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Abstract

The cross second virial coefficient and three dilute gas transport properties (shear viscosity, thermal conductivity, and binary dif-
fusion coefficient) of mixtures of water (H2O) and carbon dioxide (CO2) were calculated with high accuracy for temperatures up
to 2000 K using statistical thermodynamics and the kinetic theory of molecular gases, respectively. The required intermolecular
potential energy surface (PES) for the H2O–CO2 interaction is presented in this work, while the like-species interactions were
modeled using PESs from the literature. All three PESs are based on high-level quantum-chemical ab initio computations. The
predicted values for the cross second virial coefficient are in satisfying agreement with the best experimental data. In the case of
the transport properties, the calculated values should be more accurate than the few available data sets.
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1. Introduction

The calculation of the thermophysical properties of a fluid
requires knowledge of the potential energy surface (PES) de-
scribing the interactions between the molecules. In the dilute
gas limit, the thermophysical properties are determined only by
binary interactions and thus by the pair PESs. Today, accurate
pair potentials can be constructed for interactions between sim-
ple molecules such as hydrogen (H2) [1], nitrogen (N2) [2], car-
bon dioxide (CO2) [3], water (H2O) [4, 5], and hydrogen sulfide
(H2S) [6] by fitting suitable analytical functions to interaction
energies obtained from high-level quantum-chemical ab initio
(i.e., first-principles) calculations. If the pair potential functions
are available, it is usually straightforward to evaluate second
virial and cross second virial coefficients employing standard
expressions from statistical thermodynamics, while the dilute
gas transport properties are accessible through the kinetic the-
ory of molecular gases [7–13].

The thermophysical properties of gaseous mixtures of H2O
and CO2 are of importance in a number of areas, such as in-
dustrial processes related to flue gas (particularly carbon cap-
ture and storage), geothermal steam, and natural gas as well as
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combustion and atmospheric modeling. However, despite their
practical relevance, thermophysical property data for this mix-
ture in the gas phase are scarce, especially in the case of the
transport properties. For example, there are virtually no exper-
imental data for the shear viscosity.

In the present study, we determined reliable values for the
cross second virial coefficient and the dilute gas shear vis-
cosity, thermal conductivity, and binary diffusion coefficient
of the (H2O + CO2) system at temperatures up to 2000 K us-
ing the same methodology as in our work on the mixtures
(CH4 + N2) [10, 12], (CH4 + CO2) [13], (CH4 + H2S) [13],
(H2S + CO2) [13], (CH4 + C3H8) [14], (CO2 + C3H8) [14],
(CO2 + N2) [15], and (H2S + N2) [16]. The required PES
for the H2O–CO2 interaction was developed as part of this
study utilizing state-of-the-art quantum-chemical ab initio ap-
proaches. It extends much further into the highly repul-
sive region at small intermolecular separations than previous
H2O–CO2 ab initio PESs [17–19], which is crucial for the
transport property calculations. The transport properties de-
pend also on the like-species interactions; the relevant quanti-
ties, so-called generalized cross sections (see Section 3.2), were
obtained in our studies on pure H2O [11, 20] and pure CO2 [3]
also from high-quality ab initio potentials [3–5].

This paper is organized as follows: The new H2O–CO2 PES
is presented in Section 2. The computational methodologies
applied to determine the thermophysical properties are summa-
rized in Section 3. The results are presented and discussed in
Section 4, and practical correlations for the cross second virial
coefficient and the binary diffusion coefficient are provided in
Section 5. Finally, conclusions are given in Section 6.
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2. H2O–CO2 intermolecular potential energy surface

2.1. Calculation of interaction energies

The H2O and CO2 molecules were treated as rigid rotors in
all quantum-chemical ab initio calculations of H2O–CO2 inter-
action energies. The H2O geometry is characterized by a bond
length of 0.9716257 Å and a bond angle of 104.69◦ [21]. These
values pertain to the zero-point vibrationally averaged structure
and were also used by Bukowski et al. [4, 5] for their H2O–H2O
potential. For CO2, we used the zero-point vibrationally aver-
aged geometry determined in our work on the CO2–CO2 po-
tential [3]. It is characterized by a bond length of 1.1625 Å
and a bond angle of 180◦. Each H2O–CO2 configuration can
be expressed in terms of internal coordinates by the separation
between the centers of mass of the molecules, R, and four Euler
angles, whose precise definition is provided in the Supporting
Information.

A total of 1000 distinct angular orientations resulting from
a regular grid in the four Euler angles was investigated. The
region close to the only minimum of the PES (whose angu-
lar orientation is part of the regular grid) was sampled more
densely by adding 12 further angular orientations. For each
orientation, 24 center-of-mass separations R in the range from
(1.5 to 15.0) Å were considered, resulting in 24,288 (1012 × 24)
H2O–CO2 configurations. However, 1707 configurations with
small R values were discarded because of excessive overlap
of the two molecules or because of problems in the quantum-
chemical ab initio calculations related to near-linear dependen-
cies in the basis sets, leaving 22,581 configurations.

Interaction energies V for all configurations were obtained
from counterpoise-corrected [22] supermolecular calculations.
First, such calculations were performed at the frozen-core
resolution of identity second-order Møller–Plesset perturba-
tion theory (RI-MP2) [23, 24] level with the RI-JK approxima-
tion [25, 26] for the Hartree–Fock (HF) step. In these calcula-
tions, the aug-cc-pVXZ [27, 28] basis sets with X = 4 (Q) and
X = 5 were used in conjunction with the auxiliary basis sets
aug-cc-pV5Z-JKFIT [29] and aug-cc-pV5Z-MP2FIT [30] for
both basis set levels. In addition, bond functions were placed
midway along the R axis of each configuration, which, follow-
ing Patkowski [31], were chosen to be the hydrogenic func-
tions of the respective basis set and auxiliary basis set levels
as for the other atoms. Differences between interaction ener-
gies obtained with the RI-MP2 method and the standard MP2
approach are negligibly small, but the RI-MP2 method is signif-
icantly faster. The correlation parts of the computed interaction
energies, VRI-MP2 corr, were extrapolated to the complete basis
set (CBS) limit using the two-point scheme recommended by
Halkier et al. [32],

VRI-MP2 corr(X) = VCBS
RI-MP2 corr + αX−3. (1)

The HF contributions were taken from the RI-MP2 calcula-
tions at the X = 5 basis set level, for which they are effec-
tively converged. In the next step, counterpoise-corrected su-
permolecular calculations were performed also at the frozen-
core coupled-cluster level with single, double, and perturbative

triple excitations [CCSD(T)] [33] employing the aug-cc-pVTZ
and aug-cc-pVQZ basis sets (in both cases without the above-
mentioned bond functions) for all configurations. The dif-
ferences between the CCSD(T) and MP2 interaction energies
[the latter obtained as a byproduct of the CCSD(T) computa-
tions] were extrapolated to the CBS limit in the same way as
VRI-MP2 corr and then added to VCBS

RI-MP2. In the well region of
the PES, the interaction energies V thus obtained should cor-
respond very closely to the frozen-core CCSD(T)/CBS level,
probably to within about ±1%.

