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A four-dimensional potential energy hypersurface (PES) for the interaction of two rigid
nitrogen molecules was determined from high-level quantum-chemical ab initio computations.
A total of 408 points for 26 distinct angular configurations were calculated utilizing the
counterpoise-corrected supermolecular approach at the CCSD(T) level of theory and basis
sets up to aug-cc-pV5Z supplemented with bond functions. The calculated interaction energies
were extrapolated to the complete basis set limit and complemented by corrections for core-
core and core-valence correlations, relativistic effects and higher coupled-cluster levels up to
CCSDT(Q). An analytical site-site potential function with five sites per nitrogen molecule
was fitted to the interaction energies. The PES was validated by computing second and third
pressure virial coefficients as well as shear viscosity and thermal conductivity in the dilute-gas
limit. An improved PES was obtained by scaling the CCSDT(Q) corrections for all 408 points
by a constant factor, leading to quantitative agreement with the most accurate experimental
values of the second virial coefficient over a wide temperature range. The comparison with the
best experimental data for shear viscosity shows that the values computed with the improved
PES are too low by about 0.3% between 300 and 700 K. For thermal conductivity large
systematic deviations are found above 500 K between the calculated values and most of the
experimental data.
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1. Introduction

The calculation of thermophysical properties of fluids requires precise knowledge
of the intermolecular potentials between individual molecules. Especially pair po-
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tentials can be predicted with high accuracy for substances composed of atoms
[1–6] or small molecules, such as methane [7], water [8] or hydrogen sulfide [9] us-
ing quantum-chemical ab initio methods. For low-density gases the thermophysical
properties are governed solely by binary interactions, so that once the pair po-
tentials are available, it is straightforward to calculate the second pressure virial
coefficient using statistical thermodynamics or the transport properties in the limit
of zero density utilizing the kinetic theory of gases [10].
At higher densities many-body effects have a strong influence on macroscopic

properties. One way to account for this is the implicit inclusion of many-body ef-
fects into the pair potentials. These so-called effective pair potentials are typically
adjusted to structural information of the molecules and accurate experimental data
for bulk properties. In molecular simulations the most commonly used effective pair
potential models for molecular nitrogen are site-site potentials with Lennard-Jones
sites on the atoms and with a point-quadrupole at the centre of mass [11], or, alter-
natively, with partial charges on the atoms and at the centre of mass to represent
the quadrupole moment [12]. Since effective pair potentials do not represent the un-
derlying physics of the interactions correctly, their predictive capability is limited.
The other possibility of accounting for nonadditive contributions is to combine pure
pair potentials with explicit nonadditive three-body potentials, which can also be
determined with quantum-chemical ab initio methods, see, for example, [13, 14].

Ab initio nonadditive three-body potentials for molecular nitrogen have not yet
become available. However, several pair potentials based on quantum-chemical ab
initio calculations have been developed since the 1980s.
One of the first was developed by Böhm and Ahlrichs [15]. They calculated 46

points on the intermolecular potential energy hypersurface (PES) using the su-
permolecular approach at the CPF level [16] with a [6s4p2d] basis set. A site-site
potential function with three sites per molecule and five adjustable parameters was
fitted to the computed interaction energies. An improved version of the potential
was obtained by readjusting the dispersion contribution of the potential function to
experimental values for the second virial coefficient. Both versions of the potential
were used for molecular dynamics simulations of liquid nitrogen.
Van der Avoird et al. [17] used Hartree–Fock (HF) wave functions of nitrogen

monomers, obtained with the [6s4p2d] basis set already employed by Böhm and
Ahlrichs, to compute the first-order electrostatic and exchange interaction energies
for 225 points. Utilizing ab initio dispersion coefficients [18], a spherical harmonics
expansion of the N2–N2 intermolecular PES was constructed. Two scaling param-
eters were introduced to adjust the potential function to experimental data for
the second virial coefficient. The potential was used for the calculation of several
solid state properties. Later, Cappelletti et al. [19] further improved the potential
function by readjusting five of its parameters in a multi-property fit to experimen-
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tal data for the second virial coefficient, scattering cross sections and zero-density
transport properties.
Amovilli and McWeeny [20] utilized a matrix partitioning approach to obtain

N2–N2 interaction energies for six angular configurations from HF and TDHF (time-
dependent Hartree–Fock) wave functions of the nitrogen monomers. They used a
site-site potential function with nine sites per molecule to express the PES ana-
lytically. Scaling of the dispersion contribution by a factor of 1.2 was necessary to
achieve reasonable agreement with experimental second virial coefficient values.
Stallcop and Partridge [21] applied the highly accurate coupled-cluster method

with single, double and noniterative triple excitations (CCSD(T) [22]) and a
[6s5p4d] basis set to compute a large number of points on the PES. They fitted
an analytical function based on spherical harmonics expansions to the interaction
energies and used experimental data for the second virial coefficient to adjust several
parameters of the potential function.
Leonhard and Deiters [23] performed CCSD(T) calculations with the aug-cc-

pVDZ and aug-cc-pVTZ basis sets [24, 25] for 126 points. They extrapolated the
resulting interaction energies to the complete basis set (CBS) limit and fitted a
site-site potential function with five sites per molecule to the CBS energies. Two
scaling parameters were introduced to adjust the potential function to experimental
values for the second virial coefficient. The potential was applied in Monte Carlo
simulations of vapor-liquid equilibria. In these simulations different approximate
nonadditive three-body potentials were tested. Surprisingly, the best agreement
with experimental data was achieved when only the pair potential was used. The
authors suspected that this might be due to a fortuitous cancellation of errors.
Karimi-Jafari et al. [26] calculated N2–N2 interaction energies for a large number

of points at the MP2 level of theory with basis sets up to cc-pVQZ and extrapolated
them to the CBS limit. An analytical potential function based on spherical har-
monics expansions was fitted to the interaction energies, but not validated against
thermophysical properties.
Gomez et al. [27] applied symmetry-adapted perturbation theory (SAPT) and a

