. Summary and conclusions

Previously, only for linear molecules3 was the necessary kinetic
theory available for the calculation of transport and relaxation
properties. Here we have extended this work to the most
general rigid molecular structure, the asymmetric top. For
the effective cross sections required by this theory we have
performed the integration over the velocity of the centre of
mass and brought the cross sections to a form suitable for
classical trajectory calculation. The solution for asymmetric
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tops necessarily includes the results for spherical and sym-
metric tops as special cases.
Calculations are in progress for methane and for water and

will be reported separately.30

While the theory developed here has been focussed on pure
gases, much of the development can readily be extended to
mixtures. In particular, the integration over the centre of mass
velocity has been performed for an arbitrary mass ratio of the
colliding partners (see section 2.3.2).

Appendix

3.1 Practical implementation

To follow as closely as possible the method used in the current
linear-molecule code24 we transform the centre of mass ther-
mal average, eqn (2.25), to obtain just one temperature-
dependent integral over the (conserved) total energy, transla-
tional and rotational. The procedure is outlined for s0: a
similar procedure may readily be adopted for s00. The integral
appearing in eqn (2.25) is of the form

I ¼
Z 1

0

Z 1

0

Z 1

0
exp½"g2 " ea " eb+g2ðeaebÞ1=2 dðg2ÞdeadebF:

ð3:29Þ

Introducing new variables

E ¼ E=kBT ¼ g2 þ ea þ eb; x ¼ g2=E ¼ mg2=2E;

y ¼ ea=½ð1" xÞE+ ¼ Ea=½ð1" xÞE+;
ð3:30Þ

where E is the total energy, eqn (3.29) becomes

I ¼
Z 1

0
E4 expð"EÞdE

Z 1

0
xð1" xÞ2 dx

)
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1" yÞ

p
dyF:

ð3:31Þ

With a view to obtaining a more uniform integrand for the
Monte Carlo numerical integration we make further transfor-
mations

u ¼ 6x2 " 8x3 þ 3x4; v ¼ 2

p
a" 1

4
sin 4a

! "
;

y ¼ sin2 a; or v ¼ 2

p
arcsin

ffiffiffi
y

p " ð1" 2yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1" yÞ

ph i
;

ð3:32Þ

yielding

I ¼ p
96

Z 1

0
E4 expð"EÞdE

Z 1

0
du

Z 1

0
dvF: ð3:33Þ

While we now have to solve eqn (3.32) numerically for x(u)
and y(v) this is a trivial overhead. Introducing the transformed
variables into eqn (2.25), the thermally averaged centre-of-
mass cross section can be written

s0
l q n t

l0 q0 n0 t0

 !

k

ðTÞ ¼ iq"q0þl"l0

) p
96

Z 1

0
E4 expð"EÞdE

Z 1

0
du

Z 1

0
dvF;

ð3:34Þ

where

F ¼gl
0 !L

l0þ1=2
n0 ðg2Þ !L

q0þ1=2
t0 ðeaÞðeaÞq

0=2

)Q0
l q n t

l0 q0 n0 t0

 !

k

ðea; eb; gÞ:
ð3:35Þ

While we have written this thermal average in a form with just
one explicitly temperature-dependent integral, that over E,
there remains an implicit temperature dependence through the
variables g, ea and eb, particularly where they appear in the
associated Laguerre polynomials. Following Curtiss and Ton-
sager,23 we circumvent this problem by expanding the poly-
nomials and dealing with simple powers of g2, ea and eb, where
we can use g2 = xE, etc. from eqn (3.30) and thus separate the
E dependence. We write

!L
lþ1=2
n ðxÞ ¼

Xn

i¼0

Lðn; l; iÞð"xÞi;

Lðn; l; iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðnþ 1ÞGðnþ l þ 3=2Þ

p

Gðn" i þ 1ÞGðl þ i þ 3=2ÞGði þ 1Þ
:

ð3:36Þ

To facilitate this transformation we introduce, following eqn
(2.23),

R0
l q n t

l0 q0 n0 t0

 !ð0Þ

k

¼ eq=2a

210p6
R
ðgÞl !Llþ1=2

n ðg2Þ

) !L
qþ1=2
t ðeaÞX 0ðlqjl0q0Þð0Þk

) hðqKa ; I
a
x ; I

a
y ÞhðqKb

; Ibx ; I
b
y ÞdR

ð0Þ
a dR

ð0Þ
b dr̂Ka dr̂Kb

;