The detailed results of the ab initio calculations for all 22,581
investigated configurations are listed in the Supporting Infor-
mation. The RI-MP2 and CCSD(T) calculations were per-
formed using ORCA 3.0.3 [34] and CFOUR [35], respectively.

2.2. Analytical potential function

A site–site potential function with isotropic site–site inter-
actions was fitted to the computed interaction energies. The
number of sites was chosen to be nine for H2O and seven for
CO2. Due to symmetry, there are four types of sites in CO2. In
the H2O molecule, all sites were placed in the molecular plane,
with three of them being on the symmetry axis. This arrange-
ment, which was found to yield the best fit quality, results in six
types of sites for H2O. Thus, we have 24 distinct site–site com-
binations and 63 site–site interactions in total. Each of these is
represented by

Vi j(Ri j) = Ai j exp(−αi jRi j) − f6(bi j,Ri j)
C6 i j

R6
i j

+
qiq j

Ri j
, (2)

where Ri j is the separation between site i in H2O and site j in
CO2, and f6 is a damping function [36],

f6(bi j,Ri j) = 1 − exp(−bi jRi j)
6∑

k=0

(bi jRi j)k

k!
. (3)

The total interaction potential is then obtained as

V =

9∑
i=1

7∑
j=1

Vi j(Ri j). (4)

The parameters A, α, b, and C6 for the 24 distinct site–site com-
binations, the positions of the sites within the molecules, and
the site charges q (fixed at zero for one of the H2O sites and two
of the CO2 sites) were optimized in a non-linear least-squares fit
to the ab initio calculated interaction energies using a weighting
function w given by

w =

exp
[
0.002

(
R/Å

)3
]

[
1 + 5 × 10−7 (V/K + 1500)2

]2 . (5)

The denominator of this function causes the weight of configu-
rations to increase as the interaction energy decreases toward its
most negative values (V > −1500 K for all investigated config-
urations), while the numerator ensures a high fit quality at large
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Figure 1: Visualization of the optimized positions of the nine interaction sites
for H2O and the seven interaction sites for CO2. All H2O sites are in the molec-
ular plane.

values of R, which is of particular importance for the calcu-
lation of the cross second virial coefficient. Similar weighting
functions were also used in several of our previous studies (e.g.,
in Ref. [15]). Note that we quote energies in this work consis-
tently in units of kelvin, i.e., we divide them by Boltzmann’s
constant kB but omit kB from the notation for brevity.

The fit was constrained such that the site charges q in
each molecule add up to zero and that the charge distribu-
tion reproduces multipole moments (up to octupole) of the two
molecules obtained from ab initio calculations at the frozen-
core CCSD(T) level with the aug-cc-pV6Z [37] basis set using
CFOUR [35]. In these calculations, we used again the zero-
point vibrationally averaged geometries. The multipole mo-
ments are listed in the Supporting Information.

Figure 1 shows the optimized positions of the interaction
sites in the two molecules, while Fig. 2 displays the deviations
of the fitted interaction energies from the corresponding ab ini-
tio calculated ones as a function of the latter up to 15,000 K
(with the full range of investigated interaction energies extend-
ing up to almost 200,000 K for some angular orientations). It
can be seen in Fig. 2 that the relative deviations are mostly
within ±2%. When calculating thermophysical properties, the
fitting errors with positive and negative sign should largely can-
cel out. We note that the lowest unphysical maximum of the
analytical potential function (which is a pure fitting artifact) oc-
curs only at about 71,000 K. This is unproblematic for the ther-
mophysical property calculations of the present work. Wheat-
ley and Harvey [18] considered interaction energies up to about
46,000 K for the fit of their H2O–CO2 PES, but the lowest un-
physical maximum occurs already at about 4000 K. Since the
kinetic theory calculations of the transport properties presented
in Section 3.2 involve H2O–CO2 interaction energies far in ex-
cess of 4000 K, the potential function of Wheatley and Har-
vey [18] is unsuitable for these calculations. The potential func-
tions of Makarewicz [17] and of Wang and Bowman [19] are
even more restricted in their coverage of the highly repulsive
regions of the PES because the range of investigated interaction
energies was restricted to at most about 3600 K and 4300 K,
respectively.

Figure 2: Deviations of interaction energies obtained with the fitted analytical
H2O–CO2 potential function from the corresponding ab initio calculated values
as a function of the latter. The dashed lines indicate relative deviations of ±2%.

To give an impression of the shape of the PES, Fig. 3 illus-
trates the separation dependence of the new analytical potential
function in the well region for 12 of the 1012 considered an-
gular orientations. The corresponding ab initio calculated in-
teraction energies are also shown in the figure. In agreement
with the findings by Makarewicz [17] and by Wang and Bow-
man [19], the analytical PES features only a single minimum,
whose angular orientation corresponds to that indicated by a
yellow filled circle. The interaction energy at the minimum,
Vmin = −1452.7 K, is also in good agreement with that found by
Makarewicz, Vmin = −1444.5 K, and that of the PES of Wang
and Bowman, Vmin = −1474.5 K. The minimum of the PES of
Wheatley and Harvey [18], Vmin = −1423.5 K, corresponds to
a different angular orientation, which, as discussed in Ref. [18],
is a fitting artifact.

The Supporting Information provides further details of the
minimum geometry as well as a Fortran 90 implementation of
the analytical PES.
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Figure 3: H2O–CO2 pair potential as a function of the center-of-mass separation R for 12 of the 1012 considered angular configurations. The symbols represent the
ab initio calculated values and the solid lines the fitted analytical potential function. The curve representing the orientation indicated by a yellow filled circle passes
through the only minimum of the PES.

