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Calculation of the thermal conductivity of low-density CH4–N2 gas
mixtures using an improved kinetic theory approach
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2Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, United Kingdom

(Received 23 January 2016; accepted 18 March 2016; published online 4 April 2016)

The thermal conductivity of low-density CH4–N2 gas mixtures has been calculated by means of
the classical trajectory method using state-of-the-art intermolecular potential energy surfaces for the
CH4–CH4, N2–N2, and CH4–N2 interactions. Results are reported in the temperature range from 70 K
to 1200 K. Since the thermal conductivity is influenced by the vibrational degrees of freedom of the
molecules, which are not included in the rigid-rotor classical trajectory computations, a new correc-
tion scheme to account for vibrational degrees of freedom in a dilute gas mixture is presented. The
calculations show that the vibrational contribution at the highest temperature studied amounts to 46%
of the total thermal conductivity of an equimolar mixture compared to 13% for pure nitrogen and 58%
for pure methane. The agreement with the available experimental thermal conductivity data at room
temperature is good, within ±1.4%, whereas at higher temperatures, larger deviations up to 4.5% are
observed, which can be tentatively attributed to deteriorating performance of the measuring technique
employed. Results are also reported for the magnitude and temperature dependence of the rotational
collision number, Zrot, for CH4 relaxing in collisions with N2 and for N2 relaxing in collisions with
CH4. Both collision numbers increase with temperature, with the former being consistently about
twice the value of the latter. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4945014]

I. INTRODUCTION

The transport properties of low-density gases and
their mixtures are governed solely by the dynamics of
binary molecular collisions, which are determined by the
intermolecular potential energy surfaces (PESs). In the kinetic
theory of dilute polyatomic gases,1 the transport properties
are expressed in terms of temperature-dependent generalized
collision cross sections. To compute these cross sections
with good accuracy, intermolecular PESs based on high-level
quantum-chemical ab initio calculations should be employed.
Such calculations can provide a stringent test of the quality of a
PES2–4 and allow us to supplement the available experimental
transport property data at conditions where the data have large
uncertainties or are nonexistent.5–9

In a previous study,10 we calculated the viscosity, η, and
the product of the molar density and the binary diffusion
coefficient, ρmD, for low-density mixtures of methane and
nitrogen in the temperature range from 70 K to 1200 K
using highly accurate PESs for the CH4–CH4,11 N2–N2,12

and CH4–N2
10 interactions. The calculation of the generalized

cross sections was performed classically within the rigid-
rotor approximation, and no correction for the presence of
vibrational degrees of freedom was made. This is appropriate
for viscosity and diffusion, but not for the thermal conductivity,
λ, which is strongly influenced by vibrational energy transport.

For pure gases, two schemes have been proposed to
account for the influence of the vibrational degrees of
freedom on the thermal conductivity. In both approaches,
it is assumed that the vibrational states of the molecules

a)Electronic mail: robert.hellmann@uni-rostock.de

do not change during collisions and that the influence
of the vibrational motion on the collision trajectories is
negligible. The latter assumption implies that knowledge
of the intermolecular PES for the ground vibrational state
of the molecules is sufficient to carry out the calculations
of the thermal conductivity. For simple molecules, these
are reasonable assumptions, which are supported by good
agreement obtained so far3,4,7,8,12–14 between calculated and
measured experimental thermal conductivity values.

In the scheme of Bich and co-workers,15,16 individual
rigid-rotor cross sections are corrected for the effect of
vibrational excitation, and the rotational contribution to the
ideal-gas heat capacity, which enters the expression for
the thermal conductivity, is replaced by the sum of the
rotational and vibrational contributions. In an alternative
approach, which was proposed by Liang and Tsai17,18 for
use in conjunction with molecular dynamics simulations and
which was rigorously derived for the dilute-gas limit by two
of the current authors14 using kinetic theory, the vibrational
degrees of freedom are accounted for by means of an additive
correction term to the rigid-rotor thermal conductivity,