[5s3p2d1f] basis set to calculate a large number of points on the PES. A spherical
harmonics expansion was fitted to the interaction energies and used to calculate
second virial coefficients as well as integral scattering cross sections. Although the
computed values for the second virial coefficient turned out to be too negative
compared with experimental data, no adjustments to the potential function were
performed.
Strąk and Krukowski [28] computed 315 points at the CCSD(T) level of theory

with the aug-cc-pVQZ basis set. However, they did not correct the calculated inter-
action energies for the basis set superposition error (BSSE). The PES was expressed
analytically by a spherical harmonics expansion and used for molecular dynamics
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simulations of nitrogen under very high pressures.
The new ab initio pair potential presented in this paper is based on supermolecu-

lar CCSD(T) calculations for more than 400 points. Basis sets up to quintuple-zeta
quality with bond functions were applied and the resulting interaction energies ex-
trapolated to the CBS limit. In addition, corrections for core-core and core-valence
correlations, relativistic effects and higher coupled-cluster levels up to CCSDT(Q)
[29] were determined. A five-centre site-site potential function with isotropic site-
site interactions was fitted to the calculated interaction energies. Both the site-site
interaction parameters and the positions of the sites were fully optimized. We chose
the site-site potential model because of its simplicity, which makes it easy to use
when calculating macroscopic properties by means of molecular simulations.
The PES was validated by computing several thermophysical properties of nitro-

gen gas. The second and third pressure virial coefficients were calculated classically
with the full first-order quantum corrections. A small adjustment of the pair po-
tential to the most accurate experimental data for the second virial coefficient was
performed. Nonadditive three-body contributions to the third virial coefficient were
taken into account by an Axilrod–Teller–Muto potential with two sites per molecule
and by the leading nonadditive induction contribution. The viscosity and the ther-
mal conductivity in the dilute-gas limit were computed using the kinetic theory of
gases for linear molecules [10, 30] and the classical trajectory approach.
In Section 2, the ab initio computations for the nitrogen molecule pair as well

as the analytical functions for the pair potential and the nonadditive three-body
potential are described. In Section 3, the methodology for the calculation of the sec-
ond and third pressure virial coefficients is discussed, and the computed values are
compared with the most accurate experimental data. The calculations for viscosity
and thermal conductivity in the dilute-gas limit are summarized in Section 4. The
results are again compared with experimental data.

2. Intermolecular potential

2.1. Ab initio calculations

The intermolecular potential V12 between two nitrogen molecules is a six-
dimensional PES if both intermolecular and intramolecular degrees of freedom are
considered. The dimensionality is reduced to four if the N2 molecules are approx-
imated as rigid rotors. Past experience with different small molecules shows that
a highly accurate intermolecular PES can be constructed if the zero-point vibra-
tionally averaged geometry is used for the rigid monomers, see, for example, [7–
9, 31]. We determined the zero-point vibrationally averaged bond length of N2 as
follows. First, a geometry optimization was performed at the all-electron CCSD(T)
level with the cc-pwCVQZ basis set [32], resulting in an equilibrium bond length of
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Figure 1. Internal coordinates of the nitrogen molecule pair.

1.0979 Å. Then a cubic force field calculation at the same level of theory was per-
formed, yielding a vibrationally averaged bond-length of 1.1016 Å. The difference
between these two values was then added to the experimental value of 1.0977 Å

for the equilibrium bond length [33]. The resulting value of 1.1014 Å for the zero-
point vibrationally averaged bond length was utilized for all further calculations. In
the cubic force field calculation the difference between the equilibrium quadrupole
moment and the vibrationally averaged quadrupole moment was also determined,
as it was needed for the construction of the analytical pair potential function (see
Section 2.2).
Each configuration of two rigid N2 molecules can be conveniently expressed by the

four variables R12, θ1,12, θ2,12 and φ12 (illustrated in Figure 1), where R12 is the dis-
tance between the centres of mass of molecules 1 and 2, θ1,12 and θ2,12 are the angles
between the R12 axis and the bond axes of molecules 1 and 2, respectively, and φ12

is the dihedral angle. The angles can be restricted to 0◦ 6 θ2,12 6 θ1,12 6 90◦ and
0◦ 6 φ12 6 180◦ due to symmetry. Altogether 26 distinct angular configurations
were considered. The first 14 angular configurations resulted from varying all three
angles in steps of 45◦, starting with 0◦. The remaining 12 angular configurations
were obtained by varying all three angles in steps of 45◦, starting with 22.5◦. Six-
teen centre-of-mass separations between 2.25 Å and 8.0 Å were considered, leading
to a total of 416 (26 × 16) configurations. Eight configurations, where two atoms
from different molecules were too close to each other, had to be discarded.
For all configurations the interaction energies V12(R12, θ1,12, θ2,12, φ12) were calcu-

lated using the supermolecular approach including the full counterpoise correction
[34] at the frozen-core CCSD(T) level with the aug-cc-pVXZ basis sets [24, 25] for
X = 4 and X = 5. Both basis sets were augmented by a small 3s3p2d1f set of bond
functions located midway along the R12 axis. The exponents of the bond functions
are 0.1, 0.3 and 0.9 for both s and p, 0.25 and 0.75 for d and 0.45 for f . The correla-
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tion parts of the interaction energies, V CCSD(T) corr
12 , computed with these two basis

sets, were extrapolated to the CBS limit with the two-point extrapolation scheme
proposed by Halkier et al. [35],

V
CCSD(T) corr

12 (X) = V
CCSD(T) corr

12,CBS + αX−3. (1)

The HF interaction energies were not extrapolated because the differences between
the results for the two basis sets are already very small. Therefore, the HF interac-
tion energies from the aug-cc-pV5Z calculations were used to approximate the CBS
limit.
Corrections for core-core and core-valence correlations, relativistic effects and

higher coupled-cluster levels up to CCSDT(Q) were computed for all configurations
and added to the non-relativistic frozen-core CCSD(T) interaction energies in the
CBS limit:

V12 = V
CCSD(T)

12,CBS + ∆V core
12 + ∆V rel

12 + ∆V
CCSDT(Q)

12 . (2)

The corrections for core-core and core-valence correlations, ∆V core
12 , were determined

at the CCSD(T) level with the aug-cc-pwCVTZ basis set [32] by calculating the
differences between the interaction energies obtained with all electrons correlated
and the interaction energies obtained within the frozen-core approximation. The
relative contributions of ∆V core

12 to the well depths of the 26 angular configurations
are in most cases within ±0.5%. The corrections for relativistic effects, ∆V rel

12 , were
computed utilizing second-order direct perturbation theory (DPT2) [36, 37] at the
frozen-core CCSD(T) level with the aug-cc-pwCVTZ basis set. They are similar
in magnitude to the corrections for core-core and core-valence correlations. The
corrections for higher coupled-cluster levels up to CCSDT(Q), ∆V

CCSDT(Q)
12 , were

obtained by calculating the differences between the frozen-core CCSDT(Q) and
CCSD(T) interaction energies applying the aug-cc-pVDZ basis set. Unfortunately,
we could not use a larger basis set due to the enormous computational costs of
the CCSDT(Q) method. The relative contributions of ∆V

CCSDT(Q)
12 to the well

depths of the 26 angular configurations vary between +1.1% and +3.2%. If the
computationally less demanding CCSDT method is used instead of the CCSDT(Q)
method, the relative contributions are of similar magnitude but with opposite sign.
The results of the ab initio calculations for the 408 configurations of two nitrogen

molecules can be found in the supplementary material. The cfour program [38] was
employed for all CCSD(T) calculations. The CCSDT(Q) calculations were carried
out using the general coupled-cluster code mrcc of Kállay [39].
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Figure 2. N2–N2 pair potential as a function of the distance R12 for the first 14 of the 26 considered
angular configurations. The ab initio calculated values (with ∆V

CCSDT(Q)
12 scaled by 0.5, see text) are

represented by symbols and the fitted analytical potential function V B
12 by solid lines.