3. Calculation of thermophysical properties

3.1. Cross second virial coefficient

For two rigid molecules, the classical-mechanical expression
for the cross second virial coefficient is

Bcl
12 = −

NA

2

∫ ∞

0

〈
exp

[
−

V(R,Ω1,Ω2)
kBT

]
− 1

〉
Ω1,Ω2

dR, (6)

where NA is Avogadro’s constant, T is the temperature, R is
the separation vector between the centers of mass of the two
molecules, Ω1 and Ω2 represent the angular orientations of
molecules 1 and 2, respectively, and the angle brackets indi-
cate a proper averaging over these orientations. The masses and
moments of inertia of the molecules H2O and CO2 are large
enough to justify accounting for quantum effects semiclassi-
cally at all temperatures of interest by replacing the pair po-
tential V in Eq. (6) by the so-called quadratic Feynman–Hibbs
(QFH) effective pair potential [38]. For the H2O–CO2 pair, it
can be written as

VQFH = V +
~2

24kBT

[
1
µ

(
∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2

)
+

1
I1a

∂2V
∂ψ2

1a

+
1

I1b

∂2V
∂ψ2

1b

+
1

I1c

∂2V
∂ψ2

1c

+
1
I2

(
∂2V
∂ψ2

2a

+
∂2V
∂ψ2

2b

)]
, (7)

where ~ is Planck’s constant divided by 2π; µ is the reduced
mass of the two molecules; x, y, and z are the Cartesian compo-
nents of R; I1a, I1b, and I1c denote the three principal moments

of inertia of molecule 1 (H2O); I2 denotes the moment of in-
ertia of molecule 2 (CO2) perpendicular to the molecular axis;
and the angles ψ1a, ψ1b, ψ1c, ψ2a, and ψ2b correspond to rota-
tions around the principal axes of the molecules except for the
molecular axis of CO2.

The cross second virial coefficient of the H2O–CO2 pair was
evaluated for 89 temperatures from (200 to 2000) K using the
Mayer-sampling Monte Carlo (MSMC) approach of Singh and
Kofke [39]. The hard sphere gas with a sphere diameter of
4.5 Å was employed as the reference system. The results for
all temperatures were obtained simultaneously by performing
multi-temperature simulations [39, 40], in which the temper-
ature governing the sampling distribution was chosen to be
500 K. To avoid unphysical negative interaction energies at very
small intermolecular separations R, hard spheres with a diam-
eter of 1.2 Å were placed on all interaction sites of H2O and
CO2. In each attempted MSMC move, one of the molecules
was displaced and rotated. The maximum step sizes were ad-
justed during short equilibration runs to yield acceptance rates
of 50%. The second derivatives of the pair potential appearing
in Eq. (7) were implemented analytically. Values for the cross
second virial coefficient from 16 independent simulation runs
of 2 × 1010 attempted moves each were averaged. The standard
uncertainties of these averages due to the Monte Carlo integra-
tion do not exceed 0.012 cm3·mol−1 at any of the investigated
temperatures and are hence negligible.
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3.2. Dilute gas transport properties
The transport properties of mixtures of molecular gases in

the zero-density limit can be calculated with high precision by
means of the kinetic theory of molecular gases [7–13, 41–46].
For each transport property, a system of linear equations has
to be solved, whose coefficients are given in terms of so-called
generalized cross sections. These cross sections are determined
by the binary collisions occurring in the gas and are thus di-
rectly linked to the intermolecular PESs. The approaches we
employed in the present work for the calculation of the shear
viscosity η in the third-order kinetic theory approximation, of
the thermal conductivity λ (under steady-state conditions, see
Ref. [12] for details) in the second-order kinetic theory approx-
imation, and of the product of molar density ρm and binary dif-
fusion coefficient D in the third-order kinetic theory approxima-
tion from the generalized cross sections were already presented
in previous papers [10, 12, 13] and are not repeated here.

Our approach for the calculation of the thermal conductiv-
ity [12] requires knowledge of the vibrational contributions to
the ideal gas heat capacities of the involved gases. They were
extracted from the current reference formulations for the iso-
choric ideal gas heat capacities [47, 48] by subtracting the trans-
lational and classical rotational contributions.

The generalized cross sections for H2O–CO2 collisions were
determined within the rigid-rotor approximation by means of
the proven (see, e.g., Refs. [14, 15, 49]) and highly efficient
classical trajectory approach using an extended version of the
TRAJECT code [8, 10, 46]. The collision trajectories were ob-
tained by integrating Hamilton’s equations from pre- to post-
collisional values. A very large initial and final separation of
1000 Å was used to avoid PES cut-off effects. The integra-
tion accuracy was chosen such that the relative drift in the
total energy between the initial and final state of a trajectory
was typically in the range from 10−9 to 10−6 with a maxi-
mum tolerated value of 10−4. Total-energy-dependent gener-
alized cross sections in the center-of-mass frame, which are 11-
dimensional integrals over the initial states of the trajectories,
were computed from the initial and final states by means of
a simple Monte Carlo integration scheme using quasi-random
numbers. The calculations were performed for 37 values of
the total energy, Etotal = Etrans + Erot, which was divided into
the three ranges 100 6 Etotal/K 6 500, 500 6 Etotal/K 6 5000,
and 5000 6 Etotal/K 6 50,000. The 13 energies in each range
were chosen as the nodes for Chebyshev interpolation of the
cross sections as a function of ln(Etotal). Up to 2 × 106 tra-
jectories were generated at each total energy value. Below
500 K, the number of trajectories had to be gradually reduced
down to 200,000 at 100 K because of the high computational
costs of calculating trajectories at very low energies with the
desired accuracy. A weighted integration over the total energy
(thermal averaging) yielded temperature-dependent generalized
cross sections in the center-of-mass frame at temperatures from
(250 to 2000) K, which were then converted to the laboratory
frame cross sections needed in the systems of linear equations
that have to be solved to finally obtain the transport properties.

The generalized cross sections for H2O–H2O and CO2–CO2
collisions were obtained from high-level ab initio pair poten-

tials [3–5] in previous studies [3, 11, 20] in a similar way as
described here for the H2O–CO2 case.

The relative standard uncertainty of the calculated transport
property values due to the above-mentioned Monte Carlo in-
tegration scheme is estimated (based on uncertainty estimates
generated by TRAJECT for the individual cross sections as de-
scribed in Ref. [50]) to be less than 0.15% for viscosity and the
binary diffusion coefficient and less than 0.3% for thermal con-
ductivity for all temperatures and mole fractions. Errors result-
ing from the numerical integration of Hamilton’s equations and
from the Chebyshev interpolation of the total-energy-dependent
generalized cross sections and the subsequent thermal averag-
ing should be negligible.

4. Results and discussion

4.1. Cross second virial coefficient

Table 1 lists the classically calculated values, Bcl
12, and the

semiclassically calculated ones, BQFH
12 , for the H2O–CO2 cross

second virial coefficient as well as the estimated uncertainties
of BQFH

12 (see below) at 38 selected temperatures. The differ-
ences between Bcl

12 and BQFH
12 decrease, as expected, rapidly

with increasing temperature. The classical values deviate
from the semiclassical ones by −73.0 cm3·mol−1 at 200 K,
−8.52 cm3·mol−1 at 300 K, −1.19 cm3·mol−1 at 500 K, and
−0.03 cm3·mol−1 at 2000 K.