λ = λrr + λvib = λrr + NACvibρmDself. (1)

Here, NA is Avogadro’s constant, Cvib is the vibrational
contribution to the ideal-gas heat capacity per molecule,
and ρmDself is the product of the molar density and the
self-diffusion coefficient, which can be accurately determined
using rigid-rotor cross sections. For the weakly polar
molecules of interest to this work, the thermal conductivity
values resulting from the two approaches differ by less than
0.1% and agree well with experimental data.12–14 However, as

0021-9606/2016/144(13)/134301/7/$30.00 144, 134301-1 © 2016 AIP Publishing LLC
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the polarity of the molecules increases, larger differences of
up to 5% (water vapor) are observed.14 Since for polar fluids
the results obtained using the scheme given by Eq. (1) are in
much better agreement with experimental data,14 it is clear
that this approach is to be preferred for correcting the classical
rigid-rotor calculations for the presence of vibrational degrees
of freedom.

In the present paper, we provide the extension of
Eq. (1) to gas mixtures and report values for the thermal
conductivity of dilute CH4–N2 mixtures as a function of
mole fraction and temperature. The results are compared with
the available experimental data. Furthermore, we analyze the
rotational collision numbers for this mixture, as rotational
relaxation plays an important role in determining the thermal
conductivity of a gas.

II. THEORY

The transport properties of dilute gas mixtures can be
calculated using the kinetic theory of polyatomic gases.1,19–25

For each transport coefficient, a system of linear equations
needs to be solved. In the case of the thermal conductivity
within the rigid-rotor approximation, λrr, the system of linear
equations for a binary mixture of species A and B is given as

q′s′t′


S̄

(
1q s t
1q′s′t′

) (1)
AA

X1q′s′t′

A + S̄
(

1q s t
1q′s′t′

) (1)
AB

X1q′s′t′

B



= xAδq0
�
δs1δt0C1010

A + δs0δt1C1001
A

�
,

q′s′t′


S̄

(
1q s t
1q′s′t′

) (1)
BA

X1q′s′t′

A + S̄
(

1q s t
1q′s′t′

) (1)
BB

X1q′s′t′

B



= xBδq0
�
δs1δt0C1010

B + δs0δt1C1001
B

�
,

(2)

where xA and xB are the mole fractions, and X1q′s′t′

A and X1q′s′t′

B
are the resulting solutions of the coupled set of equations. The
quantities C1010

α and C1001
α are given by

C1010
α =

(
5kBT
2mα

)1/2

, C1001
α =

(
Crot,αT

mα

)1/2

, (3)

where kB is Boltzmann’s constant, T is the temperature, and
mα and Crot,α are the molecular mass and the rotational
contribution to the ideal-gas heat capacity per molecule,
respectively, of component α. The coefficients S̄

(
p q s t
p′q′s′t′

) (k)
αβ

are given by

S̄
(
p q s t
p′q′s′t′

) (k)
αβ
= δαβ


γ

xαxγ⟨v⟩αγσ̄′
(
p q s t
p′q′s′t′

) (k)
αγ

+ xαxβ⟨v⟩αβσ̄
′′
(
p q s t
p′q′s′t′

) (k)
αβ

, (4)

where ⟨v⟩αβ = (8kBT/πµαβ)1/2 is the average relative thermal
speed of molecules of types α and β, µαβ is their reduced
mass, and the index γ runs over both mixture components. The

quantities σ̄′
(
p q s t
p′q′s′t′

) (k)
αβ

and σ̄′′
(
p q s t
p′q′s′t′

) (k)
αβ

are temperature-
dependent generalized cross sections for collisions between
rigid-rotor molecules.1,10,22,25 Apart from the overbar and the
added species subscripts, the present notation for the cross
sections is identical to that introduced by Curtiss.22 In terms
of the notation used by McCourt et al.,1 we have

σ̄′
(
p q s t
p′q′s′t′

) (k)
αα
+ σ̄′′

(
p q s t
p′q′s′t′

) (k)
αα
≡ S̄

(
p q s t
p′q′s′t′

���
α
α

�(k)
αα

, (5)

