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An ab initio nonadditive three-body potential for argon has been developed using quantum-chemical
calculations at the CCSD(T) and CCSDT levels of theory. Applying this potential together with a
recent ab initio pair potential from the literature, the third and fourth to seventh pressure virial coef-
ficients of argon were computed by standard numerical integration and the Mayer-sampling Monte
Carlo method, respectively, for a wide temperature range. All calculated virial coefficients were fitted
separately as polynomials in temperature. The results for the third virial coefficient agree with values
evaluated directly from experimental data and with those computed for other nonadditive three-body
potentials. We also redetermined the second and third virial coefficients from the best experimental
pρT data utilizing the computed higher virial coefficients as constraints. Thus, a significantly closer
agreement of the calculated third virial coefficients with the experimental data was achieved. For
different orders of the virial expansion, pρT data have been calculated and compared with results
from high quality measurements in the gaseous and supercritical region. The theoretically predicted
pressures are within the very small experimental errors of ±0.02% for p ! 12 MPa in the super-
critical region near room temperature, whereas for subcritical temperatures the deviations increase
up to +0.3%. The computed pressure at the critical density and temperature is about 1.3% below
the experimental value. At pressures between 200 MPa and 1000 MPa and at 373 K, the calculated
values deviate by 1% to 9% from the experimental results. © 2011 American Institute of Physics.
[doi:10.1063/1.3627151]

I. INTRODUCTION

The calculation of thermophysical properties from
molecular models is of great interest for industrial applica-
tions and also for the assessment of theoretical methods. In-
creasing computational power provides the opportunity to
generate molecular models entirely from theory. Especially,
the intermolecular pair potential function can be predicted
with high accuracy for substances composed of atoms1–4

or small molecules, such as carbon dioxide,5 methane,6 or
water,7 using quantum-chemical ab initio methods. Thermo-
physical properties calculated with these potentials are, in
most cases, reliable only at low densities, in accordance with
the fact that the true pair interaction is directly linked to sec-
ond virial coefficients and transport coefficients of gases in
the zero-density limit by means of statistical thermodynamics
and kinetic theory.

At higher densities many-body effects have strong influ-
ence on macroscopic properties. One way to account for this
is the implicit inclusion of many-body effects into the pair po-
tential, which is referred to as the pairwise-additive approach.
Typically, these potentials (e.g., the well-established TIP4P
water model8) are adjusted to structural information of the
molecule and bulk properties, which have been measured in
certain limited state regions. Therefore, such a potential is re-
stricted in its predictive capability. The other possibility is to
use an explicit nonadditive three-body potential together with
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a pure pair potential, so that the potential energy of an N -
particle system may be written as

φN =
∑

i<j

φij +
∑

i<j<k

#φijk. (1)

Axilrod and Teller9 as well as Muto10 were the first to derive
an expression for the nonadditive energy in triplets of atoms
by means of perturbation theory of the third order. About
fifty years later, accurate calculations of three-body contri-
butions using quantum-chemical ab initio methods became
feasible. Lotrich and Szalewicz11 utilized their symmetry-
adapted perturbation theory (SAPT) to develop a nonadditive
potential for argon, followed by a three-body potential
for neon by Ermakova et al.12 based on calculations
with the fourth-order many-body perturbation theory. Later,
Malijevský et al.13 computed the third virial coefficient of
argon applying a new three-body potential, which unfortu-
nately was not discussed in all detail. Recently, Cencek et al.14

performed ab initio calculations up to the full-configuration-
interaction (FCI) level to derive the nonadditivity of helium.
Three-body potentials of molecules have also been devel-
oped, for example, in the case of water using SAPT by Mas
et al.,15 and for carbon dioxide by Oakley and Wheatley16

applying SAPT and second-order many-body perturbation
theory.

The equation of state (EOS) can be obtained from inter-
molecular potentials either by applying molecular simulation
methods, or, for gases and supercritical fluids, by using the
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virial expansion:

p

ρkBT
= 1 + B2(T )ρ + B3(T )ρ2 + · · · , (2)

where p, ρ, and T represent pressure, number density, and
temperature, respectively, kB is Boltzmann’s constant, and
B2, B3, . . . are the virial coefficients. In this paper, we focus
on the capabilities, accuracy, and limitations of the virial se-
ries. Calculations of second and third virial coefficients are
straightforward and have been performed for numerous sub-
stances, see, for example, Refs. 6, 17–22. In a comprehen-
sive review on the virial expansion, Masters23 summarized
the developments in theoretical approaches and numerical ap-
plications. Most of the theoretical investigations of higher-
order virial coefficients were based on the formulations by
Mayer24 or by Ree and Hoover,25 which have been derived
assuming pairwise-additive interactions. Recent progress has
been made by Kofke and co-workers by introducing the
Mayer-sampling Monte Carlo method (MSMC).26 MSMC
refers to an efficient importance sampling Monte Carlo pro-
cedure for the computation of the high-dimensional cluster
integrals that appear in the formulae for the virial coeffi-
cients. It has been applied for the calculation of virial co-
efficients Bn up to n = 8 for the Lennard Jones fluid,26, 27

up to n = 6 for binary Lennard-Jones mixtures,28 up to
n = 6 for some non-polarizable water force fields29, 30 and
alkane models,31 and up to n = 4 for realistic methanol
potentials.32 However, expressions for nonadditive correc-
tions have been reported only for the third through fifth virial
coefficients.33, 34

Recently, Hellmann and Bich35 presented a new deriva-
tion of the virial expansion, which is not restricted to
pairwise-additive potentials. Furthermore, they provided ex-
plicit formulae for the numerical evaluation of the virial coef-
ficients up to B8 in terms of sums of newly defined cluster di-
agrams. Since the number of cluster diagrams increases more
moderately with increasing n, this approach reduces the com-
putational costs significantly compared to the formulations by
Mayer24 and by Ree and Hoover25 for n " 5 and n " 6, re-
spectively.