In Fig. 4, the calculated values are compared with most
of the available experimental data [18, 51–59], which unfor-
tunately exhibit a large scatter. However, the data of Patel
et al. [56] stand out due to their excellent agreement (within
±2 cm3·mol−1 apart from one datum) with the calculated val-
ues. Furthermore, the recent data by Meyer and Harvey [59]
agree very well with the calculated values. Only their datum at
the lowest temperature exhibits larger positive deviations. How-
ever, it should be pointed out that the virial analysis performed
by Meyer and Harvey at this temperature yielded a distinctly too
negative H2O–CO2–CO2 cross third virial coefficient as can be
seen in Fig. 8 of Ref. [60], indicating that the derived value for
the cross second virial coefficient is too high to compensate for
this. Figure 4 also shows values calculated semiclassically by
Schultz et al. [60] using the PES of Wheatley and Harvey [18]
as well as the correlation of Wheatley and Harvey [61], which
was fitted to semiclassical values that Wheatley and Harvey ob-
tained from their PES independently of Schultz et al. The small
systematic differences between the values of Schultz et al. and
the correlation of Wheatley and Harvey at the lowest tempera-
tures are probably caused by the use of slightly different semi-
classical approaches. At most temperatures, the cross second
virial coefficients obtained with the PES of Wheatley and Har-
vey show negative deviations from the present results, but the
deviations are within the mutual uncertainties. If one discards
the data points at room temperature of King and Coan [51],
Wormald and Colling [52], Vanderzee and Haas [53], Wormald
et al. [54], and Smith and Wormald [55], which are undoubt-
edly significantly too negative, it becomes clear that the new
PES of the present work yields values that are overall in better
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Table 1: Classically calculated values, Bcl
12, and semiclassically calculated

values, BQFH
12 , of the H2O–CO2 cross second virial coefficient as well as the

estimated combined expanded uncertainty (k = 2) of the semiclassical values,
U

(
BQFH

12

)
, as a function of temperature T .

T /K Bcl
12

/
cm3·mol−1 BQFH

12

/
cm3·mol−1 U

(
BQFH

12

) /
cm3·mol−1

200 −734.3 −661.3 39.7
220 −505.5 −464.4 27.9
240 −371.8 −346.4 20.8
260 −286.5 −269.7 16.2
280 −228.4 −216.7 13.0
300 −186.7 −178.1 10.7
320 −155.5 −149.1 8.9
340 −131.5 −126.6 7.6
360 −112.5 −108.6 6.5
380 −97.16 −93.97 5.6
400 −84.50 −81.88 4.9
420 −73.91 −71.72 4.3
440 −64.93 −63.08 3.8
460 −57.23 −55.65 3.3
480 −50.56 −49.20 3.0
500 −44.74 −43.55 3.0
520 −39.61 −38.57 3.0
540 −35.07 −34.15 3.0
560 −31.02 −30.20 3.0
580 −27.38 −26.65 3.0
600 −24.10 −23.45 3.0
620 −21.14 −20.54 3.0
640 −18.44 −17.90 3.0
660 −15.98 −15.49 3.0
680 −13.72 −13.27 3.0
700 −11.65 −11.24 3.0
750 −7.14 −6.80 3.0
800 −3.41 −3.12 3.0
850 −0.27 −0.03 3.0
900 2.40 2.60 3.0
950 4.69 4.87 3.0

1000 6.68 6.83 3.0
1100 9.93 10.05 3.0
1200 12.48 12.57 3.0
1400 16.15 16.22 3.0
1600 18.63 18.68 3.0
1800 20.38 20.41 3.0
2000 21.64 21.67 3.0

agreement with the experimental data than those resulting from
the PES of Wheatley and Harvey.

The B12 values from the Wormald group [52, 54, 55, 57] were
derived from measurements of the enthalpy of mixing of the
two gases at low density. The quantity that is actually more
directly related to such data is the dilute gas cross isothermal
Joule–Thomson coefficient φ12 = B12−T (dB12/dT ). Values for
φ12 are only given in two of the four papers [55, 57], and the
other papers unfortunately do not provide sufficient informa-
tion to determine them. However, Wheatley and Harvey [61]
were able to derive φ12 values from enthalpy of mixing data
given by Lancaster and Wormald [62]. In Fig. 5, the experi-
mental φ12 values and those resulting from the correlation for
B12 by Wheatley and Harvey [61] are compared with the val-
ues obtained from a correlation of the present BQFH

12 values (see
Section 5). While the agreement of the two correlations with
the data by Smith and Wormald [55] and by Wormald and Lan-
caster [57] (with the latter resulting from a re-evaluation of the

Figure 4: Deviations of experimental data and calculated values for the
H2O–CO2 cross second virial coefficient from values calculated semiclassi-
cally using the H2O–CO2 PES of the present work as a function of tempera-
ture: •, King and Coan [51]; ◦, Wormald and Colling [52]; �, Vanderzee
and Haas [53]; �, Wormald et al. [54]; _, Smith and Wormald [55]; �, Patel
et al. [56]; N, Wormald and Lancaster [57]; M, Bamberger et al. [58] (derived
from their phase-equilibrium data by Wheatley and Harvey [18]); H, Meyer
and Harvey [59]; ×, Schultz et al. [60] (semiclassically calculated values us-
ing the PES of Wheatley and Harvey [18]); solid line, correlation by Wheatley
and Harvey [61] (fitted to values calculated semiclassically using their PES);
dashed line, Bcl

12; dotted lines, BQFH
12 ± U

(
BQFH

12

)
with k = 2.

former) is poor, the agreement with the φ12 values derived by
Wheatley and Harvey from the enthalpy of mixing data of Lan-
caster and Wormald is more satisfactory and slightly better for
the present correlation than for that by Wheatley and Harvey.

Based on the agreement with the experimental data and on
our experience, we estimate the combined expanded uncer-
tainty (coverage factor k = 2, corresponding approximately to a
95% confidence level) of the present BQFH

12 values as the larger
of 6% of the absolute value of BQFH

12 and 3 cm3·mol−1. This es-
timate is also indicated in Fig. 4. The largest error source is
most likely the treatment of the molecules as rigid rotors; see
also the recent study by Garberoglio et al. [63] on the effect of
monomer flexibility on the second and third virial coefficients
of normal and heavy water. Other error sources are the semi-
classical treatment of quantum effects, the approximate nature
of the employed quantum-chemical approaches, and the fitting
errors of the analytical potential function. Note that partial ther-
mal decomposition of real H2O and CO2 molecules at the high-
est investigated temperatures is not taken into account for any
of the uncertainty estimates provided in this work.