σ̄′
(
p q s t
p′q′s′t′

) (k)
αβ
≡ S̄

(
p q s t
p′q′s′t′

���
α
α

�(k)
αβ

, α , β, (6)

σ̄′′
(
p q s t
p′q′s′t′

) (k)
αβ
≡ S̄

(
p q s t
p′q′s′t′

���
α
β

) (k)
αβ

, α , β. (7)

The rigid-rotor thermal conductivity is obtained as the sum of
a translational and a rotational contribution,

λrr = λtr + λrot, (8)

with

λtr = kB
�
xAX1010

A C1010
A + xBX1010

B C1010
B

�
, (9)

λrot = kB
�
xAX1001

A C1001
A + xBX1001

B C1001
B

�
. (10)

The first-order approximation for λrr results from considering
only the (qst) and (q′s′t ′) sets (010) and (001) in Eqs. (2).
For the second-order approximation, we also include the sets
(020), (011), (002), (200), and (100). This definition of the
second-order approximation is consistent with that given for
pure gases in Ref. 14.

It is important to note that two different thermal
conductivities, λ0 and λ∞, can be defined for gas mixtures.26–28

The coefficient λ0 would be obtained by measuring the heat
flux due to an applied temperature gradient in a completely
homogeneous mixture. The heat flux would then be affected by
thermal diffusion, resulting in the buildup of a concentration
gradient until for each component the diffusive flux vanishes
due to compensation of thermal diffusion by ordinary mass
diffusion. As this steady state is reached very quickly, only the
thermal conductivity under steady-state conditions, λ∞, can
be determined experimentally. Contrary to intuition, even the
transient hot-wire (THW) technique yields λ∞ and not λ0.28

The kinetic theory approach given here yields λ∞ values. To
obtain λ0, which is always larger than λ∞, one would have
to additionally include the set (000) in Eqs. (2) and replace
the coefficients S̄

(
1q s t
1q′s′t′

) (k)
αβ

by the coefficients S
(

1q s t
1q′s′t′

) (k)
αβ

as given in Ref. 10.
To derive a scheme for the calculation of the

vibrational contribution to the thermal conductivity, λvib,
we define, following Ref. 14, generalized cross sections
using basis functions that are products of rigid-rotor basis
functions, Φpqst |α

k
, and normalized Wang Chang–Uhlenbeck

polynomials29 of order u in the reduced vibrational energy.
The system of linear equations for the thermal conductivity of
a binary mixture with components A and B is then given as


q′s′t′u′


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A

�
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(11)
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where C10100
α = C1010

α , C10010
α = C1001

α , and

C10001
α =

(
Cvib,αT

mα

)1/2

. (12)

The coefficients S̄
(
p q s t u
p′q′s′t′u′

) (k)
αβ

are given by

S̄
(
p q s t u
p′q′s′t′u′

) (k)
αβ
= δαβ


γ

xαxγ⟨v⟩αγσ̄′
(
p q s t u
p′q′s′t′u′

) (k)
αγ

+ xαxβ⟨v⟩αβσ̄
′′
(
p q s t u
p′q′s′t′u′

) (k)
αβ

. (13)

The thermal conductivity is then obtained as

λ = λtr + λrot + λvib, (14)

with

λtr = kB
�
xAX10100

A C10100
A + xBX10100

B C10100
B

�
, (15)

λrot = kB
�
xAX10010

A C10010
A + xBX10010

B C10010
B

�
, (16)

λvib = kB
�
xAX10001

A C10001
A + xBX10001

B C10001
B

�
. (17)

If only the (qstu) and (q′s′t ′u′) sets (0100), (0010), and (0001)
are considered in Eqs. (11), the first-order approximation for
λ is obtained.

