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Schallgeschwindigkeit in Fluiden

dem Fachbereich Maschinenbau

der Helmut-Schmidt-Universität –

Universität der Bundeswehr Hamburg

vorgelegte

Habilitationsschrift

von

Dr.-Ing. Karsten Meier

aus Rehren

Hamburg, April 2006





The Pulse-Echo Method for High Precision Measurements

of the Speed of Sound in Fluids

Postdoctoral Thesis

Presented

to the Department of Mechanical Engineering

of the Helmut-Schmidt-University –

University of the Federal Armed Forces Hamburg

by

Dr.-Ing. Karsten Meier

born in Rehren

Hamburg, April 2006





I

Contents

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Acoustic Field Quantities . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Acoustic Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Ideal Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Newtonian Fluids with Viscous Dissipation and Heat Conduc-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Plane Harmonic Waves in Free Space . . . . . . . . . . . . . . . . . . 24

2.4 Reflection of Sound Waves at Solid Surfaces . . . . . . . . . . . . . . 31

2.4.1 Reflection in Ideal Fluids . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Reflection in Real Fluids . . . . . . . . . . . . . . . . . . . . . 34

2.5 Dispersion of Sound Waves . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Piezoelectric Sound Transducers . . . . . . . . . . . . . . . . . . . . . 47

2.6.1 Linear Theory of Piezoelectric Materials . . . . . . . . . . . . 49

2.6.2 Thickness Excitation of a Thin Piezoelectric Plate . . . . . . . 55

2.6.3 Operation as a Receiver . . . . . . . . . . . . . . . . . . . . . 61

2.6.4 Operation as a Sender . . . . . . . . . . . . . . . . . . . . . . 63

2.6.5 Equivalent Circuit Model . . . . . . . . . . . . . . . . . . . . . 67

3 The Speed of Sound Apparatus . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1 Measurement Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Acoustic Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Thermostat and Pressure Vessel . . . . . . . . . . . . . . . . . . . . . 76

3.4 Temperature Measurement System . . . . . . . . . . . . . . . . . . . 82

3.5 Pressure Measurement and Filling System . . . . . . . . . . . . . . . 83

3.6 Signal Generation and Detection . . . . . . . . . . . . . . . . . . . . . 90

4 Measurement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 Variation of the Acoustic Path Length with Temperature and Pressure 93

4.2 Diffraction Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Calibration Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4 Assessment of Measurement Uncertainty . . . . . . . . . . . . . . . . 129



II Contents

4.5 Measurements in Liquid Water under Pressure . . . . . . . . . . . . . 133

5 Measurements in Pure Fluids . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 Nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3 Propane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4 Propene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5 Refrigerant 227ea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.6 Refrigerant 365mfc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Appendix

A Relations Between Thermodynamic State Variables . . . . . . . . . . . . . 171

B Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



III

Nomenclature

Latin Letters

Symbol Unit Quantity

A - constant

A m2 area

A0 m constant

A1 m constant

Ai Pa amplitude of the acoustic pressure of the incident wave

Ap m2 piston area

Ar Pa amplitude of the acoustic pressure of the reflected wave

a J kg−1 specific Helmholtz free energy

a m sender radius

a - arbitrary vector

B - constant

B m3 kg−1 second thermal virial coefficient

Ba s m2 kg−1 acoustic susceptance

b - arbitrary vector

b - parameter of a Gaussian source velocity distribution

bi K−1 coefficients of the polynomial representation of the differ-

ential thermal expansion coefficient of the sensor material

C - constant

C0 F static capacitance of a piezoelectric transducer

C1 F capacitive parameter in the equivalent circuit model of a

piezoelectric transducer

c N m2 fourth order tensor of elastic constants

cE N m2 fourth order tensor of elastic constants at constant elec-

tric field

cD N m2 fourth order tensor of elastic constants at constant elec-

tric flux density

ci K−1 coefficients of the polynomial representation of the differ-

ential thermal expansion coefficient of the crystal

ci J kg−1K−1 contribution of the ith internal degree of freedom to the

specific heat capacity



IV Nomenclature

cint J kg−1K−1 contribution of the an internal degree of freedom the spe-

cific heat capacity

cp J kg−1K−1 specific isobaric heat capacity

c∞p J kg−1K−1 specific isobaric heat capacity at infinite frequency

ciG
p J kg−1K−1 specific isobaric heat capacity of the ideal gas

cRe
p J kg−1K−1 residual contribution to the specific isobaric heat capacity

cvib J kg−1K−1 vibrational contribution to the specific heat capacity

cv J kg−1K−1 specific isochoric heat capacity

c∞v J kg−1K−1 specific isochoric heat capacity at infinite frequency

ciG
v J kg−1K−1 specific isochoric heat capacity of the ideal gas

cRe
v J kg−1K−1 residual contribution to the specific isochoric heat capac-

ity

D C m−2 electric flux density vector

D - abbreviation

Dh m2 s−1 thermal diffusivity

Ds m2 s−1 longitudinal viscous diffusivity

Dv m2 s−1 viscous diffusivity

d C N−1 third order tensor of piezoelectric constants

d m diameter

E V m−1 electric field strength vector

E N mm−2 elastic modulus

e C m−2 third order tensor of piezoelectric constants

ei N mm−2 coefficients of the polynomial representation of the elastic

modulus of the sensor material

ex - unit base vector pointing in positive x direction

ey - unit base vector pointing in positive y direction

F - deformation gradient tensor

F N force

Fi - function that describes the temperature dependence of

the contribution of the ith internal degree of freedom to

the isochoric heat capacity

f - arbitrary function

f Hz frequency

fa Hz anti-resonance frequency

fmax Hz frequency of maximum admittance

fmin Hz frequency of minimum admittance



V

fr Hz resonance frequency with zero susceptance

frep Hz repetition frequency

fp
res Hz parallel resonance frequency

f s
res Hz series resonance frequency

Ga s m2 kg−1 acoustic conductance

g N C−1 third order tensor of piezoelectric constants

g J kg−1 Gibbs free energy

gloc m s−2 local gravitational acceleration

g J kg−1 specific Gibbs free energy

h m2 C−1 third order tensor of piezoelectric constants

h J kg−1 specific enthalpy

I - identity tensor

I A electric current

i - imaginary unit

Kt - electromechanical coupling factor

k m−1 wave number

kh m−1 propagation constant of the thermal sound mode

kp m−1 propagation constant of the propagational sound mode

ks m−1 propagation constant of the shear sound mode

L Pa−1 pressure coefficient

L m length

L0 m length in the reference state (T0, p0)

L1 m distance between piezoelectric crystal and reflector

L1 H inductive parameter in the equivalent circuit model of a

piezoelectric transducer

L2 m distance between piezoelectric crystal and reflector

Lc m crystal thickness

l m half thickness of a piezoelectric plate

M kg mol−1 molar mass

m - parameter

m kg mass

mi kg mass i of the pressure balance mass set

N - number of atoms in a molecule

n - integer constant

n - number of masses

P Pa pressure tensor



VI Nomenclature

P Pa m transformed variable

p Pa pressure

p0 Pa reference pressure

pa Pa acoustic pressure

pamb Pa ambient pressure

peq Pa thermodynamic equilibrium pressure

ph Pa contribution of thermal sound mode to the acoustic pres-

sure

pPB Pa pressure measured by a pressure balance

pp Pa contribution of propagational sound mode to the acoustic

pressure

q W m−2 heat flux vector

qa W m−2 acoustic contribution to the heat flux vector

qw W m−2 acoustic contribution to the heat flux vector in the wall

R m distance between a point in front of a sound source and

a point on the surface of the source

R0 Ω resistive parameter in the equivalent circuit model of a

piezoelectric transducer representing dielectric losses

R1 Ω resistive parameter in the equivalent circuit model of a

piezoelectric transducer

R1 m distance of the point on the surface of a sound source to

a point in front of the source, from which a sound signal

reaches the point in front of the source first

R2 m distance of the point on the surface of a sound source to

a point in front of the source, from which a sound signal

reaches the point in front of the source last

Ra kg s−1 m−1 acoustic resistance

r m position vector

r̃ m position vector of a point in front of a sound source with

respect to the origin

r m radial coordinate

r0 m position vector of a point on the surface of a sound source

with respect to the origin

r0 m distance of a point on the surface of a sound source from

the origin

S - strain tensor



VII

S - one-dimensional strain

s m2 N−1 fourth order tensor of elastic compliances

sD m2 N−1 fourth order tensor of elastic compliances at constant

electric flux density

sE m2 N−1 fourth order tensor of elastic compliances at constant

electric field

s J kg−1K−1 specific entropy

sa J kg−1K−1 acoustic specific entropy

T Pa stress tensor

T K thermodynamic temperature

T0 K reference temperature

Ta K acoustic temperature

T le
a K acoustic temperature under the assumption that local

equilibrium is attained instantaneously

Tw
a K acoustic temperature in the wall

Tamb K ambient temperature

Th K contribution of the thermal sound mode to the acoustic

temperature

Tp K contribution of the propagational sound mode to the

acoustic temperature

Teq K thermodynamic equilibrium temperature

TH K temperature in the heated part of the tubing system

TT K temperature in the thermostat

T vib K vibrational characteristic temperature

t s time

u m displacement vector

u J kg−1 specific internal energy

uiG J kg−1 specific internal energy of the ideal gas

ua J kg−1 acoustic specific internal energy

uDPI Pa absolute uncertainty of the differential pressure indicator

ug m s−2 absolute uncertainty of the local gravitational accelera-

tion

ui J kg−1 non-equilibrium contribution of the ith internal degree of

freedom to the specific internal energy

ueq
i J kg−1 thermodynamic equilibrium contribution of the ith inter-

nal degree of freedom to the specific internal energy



VIII Nomenclature

ule
i J kg−1 local equilibrium contribution of the ith internal degree

of freedom to the specific internal energy

up Pa absolute uncertainty of the pressure measurement

upamb
Pa absolute uncertainty of the ambient pressure measure-

ment

upPB
Pa absolute uncertainty of a pressure balance

uT K absolute uncertainty of the temperature measurement

uw m s−1 absolute uncertainty of the speed of sound measurement

u∆hi
m absolute uncertainty of difference between geodesic heads

u∆phydro
Pa absolute uncertainty of the hydrostatic pressure correc-

tion

uρf
kg m−3 absolute uncertainty of the fluid density

V V voltage

V̇ m3 s−1 volume flow

v m s−1 fluid velocity

va m s−1 acoustic contribution to the fluid velocity

vl m s−1 longitudinal velocity component

vl,h m s−1 contribution of the thermal sound mode to the longitudi-

nal velocity component

vl,p m s−1 contribution of the propagational sound mode to the lon-

gitudinal velocity component

v0 m s−1 velocity of a sound source normal to its surface in source-

centered coordinates

vr m s−1 radial velocity component

vσ m s−1 velocity of a sound source normal to its surface in

observer-based coordinates

vt m s−1 transverse velocity component

w m s−1 speed of sound

w0 m s−1 thermodynamic speed of sound

w∞ m s−1 speed of sound at infinite frequency

wc m s−1 speed of sound at constant electric flux density in quartz

normal to the Z axis

wf m s−1 speed of sound in a fluid

wiG m s−1 speed of sound in the ideal gas limit

x m position vector in the deformed configuration

x m Cartesian coordinate



IX

Xa kg s−1 m−1 acoustic reactance

Ya s m2 kg−1 acoustic admittance

Ym s kg−1 mechanical admittance

Ye S electrical admittance

y m Cartesian coordinate

yw
a - dimensionless specific acoustic admittance of the wall

yh
a - dimensionless specific acoustic admittance of the thermal

boundary layer

ys
a - dimensionless specific acoustic admittance of the viscous

boundary layer

Za kg s−1 m−1 acoustic impedance

Zb
a kg s−1 m−1 acoustic impedance of the material at the back of a piezo-

electric transducer

Z f
a kg s−1 m−1 acoustic impedance of the material at the front of a piezo-

electric transducer

Zw
a kg s−1 m−1 acoustic impedance of a solid wall

Zm kg s−1 mechanical impedance

Ze Ω electric impedance

ZL
e Ω electric imdepance of a mechanical load

z - arbitrary complex number

z m Cartesian coordinate

z m cylindrical coordinate

Greek Letters

Symbol Unit Quantity

α m−1 sound absorption coefficient

αint m−1 dispersive contribution of an internal degree of freedom

to the sound absorption coefficient

αt N V−1 transformation factor

αth K−1 average thermal expansion coefficient

αAS
th K−1 thermal expansion coefficient of the acoustic sensor

αc
th K−1 thermal expansion coefficient of the piezoelectric crystal

αcyl
th K−1 thermal expansion coefficient of the cylinder

αp
th K−1 thermal expansion coefficient of the piston

β m F−1 dielectric impermeability tensor



X Nomenclature

βS m F−1 dielectric impermeability tensor at constant strain

βT m F−1 dielectric impermeability tensor at constant stress

β Pa K−1 thermal pressure coefficient

βa m3 second acoustic virial coefficient

βth K−1 differential thermal expansion coefficient

β⊥th K−1 differential thermal expansion coefficient of α-quartz per-

pendicular to the Z axis

β
‖
th K−1 differential thermal expansion coefficient of α-quartz par-

allel to the Z axis

Γ - dimensionless propagation constant

Γh - dimensionless propagation constant of the thermal sound

mode

Γp - dimensionless propagation constant of the propagational

sound mode

Γs - dimensionless propagation constant of the shear sound

mode

γ m2 abbreviation

γa m6 third acoustic virial coefficient

∆h m difference between geodesic heads

∆hi m difference between geodesic heads in part i of the tubing

system

∆phydro Pa hydrostatic pressure correction

∆t s time difference

∆tpw s time difference for plane wave propagation

∆td s diffraction correction for the time difference

∆tm s measurement value of the time difference

∆tR1 s transit time of the first reflection at the sender rod

∆tR2 s transit time of the first reflection at the receiver rod

∆ts s transit time through the sample liquid

∆ttr s transit time through the sender rod, sample liquid, and

receiver rod

∆L m acoustic path length

δh m thermal penetration length

δij - Kronecker delta

δs m shear penetration length

δw m thermal penetration length of the wall



XI

δL - change of length due to mechanical deformation

ε F m−1 tensor of dielectric constants

εS F m−1 tensor of dielectric constants at constant strain

εT F m−1 tensor of dielectric constants at constant stress

ε - relative measurement uncertainty

εDPI - relative uncertainty of the differential pressure indicator

εi J kg−1 non-equilibirum amplitude of the periodic variation of the

specific internal energy of the ith internal degree

εle
i J kg−1 amplitude of the periodic variation of the specific internal

energy of the ith internal degree under the assumption

that local equilibrium is instantaneously attained

εijk - permutation symbol

εp - relative uncertainty of the pressure measurement

εpamb
- relative uncertainty of the ambient pressure

εpPB
- relative uncertainty of a pressure balance

εw - relative uncertainty of the speed of sound measurement

ε∆phydro
- relative uncertainty of the hydrostatic pressure correction

η Pa s viscosity

η m2 abbreviation

ηb Pa s bulk viscosity

ϕi rad angle of incidence

ϕr rad angle of reflection

Ψ m2 s−1 velocity potential

χRe - reflection coefficient

κ - isentropic exponent, ratio of the isobaric and isochoric

heat capacities

κiG - isentropic exponent of the ideal gas

λ m wave length

λc W m−1K−1 thermal conductivity

λf
c W m−1K−1 thermal conductivity of the fluid

λw
c W m−1K−1 thermal conductivity of the wall

λp Pa−1 pressure coefficient

ν - Poisson number

Ω - half apex angle of a circle segment on the source surface

ω Hz angular frequency

ωp
res Hz angular parallel resonance frequency



XII Nomenclature

ωs
res Hz angular series resonance frequency

Π Pa viscous pressure tensor

ρ kg m−3 mass density

ρ m radial coordinate with respect to the projection of a point

in front of a sound source on the source plane

ρ1 m radius of the circle with center at the projection of a point

in front of a sound source on the source plane, which

touches the source boundary first

ρ2 m radius of the circle with center at the projection of a point

in front of a sound source on the source plane, which

touches the source boundary last

ρa kg m−3 acoustic mass density contribution

ρair kg m−3 mass density of air

ρc kg m−3 mass density of quartz

ρeq kg m−3 thermodynamic equilibrium mass density

ρf kg m−3 mass density of a fluid

ρm kg m−3 mass density of stainless steel masses (pressure balance)