6



Figure 5: Deviations of experimental data and calculated values of the dilute
gas cross isothermal Joule–Thomson coefficient φ12 = B12 − T (dB12/dT ) for
the H2O–CO2 interaction from the respective values derived from a correla-
tion of the BQFH

12 values of the present work as a function of temperature: _,
Smith and Wormald [55]; N, Wormald and Lancaster [57]; •, Lancaster and
Wormald [62] (derived from their enthalpy of mixing data by Wheatley and
Harvey [18]); dashed line, values calculated using the correlation for B12 by
Wheatley and Harvey [61].

4.2. Dilute gas transport properties

Tables 2 and 3 list the calculated values for the dilute gas
shear viscosity η and thermal conductivity λ, respectively,
of (H2O + CO2) mixtures for 26 temperatures from (250 to
2000) K and nine mole fractions xH2O. The values for the pure
components, which were obtained in previous studies [3, 11,
20], are also listed there. Table 4 provides the calculated values
for the dilute gas limit of the product of molar density ρm and
binary diffusion coefficient D for the same 26 temperatures and
for five mole fractions.

The η(T, xH2O) and λ(T, xH2O) surfaces are visualized in
Fig. 6. The figure reveals non-trivial mole fraction depen-
dences, with maxima occurring for xH2O , 0 and xH2O , 1
above about 710 K for η and below about 810 K for λ and
with the latter quantity exhibiting a change in curvature from
concave up to about 1430 K to convex above that temperature.

The variation of ρmD with mole fraction is small and mono-
tonic as can be seen in Table 4; it does not exceed 1.63% at any
temperature. However, this is not unexpected as the mole frac-
tion dependence of ρmD is a higher-order kinetic theory effect.
In the first-order kinetic theory approximation, ρmD is inde-
pendent of mole fraction and determined entirely by the unlike
interactions, i.e., the H2O–CO2 PES.

The relative influence of the order of the kinetic theory on the
calculated values for all three transport properties is visualized
in the form of ratios in Fig. 7, which shows that the viscosity
converges much more rapidly with increasing order than the bi-
nary diffusion coefficient and is essentially converged for the
third-order theory. The neglect of fourth- and higher-order con-
tributions to the binary diffusion coefficient can be expected to
introduce errors of less than 0.1%. For the thermal conductiv-

ity, for which we did not investigate a third-order approxima-
tion, the second-order contribution is quite large, exceeding 2%
for CO2-rich mixtures at higher temperatures. This is due to the
large effect of angular momentum polarization on the thermal
conductivity of CO2 [64], which is not accounted for in the first-
order theory, but should be almost fully included at the second-
order level. The other effects that determine the magnitude of
the higher-order kinetic theory contributions to the thermal con-
ductivity should show a convergence behavior similar to that for
monatomic gas mixtures, which is as slow as that for the binary
diffusion coefficient [65]. Thus, for the (H2O + CO2) system
the convergence behavior for the thermal conductivity should
be in between that for viscosity and that for binary diffusion,
and we estimate the errors resulting from the neglect of third-
and higher-order contributions to be at most 0.2%.

Experimental information on the viscosity of (H2O + CO2)
mixtures is virtually non-existent. The only data are those of
Munczak and Sedlacek [66], who measured the change in vis-
cosity of CO2 at 303 K resulting from adding small amounts
of water vapor up to a mole fraction of xH2O = 0.038. As illus-
trated in Fig. 8, their data exhibit a slight downward trend with
increasing water mole fraction, but it is not as pronounced as
for the calculated values.

As in our studies on the mixtures (CH4 + N2) [10],
(CH4 + CO2) [13], (CH4 + H2S) [13], (H2S + CO2) [13],
(CH4 + C3H8) [14], (CO2 + C3H8) [14], (CO2 + N2) [15], and
(H2S + N2) [16], we propose a simple scaling of the calculated
viscosity values by a temperature-independent factor that de-
pends linearly on the mole fraction to obtain values with the
lowest possible uncertainty,

ηrec = ηcalc
(
1.001xH2O + 1.0055xCO2

)
, (8)

where ηrec and ηcalc are the recommended and calculated viscos-
ity values, respectively. The scaling factors 1.001 and 1.0055
correspond to those proposed previously for H2O [20] and
CO2 [3], respectively, and remedy systematic deviations of the
calculated viscosity values from the best available experimental
data.

Figure 9 shows the comparison of the calculated thermal
conductivity values with the three available data sets for the
mixture [67–69]. The data of Timrot and Vargaftik [67] were
measured at (338 and 603) K by the hot-wire method. They
exhibit mostly positive deviations up to 3.9%, but capture the
mole fraction dependence of the calculated values quite well.
Dijkema et al. [68] measured the thermal conductivity at (298
and 333) K by the hot-wire method and a thermistor katharom-
eter bridge. The deviations of their data vary smoothly with
mole fraction between the pure components and amount to at
most −4.3%. The most recent dilute gas data are those of
Perkins [69] for temperatures from (503 to 622) K. He obtained
them from thermal conductivity data that he measured with the
hot-wire method by extrapolation down to atmospheric pres-
sure. His data agree very well, mostly within the experimental
uncertainty, with the calculated values over the whole compo-
sition range.

For the thermal conductivity of pure CO2, there exists a
remarkably accurate data set for temperatures from (328 to
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Table 2: Calculated values for the dilute gas shear viscosity η of mixtures of H2O (1) and CO2 (2) as a function of mole fraction x1 and temperature T . Previously
calculated viscosities for pure H2O [20] and pure CO2 [3] are also listed here.a

T /K η/µPa·s

x1 = 0 x1 = 0.1 x1 = 0.2 x1 = 0.3 x1 = 0.4 x1 = 0.5 x1 = 0.6 x1 = 0.7 x1 = 0.8 x1 = 0.9 x1 = 1

250 12.51 12.32 12.09 11.80 11.46 11.06 10.60 10.07 9.473 8.802 8.054
273.15 13.63 13.44 13.20 12.90 12.54 12.11 11.61 11.03 10.38 9.645 8.819
298.15 14.82 14.64 14.39 14.08 13.70 13.24 12.71 12.09 11.38 10.57 9.660
330 16.32 16.14 15.90 15.57 15.18 14.69 14.11 13.44 12.66 11.77 10.76
360 17.71 17.54 17.29 16.97 16.56 16.05 15.44 14.73 13.89 12.93 11.83
400 19.52 19.36 19.12 18.80 18.38 17.86 17.22 16.45 15.55 14.51 13.31
450 21.69 21.56 21.34 21.03 20.61 20.08 19.42 18.61 17.66 16.54 15.23
500 23.78 23.67 23.48 23.18 22.78 22.25 21.58 20.77 19.78 18.61 17.24
550 25.79 25.70 25.53 25.26 24.88 24.37 23.71 22.90 21.91 20.71 19.29
600 27.71 27.66 27.51 27.27 26.91 26.43 25.80 25.00 24.01 22.82 21.38
650 29.56 29.54 29.42 29.21 28.88 28.43 27.83 27.06 26.10 24.92 23.49
700 31.35 31.35 31.26 31.08 30.79 30.37 29.80 29.07 28.15 27.00 25.60
750 33.07 33.09 33.04 32.89 32.63 32.25 31.73 31.04 30.15 29.05 27.69
800 34.74 34.79 34.76 34.64 34.42 34.07 33.59 32.95 32.12 31.07 29.75
900 37.93 38.02 38.04 37.98 37.83 37.57 37.18 36.64 35.91 34.97 33.78