Again following the procedure summarized in Ref. 14, we
can relate the generalized cross sections σ̄′

(
p q s t u
p′q′s′t′u′

) (k)
αβ

and

σ̄′′
(
p q s t u
p′q′s′t′u′

) (k)
αβ

to the rigid-rotor cross sections σ̄′
(
p q s t
p′q′s′t′

) (k)
αβ

and σ̄′′
(
p q s t
p′q′s′t′

) (k)
αβ

if we assume that the vibrational motion
does not influence the collision trajectories and that the
vibrational states of the molecules do not change during a
collision

σ̄′
(
p q s t u
p′q′s′t′u′

) (k)
αβ
= σ̄′

(
p q s t
p′q′s′t′

) (k)
αβ

δuu′, (18)

σ̄′′
(
p q s t u
p′q′s′t′u′

) (k)
αβ
= σ̄′′

(
p q s t
p′q′s′t′

) (k)
αβ

δu0δu′0. (19)

The coefficients of the system of linear equations (11) can then
be simplified by substituting Eqs. (18) and (19) into Eq. (13)
to obtain

S̄
(
p q s t u
p′q′s′t′u′

) (k)
αβ
= δuu′δαβ


γ

xαxγ⟨v⟩αγσ̄′
(
p q s t
p′q′s′t′

) (k)
αγ

+ δu0δu′0xαxβ⟨v⟩αβσ̄
′′
(
p q s t
p′q′s′t′

) (k)
αβ

. (20)

Hence, for u , u′ as well as for the case that u = u′ , 0 and
α , β, the coefficients are zero. For u = u′ = 0, we have

S̄
(
p q s t 0
p′q′s′t′0

) (k)
αβ
= S̄

(
p q s t
p′q′s′t′

) (k)
αβ

, (21)

while for u = u′ > 0, we obtain

S̄
(
p q s t u
p′q′s′t′u

) (k)
αα
=


β

xαxβ⟨v⟩αβσ̄
′
(
p q s t
p′q′s′t′

) (k)
αβ

. (22)

This greatly simplifies Eqs. (11), resulting in a system
of linear equations for the rigid-rotor thermal conductivity
(equivalent to Eqs. (2)) and further independent systems of
linear equations, one for each component α, which are given
by 

q′s′t′
S̄

(
1q s t 1
1q′s′t′1

) (1)
αα

X1q′s′t′1
α = xαδq0δs0δt0C10001

α . (23)

The solution coefficients X10001
α yield the vibrational contribu-

tion, λvib, via Eq. (17). To obtain the first-order approximation
for λvib, we only need to consider (qst) = (q′s′t ′) = (000).
For the second-order approximation, we also include the sets
(010), (001), (200), and (100). This is consistent with the
second-order approximation for pure gases given in Ref. 14.

For the first-order approximation, we obtain

[λvib]1 = kBT

α

xαCvib,α

mα

*.
,


β

xβ⟨v⟩αβσ
′(1000)αβ

+/
-

−1

, (24)

where σ′(1000)αβ is a shorthand for σ̄′
(

1000
1000

) (1)
αβ

.14 We can
now introduce the first-order approximations for the self-
diffusion coefficient of the pure component α,1,14

ρm[Dself,α]1 = kBT
NAmα⟨v⟩αασ′(1000)αα , (25)

and for the binary diffusion coefficient (which is independent
of composition in the first-order approximation) of a mixture
of unlike components (α , β),

ρm[Dαβ]1 = kBT
NAmα⟨v⟩αβσ

′(1000)αβ
, (26)

yielding

[λvib]1 = NA


α

xαCvib,α

(
xα

ρm[Dself,α]1 +

β,α

xβ

ρm[Dαβ]1
)−1

.