τi s relaxation time of ith internal degree of freedom

τint s relaxation time of an internal degree of freedom

τh s thermal relaxation time

τs s shear relaxation time

τv s viscous relaxation time

Θ - apex angle of a circle segment on the source surface

Θ1 - angular coordinate on a circle segment on the source sur-

face

ϑ ◦C temperature of the Celcius temperature scale

ϑ0
◦C reference temperature

ξ m position vector in the reference configuration

Indices and Abbreviations

Symbol Quantity

0 zero frequency

AS acoustic sensor

a acoustic

amb ambient
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b bulk

b back

C crystal

c cylinder

DPI differential pressure indicator

eq equilibrium

f front

h thermal sound mode

i running index

i index in Cartesian tensor notation

i incidence

int internal degree of freedom

j index in Cartesian tensor notation

iG ideal gas

k index in Cartesian tensor notation

l longitudinal

l index in Cartesian tensor notation

n normal

PB pressure balance

p propagational sound mode

p piston

p index in condensed matrix notation

q index in condensed matrix notation

r reflection

s shear sound mode

t transverse

vib vibrational degree of freedom

w wall

Fundamental Physical Constants

Quantity Symbol CODATA Numerical Value [129]

Speed of light in vacuum c 299792458 m s−1

Boltzmann constant kB 1.3806503 · 10−23 J K−1

Planck constant h 6.62606876 · 10−34 J s

Molar gas constant Rm 8.314472 J mol−1 K−1



XIV Nomenclature

Tensor Notation

The index and symbolic tensor notations are used in parallel in this work. In index

notation, the Einstein summation convention is used, which means that, if an index

occurs twice in a term, then this term is to be summed with respect to this index

over the range of its admissible values, for example aibi = a1b1 + a2b2 + a3b3 with

i=1,2,3.

Symbolic Notation Index Notation Meaning

a ai vector

b bi vector

A Aij second order tensor

I δij identity tensor

∇ ∂/∂xi Nabla operator

a · b aibi scalar product of two vectors

A · b Aijbj product of a tensor and a vector

a ·B aiBij product of a vector and a tensor

A ·B AijBjk product of two second-order ten-

sors

A : B AijBji scalar product of two second-

order tensors

a× b (a× b)k = εijkaibj vector product

a⊗ b aibj dyadic product

At (Aij)
t = Aji transpose of the tensor A

D/Dt ∂/∂t + vi ∂/∂xi material derivative

Products of higher-order tensor are formed accordingly. The quantity εijk is the

permutation symbol, which is defined by

εijk =





1, if ijk are an even permutation of 123

−1, if ijk are an even permutation of 123

0, otherwise

.
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1 Introduction

This work summarizes the theoretical basis of the pulse-echo method for measure-

ments of the speed of sound in fluids and describes the development and operation

of an instrument for high-precision measurements over a wide temperature range

and under high pressures as an example. Knowledge of the speed of sound in fluids

is important because it is a basic physical quantity for understanding and describ-

ing acoustic phenomena and, furthermore, because precise speed of sound data are

very useful in thermophysical properties research, for example in equation of state

modelling. While some of the results of this work may be of general interest, the

emphasis lies in the applications of the speed of sound in thermophysical properties

research.

Acoustic phenomena occur in nature, many areas of every day life, and diverse

technical applications. Examples are speech and hearing, music, noise, architec-

tural acoustics, medical diagnostics, ultrasonic cleaning, ultrasonic manufacturing

processes, or position locating systems of some animals such as bats or dolphins

[92, 100]. Widely known are SONAR1) techniques, which are employed in military

and civil navy or submarine research for position finding or locating objects. Ul-

trasonic mass flow and fill level sensors utilize pulse-echo measurement techniques,

which were originally developed to measure the speed of sound in liquids and solids.

Further areas of application are transonic and supersonic flows [149]. They are

characterized by the Mach number, which is defined as the ratio of the fluid velocity

and the speed of sound in the fluid. Supersonic flows occur for example around

spacecrafts upon entry into planetary atmospheres, around projectiles moving in

air, in supersonic thermal jet engines, or in nozzles. In isentropic flows through

convergent nozzles, the streaming velocity of the fluid at the orifice is limited to the

speed of sound [10]. The acceleration of the fluid to velocities larger than the speed

of sound requires convergent-divergent nozzles (Laval nozzles), in which the cross

section increases behind the smallest cross section. The streaming velocity in the

smallest cross section equals the speed of sound. In this application, the speed of

sound is required as a basic design quantity.

In thermophysical properties research, the speed of sound is an important quan-

tity not so much for its own sake, but mainly because valuable information about

1) Sound Navigation and Ranging
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other properties can be derived from it. As will be shown in the following chapter,

the square of the speed of sound w is given by

w2 =

(
∂p

∂ρ

)

s

, (1.1)

in which p denotes the pressure, ρ is the mass density, and s is the entropy. In

this form, Eq. (1.1) is not yet useful because it relates the speed of sound to the

entropy equation of state p = p(ρ, s). If one chooses the temperature T in place of

the entropy as an independent variable, Eq. (1.1) becomes

w2 =

(
∂p

∂ρ

)

T

+
T

ρ2cv

[(
∂p

∂T

)

ρ

]2

. (1.2)

This relation emphasizes the role of the speed of sound between thermal and caloric

properties. The speed of sound contains information about the thermal equation of

state and the isochoric heat capacity, but it alone is not sufficient to determine one

or both of these properties.

Davis and Gordon [36] devised a technique to derive the thermal equation of

state of pure fluids from comprehensive speed of sound data sets. This method was

later refined by ten Seldam and Biswas [156] and applied to determine the thermal

equation of state of compressed nitrogen [21], methane [22], and argon [156]. In this

method with density and temperature as independent variables, Eq. (1.2) is viewed

as a differential equation for the pressure as a function of temperature. When

supplemented by initial values for the pressure on one isotherm and for isochoric

heat capacity on one isochore at low pressures, it can be integrated together with

the equation

(
∂cv

∂ρ

)

T

= − T

ρ2

(
∂2p

∂T 2

)

ρ

(1.3)

to yield the thermal equation of state in the form p = p(ρ, T ) along isochors in

the region of the speed of sound measurements. With an accurate speed of sound

data set, the accuracy of the pρT data derived from the speed of sound data can

be comparable with that achieved with the best direct measurement techniques for

the density as a function of pressure and temperature. Modified versions of this

method were for example described by Daridon et al. [35], Trusler and co-workers

[44, 46, 178, 183], Estrada-Alexanders and Justo [47], Petitet et al. [143], or ten

Seldam and Biswas [157].
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If the fundamental equation of state is formulated in terms of the Helmholtz free

energy a, Eq. (1.2) becomes

w2 = ρ2


2

ρ

(
∂a

∂ρ

)

T

+

(
∂2a

∂ρ2

)

T

−
[(

∂

∂T

(
∂a

∂ρ

)

T

)

ρ

]2 [(
∂2a

∂T 2

)

ρ

]−1

 . (1.4)

With the non-linear regression and multi-property fitting techniques described by

Ahrendts and Baehr [2, 3] and the structural optimization method developed by

Wagner [185], speed of sound data can be used together with data of further ther-

modynamic properties, for example pρT and vapor pressure data, to establish em-

pirical fundamental equations of state in terms of the Helmholtz free energy, from

which all other thermodynamic properties can be calculated [11, 88, 160, 176]. As

Eq. (1.2) shows, the speed of sound combines the derivatives (∂p/∂T )ρ and (∂p/∂ρ)T

of the thermal equation of state and the isochoric heat capacity. If speed of sound

data are used in the optimization process of a fundamental equation of state and

the fundamental equation of state represents the speed of sound accurately over a

wide range of temperature and density, it will also describe the thermal equation of

state and the isochoric heat capacity accurately. Speed of sound data are therefore

especially valuable for modelling the liquid region, where many properties depend

strongly on density.

Speed of sound data in the gas region may be used to determine ideal gas heat

capacities. Isochoric ideal gas heat capacities are for example required for establish-

ing fundamental equations of state [160, 176]. In the ideal gas limit, the speed of

sound is related to the specific isochoric heat capacity ciG
v (T ) by

[wiG(T )]2 =
RmT

M

ciG
v (T ) + Rm/M

ciG
v (T )

, (1.5)

where Rm is the universal gas constant and M denotes the molar mass. The speed

of sound in the ideal gas limit can easily be determined by extrapolating isothermal

gas phase speed of sound data to zero pressure. The isochoric heat capacity can

then be calculated from the ideal gas speeds of sound by Eq. (1.5) [17, 50, 80, 86].

Furthermore, thermal virial coefficients for the virial equation of state can be

determined from isothermal gas phase speed of sound data [177]. In a first step,

acoustic virial coefficients are derived from the speed of sound data. They are the

coefficients βa(T ), γa(T ), . . . in the series expansion of the speed of sound squared

with respect to pressure

[w(p, T )]2 = [wiG(T )]2[1 + βa(T )p + γa(T )p2 + . . .]. (1.6)
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The acoustic virial coefficients are related to the thermal virial coefficients by differ-

ential equations. For example, the second acoustic virial coefficient βa(T ) is related

to the second thermal virial coefficient B(T ) by

βa(T ) = 2B(T ) + 2[κiG(T )− 1] · T dB(T )

dT
+

[κiG(T )− 1]2

κiG(T )
· T 2 d2B(T )

dT 2
, (1.7)

where κiG(T ) = [ciG
v (T ) + Rm/M ]/ciG

v (T ) is the isentropic exponent of the ideal gas.

In order to determine the thermal virial coefficients, an empirical function may be

chosen for B(T ), whose parameters are optimized by a nonlinear regression of the

experimental data of βa(T ) [17]. Alternatively, the well-known relations between

the thermal virial coefficients and the intermolecular potential-energy functions [77]

provide a way to calculate βa(T ) from the pair potential. Thus, the parameters of

model pair potentials may be optimized by a nonlinear regression of experimental

data of βa(T ). Thermal virial coefficients may then be determined from the model

pair potentials. Square-well, Kihara, or more refined model potentials have been

used for this purpose [63, 82, 83, 84, 85, 86, 181, 182].

As ideal gas heat capacities, thermal virial coefficients are important for equation

of state of state modelling because they are related to the derivatives of the isotherms

of the thermal equation of state with respect to density in the zero-density limit.

Therefore, they represent limiting cases, which an equation of state must describe

correctly. Moreover, they are useful for verifying quantum chemical calculations of

energy hypersurfaces for intermolecular interactions.

In view of these applications, speed of sound data are extremely valuable in

thermophysical properties research. However, they are less frequently measured than

for example pρT data or vapor pressures. This applies even more so to measurements

in liquids than to measurements in gases.

Experimental methods for the determination of the speed of sound in fluids can

mainly be divided in two groups, which are applied in different parts of the fluid re-

gion. Acoustic resonators and interferometers are predominantly used for measure-

ments in gases, while pulse-echo methods are mainly employed for measurements

in liquids. Moreover, optical techniques, for example light scattering techniques

[57, 58, 98, 107, 169, 188], have been developed for measurements of the speed of

sound.

Resonator and interferometer methods employ an acoustic cavity with a well-

defined geometry, in which standing sound waves are generated continuously. Both

methods work best if the walls of the cavity reflect sound efficiently, which is the case

for gases at low pressures. An acoustic cavity is called a resonator, if the operating
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frequency is controlled by a normal mode of the cavity, and an interferometer, if

the operating frequency is controlled by one of the resonance frequencies of the

transducer, which generates the sound waves inside the cavity. In both methods,

the speed of sound is obtained from measurements of resonance frequencies of the

cavity.

gas inlet/outlet

sphere suspension

transducer

spherical resonator

isothermal shield/

pressure vessel

d
8
0
-1

0
0

m
m

≈

Figure 1.1. Principle design of a spherical resonator.

Today, the spherical resonator is the preferred technique for measurements in

gases because it is ideally suited for highly accurate measurements. Its principle

advantages lie in the existence of radial modes, in which there is no viscous bound-

ary layer at the surface of the sphere and whose resonance frequencies are rather

insensitive to geometric imperfections. A schematic drawing of a spherical resonator

is depicted in Fig. 1.1. A spherical resonator consists of two hemispheres, which are

either screwed together [16, 132] or are welded to each other along the equator of

the sphere [53]. The sphere itself can act as a pressure vessel, or it can be placed in

an external pressure vessel. Two sound transducers are employed, one to generate

the resonances and one to detect them. As the radial resonances are evaluated to

determine the speed of sound, it is useful to suppress the detection of non-radial

modes, which are resonant close to the resonances of radial modes. For this reason,

the transducers are separated by an angle of 90◦, which has the advantage that,

while the source transducer establishes the polar axis of the non-radial vibrational
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modes of the gas, the detector resides at a node of certain non-radial vibration

modes, which are then not seen by the detector. The sound generator is excited

with a continuous sinusoidal signal delivered by a function generator, and a lock-in

amplifier is employed to measure the amplitude and phase of the detected signal

with respect to the excitation. The resonance frequencies of the radial modes are

obtained from scans, in which the amplitude and phase are measured in discrete

frequency steps in the vicinity of the resonances. For typical sphere diameters of

about 80–100 mm, the resonance frequencies of the lowest radial modes, from which

the speed of sound is usually derived, lie in the low kHz regime.

The acoustic theory of the spherical resonator was developed by Moldover, Mehl

and co-workers in the 1980s [124, 121, 122, 123, 125, 130]. Based on these works,

Moldover et al. [131, 132] determined the most accurate value yet of the universal

gas constant Rm from highly precise measurements of the speed of sound in the noble

gas argon at the triple point temperature of water with a spherical resonator, whose

uncertainty was better than 1 ppm. Since these pioneering works by Moldover,

Mehl and co-workers, many groups have copied spherical resonators, for example

Beckermann [16, 17], Benedetto et al. [18], Ewing and co-workers [49, 50, 51, 52, 53],

Fawcett [55], Trusler and co-workers [32, 43, 44, 45, 178, 180], or Watanabe and co-

workers [80, 81]. A detailed account of the theory of the spherical resonator can

also be found in the monograph of Trusler [177]. Measurement uncertainties better

than 0.01 % in the speed of sound are now almost routinely achieved and can be

maintained over a wide temperature range and under pressures up to about 10 MPa.