2.2. Analytical pair potential function

A site-site potential function with five sites per molecule was fitted to the com-
puted interaction energies. This corresponds to three different types of sites and six
different types of site-site combinations. The functional form used for each site-site
interaction is

V12,ij(R12,ij) =Aij exp(−αijR12,ij)− f6(bij , R12,ij)
C6 ij

R6
12,ij

+
q1,iq2,j

R12,ij
, (3)

where R12,ij is the distance between site i in molecule 1 and site j in molecule 2.
The damping function f6 is given by [40]

f6(b, R) = 1− exp(−bR)

6∑
k=0

(bR)k

k!
. (4)

The total interaction potential is the sum over all 25 site-site interactions,

V12(R12, θ1,12, θ2,12, φ12) =

5∑
i=1

5∑
j=1

V12,ij [R12,ij(R12, θ1,12, θ2,12, φ12)] . (5)

The parameters A, α, b and C6 for the six different site-site combinations as well as
the site charges q and the positions of the sites were fully optimized in a non-linear
least-squares fit to the 408 ab initio interaction energies. Even though the chosen
functional form does not account for higher-order dispersion coefficients like C8, it
is still flexible enough to fit the ab initio interaction energies very accurately. Three
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constraints were imposed: (i) the total charge of the monomers had to be zero; (ii)
the isotropic average of the C6 dispersion coefficient, C6 iso =

∑5
i=1

∑5
j=1C6 ij , had

to be equal to the accurate value of 73.39 a.u. [41] from dipole oscillator strength
distributions (DOSDs); (iii) the quadrupole moment of the monomers had to be
equal to the zero-point vibrationally averaged value of −1.1202 a.u. We obtained
this value by adding the difference between the equilibrium quadrupole moment
and the vibrationally averaged quadrupole moment (see Section 2.1) to the highly
accurate ab initio value of −1.1273 a.u. [42] for the equilibrium quadrupole moment.
The potential function thus obtained is denoted by V A

12. Using the most accurate
experimental data for the second virial coefficient as guidance (see Section 3.3), an
improved potential function, V B

12, resulted after scaling ∆V
CCSDT(Q)

12 by a factor
of 0.5 for all 408 interaction energies used for the fit. This should be a reasonable
procedure in view of the questionable accuracy of ∆V

CCSDT(Q)
12 (see Section 2.1).

Figure 2 illustrates the distance dependence of the ab initio calculated values (with
∆V

CCSDT(Q)
12 scaled by 0.5) and of the fitted analytical potential function V B

12 for
the first 14 of the 26 considered angular configurations. The interaction energies
are given in Kelvin, i.e., they have been divided by Boltzmann’s constant kB. The
parameters for both potential functions as well as the interaction energies calcu-
lated with these functions for all 408 investigated configurations are given in the
supplementary material.
The equilibrium geometries for V A

12 and V B
12 are R12 = 3.9938 Å, θ1,12 = θ2,12 =

50.08◦, φ12 = 0◦ with De = 158.54 K and R12 = 3.9954 Å, θ1,12 = θ2,12 = 50.13◦,
φ12 = 0◦ with De = 157.14 K, respectively. This is in good agreement with the
results of Cappelletti et al. [19] (R12 = 4.0 Å, θ1,12 = 49◦, θ2,12 = 50◦, φ12 = 0◦,
De = 150 K) and Karimi-Jafari et al. [26] (R12 = 4.1 Å, θ1,12 = θ2,12 = 50◦,
φ12 = 0◦, De = 154.0 K). The ab initio potential of Karimi-Jafari et al. seems
to benefit from a fortuitous cancellation of errors, since neither the MP2 method
nor the cc-pVXZ basis sets (which do not have diffuse functions) are well suited
to accurately determine the interaction energies between two nitrogen molecules.
Interestingly, the two recent ab initio potentials of Gomez et al. [27] and of Strąk
and Krukowski [28] differ significantly from V A

12 and V B
12. The SAPT potential of

Gomez et al. exhibits a slightly different equilibrium structure with a much stronger
binding energy (R12 = 4.05 Å, θ1,12 = θ2,12 = 45◦, φ12 = 0◦, De = 171.7 K). This
is due to the limitations of the second-order SAPT method, which is inferior to
the CCSD(T) method. The potential of Strąk and Krukowski predicts the global
minimum for R12 = 3.49 Å, θ1,12 = θ2,12 = φ12 = 90◦ with De = 196.0 K. This
severe overestimation of the binding energy, despite the use of the CCSD(T) method
and the relatively large aug-cc-pVQZ basis set, is due to the fact that Strąk and
Krukowski did not apply the counterpoise correction [34] to avoid the basis set
superposition error (BSSE). Therefore, we believe that V B

12 is the most accurate
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representation of the N2–N2 interaction potential to date.

2.3. Nonadditive three-body potential

The total interaction potential between three molecules, V123, can be written as the
sum of the three pair interactions and a nonadditive three-body potential, ∆V123,

V123 = V12 + V13 + V23 + ∆V123. (6)

In the present work ∆V123 is needed for the accurate determination of the third
pressure virial coefficient (see Section 3). Since an ab initio nonadditive three-body
potential for nitrogen is not yet available, we constructed an approximate three-
body potential, taking into account contributions for nonadditive dispersion and
nonadditive induction interactions:

∆V123 = ∆V disp
123 + ∆V ind

123 . (7)

The nonadditive dispersion contribution, ∆V disp
123 , is approximated by a sum of

Axilrod–Teller–Muto interactions [43, 44] between triplets of nitrogen atoms, each
of which is in a different molecule. The atoms in each molecule are referred to as
sites 6 and 7. Hence

∆V disp
123 =

C9 iso

8

7∑
i=6

7∑
j=6

7∑
k=6

1 + 3 cos θ1,i cos θ2,j cos θ3,k

R3
12,ijR

3
13,ikR

3
23,jk

, (8)

where θ1,i, θ2,j and θ3,k are the interior angles of the triangle formed by the sites,
and C9 iso = 619.93 a.u. [45] is the isotropic average of the triple-dipole dispersion
coefficient of N2.
The nonadditive induction potential, ∆V ind

123 , can be written as

∆V ind
123 = ∆V ind

1,23 + ∆V ind
2,13 + ∆V ind

3,12, (9)

with

∆V ind
1,23 = −αiso

2

7∑
i=6

 5∑
j=1

E1,i;2,j

 ·( 5∑
k=1

E1,i;3,k

)
= −αiso

2

7∑
i=6

 5∑
j=1

q2,j
R12,ij

R3
12,ij

 ·( 5∑
k=1

q3,k
R13,ik

R3
13,ik

)
(10)

and analogous expressions for ∆V ind
2,13 and ∆V ind

3,12. Here, ∆V ind
1,23 is the contribution

due to dipole moments on the polarizable sites 6 and 7 (assumed to have isotropic
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dipole polarizabilities) of molecule 1 induced by the partial charges of molecules 2
and 3; αiso = 11.74 a.u. [41] is the isotropic dipole polarizability of N2; E1,i;2,j is
the electric field at site i in molecule 1 generated by the partial charge q2,j of site
j in molecule 2.