(27)

It can easily be shown that this expression holds not only for a
binary mixture but also for a multi-component one. A similar
expression has already been derived by Hirschfelder30 and by
Monchick et al.,27 for a gas mixture consisting of spherical
particles possessing internal degrees of freedom (as a simple
model for polyatomic molecules). Following Hirschfelder, we
define

1
ρm[Dα]1 =

xα
ρm[Dself,α]1 +


β,α

xβ

ρm[Dαβ]1 . (28)

Hirschfelder introduced Dα “for convenience of notation”30

but gave no physical interpretation. Since we assumed
that the vibrational states of the molecules do not change
during collisions and since we are dealing with the thermal
conductivity in the absence of diffusive fluxes, λ∞, the only
possible mechanism for the transport of vibrational energy
is intradiffusion. Thus, [Dα]1 in Eq. (28) can be identified
as the composition-dependent intradiffusion coefficient in the
first-order approximation (we note that this relation is actually
a variant of Blanc’s law31,32). The total thermal conductivity
of a multi-component mixture can then be written for any
order of approximation as

λ = λrr + NA


α

xαCvib,αρmDα. (29)

This last expression is particularly useful for the determination
of the thermal conductivity of gas mixtures by means
of molecular dynamics simulations, as both the rigid-rotor
thermal conductivity and the intradiffusion coefficients of the
components in the mixture can be computed using established
techniques.17,18,33,34 For a pure gas, Eq. (29) reduces to Eq. (1).
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Although we have derived these two equations only for
the dilute-gas limit, we note that Liang and Tsai17,18 have
demonstrated in their molecular dynamics studies of pure
methane and pure carbon dioxide the suitability of Eq. (1)
also for dense gases.

The scheme of Bich and co-workers15,16 to account for
the vibrational degrees of freedom can, in the first-order
approximation, easily be extended to mixtures as well. The
resulting expressions for the generalized cross sections of a
molecule–atom mixture have already been given by Dickinson
et al.35 The expressions for mixtures of molecular gases are
provided in the supplementary material.36

III. RESULTS

The generalized cross sections required for the evaluation
of the thermal conductivity of dilute CH4–N2 mixtures were
computed within the rigid-rotor approximation by means of
the classical trajectory method using an extended version of the
 software code.10,24,25 Accurate CH4–CH4, N2–N2, and
CH4–N2 PESs based on high-level quantum-chemical ab initio
calculations and fine tuned to the best experimental data for the
pure and cross second virial coefficients10–12 were employed
for these calculations. The details of the trajectory calculations
are given in Ref. 10 and are therefore not repeated here. The
vibrational contributions to the ideal-gas heat capacities of
methane and nitrogen were determined using the reference
equations of state for these fluids.37,38

A. Thermal conductivity

The computed values for the thermal conductivity in
the second-order approximation, [λ]2, are tabulated for 155
temperatures from 70 K to 1200 K and 11 mole fractions
in the supplementary material.36 The standard uncertainty of
these values due to the Monte Carlo integration scheme used
in the  program to obtain ensemble averages of the
cross sections is estimated to be smaller than 0.2% at all
temperatures and mole fractions. The thermal conductivity
values calculated for the pure components are slightly more
accurate than the previously published ones,12,13 which were
obtained using less accurate Monte Carlo integrations.

Figure 1 shows the ratio of the thermal conductivity
in the second-order approximation to that in the first-order
approximation. The ratio is always larger than unity but does
not exceed 1.018. We estimate that relative contributions from
third- and higher-order approximations are of the order of
0.1%.

The ratio of the vibrational contribution in the second-
order approximation, [λvib]2, to the total thermal conductivity
in the second-order approximation, [λ]2 = [λrr]2 + [λvib]2, is
shown in Fig. 2. At 300 K, the vibrational contribution
amounts to 0.1%, 4.0%, and 7.0% of the total thermal
conductivity of pure nitrogen, an equimolar mixture, and
pure methane, respectively, whereas the contribution at
1200 K amounts to 13%, 46%, and 58%, respectively.
The vibrational contributions to the ideal-gas heat capacities
are Cvib,N2/kB = 0.003 and Cvib,CH4/kB = 0.30 at 300 K and
Cvib,N2/kB = 0.56 and Cvib,CH4/kB = 5.67 at 1200 K.

FIG. 1. Contour plot of the ratio of the thermal conductivity in the second-
order approximation, [λ]2, to that in the first-order approximation, [λ]1, as a
function of temperature and composition.