With the objective of predicting equations of state from
ab initio interaction potentials, we use argon as model
substance, because high-precision experimental data are
available for comparison and the most accurate quantum-
chemical methods can be applied. In Sec. II, we describe
the potential functions utilized in this work, especially the
newly developed nonadditive three-body potential. Then in
Sec. III, the theoretical aspects concerning the virial
expansion, quantum corrections, and the numerical appli-
cation with MSMC are explained. Section IV presents the
results for B3 through B7 for the pure ab initio two-body
potential and for the two-body potential combined with the
three-body potential by Axilrod, Teller, and Muto as well as
with the new ab initio three-body potential. Finally, we com-
pare the obtained values of the different virial equations of
state with experimental data for a variety of pressures and
temperatures.

II. POTENTIAL FUNCTIONS

A. Ab initio pair potential

In preceding papers,3, 19 we presented a state-of-the-
art ab initio potential function for the argon atom pair
with a well depth of ε/kB = 143.123 K and related thermo-
physical properties, such as second acoustic, dielectric, and
pressure virial coefficients as well as viscosity and thermal
conductivity in the limit of zero density. The comparison of
results for the acoustic virial coefficient and for the zero den-
sity viscosity with the most accurate experimental data pro-
vided particular evidence of the high quality of the potential.
Recently, Patkowski and Szalewicz4 developed a new pair po-
tential for argon. They applied novel families of basis sets in
combination with elaborate quantum-chemical methods to es-
timate the interaction energies and the corresponding errors
yielding a potential well depth of 142.944 K. Moreover, they
could not reproduce our interaction energies computed with
the coupled-cluster method with single, double, and nonitera-
tive triple excitations (CCSD(T), Ref. 36) using the d-aug-cc-
pV(5+d)Z+(44332) basis set. Consequently, we discovered a
mistake in our exponents for the second set of diffuse func-
tions. By recalculating the interaction energies with the cor-
rected quintuple basis set, re-extrapolating the correlation part
of the interaction energy to the complete basis set (CBS)
limit, and refitting the parameters, we obtained a well depth of
143.017 K. With regard to the interaction energy at the mini-
mum of the potential, both versions of our pair potential and
the one by Patkowski and Szalewicz agree within their stated
uncertainty.

We also computed values of the second pressure virial
coefficient and of the zero-density viscosity for the pair po-
tential by Patkowski and Szalewicz and for our corrected po-
tential function with the same methods as applied in Ref. 19
and compared the results with our previous values. The val-
ues of the viscosity coefficient at room temperature calculated
for all three potentials differ by less than 0.03% from each
other. Compared to the experimental reference data by May
et al.,37 the value calculated with the potential by Patkowski
and Szalewicz deviates least, however, all theoretically pre-
dicted values at room temperature agree with the experimen-
tal datum within its standard uncertainty of 0.084%. The
same holds for the second virial coefficient, but in contrast
to viscosity, the theoretical value for our original pair po-
tential agrees best with the experimental result by Tegeler
et al.38 Therefore, we decided to use the published version
of our potential function,3 which is given by the analytical
representation

φ = A exp(a1R + a2R
2 + a−1R

−1 + a−2R
−2)

−
8∑

n=3

C2n

R2n

[

1 − exp(−bR)
2n∑

k=0

(bR)k

k!

]

. (3)

Here, R is the distance between two interacting atoms; the
parameters can be found in Ref. 3.
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B. Ab initio nonadditive three-body potential

Following the ideas by Cencek et al.14 for helium and
Malijevský et al.13 for argon, we based our three-body poten-
tial for argon on supermolecular coupled-cluster calculations.
In this approach, the nonadditive three-body contribution to
the interaction energy is readily obtained by

#φ123 = E123 − E1 − E2 − E3 − φ12 − φ23 − φ31

= E123 + E1 + E2 + E3 − E12 − E23 − E31. (4)

The energies of the dimers, E12, E23, and E31, as well as of
the monomers, E1, E2, and E3, have to be computed in the
full basis set of the trimer to avoid the basis set superposition
error, which was demonstrated to be of considerable size for
three-body interactions of rare gas atoms by Schwerdtfeger
et al.39 In accordance with the ansatz by Malijevský et al.,13

we used the CCSD(T) method within the frozen-core approx-
imation applying the d-aug-cc-pVQZ basis set by Woon and
Dunning.40 In addition, several other basis sets from the aug-
cc-pVXZ (abbreviated as aVXZ), d-aug-cc-pVXZ (daVXZ),
t-aug-cc-pVXZ, aug-cc-pV(X+d)Z, and d-aug-cc-pV(X+d)Z
series40–43 with X = {D, T ,Q, 5, 6} have been tested for the
equilateral triplet configuration with R = 7.0 bohrs. Unfortu-
nately, we found that the trends of the three-body nonadditive
energy vary significantly within the different series and from
one to another. Hence, we did not extrapolate the correlation
contributions to the CBS limit.

So far, three-body effects beyond the CCSD(T) level of
theory have only been reported for helium by Cencek et al.14

They revealed that the difference between the three-body non-
additivity computed with the CCSD(T) and the FCI method
amounts to up to 12% and is dominated by the contribution
resulting from differences between the full iterative and the
perturbational treatment of triple excitations at the CCSDT
(Ref. 44) and the CCSD(T) levels of theory. In the case of ar-
gon, this additional effect was found to be in the same order
of magnitude, as can be seen from Table I for the equilateral
triplet configuration mentioned above. Due to computational
feasibility, we applied the aVTZ basis set in the calculations
of #φT−(T) for our three-body potential.