3. Second and third pressure virial coefficients

3.1. Theory

The second pressure virial coefficient of a classical gas as a function of temperature
is given by

Bcl
2 (T ) = − 1

2V

∫
· · ·
∫ 〈

f12

〉
dR1dR2, (11)

where V is the volume, f12 = exp(−V12/kBT )−1 is the two-particle Mayer function,
and the angle brackets denote an average over all angular configurations of the
molecules. If the potential is assumed to be pairwise additive (∆V123 = 0), the
classical third pressure virial coefficient can be written as

Bcl
3,add(T ) = − 1

3V

∫
· · ·
∫ 〈

f12f13f23

〉
dR1dR2dR3. (12)

If nonadditive contributions are included, we obtain

Bcl
3,nadd(T ) =− 1

3V

∫
· · ·
∫ 〈

f123 − f12 − f13 − f23 − f12f13 − f12f23 − f13f23

〉
× dR1dR2dR3, (13)

where f123 = exp(−V123/kBT ) − 1 is the three-particle Mayer function, see also
[46, 47].
At low temperatures the assumption of classical molecules is no longer valid. How-

ever, if the system under study is not too far from classical conditions, quantum
effects may be treated as quantum corrections to the classical value of any thermo-
dynamic property. The first-order quantum correction to Bcl

2 for rigid molecules is
available [48, 49]. However, to the best of our knowledge, the first-order quantum
correction to Bcl

3 was derived for monatomic gases only [46].
We derived an expression for the first-order quantum correction to Bcl

3,add for lin-
ear molecules, starting from the configuration integral with first-order translational
and rotational quantum corrections for N linear molecules,

ZN =

∫
· · ·
∫ 〈

exp

(
− VN
kBT

)
− qN

〉
dR1 · · · dRN (14)

10
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with qN = qtr
N + qrot

N , where

qtr
N =

~2

12(kBT )2
exp

(
− VN
kBT

) N∑
i=1

1

mi

(
∇2

tr,iVN −
1

2kBT
(∇tr,iVN )2

)
(15)

and

qrot
N =

~2

12(kBT )2
exp

(
− VN
kBT

) N∑
i=1

1

Ii

(
∇2

rot,iVN −
1

2kBT
(∇rot,iVN )2

)
, (16)

see, for example, [50]. Here, ~ is Planck’s constant divided by 2π; mi and Ii are the
mass and moment of inertia, respectively, of molecule i. To simplify Equation (15)
we use Cartesian coordinates and assume that the potential is pairwise additive.
Upon integration by parts we obtain

∞∫
−∞

exp

(
− VN
kBT

)
∂2VN
∂x2

i

dxi =
1

kBT

∞∫
−∞

exp

(
− VN
kBT

)(
∂VN
∂xi

)2

dxi (17)

and similar relations with yi and zi, which we utilize to redefine qtr
N so that it involves

only second derivatives. After transforming to relative Cartesian coordinates we
have

qtr
N =

~2

24(kBT )2
exp

(
− VN
kBT

)N−1∑
i=1

N∑
j=i+1

1

µij

(
∂2Vij
∂x2

ij

+
∂2Vij
∂y2

ij

+
∂2Vij
∂z2

ij

)
, (18)

where µij is the reduced mass of molecules i and j. For Equation (16) a similar
derivation yields

qrot
N =

~2

24(kBT )2
exp

(
− VN
kBT

)

×
N−1∑
i=1

N∑
j=i+1

[
1

Ii

(
∂2Vij
∂ψ2

i,a

+
∂2Vij
∂ψ2

i,b

)
+

1

Ij

(
∂2Vij
∂ψ2

j,a

+
∂2Vij
∂ψ2

j,b

)]
, (19)

where ψi,a and ψi,b are the angles of rotation around the two principal axes of
inertia of molecule i.
The second and third pressure virial coefficients are related to the configuration

integrals by

B2 = − 1

2V
(Z2 − Z2

1 ) (20)

and

B3 = − 1

3V

(
Z3 − 3Z2Z1 + 2Z3

1

)
+

1

V 2
(Z2 − Z2

1 )2, (21)
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where Z1 = V . For the second virial coefficient including the first-order quantum
correction this leads to

Bcl+qc
2 (T ) = − 1

2V

∫
· · ·
∫ 〈

f12 − q12

〉
dR1dR2. (22)

To obtain the expression for the pairwise-additive third virial coefficient, the fij
functions in Equation (12) have to be replaced by fij − qij . After expanding, all
terms containing more than one qij function have to be dropped, since they belong
to higher-order quantum corrections. We thus obtain

Bcl+qc
3,add (T ) =− 1

3V

∫
· · ·
∫ 〈

f12f13f23 − q12f13f23 − f12q13f23 − f12f13q23

〉
× dR1dR2dR3. (23)

The quantum correction derived for Bcl
3,add can also be applied for Bcl

3,nadd, assuming
that the nonadditive contribution to the quantum correction is negligible:

Bcl+qc
3,nadd(T ) =− 1

3V

∫
· · ·
∫ 〈

f123 − f12 − f13 − f23 − f12f13(1 + q23)

− f12f23(1 + q13)− f13f23(1 + q12)
〉
dR1dR2dR3. (24)

3.2. Numerical evaluation

We computed the second and third pressure virial coefficients using the Mayer-
sampling Monte Carlo (MSMC) approach by Singh and Kofke [51]. In this pro-
cedure, a biased n-particle Monte Carlo simulation is performed for each virial
coefficient Bn. Importance sampling is achieved by using a sampling distribution
π that is equal to the absolute value of the integrand B̃n of the considered virial
coefficient. Accordingly, trial moves in the MC simulations are accepted with the
probability min(1, πnew/πold). The value of the virial coefficient is then obtained as