First-order thermal conductivity values resulting from the
scheme of Bich and co-workers15,16 and from the approach of
the present paper differ by less than 0.02% in the full range of
temperature and composition.

We have also evaluated the thermal conductivity using
the approach of Thijsse et al.,39 who used a different set
of expansion vectors to solve the generalized Boltzmann
equation. The resulting first-order expressions for the thermal
conductivity of pure gases39 and mixtures40,41 are much
simpler, and so far, all results for pure gases consisting of
simple non-polar or weakly polar molecules13,16,42 or model
chain-like molecules43 indicate that the two approaches give
nearly identical values for the thermal conductivity, the largest
relative deviations being 0.6%.2 We have employed both the
cross sections evaluated within the rigid-rotor approximation
and the cross sections corrected for the vibrational degrees
of freedom by the scheme of Bich and co-workers15,16,36

for the calculation of the thermal conductivity of CH4–N2

FIG. 2. Contour plot of the ratio of the vibrational contribution in the second-
order approximation, [λvib]2, to the total thermal conductivity in the second-
order approximation, [λ]2, as a function of temperature and composition.
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mixtures using the approach of Thijsse et al. The agreement
with the thermal conductivity values obtained using the
common first-order approximation, [λ]1, is remarkably good;
the difference never exceeds 0.17% for a calculation using
either the corrected or the rigid-rotor cross sections.

For completeness, we have also calculated values for λ0.
They are always within 0.05% of the values for the thermal
conductivity under steady-state conditions, λ∞, in the range
of temperatures and compositions studied in this work.

B. Dimensionless parameters

There are a number of dimensionless parameters that
appear in traditional kinetic theory formulations of dilute
gases. They are of interest because there is a body of evidence,
based primarily on spherically symmetric pair potentials, that
indicates that these parameters are only weakly dependent
on temperature and nearly independent of the PES.44 In our
previous work on the calculation of the viscosity and the
binary diffusion coefficient of dilute CH4–N2 mixtures,10 we
examined the behavior of the dimensionless parameter A∗. The
results concur with those for pure polyatomic species,2,5,43,45,46

where it was observed that the values of A∗ are on average
a few percent higher than those calculated for spherically
symmetric potentials.44,47 Here, we present the first results
for the parameters B∗ and K∗ for a binary mixture consisting
of two molecular species. These two parameters appear in
the practical expressions for the thermal conductivity of
mixtures.27,44,48 Their definitions in terms of generalized cross
sections48,49 or, for B∗, also as a ratio of traditional collision
integrals27,44,47,50 are readily available and are not given here
for brevity. Figure 3 illustrates the behavior of B∗ as a function
of temperature and provides a comparison with the values
obtained from the universal correlation of Bzowski et al.47

(using the energy scaling parameter ε = 125 K recommended
in Ref. 47 for the CH4–N2 system). We observe that the B∗

values obtained in this work show a similar trend as those
obtained from the universal correlation but are on average
2% to 3% larger in magnitude. The parameter K∗, which
is zero for a spherically symmetric potential, is small at all
temperatures; it never exceeds a value of 0.023. This is in
line with previous studies on the thermal conductivity of the
N2–He system,51 which also found K∗ to be close to zero.

FIG. 3. Dimensionless parameter B∗ as a function of temperature.

C. Rotational collision number

Rotational relaxation plays an important role in
determining the thermal conductivity of a molecular gas.
An easy measure of its efficiency is the rotational collision
number (also known as rotational relaxation number), Zrot,
which also appears in the practical expressions for predicting
the thermal conductivity.48,49 As Zrot is also of relevance
to other fields and as the literature on rotational relaxation
due to molecule–molecule collisions is scant, we complete our
discussion by presenting the first results for the magnitude and
temperature dependence of Zrot in unlike molecule–molecule
interactions that do not involve hydrogen or its isotopes.
Unlike the pure gas case, where one rotational collision
number suffices for molecules, we need to consider two of
them, ZrotN2,CH4 and ZrotCH4,N2, for binary collisions between
methane and nitrogen. The former describes the rotational
relaxation of nitrogen due to collisions with methane and the
latter the rotational relaxation of methane due to collisions
with nitrogen. Here, we kept to the notation introduced in
Refs. 48 and 49, which also provide the full definition in
terms of the cross sections, namely, that ZrotA,B is inversely
proportional to the product of the cross section σ′(0001)AB
and the interaction viscosity ηAB.