The effect of quadruple excitations within the coupled-
cluster approach has been tested for the representative equi-
lateral triangle (R = 7.0 bohrs) by means of the CCSDT(Q)
method45 with the daVDZ basis set yielding a correction
#φ(Q)−T = 0.052 K. We considered this effect to be negligi-
ble, even though it might be distinctly larger using basis sets

TABLE I. Nonadditive three-body interaction energies for the equilateral
triplet configuration with R = 7.0 bohrs from CCSD(T) and CCSDT calcu-
lations in Kelvin and relative difference in %.

Basis set #φCCSD(T) #φCCSDT 100 ×#φT−(T)/#φCCSDT

aVDZ 2.415 2.691 10.234
aVTZ 4.266 4.615 7.563
aVQZ 4.687 5.030 6.827
daVDZ 3.107 3.420 9.153
daVTZ 4.876 5.245 7.038
daVQZ 4.901 5.244 6.551

of increased size as reported for the pair interaction energy
by Patkowski and Szalewicz.4 Regrettably, such calculations
cannot be performed with manageable computational effort
these days.

Furthermore, we investigated the influence of relativis-
tic effects within the Cowan-Griffin approximation46 and the
contributions due to core-core and core-valence correlations.
Utilizing the aug-cc-pwCVTZ basis set47 at the all-electron
level, the relativistic correction to the three-body nonadditive
interaction energy amounts to 0.081 K for the equilateral test
configuration, whereas the difference between the all-electron
and the frozen-core calculations is 0.022 K. Both effects con-
tribute less than 2% to the nonadditivity for the test geometry
and have been neglected in the calculation of the three-body
potential. Hence, the total ab initio three-body nonadditivity
for our potential is given by

#φtot = #φCCSD(T),daVQZ +#φT−(T),aVTZ . (5)

A grid of 228 configurations was chosen, where each
triangle was defined by two interatomic distances, R12 and
R31, and the enclosed angle θ1. This includes 12 equilateral
configurations with 4.5 bohrs ! R ! 15.0 bohrs, 44 isosce-
les configurations with 4.5 bohrs ! R31 = R12 ! 15.0 bohrs
and θ1 = {90◦; 120◦; 150◦; 180◦}, and 173 scalene config-
urations with 4.5 bohrs ! R31 < R12 ! 15.0 bohrs and θ1

= {90◦; 120◦; 150◦; 180◦}. All quantum-chemical calcula-
tions have been performed using the CFOUR program
package48 except for the trial computations with the
CCSDT(Q) method, for which the MRCC code49 was em-
ployed. The geometries and the ab initio results can be found
in the supplementary material.50

Our analytical representation of the potential is given
by the sum of an exponential contribution, #φexp, and of a
damped third-order dispersion term, #φdisp,3. With this ap-
proach, we followed Malijevský et al.13 and omitted addi-
tional fourth-order terms of the multipolar expansion, which
have been used by Lotrich and Szalewicz11 as well as by
Cencek et al.14 Similar to Refs. 11 and 14, the short-range
part of the potential is represented as

#φexp(R12, R23, R31) =
k1+k2+k3!6∑

0!k1!k2!k3

Ak1k2k3

× exp[−αk1k2k3 (R12 + R23 + R31)]

×P[Pk1 (cos θ1)Pk2 (cos θ2)Pk3 (cos θ3)],

(6)

where the operator P sums up the six possible terms that re-
sult from the permutation of the interior angles θ1, θ2, and θ3;
Pk refers to the Legendre polynomial of the kth order. Long-
range interactions are represented by the third-order damped
asymptotic expansion

#φdisp,3(R12, R23, R31) =
3∑

l1 ,l2 ,l3=1
l1+l2+l3!6

′ D(βl1l2l3 , R12, R23, R31)

×W
(3)
l1l2l3

Z
(3)
l1l2l3

, (7)
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in accordance with Refs. 11 and 14. The prime in Eq. (7) indi-
cates that the term with (l1l2l3) = (123) and its permutations
are not considered in the sum. The damping function is de-
fined as

D(βl1l2l3 , R12, R23, R31) = D(βl1l2l3 , R12)D(βl1l2l3 , R23)

×D(βl1l2l3 , R31), (8)

where the factors are given by the Tang-Toennies damping
function51

D(βl1l2l3 , Rij ) = 1 − exp(−βl1l2l3Rij )

n
l1 l2 l3
ij∑

n=0

(βl1l2l3Rij )n

n!
.

(9)
Here, nl1l2l3

ij represents the inverse power to which Rij is raised

in the respective angular function W
(3)
l1l2l3

. The leading term
with l1 = l2 = l3 = 1 is the triple-dipole term, which is given
by

W
(3)
111 = 3(R12R23R31)−3(1 + 3 cos θ1 cos θ2 cos θ3). (10)

Explicit formulations of the other geometrical factors have
been derived by Bell,52 and by Doran and Zucker;53 they are
given in the supplementary material.50 In contrast to the for-
mer three-body potentials, we treated the asymptotic coeffi-
cients Z

(3)
l1l2l3

as free parameters of the fit.
The 56 parameters of our potential were determined

by successively adding the terms of Eqs. (6) and (7) in the
least-squares fitting procedure. They are collected in the
supplementary material.50 Fitted and ab initio nonadditive
three-body energies agree within 2% for most configurations,
except for some very large and very small triangles as well as
for geometries, where the potential function changes its sign.
In Figs. 1 and 2, we compare the results of the ab initio calcu-
lations with the fitted ab initio three-body potential and with
the widely-used Axilrod-Teller-Muto (ATM) potential9, 10 for
equilateral and symmetric linear configurations. The ATM
potential, whose angular function is identical to that of the

FIG. 1. Nonadditive three-body potential for equilateral geometries. ⋄, ab
initio results. Curves: ············, ATM potential; — — —, new ab initio three-
body potential.