Bn(T ) = Bhs
n

〈B̃n(T )/π〉π
〈B̃hs

n /π〉π
. (25)

Here, the superscript hs indicates that the hard-sphere fluid was chosen as reference
system. The angle brackets represent the simulation averages of the weighted inte-
grands of the realistic potential model, B̃n(T )/π, and of the hard-sphere potential,
B̃hs
n /π, both computed for the same configurations of the particles according to the

sampling distribution π. The hard-sphere virial coefficients Bhs
2 and Bhs

3 are known
analytically [46].
Virial coefficients for multiple temperatures can be obtained from a single simula-

tion [14, 51], leading to a considerable reduction of the computational costs. In this
case, the sampling distribution π is the integrand of the considered virial coefficient
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at a sampling temperature Ts. The only disadvantage of this approach is that for
temperatures far away from Ts the sampling is not optimal. The best results are
usually achieved if Ts is the lowest of the considered temperatures.
The second virial coefficient of N2 was computed for 96 temperatures between

50 K and 3000 K by performing multi-temperature simulations with Ts = 50 K
and 5× 1010 trial moves. The results from eight independent simulation runs were
averaged. For the third virial coefficient 90 temperatures between 80 K and 3000 K
were considered with Ts = 80 K. The number of simulation runs and the number of
trial moves per simulation run were the same as for the second virial coefficient. For
each MC trial move, one molecule was displaced and rotated. The step sizes in the
MC moves were adjusted in short equilibration periods to achieve acceptance rates
of 50%. A hard-sphere diameter of 4.5 Å was chosen for the reference system. To
avoid unphysical values of the realistic pair potential at very short intermolecular
distances, a hard-sphere core with a diameter of 2.0 Å was applied. The nonadditive
induction contribution, ∆V ind

123 , was set to zero if one of the centre-of-mass distances
between two molecules was larger than 30 Å. For the calculation of the quantum
corrections, the second derivatives of the pair potential [see Equations (18) and
(19)] were evaluated analytically.
The computed second and third virial coefficients are converged within

0.02 cm3 mol−1 and 1 cm6 mol−2, respectively, for all temperatures. The values ob-
tained with V B

12 for Bcl
2 , B

cl+qc
2 , Bcl

3,add, B
cl
3,nadd and Bcl+qc

3,nadd are given in the supple-
mentary material.

3.3. Comparison with experimental data

It is to be taken into account that values for the third pressure virial coefficient B3

obtained from the analysis of sufficiently accurate measurements are not indepen-
dent of those for the second pressure virial coefficient B2. Therefore, it is preferable
to include second and third pressure virial coefficients which were simultaneously
derived from the same experiment in the comparison with theoretically calculated
values. One recent examination by Dymond et al. [52, 53] facilitated the selection of
six papers [54–59] that meet this requirement. Moreover, Dymond et al. estimated
the uncertainties of the reported values of B2 and B3 for those papers in which the
uncertainties were not specified.
Holborn and Otto [54] as well as Michels et al. [55] derived second and at least

third pressure virial coefficients from isothermal measurements of volume, den-
sity and pressure. On the contrary, Canfield et al. [56], Crain and Sonntag [57],
Roe [58], as well as Zhang et al. [59] used apparatuses of the Burnett type to
determine isothermal compression factors and finally second and third pressure
virial coefficients. Corresponding to the temperature ranges, the uncertainties of
B2 in cm3 mol−1 are: ±1.0 between 143 and 673 K [54] and between 273 and 423 K
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[55], ±(2.0 to 1.0) from 133 to 273 K [56], ±(0.3 to 0.1) from 143 to 273 K [57],
±(0.3 to 0.2) from 156 to 291 K [58] and ±0.2 between 269 and 353 K [59]. The
uncertainties of B3 are given in cm6 mol−2 as: ±30 [54], ±60 [55], ±(50 to 40) [56],
±(60 to 25) [57], ±200 [58] and ±100 [59].
In addition, Nowak et al. [60], a paper not considered by Dymond et al.

[52, 53], reported on very accurate experiments with a high-precision two-
sinker densimeter. They conservatively estimated their uncertainties for B2 to
be ±(0.8 to 0.3) cm3 mol−1 between 98 and 123 K and ±0.25 cm3 mol−1 from
125 to 340 K. The derived values of B3 are characterized by uncertainties of
±(800 to 150) cm6 mol−2 between 98 and 130 K and ±100 cm6 mol−2 from 133
to 340 K.
Furthermore, values for the second pressure virial coefficient in the temperature

range of 75–700 K, inferred by Ewing and Trusler [61] from their data of the sec-
ond acoustic virial coefficient and recommended by Dymond et al. [52], were also
considered. Ewing and Trusler measured the speed of sound in nitrogen between 80
and 373 K and determined values of the second acoustic virial coefficient β2a with a
very low uncertainty of ±0.11 cm3 mol−1. Subsequently, they derived an empirical
anisotropic site-site model of the intermolecular PES of nitrogen, which they used
to calculate values for the second pressure virial coefficient in the above mentioned
temperature range. The uncertainties are believed to be about ±0.5 cm3 mol−1 and
±0.1 cm3 mol−1 near the lowest and highest temperatures, respectively. The second
acoustic virial coefficient should be more suitable for the validation of the PES than
the second pressure virial coefficient due to the lower uncertainty of the former at
low temperatures. We obtained second acoustic virial coefficients for the potential
function V B

12 using the relation

β2a(T ) = 2

[
B2(T ) + [γ◦(T )− 1]TB′2(T ) +

[γ◦(T )− 1]2

2γ◦(T )
T 2B′′2 (T )

]
. (26)

Here, γ◦(T ) = c◦p(T )/c◦V (T ) is the ratio of the isobaric and isochoric heat capaci-
ties in the ideal gas limit; B′2(T ) and B′′2 (T ) are the first and second temperature
derivatives of B2(T ). We used the γ◦ values of Ewing and Trusler and determined
B2(T ), B′2(T ) and B′′2 (T ) from an analytical function fitted to Bcl+qc

2 (T ).
In Figure 3, the selected experimental data for the second pressure virial coeffi-

cient (Bexp
2 ) are compared with values calculated using the V B

12 potential function
(Bcl+qc

2 ), which were interpolated for the experimental temperatures. The figure,
in which the absolute deviations are displayed, demonstrates that practically all
data agree with the theoretical values within the estimated uncertainties given
above. Apart from three data points, the older data of [54–56] are consistent within
±0.5 cm3 mol−1 with the theoretical values, which is much less than the assumed
uncertainties. The data of Crain and Sonntag [57] and of Roe [58] coincide with the
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Figure 3. Deviations, ∆ = Bexp
2 −Bcl+qc