¼ ðgÞl !Llþ1=2
n ðg2Þeq=2a

!L
qþ1=2
t ðeaÞdl;l0dq;q0dk;0:

ð3:37Þ

Now we can rewrite eqn (2.24)

Q0
l q n t

l0 q0 n0 t0

 !

k

ðea; gÞ ¼ 2p
Z 1

0
bdb

) dl;l0dq;q0dk;0R0
l q n t

l0 q0 n0 t0

 !ð0Þ

k

"R0
l q n t

l0 q0 n0 t0

 !

k

2

4

3

5:

ð3:38Þ

Substituting in the thermally-averaged cross section we can
rewrite eqn (2.25)

s0
l q n t

l0 q0 n0 t0

 !

k

ðTÞ

¼
Xn

i1¼0

Xt

i2¼0

Xn0

i3¼0

Xt0

i4¼0

!s0
l q n t i1 i2

l0 q0 n0 t0 i3 i4

 !

k

ðTÞ;

ð3:39Þ
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where

!s0
l q n t i1 i2

l0 q0 n0 t0 i3 i4

 !

k

ðTÞ ¼ iq"q0þl"l0

)
Z

exp½"g2 " ea " eb+g2ðeaebÞ1=2

) 2p
Z 1

0
bdbdðg2Þdeadeb

) ei1þi2þi3þi4þðlþl0þqþq0Þ=2ð"1Þi1þi2þi3þi4

) Lðn; l; i1ÞLðt; q; i2ÞLðn0; l0; i3ÞLðt0; q0; i4Þ

)
D
xi1þi3þðlþl0Þ=2½yð1" xÞ+i2þi4þðqþq0Þ=2

) X 0ðlqjl0q0Þð0Þk " x0

x

! "i1þl=2 y0ð1" x0Þ
yð1" xÞ

$ %i2
X 0ðlqjl0q0Þk

( )+

-
Z 1

0
E4þi1þi2þi3þi4þðlþl0þqþq0Þ=2 expð"EÞdE

) !Q
0 l q n t i1 i2

l0 q0 n0 t0 i3 i4

 !

k

ðEÞ:

ð3:40Þ
Here

hGi ¼
R
GhðqKa ; I

a
1 ; I

a
2 ÞhðqKb

; Ib1 ; I
b
2 ÞdR

ð0Þ
a dR

ð0Þ
b dr̂Ka dr̂Kb

;

ð3:41Þ
denotes the orientation average, x0 and y0 are the final values
of x and y, respectively, and

!Q
0

l q n t i1 i2

l0 q0 n0 t0 i3 i4

 !

k

ðEÞ

¼ p
96

il"l0þq"q0
Z 1

0
du

Z 1

0
dv 2p

Z 1

0
bdbð"1Þi1þi2þi3þi4

) Lðn; l; i1ÞLðt; q; i2ÞLðn0; l0; i3ÞLðt0; q0; i4Þ

) xi1þi3þðlþl0Þ=2½yð1" xÞ+i2þi4þðqþq0Þ=2
D

) X 0ðlqjl0q0Þð0Þk " x0

x

! "i1þl=2 y0ð1" x0Þ
yð1" xÞ

$ %i2
X 0ðlqjl0q0Þk

( )+
:

ð3:42Þ
The slight asymmetry in the coefficient of X0(lq|l0q0)k in this
equation arises because X0 depends on (e0a/ea)q/2, as well as on
orientations. This orientation average, eqn (3.41), involves
integrands of the form

I ¼
Z 2p

0
hðq ; Ix; IyÞgðqÞdq; ð3:43Þ

where g(q) is an arbitrary function. This can be rewritten in a
form more suited to Monte Carlo integration:

I ¼
Z 2p

0
g½qð!qÞ+d!q;

where tan !q ¼ l tan q; l ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ix=Iy

q
; 0 . !q . p=2;

ð3:44Þ

and similar transformations for the rest of the !q range.
The cross section !Q0 is evaluated using Monte Carlo inte-

gration in thirteen dimensions at a suitably chosen range of

total energy values, appropriate to the temperature range of
interest. As in the linear-molecule code,24 when evaluating this
cross section each trajectory is combined with its time-reversed
form. For some diagonal cross sections (lqnt = l0q0n0t0) this
ensures that the integrand is positive definite. Each cross
section, !Q0(E), is then fitted to a form involving Chebyshev
polynomials in ln(E), which allows for inexpensive evaluation
of the final thermal average in eqn (3.40) at arbitrary tem-
peratures. Finally, the lab cross section can be determined
using eqn (2.27).
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