FIG. 2. Nonadditive three-body potential for symmetric linear configura-
tions with R12 = R31 = 1

2 R23. ⋄, ab initio results. Curves: ············, ATM
potential; — — —, new ab initio three-body potential.

triple-dipole term, was calculated utilizing Eq. (10) with the
prefactor of 3 replaced by the nonadditivity coefficient of
5.315 × 10−4 K nm9 given by Sadus and Prausnitz.54 As ex-
pected, the new ab initio three-body potential agrees with the
ATM approach for large geometries and shows different be-
havior for small ones, where the nonadditive interaction can-
not be described by dipolar interactions alone.

III. VIRIAL EXPANSION

A. Theory

Mayer24 was the first to derive a scheme for the
generation of explicit formulae for pressure virial coeffi-
cients Bn from the canonical partition function assuming
pairwise-additive interactions between classical particles. In
this approach, graph theory is utilized to obtain expres-
sions for the virial coefficients as integrals of combined
(two-particle) Mayer functions fij ≡ exp(−φij /kBT ) − 1.
Later, Ree and Hoover25 reduced the number of necessary
graphs by introducing another type of functions eij ≡ fij + 1
= exp(−φij /kBT ). According to this ansatz, the additive con-
tributions to the classical third and fourth virial coefficients
are given by

Bcl
3,add(T ) = − 1

3V

∫
· · ·

∫
f12f13f23dR1dR2dR3, (11)

Bcl
4,add(T ) = − 1

8V

∫
· · ·

∫
[−2f12f13f14f23f24f34

+ f12f14f23f34e13e24 + f13f14f23f24e12e34

+ f12f13f24f34e14e23]dR1dR2dR3dR4. (12)

Here, V is the volume and Ri represents the cartesian coor-
dinates of particle i, i.e., dRi = dxidyidzi . It is to note that
the latter three terms of the integrand in Eq. (12) correspond
to all distinguishable permutations of the particle indices for
a certain unlabeled graph in the Ree-Hoover formalism. They
were used instead of 3 × f12f23f34f41e13e24 to enhance the
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numerical performance. For the fifth virial coefficient, we pro-
ceeded in a similar way; the schematic formula can be found
in Ref. 25.

Expressions for nonadditive three-body contributions to
the classical third and fourth virial coefficients were derived

by Johnson and Spurling33 as

Bcl
3,nadd(T ) = − 1

3V

∫
· · ·

∫ [
exp

(
−#φ123

kBT

)
− 1

]

× e12e13e23dR1dR2dR3, (13)

Bcl
4,nadd(T ) = − 1

8V

∫
· · ·

∫
⎧
⎪⎨

⎪⎩

⎡

⎣exp

⎛

⎝−
4∑

i<j<k

#φijk

kBT

⎞

⎠ − 1

⎤

⎦ e12e13e14e23e24e34

−
[

exp
(

−#φ123

kBT

)
− 1

]
e12e13e23(e14 + e24 + e34 − 2)

−
[

exp
(

−#φ124

kBT

)
− 1

]
e12e14e24(e13 + e23 + e34 − 2)

−
[

exp
(

−#φ134

kBT

)
− 1

]
e13e14e34(e12 + e23 + e24 − 2)

−
[

exp
(

−#φ234

kBT

)
− 1

]
e23e24e34(e12 + e13 + e14 − 2)

⎫
⎪⎬

⎪⎭
dR1dR2dR3dR4. (14)

The respective relation for the fifth virial coefficient is given
in Ref. 34. At low temperatures, the assumption of classi-
cal particles is no longer valid. However, if the system under
study is not too far from classical conditions, quantum effects
may be treated as quantum corrections to the classical value
of any thermodynamic property. According to McQuarrie,55

the configuration integral ZN for N monatomic particles ap-
plying the first-order quantum correction is given as

ZN =
∫

· · ·
∫

exp
(

− φN

kBT

) {
1 − !2

12m(kBT )2

×
N∑

k=1

[
∇2

kφN − 1
2kBT

(∇kφN )2
] }

dR1 · · · dRN,

(15)

where m is the average atomic mass of argon and ! is Planck’s
constant divided by 2π . This leads to a simple expression for
the second virial coefficient (see, also Ref. 56)

B
cl+qc
2 (T ) = − 1

2V

∫ ∫
(f12 − q12)dR1dR2 (16)

with

q12 = !2

12m(kBT )2
exp

(
− φ12

kBT

)(
φ′′

12 + 2
R12

φ′
12

)
, (17)

where φ′
12 and φ′′

12 represent the first and the second deriva-
tive of the pair potential with respect to the interatomic
distance R12. For B3,add and B4,add, we derived formulae in-
cluding quantum corrections by an analogous approach. Start-
ing from the Ree-Hoover expressions [Eqs. (11) and (12)],
all fij -functions and all eij -functions have to be replaced

by fij − qij and eij − qij , respectively. After expanding the
products, all terms containing more than one qij -function
have to be dropped, since they belong to higher-order quan-
tum corrections. Thus, the third virial coefficient including the
first-order quantum correction is formulated as

B
cl+qc
3,add (T ) = − 1

3V

∫
· · ·

∫
[f12f13f23 − q12f13f23

− f12q13f23 − f12f13q23]dR1dR2dR3. (18)

Similarly, the fourth virial coefficient is given by

B
cl+qc
4,add (T ) = − 1

8V

∫
· · ·

∫
[−2(f12f13f14f23f24f34

− q12f13f14f23f24f34 − f12q13f14f23f24f34

− f12f13q14f23f24f34 − f12f13f14q23f24f34

− f12f13f14f23q24f34 − f12f13f14f23f24q34)

+ e13e24(f12f14f23f34 − q12f14f23f34

− f12q14f23f34 − f12f14q23f34 − f12f14f23q34)

+ e12e34(f13f14f23f24 − q13f14f23f24

− f13q14f23f24 − f13f14q23f24 − f13f14f23q24)

+ e14e23(f12f13f24f34 − q12f13f24f34

− f12q13f24f34 − f12f13q24f34 − f12f13f24q34)

− f12f14f23f34(e13q24 + q13e24)

− f13f14f23f24(e12q34 + q12e34)

− f12f13f24f34(e14q23 + q14e23)]dR1dR2dR3dR4.