In metrology, spherical resonators have been applied by several groups as primary

acoustic thermometers to directly measure thermodynamic temperatures. Due to

the high precision of the spherical resonator method, it was possible to detect small

deviations of a few mK of the practical temperature scale ITS-90 from the true

thermodynamic temperature [54, 115, 126, 133].

The basic measurement principle of pulse-echo experiments is very simple: the

time of flight of an acoustic burst signal over a known distance in the sample fluid

is measured, and the speed of sound is obtained as the distance divided by the

measured time difference. Practical speed of sound sensors differ in the way the

sound signals are guided within the sensor, and free field or guided sound propa-

gation can be distinguished. Piezoelectric transducers operated at their resonance

frequency are employed for signal generation and detection, and carrier frequencies

lie between 1 and 20 MHz. Different types of acoustic sensors for pulse-echo ex-

periments are described in the literature, see for example [38, 40, 62, 67, 93, 97,
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119, 127, 135, 172, 192, 193, 194]. Besides their application for speed of sound mea-

surements, pulse-echo experiments have also been employed to measure liquid-liquid

phase boundaries in liquid mixtures [113] or to locate the melting line of pure sub-

stances [170]. Some theoretical and practical aspects of pulse-echo experiments are

described in the monograph published by Thurston and Pierce [174].

Figs. 1.2 to 1.4 depict schematic drawings of three different pulse-echo speed of

sound sensors described by Younglove [194], Miller [127], and Ye et al. [192, 193],

respectively. In the following, these three sensors are discussed in some detail.

fused quartz spacer

quartz crystal electrode spring

L = 25 mm

Figure 1.2. The speed of sound sensor of Younglove [194].

The design and measurement principle of the sensor described by Younglove [194]

shown in Fig. 1.2 is based on a sensor, which was developed earlier by Greenspan and

Tschiegg [67]. It consists of a fused quartz spacer tube, which serves as the acoustic

wave guide, with piezoelectric quartz transducers with resonance frequencies of 10

MHz at both ends. One transducer serves a sender, and the other one is operated

as a receiver. The quartz spacer has a length of about L = 25 mm, and both

end surfaces are flat within a few wavelengths of visible light and parallel to each

other within 1 part in 30000. The length of the spacer was determined by a length

measuring device. The piezoelectric transducers were completely covered by gold

electrodes on both faces so that the whole surface is acoustically active and the

propagating acoustic waves are guided by the inner wall of the spacer tube. The

sender is excited with rectangular pulses of 40 V amplitude and 0.1 µs duration

and generates sound signals with about 30–50 sinus periods, which are reflected

back and forth several times between the sender and receiver in the waveguide.

The pulse repetition frequency frep is adjusted so that the echo sequences belonging
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to different pulses interfere. This interference is monitored on an oscilloscope. If

the time between successive input pulses equals the time an acoustic signal needs

to travel back and forth between sender and receiver, constructive interference of

the received echo sequences occurs. The speed of sound is then determined by

w = 2Lfrep. The sensor is housed in a pressure vessel, which itself is placed in a

thermostat. This instrument was operated from cryogenic temperatures to ambient

temperature and under pressures up to 35 MPa, and measurement uncertainties of

0.05 % for the speed of sound were achieved [184, 194, 195].

stainless steel reflector

ground potential

copper spacer

piezoceramic

high potential

glass wool

stainless steel mesh

PTFE screw

stainless steel spring

L
=

1
0

0
m

m

Figure 1.3. The speed of sound sensor of Miller [127].

Fig. 1.3 shows the speed of sound sensor of Miller [127]. In this sensor, a single

piezoceramic transducer with a resonance frequency of 3 MHz is employed, which

serves as sender and receiver. A stainless steel reflector is mounted at a distance

of about L = 100 mm from the transducer. Parallelism between the transducer

and reflector is guaranteed by three copper spacers. Copper was chosen as spacer

material because its thermal expansion coefficient is well known. Since the spacers

and the transducer are so far apart from each other that there are no interactions

between the acoustic signals and the spacers, free field propagation can be assumed

in this design. The distance between transducer and reflector is determined by a cal-

ibration measurement with a fluid, in which the speed of sound is accurately known.

In order to eliminate unwanted echoes at the back of the transducer, glass wool is
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placed in the space at the back as a sound absorber. The glass wool is held in place

by a stainless steel mesh. As in the instrument of Younglove, the sensor is housed

in a pressure vessel, which in this case is thermostatted in a circulating liquid bath

thermostat. The transducer is excited by a sinusoidal burst signal and generates an

acoustic signal, which is reflected several times back and forth between the trans-

ducer and reflector. The speed of sound is determined from the time difference ∆t

between the first two echoes of the received echo sequence as w = 2L/∆t. In the

work of Miller, the time between the first two echoes was measured by the pulse-

echo-overlap technique introduced by Papadakis [142]. The instrument covered the

temperature range between 280 K and 450 K under pressures up to 125 MPa. Sev-

eral liquids were studied with this instrument [71, 104, 105], and the measurement

uncertainty of the speed of sound was estimated to be 0.05 %. An automatization

of the pulse-echo overlap method suitable for computer controlled data acquisition

was described by Horváth-Szabó et al. [79]. With modern digital storage oscillo-

scopes, the time difference between the echoes could simply be determined as the

time between corresponding characteristic points of the two echoes, for example the

first maxima, from the stored signal.

The speed of sound sensor developed by Ye et al. [192, 193], which is depicted in

Fig. 1.4, differs in several respects from the ones of Younglove and Miller. It also

involves two piezoelectric quartz transducers with resonance frequencies of 5 MHz,

one of which acts as a sender and the other one acts as a receiver. However, they

are not placed in direct contact with the fluid, but are coupled to it via stainless

steel buffer rods. The buffer rods are screwed into a hollow cylinder, which forms

the pressure vessel and contains the sample fluid. The piezoelectric transducers are

adhered to the buffer rods by thin layers of viscous oil. The sender is excited at its

resonance frequency and generates an acoustic signal which propagates through the

sensor. The received echo pattern is more complex than for the sensors of Younglove

and Miller because at each interface some part part of the signal is transmitted and

some part is reflected backwards. For the determination of the speed of sound,

the generated signal, the first signal reflected at the sender rod, the first received

signal, which directly passed through the sender rod, fluid, and receiver rod, and

the first signal reflected at the receiver rod are evaluated as shown in Fig. 1.5. With

the nomenclature introduced in Fig. 1.5, the time the signal needs to pass through

the sample fluid is given by ∆ts = ∆ttr − (∆tR1 − ∆tR1)/2. If the generated and

received signals are measured by a two-channel digital storage oscilloscope, the time

differences can be extracted from the stored signals as above for the sensor of Miller



10 Introduction

mercury

buffer rod

quartz crystal (receiver)

pressure vessel

temperature control

thermocouple housing

sample liquid

sample inlet/outlet

connection to

mercury pump

L
=

9
0

m
m

quartz crystal (sender)

Figure 1.4. The speed of sound sensor of Ye et al. [192, 193].

as the time differences between corresponding characteristic points of the signals,

for example first maxima. The distance L between the two buffer rods is determined

by a calibration measurement, and the speed of sound is then given by w = L/∆ts.

As the sensor itself forms the pressure vessel, the correction for variation of the

distance L due to expansion under pressure is rather large in this arrangement. The

apparatus covered the temperature range between 290 and 420 K under pressures up

to 70 MPa, and the measurement uncertainty of the speed of sound was about 0.1 %.

Later, the sensor was modified by Daridon [34], and the apparatus was automatized

by Ding et al. [38].
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∆tR1
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Time t
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Figure 1.5. Measurement principle of the speed of sound sensor of Ye et al.[192, 193].

The accuracy of speed of sound measurements in liquids is usually not as high as

for measurements in gases, ranging from 0.05 % to 0.5 %. Some notable exceptions

are studies to determine the speed of sound in water at ambient pressure by Fujii

and Masui [62], del Grosso and Mader [69], and Kroebel and Mahrt [99], where

uncertainties between 0.001 % and 0.003 % were achieved, and in water under high

pressures, for example by Aleksandrov and Larkin [5], Benedetto et al. [20], or Fujii

[61] with uncertainties between 0.005 % and 0.02 %. In studies on the speed of

sound in n-heptane and toluene [135], argon [93], helium [94], nitrogen [95], and

methane [96] under high pressures up to 1000 MPa by a group at the van der Waals

Laboratory in Amsterdam, uncertainties of 0.02 % were claimed.

In summary, the preceding discussion shows that there is a permanent need for

accurate speed of sound measurements, especially in the liquid region. Therefore,

the aim of this work was to summarize the knowledge on the pulse-echo method for

measurements of the speed of sound in fluids and to develop an instrument for high-

precision measurements over a wide range of temperature and under high pressures

up to 100 MPa. During the course of this work, the instrument was designed and

optimized, and comprehensive measurements of the speed of sound in compressed

nitrogen and in the liquid and supercritical regions of propane, propene, and the

refrigerants 227ea and 365mfc were carried out.
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This work is organized as follows. The next chapter describes fundamentals for

the design of pulse-echo speed of sound sensors. In Chapter 3, the speed of sound

apparatus developed in this work is presented, and the instrumentation employed

for temperature and pressure measurement and for signal generation and detection

is described. Chapter 4 treats the analysis of the speed of sound measurements and

the estimation of the measurement uncertainties. In order to validate the apparatus,

the speed of sound in liquid water under pressure was measured. The results of these

measurements are also discussed in Chapter 4. In Chapter 5, the measurements in

nitrogen, propane, propene, and the refrigerants 227ea and 365mfc are discussed

and compared with literature data and equation of state models. Conclusions and

an outlook are presented in Chapter 6.
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2 Fundamentals

In a pulse-echo experiment to measure the speed of sound in a fluid, the time of

flight of a short sinusoidal burst signal over a well-known distance in the sample

is measured. The way of the signal through an acoustic sensor, which realizes

this measurement principle, usually consists of the following steps: A piezoelectric

transducer, which acts as sender, is electrically excited by a sinusoidal burst signal

and generates a sound signal in the surrounding fluid. The sound signal propagates

nearly as a plane wave in the fluid, is reflected at a solid reflector, and travels back to

the transducer, which now acts as a receiver. The arriving sound signal excites the

piezoelectric transducer mechanically so that it generates an electric signal, which

can be measured by an oscilloscope.

The aim of this chapter is to provide the fundamental theory for these basic

elements of a pulse-echo sensor. First, the differential equations, which describe

acoustic wave motion, are derived for pure fluids. In Sec. 2.1, the basic quantities

used to describe acoustic fields are introduced. In Sec. 2.2, the acoustic field equa-

tions are first derived for idealized fluids by neglecting dissipation mechanisms from

the Euler equations (Sec. 2.2.1) and, subsequently, for the more complicated case

of Newtonian fluids from the Navier-Stokes equations and the energy equation by

including viscous dissipation and heat conduction (Sec. 2.2.2). In order to illustrate

the properties of solutions of the acoustic field equations, the propagation of plane

mono-frequency harmonic waves in unbounded fluids is discussed in Sec. 2.3. The

reflection of sound waves at solid surfaces is treated in Sec. 2.4, again first for ideal

fluids (Sec. 2.4.1) and, subsequently, for real fluids with viscous dissipation and

heat conduction (Sec. 2.4.2). In Sec. 2.5, molecular relaxation phenomena, which

can result in a frequency dependence of the speed of sound and can cause additional

damping of sound waves, are discussed. The last section of this chapter describes the

application of piezoelectric crystals as sound transducers. First, general properties

of piezoelectric materials are described in Sec. 2.6.1. In Sec. 2.6.2, the differential

equation for thickness vibrations of a thin piezoelectric plate is derived. Secs. 2.6.3

and 2.6.4 treat the operation of piezoelectric transducers as sound receivers and

senders. Finally, an equivalent electric circuit model for piezoelectric transducers is

described in Sec. 2.6.5.

More detailed treatments of the propagation of sound waves in fluid media than
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the one given in the following sections can be found in the books of Kinsler et

al. [92], Morse and Ingard [134], or Trusler [177]. Reviews of experimental studies

on the speed of sound in gases were published by Zuckerwar [199, 200, 201] and

in organic liquids by Oakley et al. [140, 141]. A review of the role of the speed of

sound in thermophysical properties research was given by van Dael [33] and Trusler

[177]. Relaxation phenomena are discussed in detail in the books of Cortrell and

McCoubrey [31], Herzfeld and Litowitz [76], and Lambert [106]. A fundamental

account of the theory of piezoelectric transducers within the frame of continuum

mechanics was given by Tiersten [175]. Useful material on piezoelectric transducers

can also be found in the ANSI/IEEE standard on piezoelectricity [8] and in the

books of Cady [27, 28], Ikeda [87], Mason [117], Ruschmeyer [154] and Trusler [177].

2.1 Acoustic Field Quantities

When a sound wave propagates in a fluid, it produces local changes of the pressure

p, the density ρ, and the temperature T . Acoustic wave motions are described in

terms of these three variables, and the velocity of the fluid v is used to describe the

fluid motion. Since pressure changes can most easily be measured by some detector,

the pressure is used as the primary variable to describe the acoustic wave motion,

and the other variables are calculated from it by the relations which will be derived

in the following sections.

The local pressure, density, and temperature are written as sums of an equilibrium

contribution and an acoustic contribution:

p(r, t) = peq + pa(r, t) (2.1)

ρ(r, t) = ρeq + ρa(r, t) (2.2)

T (r, t) = Teq + Ta(r, t). (2.3)

The acoustic contributions, indicated by the subscript ‘a’, describe the changes due

to the presence of a sound wave. They are functions of the position vector r and time

t, that is, they are local quantities. In the absence of sound, the fluid is assumed

to be at rest so that the fluid velocity v(r, t) = va(r, t) consists of an acoustic

contribution only1). This set of acoustic variables is a convenient choice because

1) In the acoustic literature, va is sometimes termed particle velocity. The particle velocity must
be distinguished from the speed of sound, which is the speed at which acoustic waves propagate
in a fluid.
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they appear in the conventional form of the hydrodynamic balance equations as

independent variables.

Often, the velocity potential Ψ is used to describe acoustic wave motion. It is

related to the fluid velocity by

v(r, t) = −∇Ψ(r, t). (2.4)

The advantage of describing acoustic fields by the velocity potential lies in the fact

that, in ideal fluids, both fluid velocity and pressure can unambiguously be related

to the velocity potential. This reduces the number of independent variables from

four – pressure and three velocity components – to one, the velocity potential. More-

over, if, in real fluids, the fluid velocity is resolved into longitudinal and transverse

components, the longitudinal velocity vector field can be represented by the scalar

velocity potential field.