1000 40.95 41.08 41.14 41.14 41.06 40.87 40.57 40.13 39.52 38.71 37.65
1100 43.83 43.99 44.10 44.15 44.13 44.02 43.80 43.45 42.95 42.26 41.35
1200 46.58 46.78 46.93 47.03 47.06 47.02 46.88 46.62 46.23 45.66 44.87
1300 49.23 49.46 49.65 49.79 49.88 49.90 49.83 49.66 49.36 48.90 48.24
1400 51.79 52.04 52.27 52.46 52.59 52.67 52.67 52.58 52.37 52.01 51.47
1500 54.27 54.55 54.81 55.03 55.22 55.35 55.41 55.39 55.26 55.00 54.57
1600 56.67 56.99 57.28 57.54 57.76 57.94 58.06 58.11 58.06 57.88 57.56
1700 59.02 59.35 59.67 59.97 60.24 60.47 60.64 60.75 60.77 60.67 60.44
1800 61.30 61.67 62.02 62.35 62.65 62.92 63.15 63.31 63.40 63.38 63.24
1900 63.54 63.93 64.31 64.67 65.01 65.32 65.60 65.81 65.96 66.02 65.95
2000 65.72 66.14 66.54 66.94 67.32 67.67 67.99 68.26 68.47 68.59 68.59

a The viscosity values should be scaled using Eq. (8) to obtain the recommended values. The relative combined expanded uncertainty (k = 2) of the scaled values
for the mixtures is estimated to be 1.0% from (300 to 500) K and 2.0% otherwise. The respective estimate for the scaled viscosities of pure H2O is 0.4% from (300
to 500) K, 0.8% below 300 K, and 2.0% above 500 K [20], and that for the scaled viscosities of pure CO2 is 0.4% from (300 to 700) K and 2.0% otherwise [15].

Figure 6: Calculated dilute gas viscosity (left) and thermal conductivity (right) of the (H2O + CO2) system as a function of water vapor mole fraction and tempera-
ture.
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Table 3: Calculated values for the dilute gas thermal conductivity λ of mixtures of H2O (1) and CO2 (2) as a function of mole fraction x1 and temperature T .
Previously calculated thermal conductivities for pure H2O [11] and pure CO2 [3] are also listed here.a

T /K λ/mW·m−1·K−1

x1 = 0 x1 = 0.1 x1 = 0.2 x1 = 0.3 x1 = 0.4 x1 = 0.5 x1 = 0.6 x1 = 0.7 x1 = 0.8 x1 = 0.9 x1 = 1

250 12.77 13.49 14.06 14.50 14.83 15.06 15.22 15.30 15.30 15.24 15.12
273.15 14.44 15.22 15.82 16.29 16.63 16.86 17.00 17.05 17.01 16.89 16.69
298.15 16.31 17.15 17.80 18.29 18.64 18.88 18.99 19.01 18.92 18.73 18.45
330 18.77 19.69 20.40 20.94 21.31 21.54 21.64 21.61 21.46 21.19 20.79
360 21.15 22.15 22.92 23.50 23.90 24.14 24.23 24.17 23.96 23.61 23.11
400 24.36 25.49 26.36 27.01 27.46 27.73 27.81 27.73 27.46 27.02 26.39
450 28.42 29.71 30.72 31.49 32.03 32.36 32.48 32.39 32.09 31.57 30.82
500 32.49 33.96 35.13 36.03 36.69 37.11 37.30 37.25 36.96 36.42 35.59
550 36.53 38.19 39.54 40.61 41.41 41.96 42.26 42.29 42.05 41.53 40.69
600 40.54 42.40 43.94 45.19 46.17 46.87 47.31 47.47 47.33 46.88 46.08
650 44.48 46.56 48.31 49.76 50.93 51.83 52.44 52.76 52.77 52.45 51.75
700 48.37 50.67 52.64 54.32 55.70 56.81 57.63 58.15 58.35 58.20 57.67
750 52.19 54.72 56.93 58.84 60.47 61.81 62.87 63.63 64.06 64.14 63.81
800 55.93 58.71 61.17 63.33 65.21 66.82 68.15 69.17 69.88 70.23 70.17
900 63.20 66.49 69.48 72.19 74.65 76.85 78.78 80.44 81.80 82.81 83.43

1000 70.15 73.99 77.56 80.88 83.98 86.84 89.48 91.87 94.00 95.82 97.29
1100 76.82 81.24 85.42 89.39 93.17 96.77 100.2 103.4 106.4 109.1 111.6
1200 83.21 88.23 93.05 97.71 102.2 106.6 110.8 114.9 118.9 122.6 126.2
1300 89.36 94.99 100.5 105.8 111.1 116.3 121.4 126.4 131.4 136.2 140.9
1400 95.27 101.5 107.7 113.8 119.8 125.8 131.8 137.8 143.8 149.8 155.7
1500 101.0 107.9 114.7 121.5 128.3 135.2 142.1 149.0 156.1 163.3 170.5
1600 106.5 114.0 121.5 129.0 136.6 144.3 152.2 160.1 168.3 176.6 185.1
1700 111.9 120.0 128.2 136.4 144.8 153.3 162.1 171.0 180.3 189.8 199.6
1800 117.1 125.8 134.6 143.6 152.8 162.2 171.8 181.8 192.1 202.8 213.9
1900 122.1 131.5 141.0 150.6 160.6 170.8 181.4 192.3 203.7 215.6 228.1
2000 127.1 137.0 147.2 157.5 168.2 179.3 190.7 202.7 215.1 228.2 242.0

a The thermal conductivity values should be scaled using Eq. (9) to obtain the recommended values. The relative combined expanded uncertainty (k = 2) of the
scaled values for the mixtures is estimated to be the same as that for pure CO2, namely 2% from (300 to 700) K and 4% otherwise [15]. The respective uncertainty
of the thermal conductivity values for pure H2O is assessed here to be 2% from (250 to 1000) K and 3% above 1000 K.

468) K, measured by Haarman [70] using a transient hot-wire
apparatus. These data have a stated uncertainty of 0.3% and
are included in Fig. 9 to illustrate the accuracy of the calculated
thermal conductivity values for CO2, which are on average only
1.1% smaller.