2 , of experimental second pressure virial coefficients for N2 from
values calculated with the potential function V B

12 as a function of temperature. Experimental data: �,
Holborn and Otto [54]; M, Michels et al. [55]; ⊕, Canfield et al. [56]; �, Crain and Sonntag [57]; N, Roe
[58]; O, Zhang et al. [59]; ◦, Nowak et al. [60]. Experimentally based values: H, Ewing and Trusler [61].
Experimentally based correlation: ——, Dymond et al. [52]. Other calculated values: · · · · · · , classical
result; – – –, potential function V A

12. Deviations, ∆ = βexp
2a −β

cl+qc
2a , of experimental second acoustic virial

coefficients for N2 from values calculated with the potential function V B
12: �, Ewing and Trusler [61].

theoretical values within their low uncertainties. The agreement with the data of
Zhang et al. [59] is almost perfect. The data of Nowak et al. [60] differ on average
by −0.15 cm3 mol−1 from the theoretical values apart from two data points at the
lowest temperatures. The B2 values of Ewing and Trusler [61] agree perfectly at
high temperatures with the theoretically calculated values and deviate only at tem-
peratures below 90 K by more than +0.5 cm3 mol−1. The deviations for the second
acoustic virial coefficients of Ewing and Trusler, which are also shown in the figure,
are similar to the deviations for their second pressure virial coefficients. The figure
makes also evident that the B2 correlation recommended by Dymond et al. [52]
agrees within its uncertainties of ±1.0 cm3 mol−1 at 75 K, ±0.2 cm3 mol−1 at room
temperature and ±0.8 cm3 mol−1 at 745 K with the theoretically calculated values.
In Figure 3, the values for the second pressure virial coefficient obtained from the

V B
12 potential are additionally compared with those from the V A

12 potential (which
was not adjusted to the second pressure virial coefficients). The values resulting
from V A

12 are consistently too negative for all temperatures.
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Figure 4. Experimental third pressure virial coefficients for N2 and values calculated with the potential
function V B

12 as a function of temperature. Experimental data: �, Holborn and Otto [54]; M, Michels et al.
[55]; ⊕, Canfield et al. [56]; �, Crain and Sonntag [57]; N, Roe [58]; O, Zhang et al. [59]; ◦, Nowak et al.
[60]. Calculated values: · · · · · · , Bcl

3,add; – – –, Bcl
3,nadd; ——, Bcl+qc

3,nadd.

Figure 4 shows the comparison for the third pressure virial coefficient between ex-
perimental data and values calculated using the V B

12 potential function. The results
obtained with V A

12 are not shown, because the differences to the results obtained with
V B

12 are too small to be visible. The figure elucidates that good agreement is only
achieved if nonadditive contributions are considered in the calculations, whereas the
first-order quantum correction contributes significantly only for the lowest tempera-
tures. The data of Nowak et al. [60] agree within the error bars for all temperatures
with the theoretical values. Even the maximum of the third pressure virial coeffi-
cient at the lowest temperatures is correctly described with differences distinctly
smaller than the conservatively estimated uncertainties. As in the case of the second
pressure virial coefficient, the B3 data of Roe [58] are consistent with the theoretical
values, those of Zhang et al. [59] agree perfectly. The agreement for both data sets
is much better than their rather large uncertainty estimates. On the contrary, the
theoretical values do not reproduce the experimental data of Canfield et al. [56] and
of Crain and Sonntag [57] within their low uncertainties, although the agreement
is quite reasonable. Only the older data of Holborn and Otto [54] and of Michels et
al. [55] show larger differences to the theoretical values. This concerns particularly
the high-temperature range. Due to the good agreement of the theoretical values
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with the more recent experimental data at lower temperatures, we believe that the
theoretical results could provide decision guidance at high temperatures.

4. Shear viscosity and thermal conductivity

4.1. Theory

The shear viscosity η and the thermal conductivity λ of a molecular gas in the limit
of zero density can be expressed as [10]

η(T ) =
kBT

〈v〉0
f

(n)
η

S(2000)
(27)

and

λ(T ) =
5k2

BT

2m〈v〉0

S(1001)− 2rS

(
1001

1010

)
+ r2S(1010)

S(1010)S(1001)−S

(
1001

1010

)2 f
(n)
λ , (28)

where 〈v〉0 = 4(kBT/πm)1/2 is the average relative thermal speed. The quantities

S(2000), S(1010), S(1001) and S

(
1001

1010

)
are temperature-dependent generalized

cross sections, and the notation and conventions employed are fully described else-
where [10, 62]. The parameter r is given by

r =

(
2

5

c◦int

kB

)1/2

, c◦int = c◦rot + c◦vib. (29)

Here, c◦int is the contribution of both the rotational, c◦rot, and the vibrational, c◦vib,
degrees of freedom to the isochoric heat capacity c◦V in the ideal gas limit. The
quantities f (n)

η and f (n)
λ are nth-order correction factors that account for the effects

of higher basis function terms in the perturbation series expansion of the solution
of the Boltzmann equation [10]. They can be expressed in terms of generalized cross
sections [10, 62].

4.2. Numerical evaluation

The generalized cross sections for the pair potentials V A
12 and V B

12 were computed
by means of classical trajectories using a modified version of the traject software
code [63]. The nitrogen molecules were approximated as rigid rotors in the trajectory
calculations. For a given total energy, translational plus rotational, classical trajec-
tories describing the collision of two molecules were obtained by integrating Hamil-
ton’s equations from pre- to post-collisional values. The total-energy-dependent
generalized cross sections can be represented as nine-dimensional integrals over the
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initial states. They were calculated for 33 values of the total energy, ranging from
15 K to 60,000 K, by means of a simple Monte Carlo procedure, in which the ini-
tial states were generated utilizing pseudo-random numbers. At each energy up to
2× 106 trajectories were computed. The number of trajectories had to be reduced
significantly for low energies, because the computational demand to achieve a suf-
ficient accuracy for a given trajectory is increasing as the energy decreases. The
final integration over the total energy was performed using Chebyshev quadrature.
Some generalized cross sections are strongly influenced by excited vibrational states,
which are not accounted for in the classical trajectory calculations with rigid rotors.
These cross sections were corrected employing the methodology described in [64].
Values of c◦V for nitrogen were obtained from the equation of state by Span et al.

[65]. The higher-order correction factors f (n)
η and f (n)

λ were calculated up to n = 3

and n = 2, respectively. The corrections amount to at most +0.8% for viscosity
and +1.8% for thermal conductivity. The difference between f (3)

η and f (2)
η is always

smaller than 0.04%.
Taking into account the Monte Carlo errors of the generalized cross sections and

the possible effects of higher-order contributions beyond f (3)
η and f (2)

λ , we estimate
that the computed values for shear viscosity and thermal conductivity are converged
within 0.1% and 0.2%, respectively. The values obtained with V B

12 for temperatures
between 70 and 3000 K can be found in the supplementary material.