Furthermore, it will be assumed that local equilibrium is attained instantaneously

at every material point in the fluid so that the standard thermodynamic relations

between state variables can be applied locally. In ordinary liquids and compressed

gases, this assumption is known to be satisfied up to very high frequencies in the GHz

regime [177, pp. 90]. If local equilibrium is not reached instantaneously, the speed

of sound depends on the frequency of the wave, and it is no longer a thermodynamic

state variable. This effect is called dispersion, and the fluid is then said to be

dispersive. In the following sections, the acoustic field equations are first derived for

a non-dispersive fluid. Dispersion effects will be included in the model in Sec. 2.5.

Sometimes, for example in the formulation of boundary conditions, analogies

between acoustical or mechanical quantities and electrical circuit theory are useful.

If the acoustic pressure is the analog of the voltage and the fluid velocity is the

analog of the current, the acoustic impedance of a medium Za is defined as

Za = pa/v. (2.5)

In general, the acoustic impedance is a complex quantity and can be decomposed

into its real part, the acoustic resistance Ra, and its imaginary part, the acoustic

reactance Xa. The inverse of the acoustic impedance is the acoustic admittance Ya.

Its real part is the acoustic conductance Ga, and its imaginary part is the acoustic

susceptance Ba.

A similar analogy can be formulated for mechanical quantities. In the mechanical

analogy, the force is interpreted as the analog of the voltage and the velocity as the
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analog of the current. The mechanical impedance is then defined as

Zm = F/v, (2.6)

and the mechanical admittance Ym is the inverse of the impedance. Furthermore,

the real and imaginary parts of the mechanical impedance and admittance are in-

terpreted in the same way as in the acoustic analogy. Acoustical and mechanical

impedances are related by Zm = AZa, where A is the area upon which the force F

acts.

2.2 Acoustic Field Equations

In acoustic experiments for measurements of thermophysical properties, the local

disturbances in the fluid due to propagating sound waves are usually kept so small in

magnitude that nonlinear effects are negligible, and a treatment within linear acous-

tics yields an excellent description of the wave motion. Therefore, the presentation

in the following sections aims at deriving the linearized acoustic field equations. The

derivation starts from the hydrodynamic balance equations for mass, momentum,

and energy, which are assumed to be known. Their derivation and thorough discus-

sions of them can be found in many books on fluid or continuum mechanics, see for

example [149, 165]. A treatment of nonlinear acoustic wave motion was for example

given by Morse and Ingard [134, pp. 863].

2.2.1 Ideal Fluids

In the first step, the fluid is treated as an ideal fluid without viscous dissipation and

heat conduction. For an ideal fluid, the mass balance equation reads

Dρ

Dt
+ ρ(∇ · v) = 0, (2.7)

where

D

Dt
=

∂

∂t
+ v · ∇ (2.8)

represents the material time derivative. The momentum balance is represented by

the Euler equation

ρ
Dv

Dt
+∇ · (pI) = 0, (2.9)
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in which the symbol I denotes the identity tensor. The mass and momentum bal-

ances constitute a set of four partial differential equations – the Euler equation

represents in fact three equations for the three components of the velocity vector

– for the five unknown functions p(r, t), ρ(r, t), and v(r, t). Thus, one additional

equation is required to complete the system of equations.

In an ideal fluid, all motion is adiabatic and reversible, in other words isentropic.

If the entropy equation of state of the fluid is written in the form p = p(ρ, s), the

acoustic pressure can be related to the acoustic density by

pa = p− peq ≈
(

∂peq

∂ρeq

)

s

(ρ− ρeq) =

(
∂peq

∂ρeq

)

s

ρa. (2.10)

This relation is the fifth equation of the system of equations, which provides the

starting point for the derivation of the acoustic field equations.

In order to linearize the mass and momentum balances, the separation of the pres-

sure and density into equilibrium and acoustic contributions, Eqs. (2.1) and (2.2),

is substituted into Eqs. (2.7) and (2.9). Since the fluid is assumed to be at rest,

all gradients of equilibrium quantities vanish identically. Within the linear approxi-

mation, the material time derivative is approximated by the simple time derivative

[134, p. 239], and terms of second and higher order of the acoustic contributions are

neglected. The linearized mass and momentum balances read

∂ρa

∂t
+ ρeq(∇ · v) = 0 (2.11)

ρeq
∂v

∂t
+∇ · (paI) = 0. (2.12)

In the linearized mass balance, the thermodynamic relation (2.10) is applied to

replace the density derivative with respect to time by a pressure derivative
(

∂ρeq

∂peq

)

s

∂pa

∂t
+ ρeq(∇ · v) = 0, (2.13)

and the momentum balance is multiplied by the nabla operator, which yields

ρeq
∂

∂t
(∇ · v) +∇2pa = 0. (2.14)

Eq. (2.13) is then solved for ∇ · v, and the result is substituted into Eq. (2.14).

In order to simplify the notation, ρeq and peq are replaced by p and ρ without

ambiguity so that from now on p and ρ denote the equilibrium pressure and density.

One obtains[
∇2 −

(
∂ρ

∂p

)

s

∂2

∂t2

]
pa = 0. (2.15)
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This equation is a partial differential equation of the hyperbolic type, whose solutions

represent propagating pressure waves in the fluid [198]. The coefficient of the second

term is the square of the speed at which these pressure waves propagate in the fluid.

This speed is called the thermodynamic speed of sound and is denoted by the symbol

w0. It is related to the equation of state of the fluid by

w2
0 =

(
∂p

∂ρ

)

s

. (2.16)

The thermodynamic speed of sound is a thermodynamic state variable because it

solely depends on the thermodynamic state of the fluid, but not on the amplitude

and frequency of the pressure waves.

An expression for the acoustic pressure in terms of the velocity potential can be

derived by inserting the definition of the velocity potential, Eq. (2.4), into Eq. (2.12).

One finds

pa(r, t) = ρ
∂Ψ(r, t)

∂t
. (2.17)

This relation will be used in Sec. 4.2, where diffraction in the acoustic field in front

of a sound transducer will be examined.

2.2.2 Newtonian Fluids with Viscous Dissipation and Heat

Conduction

In real Newtonian fluids, viscous friction and heat conduction cause the dissipation

of energy. A complete description of acoustic wave motion must take these effects

into account because they result in damping of sound waves. For example, the

amplitude of a plane wave decreases as the wave propagates through a fluid.

The mass balance, Eq. (2.7), remains unchanged, but in the momentum balance,

Eq. (2.9), the scalar pressure must be replaced by the pressure tensor, which is

denoted by the symbol P . The momentum balance then reads

ρ
Dv

Dt
+∇ · P = 0. (2.18)

The pressure tensor is written as a sum of two contributions

P = pI + Π. (2.19)

The first contribution is the spherical equilibrium pressure tensor. It contains the

thermodynamic equilibrium pressure p in the diagonal elements, and its off-diagonal
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elements are zero. The second contribution represents the symmetric viscous pres-

sure tensor Π, whose elements are in general non-zero. The momentum balance is

completed by a constitutive equation, which relates the viscous pressure tensor to

the velocity field. For Newtonian fluids, the viscous pressure tensor is related to the

elements of the velocity gradient tensor ∇⊗ v by the constitutive equation

Π = −
(

ηb +
4

3
η

)
(∇ · v)I + 2η

[
(∇ · v)I − 1

2

{∇⊗ v + (∇⊗ v)t
}]

, (2.20)

where the symbol ‘⊗’ denotes a dyadic product of two vectors, which, in index

notation, means (a⊗ b)ij = ai bj. The first term describes viscous effects associated

with changes of the volume of an infinitesimal volume element of the fluid at constant

shape, and the second term describes viscous effects associated with changes of shape

of an infinitesimal volume element of the fluid at constant volume. The coefficients η

and ηb are the viscosity and bulk viscosity. Both transport coefficients are properties

of the fluid and generally depend on the thermodynamic state of the fluid.

With the tensor identity

∇ · [2(∇ · v)I − {∇⊗ v + (∇⊗ v)t
}]

= ∇× (∇× v), (2.21)

the relation

∇ ·Π = −
(

ηb +
4

3
η

)
∇ · (∇ · v)I + η (∇× (∇× v)) (2.22)

for the viscous pressure tensor can be established. Combining Eq. (2.22) with

Eq. (2.19) and substituting the result into the momentum balance, Eq. (2.18), yields

the Navier-Stokes equation

ρ
Dv

Dt
= −∇p +

(
ηb +

4

3
η

)
∇(∇ · v)− η (∇× (∇× v)). (2.23)

Along the same line of arguments as in the preceding section, the Navier-Stokes

equation is linearized, and one obtains

∂v

∂t
= −1

ρ
∇

[
pa −

(
ηb +

4

3
η

)
(∇ · v)

]
− η

ρ
(∇× (∇× v)). (2.24)

In the next step, the fluid motion is resolved into transverse and longitudinal com-

ponents. This is achieved by writing the fluid velocity as a sum of a longitudinal

component vl and a transverse component vt,

v = vl + vt, (2.25)
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with ∇×vl = 0 and ∇·vt = 0. This separation of the fluid velocity is advantageous

for two reasons. First, since the gradient of a scalar quantity is rotation free, the

gradient of the acoustic pressure contributes only to the longitudinal fluid motion.

Second, the longitudinal velocity component, which is a vectorial quantity, can be

represented in terms of the scalar velocity potential.

With this separation of the fluid velocity, the Navier-Stokes equation is resolved

into two uncoupled equations:

∂vl

∂t
= −1

ρ
∇pa + Dv∇(∇ · vl) (2.26)

∂vt

∂t
= −Ds∇× (∇× vt) (2.27)

The symbol Ds = η/ρ is the kinematic viscosity or viscous diffusivity, and, similarly,

Dv = 4Ds/3 + ηb/ρ is introduced as an abbreviation. The transverse momentum

balance may be rewritten by using the identity ∇× (∇×vt) = −∇2vt, which yields

∂vt

∂t
= Ds∇2vt. (2.28)

Eq. (2.28) is a partial differential of the parabolic type [198], which describes rapidly

attenuated shear waves. In the following, the longitudinal momentum balance,

Eq. (2.26), is further elaborated on in the first place, while the discussion of the

transverse momentum balance is postponed to the following section.

First, the longitudinal fluid velocity is eliminated from the longitudinal momen-

tum balance, Eq. (2.26). With the separation of the fluid velocity into longitudinal

and transverse components, the mass balance, Eq. (2.7), becomes

∂ρa

∂t
+ ρ(∇ · vl) = 0. (2.29)

Since Eq. (2.29) contains the divergence of the longitudinal fluid velocity ∇ · vl, the

longitudinal momentum balance, Eq. (2.26), is multiplied by the nabla operator,

which yields

∂

∂t
(∇ · vl) = −1

ρ
∇2pa + Dv∇ · (∇ (∇ · vl)). (2.30)

The divergence of the longitudinal velocity is then replaced by using Eq. (2.29):

∂2ρa

∂t2
= ∇2pa + Dv∇2

(
∂ρa

∂t

)
. (2.31)

In the last step, the acoustic density ρa is eliminated in favor of the acoustic pressure

and temperature. For this purpose, the acoustic density is related to the acoustic
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pressure and acoustic temperature by the derivatives of the thermal equation of

state p = p(ρ, T )

ρa ≈
(

∂ρ

∂p

)

T

pa +

(
∂ρ

∂T

)

p

Ta. (2.32)

With the thermodynamic relations

(
∂ρ

∂p

)

T

=
cp

cv

(
∂ρ

∂p

)

s

=
κ

w2
0

(2.33)

and

(
∂ρ

∂T

)

p

= −
(

∂p

∂T

)

ρ

[(
∂p

∂ρ

)

T

]−1

= −βκ

w2
0

, (2.34)

where κ = cp/cv is the ratio of the isobaric and isochoric heat capacities and β =

(∂p/∂T )ρ is the thermal pressure coefficient, Eq. (2.32) becomes

ρa =
κ

w2
0

(pa − βTa). (2.35)

This result is inserted into Eq. (2.31), and one finally obtains

∇2pa =
κ

w2
0

[
∂2

∂t2
−Dv

∂

∂t
∇2

]
(pa − βTa). (2.36)

This equation corresponds to the simple wave equation for ideal fluids derived in

the last section. It is a hyperbolic partial differential equation, which describes

propagating pressure waves, and is termed modified wave equation. Compared with

the wave equation for ideal fluids, it additionally contains a damping term with a

mixed derivative, and the pressure wave is accompanied by a temperature wave. In

order to form a complete set of equations for the two unknown functions pa(r, t)

and Ta(r, t), an additional equation is required.

The periodic pressure changes in a propagating sound wave in a real fluid are

accompanied by temperature changes because the fluid is locally compressed and

expanded. Consequently, heat flows from warmer to colder regions in the fluid, and

the propagation of the sound wave is no longer isentropic.

In order to account for heat conduction, the energy balance

D(uρ)

Dt
= −uρ(∇ · v)−∇ · q −∇ · (P · v) (2.37)
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is considered. In this equation, u denotes the internal energy, and q is the heat flux

vector per unit area. With Fourier’s constitutive relation, the heat flux is related to

the temperature gradient by

q = −λc∇T, (2.38)

where the coefficient λc is the thermal conductivity2). As the viscosity and bulk

viscosity, the thermal conductivity is a property of the fluid and depends on the

thermodynamic state of the fluid. Inserting the heat flux, the separation of the

fluid velocity into longitudinal and transverse components, and the separation of

the pressure tensor into the equilibrium contribution and viscous pressure tensor

into the energy balance and applying the product rule to evaluate the derivatives of

the products, yields

ρ
Du

Dt
+ u

Dρ

Dt
= −uρ(∇ · vl) + λc∇2T −∇ · (pvl)−∇ · (Π · vl). (2.39)

The energy balance can be simplified, by replacing (∇ · vl) in the first term on the

right hand side by the mass balance, Eq. (2.7), which cancels the second term on

the left hand side. The energy balance is then linearized in the same way as the

momentum balance above. The material derivative of the energy is approximated

by the simple time derivative, and the last term on the right hand side is neglected

because it is of second order. The linearized energy balance reads

∂ua

∂t
= −p

ρ
(∇ · vl) +

λc

ρ
∇2Ta. (2.40)

As before, the index ‘eq’ for equilibrium properties has been omitted. Small changes

of the internal energy are related to small entropy changes by using the Gibbs

relation

du = Tds− p dv = Tds +
p

ρ2
dρ (2.41)

as

ua ≈ Tsa +
p

ρ2
ρa. (2.42)

When Eq. (2.42) is substituted into Eq. (2.40), one finds

T
∂sa

∂t
+

p

ρ2

∂ρa

∂t
= −p

ρ
(∇ · vl) +

λc

ρ
∇2Ta. (2.43)

2) The index ‘c’ is used to distinguish the thermal conductivity from the wave length λ.
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If the mass balance is used again to eliminate (∇ · vl), the second term on the left

hand side and first term on the right hand side cancel, and the intermediate result

∂sa

∂t
=

λc

ρT
∇2Ta (2.44)

is obtained.

Since the pressure, the density and the temperature were selected to describe the

acoustic wave motion, the entropy must be eliminated in favor of these variables.