(19)
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By calculating the third and the fourth virial coefficients
for the Lennard-Jones (12-6) potential, we confirmed that
Eqs. (18) and (19) are equivalent to former formulations by
Kim and Henderson57 as well as by Ram and Singh.58 For the
virial coefficients beyond B4, the quantum corrections were
neglected, since these virial coefficients do not contribute sig-
nificantly at low temperatures, at which the quantum correc-
tions are of importance.

At very low temperatures, the first-order quantum correc-
tion of the nonadditive contribution to the third virial coeffi-
cient, B

qc
3,nadd, needs to be considered. The respective formula

was derived in Ref. 59 by Monago.
Very recently, Hellmann and Bich35 have presented a new

systematic approach for the calculation of classical virial co-
efficients based on the expansion of the grand canonical parti-
tion function in powers of the activity. This idea, first studied
by Mayer,60 was developed further to enable numerical com-
putation of high-order virial coefficients for nonadditive po-
tential models. Hellmann and Bich gave expressions for the
integrands of the virial coefficients up to B8 in terms of a
new graphical scheme. Even for pairwise-additive potentials,
their approach is regarded to be computationally more effi-
cient than the previous formulation by Ree and Hoover for
n " 6. Due to the large number of terms in the equations for
B6 and B7, we refer to Ref. 35 for the explicit expressions.

B. Numerical application

All contributions to the third virial coefficient, B
cl+qc
3,add ,

Bcl
3,nadd, and B

qc
3,nadd, have been calculated by standard numer-

ical integration for temperatures between 83 K and 10 000 K.
For this purpose, Eqs. (13) and (18) were modified in such
a way that the nine-dimensional integration is replaced by
an equivalent three-dimensional one, i.e., the integration
variables are transformed as dR1dR2dR3 → V dR12dR31

→ V 8π2R2
12R

2
31dR12dR31dcos θ1.

However, the dimensionality of the integrals increases
strongly with the order of the virial coefficients so that stan-
dard numerical integration methods cannot be used efficiently
for higher virial coefficients. Hence, we employed the MSMC
method26 for the evaluation of the integrals for the fourth
through seventh virial coefficients. In this procedure, a biased
n-particle Monte Carlo simulation is performed for each virial
coefficient Bn. The importance sampling is achieved by using
a sampling distribution π which is equal to the absolute value
of the integrand B̃n of the considered virial coefficient, i.e., a
trial move in the MC simulation is accepted with the proba-
bility min(1,πnew/πold). The value of the virial coefficient is
then obtained using a formula taken from free-energy pertur-
bation methods:61

Bn(T ) = Bhs
n

⟨B̃n(T )/π⟩π
⟨B̃hs

n /π⟩π
. (20)

Here, the superscript hs indicates that the hard-sphere fluid
was chosen as reference system. The angle brackets represent
the simulation averages of the weighted integrands of the re-
alistic potential model, B̃n(T )/π , and the hard-sphere poten-
tial, B̃hs

n /π , both computed for the same configurations of the

TABLE II. Temperature ranges and reference temperatures (in K) for the
virial coefficients calculated with MSMC. Ntemp, Nruns, and Nsteps are the
number of temperatures, the number of independent simulation runs, and the
number of MC steps per simulation run, respectively.

Temperature range Tref Ntemp Nruns Nsteps

B4 110–10 000 110 69 20 5 × 1010

B5 140–10 000 140 63 25 5 × 1010

B6 146–200 160 10 15 5 × 1010

210–400 210 15 15 5 × 1010

420–10 000 420 18 15 5 × 1010

B7 146 ; 150.7 146 2 91 5 × 1010

160–280 160 9 40 1 × 1010

308.15–10 000 308.15 12 12 1 × 1010

particles according to the sampling distribution π . Reference
values for the hard-sphere virial coefficients were taken from
Ref. 62.

Kofke and co-workers26, 29 utilized only ring-shaped clus-
ters in the integrand of the reference system. However, we
found it convenient to use the complete hard-sphere virial co-
efficient and the respective integrand. Following Singh and
Kofke,26 the hard-sphere diameter was chosen as the collision
diameter σ of the ab initio two-body potential (3.36 Å). We
further modified the original approach by introducing multi-
temperature simulations as suggested in the outlook of Ref.
26. Provided that the sampling distribution at a reference tem-
perature, Tref, is valid for a certain temperature range, the
virial coefficients may be calculated for several temperatures
in this region with only one simulation, leading to a con-
siderable reduction of the computational costs. Temperature
ranges, numbers of temperatures, and reference temperatures
of the simulations used in this work are summarized along
with other simulation parameters in Table II.

The step sizes in the MC moves were adjusted in short
equilibration periods to achieve acceptance rates of 50%. We
avoided any unphysical values of the two-body potential at
very short interatomic distances by applying a hard-sphere
core for R < 1.8 Å. By contrast, the three-body potential,
#φijk , was set to zero if at least one of the three distances was
smaller than 2.25 Å or larger than 20 Å. Our MSMC code
uses simple parallelization by performing independent simu-
lations with the same parameters on 4 to 16 CPU cores and
averaging the results.