4.3. Comparison with experimental data

Since the theoretical values correspond to the zero-density limit, the literature data
were recalculated to this limit based on the details given in the papers. Either
isothermal data as a function of density were extrapolated to the limit of zero
density, mostly by the authors themselves, or individual data at low density were
corrected to it using the Rainwater–Friend theory [66] for the initial density depen-
dence of the viscosity and of the thermal conductivity. If necessary, the experimental
temperatures were corrected to the temperature scale ITS-90.
In Figure 5, selected viscosity data [67–76] are compared with the theoretical

values. At intermediate temperatures, Kestin et al. [69], Timrot et al. [70] and very
recently Vogel [76] used oscillating-disk viscometers consisting mainly or completely
of quartz glass to make benefit of its outstanding properties. They performed rel-
ative measurements, whereas Evers et al. [74] carried out absolute measurements
with a rotating-cylinder viscometer. The uncertainties of the data were estimated
by the respective authors to be ±(0.1 to 0.3)% [69], ±0.7% [70], ±0.15% [74] and
±(0.1 to 0.2)% [76] in the measured temperature ranges. May et al. [75] determined
the ratio between the viscosities of nitrogen and helium in the limit of zero density
at 298.15 K with an uncertainty of ±0.018% using a capillary viscometer. The most
recent value for the zero-density viscosity of helium at 298.15 K has an extremely
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Figure 5. Deviations, ∆ = (ηexp − ηcal)/ηcal, of experimental zero-density viscosities for N2 from values
calculated with the potential function V B

12 as a function of temperature. Experimental data: H, Guevara
et al. [67]; �, Dawe and Smith [68]; �, Kestin et al. [69]; N, Timrot et al. [70]; M, Gough et al. [71]; ◦,
Lavushchev and Lyusternik [72]; �, Lukin et al. [73]; O, Evers et al. [74]; �, May et al. [75]; ⊕, Vogel
[76]. Experimentally based correlations: ——, Vogel et al. [77]; – – –, Lemmon and Jacobsen [78]. Other
calculated values: · · · · · · , potential function V A

12.

low uncertainty of only ±0.001% [6], resulting in an uncertainty of ±0.019% for the
zero-density viscosity of nitrogen at 298.15 K. The figure reveals that at room tem-
perature the data of three of the papers are about 0.45% higher than the theoretical
values, whereas the data of Vogel and of May et al. are higher by only 0.35% and
0.24%, respectively. This is due to the use of theoretically calculated reference val-
ues for the viscosity of helium at room temperature for the relative measurements
performed by these authors. The figure illustrates that the data of Evers et al.,
apart from one datum at the lowest temperature, are approximately (0.5 to 0.6)%

higher than the calculated values, whereas the data of Timrot et al. show the same
trend with somewhat smaller differences between about 380 and 470 K. The recent
data by Vogel are characterized by practically the same temperature function as
the theoretically computed values, but shifted by about +(0.35 to 0.25)%. Further-
more, the figure elucidates that the deviations of the data by Kestin et al. increase
up to 1% between 370 and 570 K.
At very high temperatures, Guevara et al. [67] and Dawe and Smith [68] carried
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out measurements with capillary viscometers and claimed uncertainties of ±0.4%

and ±1%. Lavushchev and Lyusternik [72] used the flow through a porous medium
for their high-temperature experiments and estimated the uncertainty to be ±1%.
All these measurements were performed relative to reference values for the vis-
cosity of nitrogen near room temperature. Figure 5 reveals that the data of Dawe
and Smith decrease systematically with increasing temperature beyond the claimed
uncertainty of ±1%. Considering a possible shift of the theoretically calculated vis-
cosity values of the present paper by about 0.3% to higher values, a close agreement
with the data of Guevara et al. and of Lavushchev and Lyusternik (apart from one
datum at the lowest temperature) is found up to temperatures of 2100 K.
At low temperatures, capillary viscometers were used by Gough et al. [71] for

relative measurements and by Lukin et al. [73] for absolute ones. Gough et al.
calibrated their viscometer with a reference value for the viscosity of nitrogen at
room temperature and estimated the uncertainty to be ±1% at 120 K. Lukin et al.
claimed the uncertainty of their results to be±(0.1 to 0.3)%. Figure 5 makes evident
that these low-temperature data do not agree within their mutual uncertainties. In
addition, the data of Lukin et al. deviate up to about +3% below 100 K from the
theoretical values, whereas the data of Gough et al. are consistent with them down
to 120 K.
The theoretical values were further compared with experimentally based reference

values of Vogel et al. [77] and of Lemmon and Jacobsen [78]. Vogel et al. conser-
vatively claimed the uncertainty of their correlated values to be ±0.3% at room
temperature, rising to ±0.5% at 1000 K and ±2% at 120 and 2100 K. The uncer-
tainty of the correlation of Lemmon and Jacobsen was estimated by the authors
to be ±0.5% in the dilute-gas region. Figure 5 reveals that at high temperatures
both correlations represent the experimental data very well and are in close agree-
ment with the theoretically calculated values, even if a shift of +0.3% is considered.
However, at low temperatures around 100 K, both correlation differ strongly. The
reason is that Vogel et al. did not take into account the data of Lukin et al. [73]. It
is obvious that the correlations cannot assist in any decision which data are more
reliable. But the theoretical values give more insight into solving this problem. We
are convinced that the temperature dependence of the theoretical values could help
to resolve the extrapolation problems to high and particularly to low temperatures
at which the measurements are more difficult.
In Figure 6, selected thermal conductivity data [79–93] are compared with the

theoretical values. The transient hot-wire (THW) technique was applied in seven
of the fifteen papers [83, 85–87, 91–93], the steady-state hot-wire (SHW) technique
in three [79, 82, 84]. The concentric-cylinder (CC) method was employed by three
groups of researchers [80, 81, 88], whereas the shock-tube (ST) technique [89] and
a guarded parallel-plate (PP) apparatus [90] were used by one in each case.

20



February 11, 2017 Molecular Physics Hellmann

Figure 6. Deviations, ∆ = (λexp − λcal)/λcal, of experimental zero-density thermal conductivities for N2

from values calculated with the potential function V B
12 as a function of temperature. Experimental data:

⊕, Vargaftik and Zimina [79]; M, Golubev and Kalsina [80]; ◦, Le Neindre [81]; �, Faubert and Springer
[82]; �, Haarman [83]; �, Saxena and Chen [84]; N, Haran et al. [85]; �, Johns et al. [86, 87]; O, Zarev et
al. [88]; �, Hoshino et al. [89]; H, Hemminger [90]; •, Millat et al. [91]; �, Perkins et al. [92]; �, Li et al.
[93]. Experimentally based correlations: ——, Millat and Wakeham [94]; – – –, Lemmon and Jacobsen
[78]. Other calculated values: · · · · · · , potential function V A

12.