The acoustic entropy can be related to the acoustic pressure and temperature by

sa ≈
(

∂s

∂T

)

p

Ta +

(
∂s

∂p

)

T

pa. (2.45)

The partial derivatives in Eq. (2.45) are replaced by
(

∂s

∂T

)

p

=
cp

T
(2.46)

and
(

∂s

∂p

)

T

=
1

ρ2

(
∂ρ

∂T

)

p

. (2.47)

When Eq. (2.45) together with Eqs. (2.46) and (2.47) is inserted into Eq. (2.44), one

obtains

∂Ta

∂t
+

T

ρ2cp

(
∂ρ

∂T

)

p

∂pa

∂t
=

λc

ρcp

∇2Ta. (2.48)

By standard thermodynamic transformations (see Appendix A), it can be shown

that the coefficient of the second term on the left hand side is

T

ρ2cp

(
∂ρ

∂T

)

p

= −κ− 1

κβ
. (2.49)

The coefficient on the right hand side of Eq. (2.48) is the thermal diffusivity Dh =

λc/ρcp. With these abbreviations, the result

∂

∂t

(
Ta − κ− 1

κβ
pa

)
= Dh∇2Ta. (2.50)

is obtained. This is a second order partial differential equation of the parabolic type

for the two unknown functions pa and Ta, which must be solved simultaneously with

the modified wave equation, Eq. (2.36). Some solutions, which are important for

designing pulse-echo experiments, will be discussed in the following sections.
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When Eqs. (2.36) and (2.50) have been solved, the longitudinal fluid velocity can

be obtained as follows. The term ∇ · vl on the right hand side of the longitudinal

momentum balance,

∂vl

∂t
= −1

ρ
∇pa + Dv∇(∇ · vl),

is again replaced by the mass balance equation, and one obtains

∂vl

∂t
= −1

ρ
∇pa − Dv

ρ
∇∂ρa

∂t
. (2.51)

If, furthermore, the acoustic density is replaced by Eq. (2.35), the result

∂vl

∂t
= −∇

[
pa

ρ
+

Dvκ

ρw2
0

∂

∂t
(pa − βTa)

]
(2.52)

is found, which yields the time derivative of the longitudinal velocity in terms of the

functions pa and Ta.

It is instructive to consider two limiting cases of acoustic wave motion. If the

viscosity and bulk viscosity were zero, the damping term in the modified wave equa-

tion, Eq. (2.36), would vanish. If, moreover, the thermal conductivity were zero, the

fluid motion would be isentropic. In this case, the simple wave equation for ideal

fluids, Eq. (2.15), would be recovered. In Eq. (2.52), the second term on the right

hand side would vanish, and it would become a linearized Euler equation for the

longitudinal velocity component.

If, on the other hand, the thermal conductivity were infinite, the acoustic tem-

perature would be zero. In this case, pressure waves would propagate isothermally,

and the propagation speed would be given by w2 = (∂p/∂ρ)T .

For intermediate cases, the acoustic pressure and temperature are coupled. The

fluid tends to propagate pressure waves, while heat tends to diffuse. This coupling

originates from the terms containing Dv and Dh.

In summary, acoustic wave motion is described by five variables, the acoustic

pressure, the acoustic temperature, and the three components of the longitudinal

velocity component. Eqs. (2.36), (2.50), and (2.52) form a system of five partial

differential equations for the five unknown functions, which, for a specific problem,

must be supplemented by appropriate boundary conditions.

2.3 Plane Harmonic Waves in Free Space

In order to examine the properties of solutions of the acoustic field equations, the

propagation of mono-frequency harmonic plane waves in infinitely extended free
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space is treated in this section as an illustration. This case is also important for the

design of pulse-echo experiments because, in a first approximation, the propagating

sound signals in speed of sound sensors can be viewed as plane waves.

In plane wave motion, the acoustic variables have a harmonic dependence on time,

that is they contain a factor exp(iωt), where ω = 2π/f is the angular frequency of

the wave. The derivatives of the acoustic pressure satisfy the relations

∂pa

∂t
= iωpa (2.53)

and

∂2pa

∂t2
= −ω2pa. (2.54)

In a mono-frequency plane harmonic wave, all acoustic variables are proportional to

the acoustic pressure. With this requirement and the properties of the acoustic pres-

sure derivatives, expressed by Eqs. (2.53) and (2.54), the modified wave equation,

Eq. (2.36), can be written as

(∇2 + k2)pa = 0. (2.55)

This equation is a Helmholtz equation for the acoustic pressure. The quantity k is

called the propagation constant, and −k2 represents the eigenvalues of the Laplace

operator ∇2. The solution of this partial differential equation requires the solution

of an eigenvalue problem.

In the first step of the solution, the eigenvalues are determined, while the corre-

sponding eigenfunctions are constructed thereafter. The method to determine the

eigenvalues to be described in the following is due to Trusler [177, Sec. 2.3.4]. In

order to simplify the notation, the dimensionless propagation constant

Γ =
kw0

ω
(2.56)

is introduced. This definition is chosen in order that Γ takes the value unity for an

ideal fluid. In that case, w0 = ω/k, where k = 2π/λ represents the wave number

with the wave length λ.

When −Γ2 = (w2
0/ω

2)∇2 and ∂/∂t = iω are inserted into the modified wave

equation, Eq. (2.36), and the modified energy balance, Eq. (2.50), the algebraic

equations
(
−Γ2 + κ− Dv

w2
0

iωκΓ2

)
pa + βκ

(
−1 +

Dv

w2
0

iωΓ2

)
Ta = 0 (2.57)
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and
(

1− iω
Dh

w2
0

Γ2

)
Ta − κ− 1

κβ
pa = 0 (2.58)

result. It is convenient to introduce the viscous relaxation time

τv =
Dv

w2
0

(2.59)

and the thermal relaxation time

τh =
Dh

w2
0

, (2.60)

with which Eqs. (2.57) and (2.58) become

(−Γ2 + κ− iωτvκΓ2
)
pa + βκ

(−1 + iωτvΓ
2
)
Ta = 0 (2.61)

and

(
1− iωτhΓ

2
)
Ta − κ− 1

κβ
pa = 0. (2.62)

Combining Eqs. (2.61) and (2.62), yields a quadratic equation for Γ2:

Γ4(ω2τvτhκ− iωτh) + Γ2(1 + iωτhκ + iωτv)− 1 = 0, (2.63)

which has the two exact solutions

Γ2 = − i

2ωτh

(
1 + iωτv + iωτhκ±D

1 + iωτvκ

)
, (2.64)

where D is an abbreviation defined by

D2 = (1− iωτhγ + iωτv)
2 + 4iωτh(γ − 1). (2.65)

As the effects of viscous dissipation and heat conduction are usually very small, an

approximation to the exact solution for D can be made. For this purpose, D2 is

expanded in a binomial series [1, p. 14]

(1 + z)m = 1 +
(m

1

)
z +

(m

2

)
z2 + . . . (2.66)

with m = 1/2 and z = D2 − 1. If only terms of first order in ωτv and of second

order in ωτh are retained, the approximation

D ≈ 1 + 2(κ− 1)ωτhω(τv − τh) + i[ω(τv − τh) + (κ− 1)ωτh] (2.67)
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is obtained. Within this approximation, the two solutions for Γ2 with the minus and

plus sign are given by

Γ2
p = 1− i(ωτv + (κ− 1)ωτh) (2.68)

Γ2
h = − i

ωτh

. (2.69)

The solutions of the modified wave equation corresponding to Γp and Γh are called

propagational sound mode and thermal sound mode, respectively.

From Eq. (2.68), the propagation constant is obtained as

kp =
ω

w0

− i

2

ω

w0

(τv + (κ− 1)τh), (2.70)

where only first-order terms have been retained. Eq. (2.70) shows that including

viscous dissipation and heat conduction in the model leaves the real part of the

propagation constant unchanged. The speed of sound in a real fluid with viscous

dissipation and heat conduction is frequency independent and identical with the

thermodynamic speed of sound. The losses due to viscous dissipation and heat con-

duction result in a small imaginary part of the propagation constant. Substituting

the result for the propagational mode constant into Eq. (2.58) and retaining only

first-order terms in ωτh, yields the acoustic temperature Tp of the propagational

mode

Tp =
κ− 1

κβ
(1 + iωτh)pp, (2.71)

where pp is the acoustic pressure of the propagational mode. The longitudinal

velocity component of the propagational sound mode vl,p is similarly found by sub-

stituting the result for acoustic temperature into Eq. (2.52). If furthermore the time

derivatives are replaced by ∂/∂t = iω, one obtains

vl,p =
i

ωρ
(1 + iωτv)∇pp. (2.72)

Eqs. (2.71) and (2.72) show that the propagational mode contributes to the acoustic

temperature and longitudinal velocity component. As ωτh and ωτv are usually small

compared with unity, the temperature and longitudinal velocity are slightly out of

phase with the pressure. In the propagational mode, the fluid motion is in the

direction of the propagation of the wave. Therefore, sound waves are longitudinal

waves.
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In the thermal sound mode, the acoustic pressure pa is small compared with the

term βTa. Thus, Eq. (2.58) is the primary one, which describes the thermal mode.

The propagation constant of the thermal mode

kh =
ω

w0

Γh =
ω

w0

1√
2ωτh

(1− i) =

√
ω

2Dh

(1− i) (2.73)

has equal real and imaginary parts. Substituting the result for Γ2
h, Eq. (2.69), into

Eq. (2.58), yields the contribution of the thermal mode to the acoustic pressure

ph = −iω(τh − τv)βκTh, (2.74)

and the longitudinal velocity contribution of the thermal mode is similarly found as

for the propagational mode as

vl,h =
βκτh

ρ
∇Th (2.75)

from Eq. (2.52). Again, only first-order terms have been retained.

A third solution arises from the transverse momentum balance, Eq. (2.27). Sub-

stituting −Γ2 = (w2
0/ω

2)∇2 and ∂/∂t = iω into Eq. (2.27), yields

Γ2
s = − i

ωτs

, (2.76)

where the shear relaxation time τs = Ds/w
2
0 has been introduced. The solution

ks =
ω

w0

Γs =
1√
2ωτs

(1− i) =

√
ω

2Ds

(1− i) (2.77)

is the shear propagation constant and describes the shear mode. As the propagation

constant of the thermal mode, ks has equal real and imaginary parts. The shear mode

does not contribute to the acoustic pressure, acoustic temperature, and longitudinal

velocity component. The thermal and shear modes play an important role in vicinity

of solid walls, but can usually safely be neglected in the bulk of the fluid.

With the eigenvalues for the propagational, thermal and shear mode, solutions of

the modified wave equation for plane harmonic mono-frequency plane waves propa-

gating in free space can be constructed. The direction of propagation is chosen along

the positive z axis. In this case, the solutions for all acoustic variables are functions

of the variable w0t − z. Since all acoustic variables contain the factor exp(iωt),

the solutions are obtained by the method of separation of variables by choosing a
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product approach of the form f(z) exp(iωt) for the main variable in each mode. The

function f(z) is an eigenfunction of the Laplace operator with the eigenvalue −k2.

Two solutions are given by f(z) = A exp(±ikz), where A is a constant, which must

be determined by appropriate boundary conditions. For the purposes of this section,

it is not necessary to specify the value of A.

For the propagational mode, the acoustic pressure of the wave propagating in the

positive z direction is given by

pp = A exp[i(ωt− kpz)] = A exp(−αz) exp[i(ωt− (ω/w0)z)], (2.78)

where α = −Im(kp) is the classical sound absorption coefficient. With the solution

for kp, Eq. (2.70), the absorption coefficient becomes

α =
ω2

2w0

[τv + (κ− 1)τh]. (2.79)

If, furthermore, the expressions for the relaxation times, Eqs. (2.59) and (2.60), are

inserted, an expression for the absorption coefficient in terms of transport coefficients

and thermodynamic state variables,

α =
ω2

2w3
0

[Dv + (κ− 1)Dh] =
ω2

2w3
0

[
4

3

η

ρ
+

ηb

ρ
+ (κ− 1)

λc

ρcp

]
, (2.80)

is obtained. According to Eq. (2.78), the wave is attenuated exponentially as it

propagates in the fluid, and the absorption coefficient describes the energy losses of

the wave due to viscous dissipation and heat conduction. Eq. (2.80) shows that the

absorption coefficient has a quadratic dependence on frequency.

The real part of kp is the wave number, for which Re(kp) = 2π/λ holds. Be-

tween the wave number, the angular frequency, and the speed, at which the wave

propagates, the speed of sound, the relation

Re(kp) =
ω

w0

(2.81)

holds. In the present approximation, the speed of sound in the real fluid equals that

in an ideal fluid without viscous dissipation and heat conduction. These two effects

only influence the attenuation of the wave, but not the speed, at which the wave

propagates. Therefore, in the remainder of this work, the speed of sound will gener-

ally be denoted by w. If it is necessary to distinguish between the thermodynamic

speed of sound and the actual speed of sound, the thermodynamic speed of sound

will be denoted by w0 and the actual speed of sound by w.
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The temperature and longitudinal velocity contribution for the propagational

mode are obtained as

Tp = A
κ− 1

κβ
(1 + iωτh) exp(−αz) exp[i(ωt− (ω/w)z)] (2.82)

vl,p =
A

ρw

[
1 +

i

2
(ωτv − (κ− 1)ωτh)

]
exp(−αz) exp[i(ωt− (ω/w)z)] (2.83)

by substituting the result for the propagational pressure into Eqs. (2.71) and (2.72).

The solution for a plane thermal wave propagating in the positive z direction is

found in the same way. In this case, the eigenvalue of the Laplace operator is −k2
h,

and the solution for the acoustic temperature is given by

Th = B exp(iωt− ikhz) = B exp(iωt− (1 + i)z/δh), (2.84)

where the thermal penetration length

δh =
1− i

kh

=

√
2Dh

ω
(2.85)

has been introduced. The exponential dependence on the term −z/δh shows that

thermal waves are attenuated rapidly, which is typical of diffusive behavior. For

example, in liquid water at (300 K, 0.1 MPa) at 10 MHz, δh = 0.068 µm. The

acoustic pressure and longitudinal velocity component in the thermal mode are

given by

ph = −Biω(τh − τv)βκ exp(iωt− (1 + i)z/δh) (2.86)

vl,h = −B
βκτh

ρ

1 + i

δh

exp(iωt− (1 + i)z/δh). (2.87)

For the shear mode, the solution for vt must be a vector eigenfunction of the

Laplace operator with the scalar eigenvalue −k2
s , and it must satisfy ∇ · vt = 0.

A solution for a wave propagating in the positive z direction, which satisfies these

conditions, is

vt = (C1ex+C2ey) exp(iωt−ksz) = (C1ex+C2ey) exp(iωt−(1+i)z/δs), (2.88)

where, in analogy to the thermal penetration length, δs denotes the shear penetration

length and ex and ey are orthogonal unit base vectors pointing in positive x and y

directions, respectively. The shear penetration length is given by

δs =
1− i

ks

=

√
2Ds

ω
. (2.89)
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As thermal waves, shear waves are attenuated rapidly. For example, the shear

penetration length amounts to δs = 0.17 µm in liquid water at the same state point

(300 K, 0.1 MPa) at 10 MHz. In shear waves, the fluid motion is transverse to the

direction of the wave propagation.