IV. RESULTS AND DISCUSSION

A. The virial coefficients and their fits

The values for the second virial coefficient, calculated as
sum of the classical contribution and quantum corrections up
to the third order, were taken from Ref. 19.

The virial coefficients B3 to B6 were calculated in the
aforementioned temperature regions applying the following
three interaction models:! ab initio pair potential of Ref. 3 (denoted by “add”),! ab initio pair potential of Ref. 3 and three-

body interaction according to Axilrod, Teller, and
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Muto9, 10 with the nonadditivity coefficient specified in
Sec. II B (nadd-ATM),! ab initio pair potential of Ref. 3 and new ab initio
three-body potential (nadd-new).

Due to the enormous computational costs, the seventh
virial coefficient was computed only for the last model. First
order quantum corrections to the third virial coefficients were
considered for both additive and nonadditive contributions,
whereas for the fourth virial coefficients only the additive con-
tributions were corrected.

To enable a comparison with experimental data, the cal-
culated virial coefficients were fitted individually using the
general formula

Bn(T ) =
3∑

k=−9

cn,kT
∗k + cn,0.5

√
T ∗ + cn,−0.5√

T ∗
, (21)

where the temperature is reduced as T ∗ = T/(1000 K). For
this purpose, the results of the independent simulation runs
were averaged. The inverse 67% confidence limits were uti-
lized as weights of the fits for n " 5. All coefficients of the
fits are listed in the electronic supplementary material.50

The calculations for B3 and B4 converged within ±0.01%
and ±0.1%, respectively. Since the uncertainty of the fit for
B3 is in the same order of magnitude, B3 represents a di-
rect probe of the quality of the potentials under discussion.
The uncertainty of the MSMC computations increases suc-
cessively with rising order of the virial coefficients so that
confidence limits of ±0.1%, ±0.2%, and ±1.5% result for
B5, B6, and B7 at ambient temperature. While comparable
uncertainties are observed for higher temperatures, the con-
fidence limits increase significantly in the low temperature
region with values of ±1.7%, ±1.8%, and ±30% at the low-
est temperatures of the computations. Additional errors in the
virial coefficients may arise from shortcomings in the used
potentials, from the neglect of quantum corrections, and from
interactions beyond the three-body nonadditivity. Further-
more, it is to note that the correlation functions for the virial
coefficients give unreliable values outside the temperature
ranges of the numerical calculations. Hence, Eq. (21) should
not be used at temperatures below 83 K (B2 and B3), 110 K
(B4), 140 K (B5), 146 K (B6 and B7), and generally not above
10 000 K.

B. The third virial coefficient of argon

As already stated, third virial coefficients can serve for
the assessment of the quality of nonadditive three-body po-
tentials. However, the determination of third virial coefficients
from pρT measurements is afflicted with large uncertainties.
Michels et al.63, 64 deduced third virial coefficients of argon
from isothermal measurements of volume and pressure. Sub-
sequent investigations by Crain and Sonntag,65 by Kalfoglou
and Miller,66 as well as by Blancett et al.67 were based on
the Burnett method. The most precise pρT data were deter-
mined by Gilgen et al.68 using a two-sinker densimeter. How-
ever, the derived values of the third virial coefficient were not
in agreement with former studies, since the simultaneous fit

TABLE III. Virial coefficients from experiment by Blancett et al.
(Ref. 67) and from theory according to Eq. (21) at 223.15 K and 273.15 K in
(cm3mol−1)n−1.

T = 223.15 K T = 273.15 K

n B
exp
n B

theory
n B

exp
n B

theory
n

2 −37.297 −37.145 −20.896 −21.192
3 1401.1 1405.1 1028.6 1146.7
4 1.34 × 104 6.33 × 103 2.73 × 104 6.52 × 103

5 −1.38 × 106 −3.21 × 105 −1.72 × 106 1.15 × 105

6 7.16 × 107 8.91 × 106 9.87 × 107 1.82 × 107

7 −8.18 × 108 6.55 × 108

of the equation of state as function of density and tempera-
ture introduced small errors into the evaluation of the virial
coefficients. Therefore, Tegeler et al.38 re-evaluated the sec-
ond and third virial coefficients by separate analyses of the
isotherms.

Errors in the third virial coefficient obtained from pρT

measurements may arise either from the neglect of higher
virial coefficients (see, for example, Tegeler et al.38) or, if the
analysis of the isotherm includes further higher virial coeffi-
cients, from the loss of physical meaning of these coefficients.
The latter issue is demonstrated in Table III by comparison of
the virial coefficients B2 to B7 at 223.15 K and 273.15 K de-
termined by Blancett et al.67 with the respective values from
theory. Second and third virial coefficients are characterized
by fair agreement, whereas the higher virial coefficients from
Ref. 67 can serve only as fit parameters. Hence, it is advisable
to utilize the new theoretical values of the higher virial coef-
ficients to revise the determination of B3 from experimental
data.