To remedy the systematic deviations from the data of Haar-
man [70], we also propose a scaling of the calculated thermal
conductivity values,

λrec = λcalc
(
xH2O + 1.011xCO2

)
. (9)

We recommended such a scaling previously for pure CO2 [3]
and for the mixtures (CH4 + CO2) [13], (H2S + CO2) [13],
(CO2 + C3H8) [14], and (CO2 + N2) [15]. A scaling for H2O
is not recommended because there are no apparent system-
atic deviations from the best experimental data (see Fig. 1 of
Ref. [11]).

In Fig. 10, we compare the calculated values for the product
of molar density and binary diffusion coefficient with the avail-
able experimental data [71–77]. Apart from two data points
that are obvious outliers, the agreement is within ±5.4%. If we
consider only the data of Winkelmann [72], their re-evaluation
by Trautz and Müller [73], the data of Rossié [75], and those
of Nagata and Hasegawa [77], the agreement is even within
±2.9%. None of the experimental papers provides informa-
tion on the mole fraction composition of the mixtures or even
their influence on the diffusion coefficient, although it would be

possible to put constraints on the composition in some of the
low-temperature experiments by taking into account that the
partial pressure of H2O in the gas mixture cannot exceed the
saturated vapor pressure. However, since the uncertainties of
the experimental data are obviously much larger than the mole
fraction dependence, we simply assumed equimolar mixtures
for the calculation of the deviations from our calculated values.

Estimates of the relative combined expanded uncertainties
(k = 2) of the calculated values for the binary diffusion coeffi-
cient and of the scaled viscosity and thermal conductivity val-
ues are provided in the footnotes of Tables 2–4. These estimates
are based mainly on experience. As in the case of the cross sec-
ond virial coefficient, the largest source of uncertainty is prob-
ably the treatment of the molecules as rigid rotors. At low tem-
peratures, one might expect that the classical-mechanical cal-
culation of the generalized cross sections causes sizable errors.
However, the calculated viscosity and thermal conductivity val-
ues for the pure components [3, 11, 20] do not exhibit increas-
ing systematic deviations from the best experimental data to-
ward the lowest temperatures that could be interpreted as being
caused by the neglect of quantum effects.

5. Correlations

A practical correlation for the cross second virial coeffi-
cient was obtained by fitting a polynomial in (T ∗)−1/2 with
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Figure 7: Ratios of dilute gas transport property values for the (H2O + CO2) system resulting from different orders of kinetic theory approximations as a function
of water vapor mole fraction and temperature. The nth-order approximation of a transport property X (with X ∈ {η, λ, ρmD}) is denoted here as [X]n.

Figure 8: Experimental data of Munczak and Sedlacek [66] (×) for the dilute
gas viscosity of the (H2O + CO2) system at 303 K and calculated values of the
present work for the same temperature (solid line) as a function of water vapor
mole fraction.

T ∗ = T/(100 K) to the 89 calculated values for BQFH
12 . The sym-

bolic regression software Eureqa (version 1.24.0) [78] was em-
ployed to find an optimal polynomial structure. The resulting

expression is

BQFH
12

cm3·mol−1 = b1 +
b2

(T ∗)1/2 +
b3

T ∗
+

b4

(T ∗)3 +
b5

(T ∗)6 +
b6

(T ∗)21/2 ,

(10)
where b1 = 15.244, b2 = 149.51, b3 = −534.35, b4 = −2243.2,
b5 = −1.3200 × 104, and b6 = −4.1246 × 104. Equation (10)
reproduces the calculated values within ±0.007 cm3·mol−1 and
extrapolates reasonably to temperatures below 200 K and above
2000 K as shown in Fig. 11. It is interesting to note that the
structure of Eq. (10) is identical to that obtained previously for
the correlation of the second virial coefficient of ethane [49].

A correlation for ρmD was developed based on the cal-
culated values of the present work for temperatures from
(250 to 2000) K in the same manner as previously for the
(CO2 + N2) [15] and (H2S + N2) [16] systems. For conve-
nience, the small composition dependence of ρmD was ne-
glected and the correlation fitted to the values for an equimolar
mixture. The basic form of the correlation is

104 × ρmD
mol·m−1·s−1 =

T
1/2

S (T )
, (11)

where T = T/K. If ρmD were to be obtained using the first-
order kinetic theory approximation, S (T ) would be proportional
to a single generalized cross section, which decreases monoton-
ically with temperature. To find a functional form for S (T ) that
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Table 4: Calculated values for the product of molar density ρm and binary
diffusion coefficient D of mixtures of H2O (1) and CO2 (2) in the dilute gas
limit as a function of mole fraction x1 and temperature T .a

T /K 104 × ρmD
/
mol·m−1·s−1

x1 → 0 x1 = 0.2 x1 = 0.5 x1 = 0.8 x1 → 1

250 5.472 5.442 5.413 5.394 5.384
273.15 6.066 6.035 6.004 5.983 5.973
298.15 6.712 6.679 6.647 6.626 6.615
330 7.533 7.500 7.468 7.446 7.435
360 8.299 8.267 8.235 8.214 8.203
400 9.302 9.272 9.242 9.221 9.211
450 10.52 10.49 10.46 10.44 10.44
500 11.69 11.67 11.64 11.62 11.61
550 12.81 12.79 12.77 12.75 12.74
600 13.89 13.87 13.85 13.83 13.82
650 14.93 14.91 14.89 14.87 14.86
700 15.93 15.91 15.89 15.87 15.85
750 16.89 16.87 16.85 16.83 16.81
800 17.82 17.80 17.78 17.75 17.73
900 19.59 19.58 19.55 19.51 19.49

1000 21.27 21.25 21.22 21.18 21.14
1100 22.86 22.84 22.81 22.76 22.72
1200 24.39 24.37 24.33 24.27 24.22
1300 25.86 25.83 25.79 25.73 25.67
1400 27.28 27.25 27.20 27.14 27.07
1500 28.65 28.63 28.57 28.50 28.43
1600 29.99 29.96 29.91 29.83 29.75
1700 31.30 31.27 31.21 31.12 31.04
1800 32.57 32.54 32.48 32.39 32.31
1900 33.82 33.79 33.72 33.63 33.54
2000 35.04 35.01 34.94 34.84 34.75

a The relative combined expanded uncertainty (k = 2) of the ρmD values is
estimated to be 2% from (300 to 700) K and 3% otherwise.

obeys this constraint, while being both accurate and simple, the
Eureqa software was again utilized. Following the approach
used in our previous work [15, 16], T was restricted to appear
solely in integer powers of T

1/6
. Furthermore, only constants,

exponential functions, and the operators addition, subtraction,
multiplication, division, and negation were allowed. Of the
functions found by Eureqa, the following one best fulfills the
requirements:

S (T ) = d1 + d2T
−1/6

+ d3T
1/3

exp
(
−T

1/3
)

+ d4 exp
(
−2T

1/3
)

+ d5 exp
(
−3T

1/3
)
, (12)

where d1 = −0.09647, d2 = 4.8695, d3 = 103.70, d4 =

−4.0400 × 104, and d5 = 2.1764 × 106. The correlation re-
produces the calculated ρmD values within ±0.01% and extrap-
olates in a physically reasonable manner to temperatures far
above 2000 K and down to about 100 K as illustrated in Fig. 12.