2.4 Reflection of Sound Waves at Solid Surfaces

In the preceding section, the fundamental equations that describe the propagation of

plane mono-frequency harmonic sound waves in an infinitely extended fluid medium

were derived. Another case of acoustic wave motion, which is important for the

design and understanding of pulse-echo experiments, is the reflection of waves at

solid surfaces. A model for this situation will be developed in three steps. First, the

reflection of waves in ideal fluids is considered in the following section. In Sec. 2.4.2,

the boundary conditions, which must be satisfied by sound waves in real fluids

at solid surfaces, is discussed, and an approximate solution of the acoustic field

equations in the immediate vicinity of a solid surface is derived. Based on these

results, the reflection in real fluids is described. The expressions for the reflection

coefficients, Eqs. (2.97) and (2.116), form the principle results of this section.

2.4.1 Reflection in Ideal Fluids

Suppose that a plane mono-frequency harmonic sound wave of small-amplitude is

incident on a plane surface, which can be viewed as an idealized model of a wall.

The geometric situation is shown in Fig. 2.1. The surface is taken to be the xy plane,

with the fluid occupying the half space with z < 0. The incident wave originates in

the fluid, is perpendicular to the y axis, and inclined at an angle ϕi to the z axis.

In general, some part of the incident wave will be reflected, and some part will

be transmitted into the solid medium. The description of the transmitted wave is

complicated by the possible occurrence of elastic shear waves in the solid medium.

Since the main interest lies in the reflected wave in the fluid medium, the trans-

mitted wave is not considered in detail, but a simplified model of the reflecting

solid surface is adopted. It is assumed that the various parts of the surface are not

coupled in the sense that the motion of a small element of the surface is caused

only by the acoustic pressure acting upon that element and is independent of the

motion of all other elements of the surface. Such a surface is said to be one of local

reaction. The properties of the surface are described by assigning to it an acous-
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Figure 2.1. Geometry for the reflection from a plane solid surface.

tic impedance Zw
a . This impedance is defined as the ratio of the acoustic pressure

and normal fluid velocity as Zw
a = pa/vz, which provides a boundary condition at

the surface. In general, the impedance may depend on frequency, on the angle of

incidence, and on the spatial distribution of the wave incident on the surface. In

the present model, the impedance of the surface is assumed to be constant at all

points of the surface. The more complicated cases of reflection at a surface with fre-

quency dependent impedance and at a surface of extended reaction are for example

described by Morse and Ingard [134, pp. 263] or Kinsler et al. [92]. In this simplified

model, the transmitted wave in the solid medium is a longitudinal wave propagat-

ing perpendicular from the surface into the solid as indicated in Fig. 2.1. Thus, the

acoustic surface impedance may be approximated by ρwww, where ρw is the density

of the wall material and ww is the speed of longitudinal sound waves in the wall

material. This assumption places no restrictions on the description of reflections of

burst signals at plane solid surfaces in a pulse-echo speed of sound sensor because

the signals are usually guided through the sensor so that they are normally incident

on solid reflectors. Thus, the transmitted wave propagates perpendicularly to the

surface in the solid medium. Since it is more convenient to work with the dimen-

sionless specific acoustic admittance yw
a = ρw/Zw

a instead of the impedance, this

quantity will be used to model the surface properties. The product ρw represents

the acoustic impedance of the fluid.

In this section, the fluid medium is treated as an ideal fluid at the level of ap-
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proximation of Sec. 2.2.1 by neglecting viscous dissipation and heat conduction. The

acoustic pressure of the incident wave has the general form

pi
a = Ai exp(ik[x sin ϕi − z cos ϕi]) exp(iωt), (2.90)

and the pressure of the reflected wave is given by

pr
a = Ar exp(ik[x sin ϕr + z cos ϕr]) exp(iωt), (2.91)

where k sin ϕi and k cos ϕi are the components of the wave vector of the incident and

reflected waves parallel and perpendicular to the surface. As the acoustic impedance

of the surface is constant at all points of the surface, the ratio of the acoustic pressure

and normal fluid velocity pa/vz is the same everywhere on the surface independent

of the shape of the wave. The total acoustic pressure of the combined incident and

reflected waves at the surface (z = 0) is given by

pa = {Ai exp(ikx sin ϕi) + Ar exp(ikx sin ϕr)} exp(iωt), (2.92)

and, according to Eq. (2.12), the component of the fluid velocity normal to the

surface at the surface is given by

vl,z =
1

wρ
{Ai cos ϕi exp(ikx sin ϕi)

−Ar cos ϕr exp(ikx sin ϕr)} exp(iωt). (2.93)

In order that the same value of the ratio pa/vz is realized everywhere on the sur-

face, the acoustic pressures of the incident and reflected waves must have the same

dependence on x at every point on the surface. Therefore, the angle of reflection

ϕr must equal the angle of incidence ϕi, and pr must equal pi times a constant χRe.

Thus, the combined pressure wave is described by

pa = Ai{exp(ik[x sin ϕ− z cos ϕ])

+χRe exp(ik[x sin ϕ + z cos ϕ])} exp(iωt), (2.94)

where ϕ = ϕi = ϕr has been introduced. The constant χRe is called the reflection

coefficient. An expression for the reflection coefficient in terms of the angle ϕ and

the dimensionless acoustic impedance of the wall yw
a is found by substituting the

acoustic pressure at the surface

pa = Ai(1 + χRe) exp(ikx sin ϕ) exp(iωt) (2.95)
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and fluid velocity normal to the surface at the surface

vz =
Ai

ρw
cos ϕ (1− χRe) exp(ikx sin ϕ) exp(iωt) (2.96)

into the boundary condition pa/vz = Zw
a = ρw/yw

a , which must be satisfied at z = 0.

After some algebra, the reflection coefficient is obtained as

χRe =
cos ϕ− yw

a

cos ϕ + yw
a

. (2.97)

2.4.2 Reflection in Real Fluids

In this section, the model for the reflection of plane harmonic sound waves at a

plane solid surface derived in the preceding section is extended by treating the fluid

medium as a real fluid with viscous dissipation and heat conduction. This requires to

include all three sound modes, and hence the acoustic temperature and transverse

velocity component in the model. Moreover, additional boundary conditions for

these variables must be specified. Since the thermal and shear mode are attenuated

rapidly, they only contribute to the acoustic wave motion in a thin boundary layer

in the immediate vicinity of the surface, whereas, in the bulk fluid, the wave motion

is accurately described by the propagational mode only.

The geometric situation is the same as in the preceding section (see Fig. 2.1).

In the present model, the thermal and viscous terms in the propagational wave are

neglected. Thus, the wave number of the propagational wave is kp = ω/w, and the

acoustic pressure of the propagational sound mode is given by Eq. (2.94). The other

acoustic variables of the propagational mode are then obtained as

Tp = Ai
κ− 1

κβ
{exp(ikp [x sin ϕ− z cos ϕ])

+χRe exp(ikp [x sin ϕ + z cos ϕ])} exp(iωt) (2.98)

vp,z = Ai
cos ϕ

ρw
{exp(ikp [x sin ϕ− z cos ϕ])

−χRe exp(ikp [x sin ϕ + z cos ϕ])} exp(iωt) (2.99)

vp,x = −Ai
sin ϕ

ρw
{exp(ikp [x sin ϕ− z cos ϕ])

+χRe exp(ikp [x sin ϕ + z cos ϕ])} exp(iωt) (2.100)

by using Eqs. (2.71) and (2.72).
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Four boundary conditions must be satisfied at the surface:

(pa/vz)|z=0 = ρw/yw
a (2.101)

Ta(x, z = 0) = Tw(x, z = 0) (2.102)

qa(x, z = 0) = qw(x, z = 0) (2.103)

vx(x, z = 0) = 0. (2.104)

The first boundary condition is essentially the same as for the reflection in ideal

fluids. It states that the ratio of the acoustic pressure and fluid velocity normal

to the surface must equal the acoustic impedance of the surface. Eqs. (2.102) and

(2.103) ensure that the acoustic temperature and heat flow are continuous at the

surface, and Eq. (2.104) implies that the tangential component of the fluid velocity

vanishes at the surface. The propagational mode cannot, by itself, satisfy all four

boundary conditions. In order to satisfy Eqs. (2.102) and (2.103), thermal waves

must be generated in both the fluid and the wall. Similarly, the fourth condition

demands that shear waves are generated in the fluid.

The acoustic temperature in the fluid is the sum of the contributions of the

propagational and heat mode. In order to satisfy the boundary condition (2.102),

the contribution of the thermal mode to the acoustic temperature must have the

same dependence on x as does the propagational temperature contribution. Thus,

the thermal wave must have the form

Th = B exp(ikp x sin ϕ + i[k2
h − (kp sin ϕ)2]1/2z) exp(iωt), (2.105)

where the propagation constant of the thermal wave is given by Eq. (2.73). Since

k2
p is of order (2π/λ)2, whereas k2

h is of order 1/δ2
h, the tangential component of the

propagation constant kp sin ϕ is negligible in comparison with the thermal propaga-

tion constant. Hence, the thermal wave in the fluid can be approximated by

Th = B exp(ikp x sin ϕ + (1 + i)z/δh) exp(iωt). (2.106)

This solution is valid, if λ À δh, which is usually satisfied in most gases and liquids

at ordinary frequencies. For example, in liquid water at (300 K, 0.1 MPa) for a wave

with a frequency of 10 MHz δh = 0.068 µm and λ = 0.15 mm so that the wave length

is by about three orders of magnitude larger than the thermal penetration length.

A thermal wave also penetrates the wall material. This wave is approximated by

the function

Tw = C exp(ikp x sin ϕ− (1 + i)z/δw) exp(iωt), (2.107)
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which has the same form as the thermal wave in the fluid, but the dependence on z

is chosen so that the wave is attenuated with increasing z. The quantity δw is the

thermal penetration length of the wall, which for example for the reflection of a wave

with a frequency of 10 MHz at a stainless steel wall amounts to about 0.36 µm. As in

the fluid medium, the tangential component of the propagation constant kp sin ϕ has

been neglected in comparison with 1/δw. The boundary condition (2.102) demands

that the temperatures in the fluid and in the wall at z = 0 are equal, which yields

a relation between the amplitudes of the two thermal waves:

B + Ai
κ− 1

κβ
(1 + χRe) = C. (2.108)

A second relation between B and C is provided by boundary condition (2.103),

the continuity of heat flow through the surface. The analysis of this condition is

much simplified by introducing two approximations. The heat flow arising from

the propagational mode and, since λ À δh and λ À δw as above, the tangential

component of the heat flow associated with the thermal mode are small compared

with the normal heat flows of the two thermal modes in the fluid and in the wall.

Thus, these contributions may be neglected. Applying Fourier’s law, q = −λc∇T ,

and equating the normal heat flows associated with the two thermal modes, yields

C = −δw

δh

λf
c

λw
c

, (2.109)

where λw
c is the thermal conductivity of the wall material. Substituting this result

into Eq. (2.108) and solving for B, yields the amplitude of the thermal wave in the

fluid

B = −Ai(1 + χRe)
κ− 1

κβ

(
1 +

δw

δh

λf
c

λw
c

)−1

. (2.110)

For a typical fluid and a metal wall, the ratio δw/δh is of order unity and the

thermal conductivity of the wall material is much larger than that of the fluid.

Consequently, according to Eq. (2.109), C ¿ B. In this case, the two boundary

conditions, Eqs. (2.102) and (2.103) reduce to a single condition, which demands that

the total acoustic temperatures vanishes at the surface. Within this approximation,

the temperature of the thermal mode is given by

Th = −Ai(1 + χRe)
κ− 1

κβ
exp(ikp x sin ϕ + (1 + i)z/δh) exp(iωt). (2.111)
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The contribution of the thermal mode to the normal component of the fluid velocity

is found by substituting the result for the temperature of the thermal mode into

Eq. (2.75) as

vh,z = −Ai(1 + i)τh

ρδh

(κ− 1)(1 + χRe) exp(ikp x sin ϕ + (1 + i)z/δh) exp(iωt).

(2.112)

The contributions of the thermal mode to the tangential fluid velocity is negligible

because, as already discussed above, the tangential propagation constant of the

propagational mode is much smaller than that of the thermal mode. Similarly,

the contribution of the thermal mode to the acoustic pressure, which is given by

Eq. (2.74), may be neglected in gases and liquids outside the immediate vicinity of

the critical point because the viscous and thermal relaxation times are usually much

smaller than the periods of the sound waves at ordinary frequencies.

In order to cancel the tangential component of the fluid velocity at the surface, a

shear wave must be introduced inside the boundary layer. According to Eq. (2.104),

the tangential fluid velocity of the shear wave must equal −vl,x at the surface. There-

fore, the x component of the velocity of the shear mode is given by

vs,x = Ai
kp sin ϕ

ρω
(1 + χRe) exp(ikp x sin ϕ + (1 + i)z/δs) exp(iωt). (2.113)

Furthermore, within the present geometry, the component of the fluid velocity of the

shear mode in the y direction must be zero. Since the fluid velocity of the shear mode

must satisfy ∇ · vs = 0, vs,x and vs,z must satisfy the relation ∂vs,z/∂z = −∂vs,x/∂x.

Substituting the derivative of vs,x with respect of x into this relation and integrating

over z, yields

vs,z = −Ai

δsk
2
p sin2 ϕ

2ρω
(1 + i)(1 + χRe) exp(ikp x sin ϕ + (1 + i)z/δs) exp(iωt).

(2.114)

With Eqs. (2.114), (2.112), and (2.111) the results for the acoustic variables for the

reflection of a plane mono-frequency sound wave at a solid surface are complete.

These results can now be applied to derive the expression for the reflection co-

efficient by using the boundary condition (2.101). Eqs. (2.99), (2.112), and (2.114)

show that all three sound modes contribute to the velocity component normal to
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the surface at the surface, which is given by

vz(z = 0) = Ai

[
cos ϕ

ρw
(1− χRe)− (1 + i)τh

ρδh

(κ− 1)(1 + χRe)−

δsk
2
p sin2 ϕ

2ρω
(1 + i)(1 + χRe)

]
exp(ikp x sin ϕ) exp(iωt). (2.115)

Substituting this result and the pressure of the propagational mode, Eq. (2.94), into

the boundary condition (2.101) and solving the resulting equation for the reflection

coefficient, yields

χRe =
cos ϕ− yw

a − yh
a − ys

a

cos ϕ + yw
a + yh

a + ys
a

, (2.116)

where the dimensionless specific acoustic admittance of the thermal boundary layer

yh
a = (1 + i)(κ− 1)

ω

2w
δh (2.117)

and the dimensionless specific acoustic admittance of the viscous boundary layer

ys
a = (1 + i) sin2 ϕ

ω

2w
δs (2.118)

have been introduced.