Figure 4 shows ZrotN2,CH4 and ZrotCH4,N2 as a function
of temperature. Although both are determined by the same
intermolecular PES, we observe that N2 relaxes much faster
(lower Zrot values) than CH4. The difference in Zrot can be
attributed partly to the different moments of inertia of the
relaxing molecules. To demonstrate this, we have performed
additional classical trajectory computations with the moment
of inertia of the methane molecule, ICH4, artificially tripled so
that its value is almost equal to that of nitrogen. As illustrated
in Fig. 4, this reduces ZrotCH4,N2 considerably, but it is still
higher than ZrotN2,CH4 (which is, as expected, almost unaffected
by the artificial change of the moment of inertia of CH4; the
resulting curve is therefore not shown in the figure). We have
also performed calculations with the moment of inertia of CH4
tripled and its mass increased to that of N2. However, this mass
increase affects both collision numbers only by a few percent.

FIG. 4. Rotational collision number, Zrot, as a function of temperature.
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To fully account for the observed differences, we also have
to take into account that the tetrahedral methane molecule is
more spherical in shape than nitrogen. As a consequence, the
PES is less anisotropic with respect to the angular orientation
of methane than to that of nitrogen. Therefore, even when the
moments of inertia are made equal, nitrogen relaxes faster than
methane since the efficiency of rotational relaxation increases
with anisotropy.

IV. COMPARISON WITH EXPERIMENTAL THERMAL
CONDUCTIVITY DATA

Our current best estimate for the combined expanded
uncertainty (coverage factor k = 2) of the computed thermal
conductivity values for both pure components, based on
extensive comparisons with experimental data,12,13 is 1%
between 300 K and 700 K, increasing to 2% at both
70 K and 1200 K. This estimate should also be valid for
the mixtures since the PES for the CH4–N2 interaction10

is of a similar quality as the CH4–CH4
11 and N2–N2

12

PESs.
In Fig. 5, we compare the calculated thermal conductivity

values with the available experimental data in the dilute
gas phase.52–55 The three data points of Clingman et al.52

for nitrogen-rich mixtures at 273.15 K (pressure not given
but probably 1 atm) were measured with a commercial
thermal conductivity detector (calibrated against helium-argon
mixtures) and agree surprisingly well with the calculated
values; the deviations do not exceed 1.4%. The three data
points in the limit of zero density of Kestin et al.53 at 300.65 K
for methane mole fractions of 0.2564, 0.5432, and 0.7707
were obtained using a THW apparatus and have a stated
uncertainty of 0.3%. The agreement with our calculated values
is within mutual uncertainties. Pátek et al.55 also employed
a THW instrument to determine the thermal conductivity at
six temperatures from 300 K to 425 K for methane mole
fractions of 0.25, 0.50, and 0.75 as well as for pure nitrogen.
Measurements for pure methane with the same instrument

FIG. 5. Deviations, ∆= (λexp− [λ]2)/[λ]2, of experimental thermal conduc-
tivity data (Refs. 52–55) from values obtained using second-order kinetic
theory.