6. Conclusions

The cross second virial coefficient of the (H2O + CO2) sys-
tem and three of its transport properties (shear viscosity, ther-
mal conductivity, and binary diffusion coefficient) in the di-
lute gas limit were determined with high accuracy at temper-
atures up to 2000 K applying statistical thermodynamics and

Figure 9: Relative deviations of experimental data for the dilute gas thermal
conductivity of the (H2O + CO2) system from the calculated values of the
present work as a function of water vapor mole fraction: •, Timrot and Var-
gaftik [67], 338 K;�, Timrot and Vargaftik [67], 603 K;◦, Dijkema et al. [68],
298 K; �, Dijkema et al. [68], 333 K; ×, Haarman [70], (328 to 468) K; H,
Perkins [69], (503 to 505) K; _, Perkins [69], (562 to 564) K; N, Perkins [69],
(621 and 622) K; dotted line, recommended values resulting from Eq. (9). For
clarity of the figure, the stated uncertainties for the data of Haarman [70] (0.3%)
are not indicated by error bars. The data of Timrot and Vargaftik [67] were not
published in numerical form and had to be read from their Fig. 7 with an accu-
racy of about 0.5%, which is taken into account in the displayed error bars.

Figure 10: Relative deviations of experimental data for the product of mo-
lar density and binary diffusion coefficient of the (H2O + CO2) system in the
dilute gas phase from the calculated values of the present work as a func-
tion of temperature: ◦, Winkelmann [71]; •, Winkelmann [72]; �, Trautz
and Müller [73] (re-evaluation of the measurements of Winkelmann [72]); �,
Schwertz and Brow [74]; �, Rossié [75]; _, Crider [76]; M, Nagata and
Hasegawa [77].

the kinetic theory of molecular gases [7–13, 41–46], respec-
tively. The required pair PES for the H2O–CO2 interaction
was developed as part of the present work employing quantum-
chemical ab initio computations at the RI-MP2 [23, 24] and the
CCSD(T) [33] level of theory for more than 22,000 mutual con-
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Figure 11: Correlation for the cross second virial coefficient as given by
Eq. (10), displayed here as the absolute value. The correlation is colored in
blue within its range of validity and in red outside of this range.

Figure 12: Correlation for the product of molar density and binary diffusion
coefficient of an equimolar (H2O + CO2) mixture in the dilute gas limit as given
by Eqs. (11) and (12). The correlation is colored in blue within its range of
validity and in red outside of this range.

figurations of the two molecules. The PES is represented an-
alytically by a site–site potential function with nine sites for
H2O and seven sites for CO2; a Fortran 90 implementation is
provided in the Supporting Information. The calculation of the
transport properties involves also the like-species interactions;
the respective generalized cross sections were obtained in our

previous work on pure H2O [11, 20] and pure CO2 [3].
The comparison of the calculated values for the H2O–CO2

cross second virial coefficient with the available experimental
data and previously calculated values [60, 61] based on the PES
of Wheatley and Harvey [18] reveals that the present values are
probably the most accurate to date. In the case of the transport
properties, the predicted values are almost certainly more accu-
rate than the scarce experimental data. Moreover, they cover a
much wider temperature range and the full composition range.
Thus, they represent a substantial improvement in our knowl-
edge of the transport properties of this mixture.

Tables of calculated values for all four investigated proper-
ties are provided together with their estimated uncertainties. In
the case of the viscosity and the thermal conductivity, small
empirical adjustments in the form of scaling factors are recom-
mended. We also provide practical correlations for the cross
second virial coefficient and the binary diffusion coefficient,
where we neglected the very small composition dependence of
the latter because it should be irrelevant in any applications.
Since the calculated transport property values are smooth func-
tions of temperature and mole fraction, values for these prop-
erties at temperatures and mole fractions different from those
listed in the tables can be determined reliably using a suitable
interpolation scheme.

Finally, we note that while the present results and those of
our previous studies on eight further binary systems [10, 12–
16] cover only the dilute gas phase, they provide an essential
basis for the improvement of approaches to estimate mixture
properties also at higher densities by enforcing the correct be-
havior in the dilute gas limit.
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Nomenclature

Abbreviations
calc calculated
CBS complete basis set
CCSD(T) coupled-cluster with single, double, and

perturbative triple excitations
cl classical
corr correlation
exp experimental
HF Hartree–Fock
min minimum
MP2 second-order Møller–Plesset perturbation theory
MSMC Mayer-sampling Monte Carlo
PES potential energy surface
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QFH quadratic Feynman–Hibbs
rec recommended
RI resolution of identity
rot rotational
trans translational

Symbols

Ai j, αi j, bi j, C6 i j parameters for the interaction between site i in
molecule 1 and site j in molecule 2

bi parameter of the correlation for the cross second
virial coefficient

B12 cross second virial coefficient
di parameter of the correlation for the product of

molar density and binary diffusion coefficient
D binary diffusion coefficient
E energy
f6 damping function
~ Planck’s constant divided by 2π
Ii moment of inertia perpendicular to the molecular

axis of the linear molecule i
Iiα moment of inertia for principal axis α of the

non-linear molecule i
k coverage factor
kB Boltzmann’s constant
NA Avogadro’s constant
qi charge of site i
R, R separation and separation vector, respectively,

between the centers of mass of molecules 1 and 2
Ri j separation between site i in molecule 1 and site j

in molecule 2
S function in the correlation for the product of

molar density and binary diffusion coefficient
T temperature
T ∗, T reduced temperatures
U combined expanded uncertainty
V total interaction energy
Vi j interaction energy between site i in molecule 1

and site j in molecule 2
w weighting function
x, y, z Cartesian components of R
xi mole fraction of component i
X cardinal number of a basis set
[X]n transport property X with X ∈ {η, λ, ρmD} in the

nth-order kinetic theory approximation
α parameter in the CBS extrapolation scheme
η shear viscosity
λ thermal conductivity
µ reduced mass of molecules 1 and 2
ρm molar density
φ12 dilute gas cross isothermal Joule–Thomson

coefficient
ψiα angle of rotation around principal axis α of

molecule i
Ωi angular orientation of molecule i
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