The comparison of the reflection coefficient for ideal fluids, Eq. (2.97), with

Eq. (2.116) shows that effects of the thermal and viscous boundary layers on the

reflection coefficient are represented by their acoustic admittances, which enter into

the reflection coefficient in the same way as the wall admittance. From the viewpoint

of electric circuit theory, the admittances of the thermal and viscous boundary layer

are connected in parallel with the wall admittance. As the admittance of the thermal

and viscous boundary layer are complex quantities with equal real and imaginary

parts, the reflection coefficient is also a complex quantity. The reflection of a sound

wave at solid surfaces reduces not only the amplitude of the wave, but also changes

its phase. The admittance of the viscous boundary layer depends on the angle of

incidence, whereas the admittance of the thermal boundary layer is independent of

the angle of incidence.

In pulse-echo experiments, one is mostly interested in the reflection of waves

normally incident on a solid reflector wall. In this special case, there is no viscous

boundary layer, and the expression for the reflection coefficient becomes

χRe =
1− yw

a − yh
a

1 + yw
a + yh

a

. (2.119)
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Table 2.1. Values of the reflection coefficient for the reflection of sound waves with a
frequency of 10 MHz normally incident on a plane solid reflector in liquid water and
gaseous argon at (300 K, 0.1 MPa).

Fluid water argon
ρ / kgm−3 996.6 1.6025
w / m s−1 1501.52 322.671
Reflector copper stainless steel quartz glass stainless steel
ρw / kgm−3 8930 7900 2200 7900
ww / m s−1 5010 5790 5968 5790
χideal

Re 0.93527 0.93665 0.79538 0.99998
|χreal

Re | 0.93524 0.93661 0.79536 0.89829
ϕreal

Re / ◦ −6.70 · 10−5 −6.55 · 10−5 −2.31 · 10−4 −0.331
∆th/t · 106 −1.40 · 10−3 −1.37 · 10−3 −4.82 · 10−3 −1.483

It remains a complex quantity, which may cause phase shifts in the reflected sound

signals.

In order to examine the magnitude of the phase shift, numerical values of reflec-

tion coefficients are given for four different examples in Table 2.1. In these examples,

sound waves in liquid water and gaseous argon at (300 K, 0.1 MPa) are normally

incident on plane solid reflectors. In all cases, the frequency of the sound wave is 10

MHz. The symbols |χreal
Re | and ϕreal

Re denote the modulus and phase of the complex re-

flection coefficient. In order to examine the influence of the thermal boundary layer

on the transit time of a sound signal, which experiences a reflection at a solid wall,

the propagation of a sound signal over a distance of 10 mm between a sender/receiver

and reflector back and forth is considered. This situation corresponds to a typical

pulse-echo experiment to measure the speed of sound. The last line in Table 2.1

reports the relative error ∆th/t of the transit time t introduced by the phase shift

due to the thermal boundary layer for this example. As can be observed from Ta-

ble 2.1, the influence of the thermal boundary layer on the reflection coefficient is

very small. In gaseous argon, the phase shift due to the thermal boundary layer

contributes less than 1.5 ppm to the transit time of the sound signal in the chosen

example. In liquid water, the contribution of the phase shift is even by about three

orders of magnitude smaller. These examples demonstrate that the influence of the

thermal boundary layer can safely be neglected. Hence, Eq. (2.97) provides an ex-

cellent approximation for the reflection coefficient of waves normally incident on a

plane solid wall in real fluids.
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2.5 Dispersion of Sound Waves

The model for the propagation of sound waves, which was developed in the pre-

ceding sections, is based on the assumption that local equilibrium is attained in-

stantaneously in the fluid. Sometimes there are relaxation mechanisms operating in

the fluid, which prevent the attainment of local equilibrium between the acoustic

variables density, pressure, and temperature.

In Sec. 2.2.2, it was shown that the effects of heat conduction and viscous dis-

sipation are described by the imaginary part of the complex propagation constant,

which represents the sound absorption coefficient. From the thermodynamic point

of view, these effects are irreversible transfers of kinetic and potential energy of the

organized motion of the sound wave into disorganized translational motion of the

molecules, which is macroscopically observed as heat. Therefore, these effects are

referred to as translational relaxation. If the relaxation times characterizing these

mechanisms are long compared with the inverse molecular collision frequency, the

local equilibrium hypothesis is valid, and the equations derived in the preceding sec-

tions adequately describe the acoustic wave motion. In this frequency regime, the

speed of sound is frequency independent and the absorption coefficient depends on

the frequency squared. Only in gases at very low pressures, if the sound frequency

is of the order of the molecular collision frequency, the fluid can no longer be viewed

as a continuum, and translational relaxation effects must be accounted for in the

model for acoustic wave motion. For example, in gaseous argon at 300 K and 0.1

MPa, the molecular collision frequency is about 5.5 GHz [77]. In compressed gases

and liquids, molecular collisions occur continuously so that the molecular collision

frequency is even higher. Since pulse-echo experiments are usually carried out at

frequencies below 20 MHz, translational relaxation can safely be neglected for the

purposes of this work.

In monatomic fluids, translational relaxation is the only possible relaxation mech-

anism. In diatomic or polyatomic fluids, additionally irreversible energy transfer

from the collective motion of the sound wave to internal degrees of freedom of the

molecules other than the translational ones can take place. If the density of the fluid

is suddenly changed, the translational motion of the molecules will adjust almost

instantaneously because only few collisions are required to equilibrate translational

energy. Since the pressure is solely determined by the translational motion of the

molecules, it also adjusts rapidly to the density change. After the compression has

been completed, some of the translational energy of the molecules is transferred into
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the rotational and vibrational degrees of freedom more slowly, which reduces the

pressure accordingly. Since this energy transfer is an irreversible process, the fluid

is heated, and the sound wave is attenuated. These effects are called rotational

and vibrational relaxation. Usually, the rotational degrees of freedom equilibrate

within few molecular collisions. Thus, rotational relaxation effects, as translational

relaxation effects, influence the acoustic wave motion only at very high frequencies

of the order of the molecular collision frequencies and can be neglected for acoustic

measurements in the kHz or MHz regime. Vibrational relaxation, however, can al-

ready influence the propagation of sound waves in the kHz regime, particularly for

fluids of diatomic molecules such as oxygen and nitrogen.

Besides slow energy transfer into the internal degrees of freedom of the molecules,

structural rearrangements in the fluid can influence the propagation of sound waves

[100, pp. 200]. Such effects arise for example in associating fluids, which are charac-

terized by strongly ordered molecular structures due to hydrogen bonding networks.

When a sound wave propagates through the fluid, the ordered structure is disturbed

and relaxes towards equilibrium. If this relaxation is so slow that local equilibrium

is not attained instantaneously, it is also an irreversible process, which contributes

to acoustic wave motion. In this work, water is the only associating fluid, in which

the speed of sound was measured. Since it is well-known from previous studies

[69, 62, 99] that the speed of sound in liquid water is frequency independent up to

at least 15 MHz, structural relaxation need not be considered in the remainder of

this work.

If one or more of these relaxation mechanisms accompanies the acoustic wave

motion, the speed of sound may become frequency dependent. This phenomenon

is called dispersion, and the fluid is said to be dispersive. In a dispersive fluid, the

speed of sound deviates from the thermodynamic speed of sound, which is valid

for isentropic sound propagation in the limit of low frequencies. In thermophysical

properties research, however, the thermodynamic speed of sound is required because

only it is related to other thermodynamic properties. Therefore, if speed of sound

measurements in a fluid are influenced by dispersion, the data must be corrected

to the thermodynamic speed of sound. In the remainder of this section, a model

for describing the effects of rotational and vibrational relaxation on the speed of

sound will be developed. Rotational relaxation is included because both relaxation

mechanisms can be described by the same model.

The frequency dependence of the speed of sound and the dispersive contribution

to the sound absorption coefficient can most easily be described by the frequency
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dependence of the specific isochoric and isobaric heat capacities. From statistical

thermodynamics, it is known that the contribution of the ith internal degree of

freedom of a unit mass of fluid molecules to the specific isochoric heat capacity in

the ideal gas limit can be represented by an expression of the form (Rm/M)Fi(T ) [9].

The function Fi is zero at T = 0, rises strongly near the characteristic temperature

of the ith degree of freedom Ti, and approaches the value 1/2 for rotational degrees

of freedom or unity for vibrational degrees of freedom at temperatures T À Ti. The

functional form of Fi(T ) depends on the nature of the degree of freedom and on the

structure of the molecule, but it does not need to be specified for the purposes of this

section. At the temperatures of interest in this work, the functions describing the

three translational degrees of freedom have reached their asymptotic values, whereas

those describing electronic excitations are negligible. Furthermore, for all molecules

except hydrogen, the functions Fi of the rotational degrees of freedom have also

reached their asymptotic values, and the Fi’s of the vibrational degrees of freedom

are less than unity. Therefore, the specific isochoric heat capacity in the ideal gas

limit may be written as

ciG
v (T ) =

(
∂uiG

∂T

)

v

=
Rm

M

(
3

2
+

∑
i

Fi(T )

)
. (2.120)

The sum over i extends over all rotational and vibrational degrees of freedom of the

molecule. A linear molecule has two, a nonlinear molecule has three rotational de-

grees of freedom. Generally, a molecule composed of N atoms has 3N−6 vibrational

degrees of freedom. Sometimes, for example in molecules of n-alkanes, one or more

vibrational degrees of freedom may be degenerated to internal rotations of groups

of atoms in the molecule. In such a case, the asymptotic value of the contribution

of the vibrational degree of freedom to the isochoric heat capacity reduces to the

value 1/2 for the internal rotation.

In the ideal gas limit, the specific isobaric heat capacity is related to the specific

isochoric heat capacity by

ciG
p (T ) =

(
∂hiG

∂T

)

p

= ciG
v (T ) +

Rm

M
=

Rm

M

(
5

2
+

∑
i

Fi(T )

)
, (2.121)

and the ratio of the two heat capacities, the isentropic exponent, is given by

κiG(T ) =
ciG
p (T )

ciG
v (T )

=

5

2
+

∑
i

Fi(T )

3

2
+

∑
i

Fi(T )
. (2.122)
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Next, a model must be specified, which describes the relaxation of the degrees

of freedom, represented by the functions Fi(T ), to equilibrium. In general, the

relaxation of an internal degree of freedom in a complex molecule is coupled to

the relaxation of all other degrees of freedom of the molecule. In order to simplify

matters, it is assumed that every degree of freedom has its individual time of response

to attain equilibrium, which is called its relaxation time τi. Furthermore, it is

assumed that the decay of the specific internal energy of the ith degree of freedom

to its equilibrium value after a sudden density change obeys the simple first order

differential equation

dui

dt
= −ui − ule

i

τi

, (2.123)

where ui is the instantaneous value of the specific internal energy of the ith degree

of freedom and ule
i is the local equilibrium specific internal energy of the ith degree

of freedom. The solution of this differential equation

ui(t) = ule
i + (u0

i − ule
i ) exp(−t/τi) (2.124)

describes an exponential decay of the specific internal energy from the initial value

u0
i after the change to the local equilibrium value ule

i . If a harmonic sound wave

propagates in the fluid, energy is alternately supplied to and released from the

degree of freedom at a rate determined by the factor exp(iωt). If the ith degree

of freedom attained local equilibrium instantaneously, the periodic variations of its

specific internal energy could be approximated by

ule
i = ueq

i + εle
i exp(iωt), (2.125)

where ueq
i denotes the specific internal energy of the ith degree of freedom in the

thermodynamic equilibrium state of the resting fluid and εle
i is the amplitude of

the periodic variation of its specific internal energy. ueq
i is to be distinguished from

ule
i , which represents the local equilibrium specific internal energy in the region

of the propagating sound wave. However, since local equilibrium is not reached

instantaneously, the amplitude of the specific internal energy obeys Eq. (2.123).

The solution of Eq. (2.123) for the non-equilibrium amplitude εi is given by

εi =
εle

i

1 + iωτi

. (2.126)

Substituting this result into Eq. (2.125), yields the periodic variation of the non-

equilibrium specific internal energy

ui = ueq
i +

εle
i

1 + iωτi

exp(iωt). (2.127)
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If local equilibrium were attained instantaneously, the periodic acoustic temperature

variation could be described by a function of the form T le
a ∝ exp(iωt). If, moreover,

the amplitudes of the temperature and specific internal energy variations were small,

the change of the local equilibrium specific internal energy could be approximated

by εle
i ≈ ciT

le
a , where ci denotes the equilibrium contribution of the ith degree of

freedom to the specific heat capacity. The actual non-equilibrium local specific

internal energy change would then be given by εi ≈ ciT
le
a /(1 + iωτi). Thus, the

contribution to the specific heat capacity ci/(1+ iωτi) becomes frequency dependent

and represents a dynamic quantity.

If each degree of freedom is described in a similar manner, the frequency depen-

dent isochoric heat capacity of the ideal gas is given by

ciG
v (T, ω) =

Rm

M

(
3

2
+

∑
i

Fi(T )

1 + iωτi

)
, (2.128)

and a similar expression holds for the isobaric heat capacity. Moreover, the ratio of

the frequency dependent heat capacities becomes

κiG(T, ω) =

5

2
+

∑
i

Fi(T )

1 + iωτi

3

2
+

∑
i

Fi(T )

1 + iωτi

. (2.129)

These results can now be applied to derive an expression for the frequency depen-

dent speed of sound in a real fluid. For a real fluid, there are additional contributions

to both ideal gas heat capacities, the residual contributions cRe
v and cRe

p , which ac-

count for the effects of intermolecular forces. They are solely determined by the

thermal equation of state and are frequency independent. The frequency dependent

ratio of the heat capacities of the real fluid is given by

κ(T, ρ, ω) =
ciG
p (T, ω) + cRe

p (ρ, T )

ciG
v (T, ω) + cRe

v (ρ, T )
=

cp(ρ, T, ω)

cv(ρ, T, ω)
. (2.130)

In the low frequency limit, where dispersion is absent, the propagational sound

mode is described by the propagation constant kp as given by Eq. (2.70). If heat

conduction and viscous dissipation are neglected, the propagation constant becomes

kp = ω/w. With the relation between the zero-frequency speed of sound, the ratio

of the heat capacities, and the thermal pressure coefficient,

w2
0 =

cp

cv

(
∂p

∂ρ

)

T

,
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the propagation constant can be written as

k2
p =

ω2

cp

cv

(
∂p

∂ρ

)

T

. (2.131)

The effect of the frequency dependence of the heat capacities on the speed of sound

can be introduced by replacing the zero-frequency heat capacities by the frequency-

dependent heat capacities. Then, Eq. (2.131) reads

k2
p =

ω2

cp(ω)

cv(ω)

(
∂p

∂ρ

)

T

. (2.132)

Since the thermal equation of state is determined by the translational degrees of free-

dom and intermolecular forces, it does not depend on frequency, and the derivative

(∂p/∂ρ)T remains unchanged. Therefore, the propagation constant becomes a com-

plex quantity. Its real part yields the frequency-dependent speed of the sound wave,

while its imaginary part represents an additional contribution to the attenuation of

the sound wave.