As the measurements by Gilgen et al.68 were assessed
to be the most accurate pρT data available for gaseous and
supercritical argon, we reanalyzed these data as follows. The
isothermal fits were performed according to the same orders
of the virial expansion as indicated by the temperature ranges
of the theoretical calculations (see Table II). For temperatures
below 140 K, B4 was fixed at the theoretical value calcu-
lated using the new ab initio three-body potential, whereas B4

was considered as fit parameter at higher temperatures. For
140 K ! T < 146 K, only B5 was taken from theory, while
for higher temperatures, the theoretical values of B5, B6, and
B7 were used as constraints. All reevaluated second and third
virial coefficients are given in the supplementary material.50

In Fig. 3, the experimentally obtained third virial co-
effients are presented together with values computed for the
three models described in Sec. IV A as well as for the nonad-
ditive three-body potentials by Lotrich and Szalewicz11 and
by Malijevský et al.13 The reanalyzed data show considerably
smaller values compared to the data by Tegeler et al.,38 being
outside the error bars given in Ref. 38 for temperatures below
155 K. However, there is striking agreement with the theoreti-
cal values calculated with the new ab initio nonadditive three-
body potential (see Fig. 3(b) for a deviation plot). Moreover,
the re-evaluation yielded values of the second virial coeffi-
cient which are in better agreement with the theoretical values
from Ref. 19 compared with the previous results by Tegeler
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FIG. 3. (a) Third virial coefficient of argon. Experimental data: ▽, Michels
et al. (Ref. 63); $, Michels et al. (Ref. 64); %, Crain and Sonntag (Ref. 65);
&, Kalfoglou and Miller (Ref. 66); •, Blancett et al. (Ref. 67); △, Tegeler
et al. (Ref. 38); ◦, new evaluation of isotherms measured by Gilgen et al. (Ref.
68). Calculated values: – · – · – ·, nonadditive three-body term by Axilrod and
Teller (Ref. 9) and Muto (Ref. 10); · · · · ·, nonadditive three-body potential
by Lotrich and Szalewicz (Ref. 11); – · · – · · – · ·, nonadditive three-body
potential by Malijevský et al. (Ref. 13); ———–, new ab initio nonadditive
three-body potential; — — —, pure ab initio pair potential. (b) Absolute
deviations of the third virial coefficients of argon by Tegeler et al. and of
the re-evaluated data by Gilgen et al. as well as of calculated values for the
other nonadditive three-body potentials from the results for the new ab initio
nonadditive three-body potential.

et al. The values computed for the Malijevský potential coin-
cide perfectly with our model at temperatures above 200 K,
whereas at lower temperatures, they are closer to the values
obtained for the model by Lotrich and Szalewicz. Their three-
body potential gives values for the third virial coefficient that
are larger than our results over the whole temperature range,
in contrast to the ATM potential, which gives slightly smaller
values.

The difference between results computed with the new
ab initio nonadditive three-body potential and with the pre-
vious potentials is probably due to the improved quantum-
chemical method (CCSDT). Even though we did not include
further corrections to the ab initio three-body nonadditivity,
the theoretically calculated third virial coefficients and the re-
evaluated values from experiment show a satisfactory consis-
tency.

C. The equation of state of argon

The results for the virial equation of state are discussed
with regard to the convergence of the series expansion and to
the different interaction models. For this purpose, we again
compare with the highly accurate pρT measurements by
Gilgen et al.,68 performed in the temperature range from 90 K
to 340 K and for pressures up to 12 MPa. These data are char-
acterized by a relative uncertainty in density of ±0.02%, ex-
cept for 150.7 K ! T ! 170 K, where the uncertainty was
given in terms of pressure as ±0.01% to ±0.02%. Regardless
of the chosen physical quantity in Ref. 68, we estimate the un-
certainty in pressure to be ±0.01% to ±0.02% for the entire
temperature range of the experiments.

In Fig. 4, the convergence behavior of the virial equa-
tion of state is illustrated for the interaction model nadd-new
including the ab initio two-body potential and the ab ini-
tio three-body nonadditivity. Generally, the deviations of the
calculated values from the experimental data decrease by suc-
cessively adding terms of the virial series up to B5. With
inclusion of B6 and B7, the situation is different for the tem-
peratures considered. For the highest temperature of the mea-
surements [T = 340 K, see Fig. 4(d)], the virial coefficients
beyond B5 yield no significant improvement, corresponding
to the fact that already the series up to B5 gives pressures
within the uncertainty of the experiment. At 200 K, B6 im-
pairs the agreement due to its large relative uncertainty asso-
ciated with a change of sign in that temperature region. For the
critical isotherm [see Fig. 4(b)], the virial series up to B6 gives
the best agreement with the experimental data corresponding
to a close-by zero crossing of B7. In the subcritical gaseous
region, ordinary convergence behavior is observed for densi-
ties up to the saturated vapor densities accompanied by rather
large uncertainties due to the limitations of the theoretical
calculations.

The influence of the interaction model on the virial equa-
tion of state is demonstrated in Fig. 5. Since the seventh virial
coefficient has only been computed for the nadd-new model,
we compare the results including the virial coefficients up to
B6. As expected, the calculated pressures deviate clearly from
the experimental data in the whole temperature range if non-
additive contributions to the interatomic interactions are ne-
glected. Although the effect of the nonadditive potential on
the third virial coefficient is quite similar for the nadd-ATM
and nadd-new models (see Sec. IV B), the comparison of the
complete virial equations of state reveals significant differ-
ences. For T = 146 K and T = 340 K, both models result
in similar deviations from the experimental data, albeit with
different sign. In contrast, for the intermediate temperatures,
the ab initio nonadditive three-body potential leads to con-
siderably better agreement as demonstrated in Figs. 5(b) and
5(c). For the critical temperature and density (535.6 kg m−3),
the deviation of the calculated pressure from the experimental
value of the critical pressure determined by Tegeler et al.38 re-
duces from 3.1% to 1.1% when using the ab initio three-body
nonadditive potential instead of the Axilrod-Teller-Muto po-
tential. However, both virial equations of state fail to predict
the pressures of critical and near-critical argon at higher densi-
ties, since clusters consisting of far more than six argon atoms
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FIG. 4. Relative deviations of the calculated pressures (nadd-new) for different orders of the virial expansion from the experimental data by Gilgen et al.
(Ref. 68). Connecting lines are given for clarity. — — —, ideal gas; &——&, virial expansion up to B2; $——$, up to B3; ◦——◦, up to B4; △——△, up to
B5; %——%, up to B6; ×——×, up to B7.

have significant influence on the thermodynamic properties at
these state points.