at eight temperatures from 290 K to 360 K were also
reported54 (for the latter, we only show the deviations at
300 K and 350 K in the figure). The claimed uncertainty
is 0.7% for pure methane54 and 1.0% for pure nitrogen and
the mixtures.55 At 300 K, the agreement of the measured
thermal conductivity with our calculated values is within the
quoted experimental uncertainties for the pure gases and
the three mixtures. However, at higher temperatures, we
observe larger deviations for the mixtures, which increase
with temperature and, to a lesser extent, with an increase in
the mole fraction of methane, reaching a maximum value of
+4.5%. It is not clear at the moment what causes the observed
differences between the calculated and measured values. In
our opinion, it is highly unlikely that the vibrational degrees
of freedom were somehow not properly taken into account
in the mixture calculation considering that the two schemes
employed give practically identical results. Furthermore, the
approximations made regarding vibrational energy exchange
are the same as for pure gases, which led to good predictions
of the thermal conductivity.3,4,7,8,12–14 The uncertainty in the
CH4–N2 potential is also unlikely to explain the observed
high-temperature increase in the deviations, as the same
potential function was successfully used to predict the
viscosity and the cross second virial coefficient.10 The most
likely explanation is that the uncertainty of the measurements
of Pátek et al. for the three investigated mixture compositions
is higher than 1% despite the good agreement for the pure
gases. In the last two decades, evidence has been emerging that
measurements by means of the THW technique performed
at low densities and at temperatures higher than ambient
suffer from a systematic error.56,57 Although a large effort has
gone into establishing the source of the error,56 no credible
hypothesis has been put forward that would explain the
observed effect.57 Thus, the currently circumstantial evidence
is based primarily on the inability of the accepted theory for the
THW technique to fully account for the observed behavior57

and on the discrepancies between the measured thermal
conductivity using THW instruments and other methods for a
number of pure gases.4,8,13,58 There is thus an urgent need for
accurate measurements of the thermal conductivity of this and
similar systems using a primary instrument that is not based
on the THW principle.

V. CONCLUSIONS

A method for correcting the thermal conductivity of a
low-density gas mixture consisting of rigid-rotor molecules
for the influence of vibrational degrees of freedom has
been developed. The resulting equations, which have their
basis in the kinetic theory of polyatomic gases, show that
the vibrational contribution can be approximated by an
additive term that depends only on the mole fractions, the
vibrational contributions to the ideal-gas heat capacities, and
the intradiffusion coefficients of the mixture components. The
proposed correction should be most appropriate for mixtures
of simple polyatomic molecules consisting of few atoms.

We have used previously reported PESs for the
CH4–CH4,11 N2–N2,12 and CH4–N2

10 interactions to compute
the thermal conductivity of CH4–N2 mixtures in the
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temperature range from 70 K to 1200 K by means of the
classical trajectory method. The agreement with experimental
data at room temperature is good; the observed deviations of
at most 1.4% are within the combined overall uncertainty
of the experimental data and the calculated values. At
temperatures of 325 K and above, we observe a systematic
increase in the deviations, reaching a maximum of 4.5%.
The cause of this discrepancy is not fully understood, but
there is emerging evidence that seems to indicate that thermal
conductivity measurements at low densities by means of the
THW technique are less accurate at elevated temperatures
than at room temperature.

The calculations performed indicate that, as expected, the
vibrational contribution to the thermal conductivity increases
strongly with temperature and the mole fraction of methane
in the mixture. For an equimolar mixture at 1200 K, it
amounts to 46% of the total thermal conductivity compared
to 13% for pure nitrogen and 58% for pure methane. The
second-order thermal conductivity correction does not exceed
1.8% in the whole temperature and composition range, while
the third-order correction is expected to be negligible. We
have also calculated the thermal conductivity in the first-order
approximation using the approach of Thijsse et al.39 It gives
nearly identical results, with deviations of at most 0.17%
between the two approaches. The dimensionless parameter
B∗ shows a similar trend as for monatomic systems but
is on average 2% to 3% larger in magnitude, while the
dimensionless parameter K∗ is close to zero at all temperatures.

Results have also been obtained, for the first time, for
the magnitude and temperature dependence of the rotational
collision number, Zrot, for CH4 in collisions with N2 and for
N2 in collisions with CH4. Both collision numbers increase
with temperature, and the former is consistently about twice
the value of the latter. The differences can be ascribed to an
interplay between the anisotropy of the PES and the moment
of inertia of the rotationally relaxing molecule.
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