The THWmeasurements of Haran et al. [85] and of Li et al. [93] near to room tem-
perature yielded data which differ from the calculated values by less than +0.2%.
These differences correspond approximately to the uncertainties of±0.3% estimated
by most of the THW experimenters. An inspection of the experimental data ob-
tained away from ambient temperature is more revealing. The data of Haran et
al. and of Johns et al. [86, 87] are characterized by increasing differences up to
+1.2% at 429 K and at 470 K, respectively. The data of Millat et al. [91] show
increasingly positive deviations up to +1.65% at temperatures down to 178 K. On
the contrary, the experimental data of Haarman [83] and Li et al. [93], derived
from THW measurements at rather low pressures, are characterized by deviations
of +0.12% to −0.33% between 328 and 468 K and of −0.1% to +0.2% between
247 and 387 K, respectively. The temperature dependencies of these two data sets
correspond closely to that of the calculated values. The same is valid for the results
of the PP measurements of Hemminger [90] from room temperature up to 463 K,
which exhibit deviations from the theoretical values between −0.37% and −0.53%.
Figure 6 reveals that the situation becomes somewhat more complicated at low
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temperatures. The data of Perkins et al. [92], who assessed the uncertainty of their
THW measurements to be ±1% down to 103 K, are 1 to 1.5% lower than the
theoretical values at temperatures below 200 K. The uncertainty of the SHW tech-
nique is expected to be ±(1 to 2)% at most for measurements at low temperatures.
In accordance with this, the SHW data of Golubev and Kalsina [80] agree within
±1.6% with the theoretical values from room temperature down to 78 K. For the
comparison the data of Golubev and Kalsina, measured at atmospheric pressure,
had to be corrected to the limit of zero density by about −2% below 100 K using
the Rainwater–Friend theory [66]. Note that the correction is of the same order
for the CC measurements of Zarev et al. [88], for which the measured isotherms
were extrapolated to the zero-density limit yielding practically the same values.
The results of Zarev et al. show the largest difference from the calculated values
with +2.4% at the lowest temperature of 90 K.
The comparison at high temperatures is disappointing, apart from the CC data

of Le Neindre [81]. He estimated the uncertainty of his measurements to be ±2.5%,
whereas the deviations from the theoretical values amount to only ±1.4% at most
between 300 and 942 K. In contrast, the SHW data of Vargaftik and Zimina [79] and
of Saxena and Chen [84] differ by −9.2% from the theoretically calculated values
at 1120 K and at 1300 K, respectively. The deviations decrease with decreasing
temperature and become positive with +1.8% at 303 K for [79] and +3.4% at
350 K for [84]. The SHW measurements of Faubert and Springer [82] show large
negative deviations of −8.4% at 800 K decreasing to −4.2% at 2000 K. All these
differences should be compared with the uncertainties estimated by the authors,
which are ±3% for [79, 82] and ±1.5% for [84]. Finally, Hoshino et al. [89] obtained
data with the ST technique between 500 and 2200 K which follow the trend of the
discussed SHW data. The largest deviation is −5.7% at 1200 K.
In addition, Figure 6 shows a comparison with two thermal-conductivity cor-

relations. The figure makes evident that at high temperatures the correlation of
Lemmon and Jacobsen [78] is exclusively based on the experimental data so that
differences of −10% occur at 2000 K. On the contrary, the temperature functions
of the correlation by Millat and Wakeham [94] and of the theoretically calculated
values are consistent within ±0.6% over the whole temperature range from 220 to
2100 K. This is much less than the estimated uncertainty of ±2.5% at the low-
and high-temperature extremes of the correlation. The excellent agreement at high
temperatures is certainly based on the fact that Millat and Wakeham used some
theoretical guidance from the kinetic theory of gases for their correlation.
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5. Summary and conclusions

A new four-dimensional intermolecular potential energy hypersurface for two rigid
nitrogen molecules was determined from highly accurate quantum-chemical ab initio
computations. Interaction energies for 408 configurations of two nitrogen molecules
were calculated at the CCSD(T) level of theory using basis sets up to aug-cc-pV5Z
with bond functions. The resulting interaction energies were extrapolated to the
complete basis set limit. Furthermore, corrections for core-core and core-valence
correlations, relativistic effects and higher coupled-cluster levels up to CCSDT(Q)
were computed. A site-site potential function with five sites per molecule was fitted
to the calculated interaction energies.
The new potential function was used to compute the second and third pressure

virial coefficients as well as shear viscosity and thermal conductivity in the dilute-
gas limit. Using the most accurate experimental data for the second virial coeffi-
cient as guidance, the potential was further improved by scaling the CCSDT(Q)
correction for all interaction energies by a factor of 0.5 and refitting the potential
parameters. The influence of this adjustment on the other three properties is very
small.
The second and third pressure virial coefficients for temperatures up to 3000 K

were calculated classically with the first-order translational and rotational quantum
corrections using the Mayer-sampling Monte Carlo approach. In the case of the
third virial coefficient nonadditive dispersion and induction contributions were also
taken into account. The quantum correction to the third virial coefficient for rigid
linear molecules and pairwise-additive potentials was derived in this paper. The
extension to nonlinear molecules and higher virial coefficients is straightforward.
For both the second and the third pressure virial coefficient the agreement with the
most accurate experimental data turned out to be excellent.
Shear viscosity and thermal conductivity in the dilute-gas limit were computed

for temperatures between 70 and 3000 K using the kinetic theory of molecular gases
and the classical trajectory method. For shear viscosity the comparison with the
most accurate experimental data indicated that the calculated values are too low by
about 0.3% between 300–700 K. Apart from this shift, which is probably caused by
the deficiencies of the rigid-rotor approximation, the agreement is excellent. Hence,
we recommend to scale the computed viscosity values for all temperatures by a
factor of 1.003 to obtain reference values. The computed thermal conductivity val-
ues are in very good agreement with the experimental data for temperatures below
500 K. However, at higher temperatures most of the experimental data show large
negative deviations (up to −9%) from the theoretically calculated values. Consid-
ering the very good agreement between theory and experiment for the thermal
conductivity below 500 K as well as for the virial coefficients and shear viscosity, it
is highly unlikely that the theoretically calculated values for the thermal conduc-
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tivity are characterized by such large uncertainties. Therefore, the computed values
are recommended as reference values for the complete temperature range.
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