The pρT measurements by Gilgen et al. were performed
only at low and medium pressures up to 12 MPa. To vali-
date further the ab initio equation of state, a comparison is
advisable for supercritical argon at higher pressures. Tegeler
et al.38 assessed the pV T data by Robertson et al.69 to be
of high accuracy at pressures up to 1000 MPa. In Fig. 6,
the convergence of the ab initio virial equation of state is
illustrated for T = 373.15 K. The deviations of the calcu-
lated pressures including virial coefficients up to B7 from
the experimental data range from 0.8% at the lowest density
to 9.3% for the highest one. Moreover, at the highest densi-
ties, the deviations are smaller if B7 is omitted in the calcu-
lation of the pressure. But this does not necessarily impair
the quality of the seventh virial coefficient, as B8 can be ex-
pected to be negative. The value of B8 was estimated to be
−7.9 × 108(cm3mol−1)7 by converting the approximate value
computed for the Lennard-Jones potential by Schultz and
Kofke27 with the standard parameters σ = 3.4 Å and ε/kB

= 120 K. Using this value yields a noticeable decrease of the
deviation. However, this represents only a rough estimation,

since the Lennard-Jones values were reported to be afflicted
with uncertainties in the order of the value of the eighth virial
coefficient.

V. SUMMARY AND CONCLUSIONS

A new nonadditive three-body potential for argon has
been developed based on supermolecular ab initio calcula-
tions at the CCSD(T) level of theory. We also included a
correction term for the next higher coupled-cluster approach,
CCSDT, as it contributes considerably to the nonadditive en-
ergy. An analytical potential function with 56 parameters was
fitted to the ab initio results.

Virial coefficients up to B7 were calculated for wide tem-
perature regions utilizing the Mayer-sampling Monte Carlo
approach by Kofke and co-workers. The computations were
based on the formulation of the integrands by Ree and Hoover
for the virial coefficients up to B5. Expressions for the de-
termination of virial coefficients for n > 5 including non-
additive interactions were not available in previous stud-
ies. Recently, Hellmann and Bich provided such formulae in
terms of a graphical scheme. Therefore, our results for argon
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FIG. 5. Relative deviations of the pressures calculated for different interaction models from the experimental data by Gilgen et al. (Ref 68). The virial equation
of state includes all terms up to n = 6. Connecting lines are given for clarity. '——', add; (——(, nadd-ATM; %——%, nadd-new.

FIG. 6. Relative deviations of the calculated pressures (nadd-new) for differ-
ent orders of the virial expansion from the high pressure experimental data
by Robertson et al. (Ref. 69). Connecting lines are given for clarity. •— —•,
ideal gas; &——&, virial expansion up to B2; $——$, up to B3; ◦——◦, up
to B4; △——△, up to B5; %——%, up to B6; ×——×, up to B7; ⋄······⋄,
up to B8 with an estimated value of B8 taken from Lennard-Jones results
in Ref. 27.

also represent a verification of their theoretical formulations.
Furthermore, quantum corrections to the virial coefficients
have been considered up to B4. For all calculations, the highly
accurate ab initio pair potential developed in a preceding work
was applied. In order to investigate the influence of the inter-
action model, we calculated the virial coefficients not only for
the total ab initio three-body potential, but also for the pure
pairwise-additive model and for the combination of the ab ini-
tio two-body potential with the empirical three-body potential
by Axilrod, Teller, and Muto. The resulting virial equations
of state were given as polynomials in the reduced temperature
for each virial coefficient.

Utilizing the higher virial coefficients calculated in this
work, we performed a new analysis of the precise pρT mea-
surements by Gilgen et al. to derive improved values of
the second and third virial coefficients. The resulting values
agree remarkably well with our theoretical predictions. How-
ever, some data computed for two previous ab initio three-
body potentials and also some experimental results disagree
slightly with our values. Hence, further theoretical investiga-
tions are desirable to reduce the uncertainty of the three-body
nonadditivity.
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The pressures calculated from the ab initio virial equa-
tion of state exhibit smaller deviations from the best experi-
ments than the values computed for the empirical nonadditive
three-body potential by Axilrod, Teller, and Muto. For tem-
peratures far above the critical temperature, the theoretically
predicted values agree with the experimental data by Gilgen
et al. within the uncertainty of the measurements. In the range
of small to medium pressures, the virial coefficients beyond
B4 do not contribute significantly to the pressure. However,
for higher pressures, B5 to B7 have to be considered to achieve
agreement with the experimental data. In the critical and near
critical region, the results for the pressure concur with the ex-
perimental data for densities up to the critical density. As ex-
pected, the virial equation of state cannot describe the thermo-
dynamic properties for higher densities at these temperatures.
In the subcritical gaseous region, the theoretical results agree
with the experimental data and only small deviations are ob-
served due to the uncertainties of the interaction potentials
and of the numerical computations.

The method for the calculation of classical virial coeffi-
cients including nonadditive interactions can easily be trans-
ferred to small molecules. Hence, if accurate two-body and
three-body potentials are available, the virial expansion may
be used to predict the equation of state for substances that
are difficult to handle in experiments, such as toxic or cor-
rosive compounds. Furthermore, theoretical results can serve
for the extrapolation of experimental data to high tempera-
tures. Generally, realistic intermolecular potentials (including
nonadditivity) represent an alternative to simple force fields,
since both microscopic and macroscopic behavior is modelled
with improved reliability.
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