In order to illustrate the general properties of the frequency dependent speed of

sound, a simple model is chosen as an example, in which it is assumed that only

one degree of freedom relaxes so slowly that it does not attain equilibrium. The

contribution of this degree of freedom to the equilibrium heat capacities is denoted

by cint, and its relaxation time is τ int. The frequency dependent specific isochoric

heat capacity is for this case given by

cv(ω) = cv − cint iωτ int

1 + iωτ int
, (2.133)

and a similar relation holds for cp. In the infinite-frequency limit ω →∞, the heat

capacities take the values c∞v = cv − cint and c∞p = cp − cint. The ratio of the heat

capacities can then be written as

κ(ω) =
cp(ω)

cv(ω)
=

cp + iωτ intc∞p
cv + iωτ intc∞v

. (2.134)

Substituting this expressions into Eq. (2.132), yields

k2
p =

ω2

(∂p/∂ρ)T

cvcp + (ωτ int)2c∞v c∞p + iωτ int(c∞v cp − cvc
∞
p )

c2
p + (ωτ int)2(c∞p )2

. (2.135)
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Figure 2.2. Dependence of the frequency dependent speed of sound and of the dispersive
contribution to the absorption coefficient on frequency.

The propagation constant is a complex quantity, whose real part yields the speed of

sound waves w(ω) = ω/Re(kp) in the dispersive medium, while the negative imagi-

nary part yields the contribution αint(ω) = −Im(kp) to the absorption coefficient.

The dependence of the speed of sound and of the dispersive contribution to the

absorption coefficient on frequency is illustrated in Fig. 2.2, which depicts the ratio

[w(ω)/w0]
2 and the dispersive contribution to the absorption coefficient as a function

of frequency. The curves in Fig. 2.2 are based on numerical calculations for a hy-

pothetical fluid with cp = 3.75(Rm/M), cv = 2.75(Rm/M), and cint = 0.25(Rm/M).

The dispersion takes place in a small frequency range, which depends on the relax-

ation time of the internal mode. In this range, the ratio [w(ω)/w0]
2 increases from

unity at low frequencies to the constant value [w∞/w0]
2 at high frequencies. The

limiting value

w2
∞ = w2

0

cv

cp

c∞p
c∞v

(2.136)

is the infinite-frequency speed of sound. The dispersive contribution to the ab-

sorption coefficient passes through a peak in that range, where the speed of sound

increases strongly. In the low and high frequency limit, it asymptotically approaches

zero. If a fluid had more than one slowly relaxing degree of freedom with clearly dis-

tinguished relaxation times, there would be as many dispersion steps in the speed
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of sound and peaks in the contribution to the absorption coefficient as there are

relaxing degrees of freedom.

If measurements of the speed of sound cannot be carried out at frequencies below

the dispersion step, the measured speeds of sound are most easily corrected to the

thermodynamic speed of sound, if they are determined in the frequency range above

the dispersion step. In this case, the contribution of the slowly relaxing degree of

freedom to the heat capacities can be calculated by means of statistical thermody-

namics. This contribution can then be used to calculate the infinite-frequency limits

of the heat capacities, and Eq. (2.136) can be rearranged to yield

w0 = w∞

√
c∞v
c∞p

cp

cv

. (2.137)

If measurements are carried out in the range of the dispersion step, the relaxation

time must additionally be known, and the complete real part of the propagation

constant must be used to correct the measured frequency-dependent speed of sound

to the thermodynamic speed of sound.

The situation is more complicated, if there are more than one slowly relaxing

degree of freedom and the individual dispersion steps happen to lie in the same

frequency range or if the relaxation of two or more degrees of freedom is strongly

coupled. In this cases, an effective single dispersion step, whose properties are

determined from measurements at several frequencies in the dispersion range, could

be used to develop a correction. However, often it is not possible to obtain this

information from experiment, especially, when the sound transducers are operated

at their resonance frequencies only.

2.6 Piezoelectric Sound Transducers

In pulse-echo experiments, acoustic burst signals must be generated and detected

in the sample fluid. For this purpose, transducers of piezoelectric materials are

employed, which are either placed in direct contact with the sample fluid or are

coupled to it by means of a solid buffer rod. These transducers usually consist of

a thin circular piezoelectric plate with electrodes of a conducting material, such as

gold, silver, or nickel, on both major faces. Some examples for piezoelectric sound

transducers are shown in Fig. 2.3. Disks with with circular electrodes are often used

as transducers in pulse-echo experiments. If it is difficult to connect the electrodes

from both sides, one electrode can for example be wrapped around as shown in
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Fig. 2.3 so that both electrodes are accessible from one side. The electrode material

is coated on the surfaces of the plate by direct imprinting or by vapor-deposition.

disk with

simple circular

electrodes

disk with

wrap-around

electrodes

disk with round

wrap-around

electrodes

Figure 2.3. Some examples for piezoelectric sound transducers with different electrode
shapes.

A solid material is said to be piezoelectric, if a mechanical deformation gen-

erates an electric field in the material. Conversely, an externally applied electric

field may cause a deformation of the material. In the first case, one speaks of the

piezoelectric effect, whereas the second case is called the reverse piezoelectric effect.

When a piezoelectric transducer placed in direct contact with a fluid is excited elec-

trically near its resonance frequency, longitudinal sound waves, which are coupled

to the compressions and expansions of the transducer, are generated in the fluid.

Viceversa, sound waves arriving at the transducer deform it mechanically and, ac-

cordingly, generate an electric field in the piezoelectric material. If piezoelectric

transducers are employed to generate and detect sound waves in solids, they are

usually adhered to the surface of the solid by a thin layer of viscous oil or other ad-

hesive materials in order to provide complete mechanical coupling between the two

solid materials. The piezoelectric effect is exhibited by a number of poly-crystalline

and amorphous solids and by single crystals. Widely used as sound transducers are

certain ceramic materials, for example lead zirconate titanate (PZT), lead titanate,

lead metaniobate, or bismuth titanate and single crystals of quartz (SiO2) or lithium

niobate (LiNbO3).

Since quartz transducers were used in this work, the presentation in the following

sections focusses on the properties and application of quartz transducers. Never-

theless, parts of the material also apply to other piezoelectric materials. Sec. 2.6.1
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presents the general linear theory of piezoelectric materials within the frame of con-

tinuum mechanics and describes the physical properties of quartz. In Sec. 2.6.2,

the theory is applied to develop a one-dimensional model for thickness vibrations of

thin piezoelectric plates. Based based on this model, Secs. 2.6.3 and 2.6.4 treat the

operation of piezoelectric transducers as sound receivers and senders. In Sec. 2.6.5,

an equivalent circuit model is introduced to describe the electrical properties of

piezoelectric transducers near their resonances.

2.6.1 Linear Theory of Piezoelectric Materials

In continuum mechanics, the deformation of an elastic solid is characterized in terms

of two sets of coordinates. The first one, ξi, defines the positions of the material

points of the body in a reference configuration, and the second one, xi, defines the

positions of the material points in the actual configuration. The index i can take the

values {1, 2, 3}, which represent the set of Cartesian coordinates {x, y, z}. In this

section, the symbolic notation and index notation are used in parallel to represent

Cartesian vectors and tensors. All equations are written in both notations in order to

simplify their readability, but, at the same time, to keep the notation unambiguous.

The meaning of the different mathematical operations and symbols is given in the

nomenclature. A deformation of the body is described by the deformation gradient

tensor F , whose components are defined by

F :=
∂x

∂ξ
; Fij :=

∂xi

∂ξj

. (2.138)

F is a second-order tensor, and its components Fij describe the transformation of

a line element of the body in the reference configuration dξ to the corresponding

line element in the deformed configuration dx. The deformation gradient tensor

provides a complete description of the deformation of the body.

When applied as sound transducers, piezoelectric materials are only subject to

small deformations so that it is appropriate to introduce a linearization. For this

purpose, the displacement vector

u = x− ξ; ui = xi − ξi (2.139)

is introduced, which represents the displacement of a material point of the body

from its position in the reference configuration to the position in the deformed

configuration. With the displacement vector, the deformation gradient tensor is
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written as

F =
∂(ξ + u)

∂ξ
= I +

∂u

∂ξ
; Fij =

∂(ξi + ui)

∂ξj

= δij +
∂ui

∂ξj

. (2.140)

For the description of piezoelectric materials, the strain tensor S is usually used

instead of the deformation gradient tensor to characterize the deformations and will

therefore also be used here. It is defined in terms of the deformation gradient tensor

by

S =
1

2
(F t · F − I); Sij =

1

2
(FjiFij − δij). (2.141)

When Eq. (2.140) is substituted into Eq. (2.141), the strain tensor becomes

S =
1

2

(
I +

[
∂u

∂ξ

]t
)
·
(

I +
∂u

∂ξ

)
− 1

2
I

=
1

2

(
∂u

∂ξ
+

[
∂u

∂ξ

]t
)

+
1

2

[
∂u

∂ξ

]t

· ∂u

∂ξ
;

Sij =
1

2

(
δij +

∂uj

∂ξi

)(
δij +

∂ui

∂ξj

)
− 1

2
δij

=
1

2

(
∂ui

∂ξj

+
∂uj

∂ξi

)
+

1

2

∂uj

∂ξi

∂ui

∂ξj

. (2.142)

Since for small displacements |∂ui/∂ξj| ¿ 1, products of the derivatives of the

displacements are negligible. Thus, one obtains a linearized expression for the strain

tensor

S =
1

2

(
∂u

∂ξ
+

[
∂u

∂ξ

]t
)

; Sij =
1

2

(
∂ui

∂ξj

+
∂uj

∂ξi

)
, (2.143)

which, in the following, will be simply be referred to as strain tensor.

The velocity and acceleration of a material point within the linear approximation

are given by the first and second time derivatives of the displacement vector v =

u̇ = ∂u/∂t and a = ü = ∂2u/∂t2, which in index notation read vi = u̇i = ∂ui/∂t

and ai = üi = ∂2ui/∂t2.

The mechanical interactions between different portions of the body are described

by the Cauchy stress tensor T . The diagonal components Tij with i = j are the nor-

mal stresses, and the off-diagonal components Tij with i 6= j are the shear stresses.

In a non-piezoelectric elastic body, the components of the stress tensor are related

to the components of the strain tensor by the constitutive equation

T = c : St; Tij = cijklSkl, (2.144)
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where the cijkl are properties of the elastic material, which are called elastic con-

stants. The set of elastic constants forms a fourth-order tensor. When Eq. (2.144)

is written in inverse form,

S = s : T t; Sij = sijklTkl, (2.145)

the tensor of the compliances s with the components sijkl is used instead of the

tensor of the elastic constants. They are related by s = c−1.

In a linear solid dielectric material, the electric field vector E and electric flux

density vector D are related by

D = ε ·E; Di = εijEj, (2.146)

where ε represents the second-order tensor of the dielectric constants of the material.

In inverse form, this relation reads

E = β ·D; Ei = βijDj. (2.147)

In this form, the dielectric properties of the material are characterized by the im-

permeability tensor β = ε−1.

For a piezoelectric material, both elastic and electric properties are coupled, and

these relations must be modified. The constitutive relations for a piezoelectric mate-

rial can be written in four different representations, depending on which combination

of two mechanical tensors T and S and electrical vectors E and D is chosen to rep-

resent the independent variables. If S and E are chosen, the constitutive equations

are given by

T = cE : St −E · e; Tij = cE
ijklSkl − ekijEk (2.148)

D = e · St − εS ·E; Di = eiklSkl + εS
ijEj, (2.149)

where cE
ijkl, eijk, and εS

ij are the elastic constants at constant electric field, the piezo-

electric constants, and the dielectric constants εS
ij at constant strain, respectively.

The piezoelectric constants eijk form a third-order tensor. Since the tensor cE
ijkl is

symmetric with respect to the indices i and j, the indices k and l, and, furthermore,

the pairs of indices ij and kl, there are only 21 unique elastic constants in the general

case. Similarly, there are 18 unique piezoelectric constants and 6 unique dielectric

constants.

In order to simplify the notation, a condensed matrix notation, which utilizes

the symmetries of the tensors of the elastic and piezoelectric constants, is usually
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Table 2.2. Relation between the indices of the piezoelectric equations in tensor and con-
densed matrix notation.

ij or kl 11 22 33 23 or 32 31 or 13 12 or 21

p or q 1 2 3 4 5 6

introduced to write the piezoelectric equations [8]. This matrix notation consists of

replacing ij or kl by p or q, where i, j, k, and l take the values {1, 2, 3} and p and

q take the values {1, . . . , 6} according to Table 2.2. Thus,

cE
ijkl = cE

pq, eikl = eip, and Tij = Tp. (2.150)

With these identifications, the constitutive equations, Eqs. (2.148) and (2.149), take

the form

Tp = cE
pqSq − ekpEk (2.151)

Di = eiqSq + εS
ijEj, (2.152)

where

Sij = Sp, if i = j or p = 1, 2, 3

2Sij = Sp, if i 6= j or p = 4, 5, 6. (2.153)

In condensed matrix notation, the stress tensor and strain tensor are represented by

(6×1) matrices, and the elastic and piezoelectric constants are arranged in (6×6)

and (3×6) matrices, respectively. Furthermore, Eqs. (2.151) and (2.152) can now

be written in operator notation as

T = cE · S − et ·E (2.154)

D = e · S + εS ·E, (2.155)

The other three forms of the constitutive piezoelectric equations with the pairs

of independent variables T and E, T and D, and S and D read

S = sE · T + dt ·E (2.156)

D = d · T + εT ·E, (2.157)

and

S = sD · T + gt ·D (2.158)

E = −g · T + βT ·D, (2.159)



Piezoelectric Sound Transducers 53

and

T = cD · S − ht ·D (2.160)

E = −h · S + βS ·D. (2.161)

Using the condensed matrix notation, the relations between the coefficients ap-

pearing in the four sets of constitutive equations, Eqs. (2.151), (2.152), and (2.156)

to (2.161) are given by

cE
prs

E
qr = δpq, cD

prs
D
qr = δpq,

βS
ikε

S
jk = δij, βT

ikε
T
jk = δij,

cD
pq = cE

pq+ekphkq, sD
pq = sE

pq − dkpgkq,

εT
ij = εS

ij + diqejq, βT
ij = βS

ij − giqhjq,

eip = diqc
E
qp, dip = εT

ikgkp,

gip = βT
ikdkp, hip = giqc

D
qp,

where δij represents the Kronecker δ, that is the identity tensor in index notation.

In order that the relations in Eqs. (2.150) and (2.153) hold, the relations

sE
pq = sE

ijkl, if i = j and k = l, p, q = 1, 2, 3, (2.162)

sE
pq = 2 sE

ijkl, if i = j and k 6= l, p = 1, 2, 3, q = 4, 5, 6, (2.163)

sE
pq = 4 sE

ijkl, if i 6= j and k 6= l, p, q = 4, 5, 6, (2.164)

must be satisfied, and similar relations hold for sD
pq. Furthermore, the diq satisfy the

relations

diq = dikl, k = l, q = 1, 2, 3

diq = 2 dikl, k 6= l, q = 4, 5, 6, (2.165)

and similar relations hold for giq. The piezoelectric constants hiq and eiq and the

elastic constants cD
pq are simply obtained from their counterparts in tensor notation

by replacing the indices according to Table 2.2.

In the acoustic sensor, which will be described in the following chapter, a quartz

crystal is employed as sound transducer. Therefore, the theory is further elaborated

on for this special case of a piezoelectric material. Piezoelectric devices are man-

ufactured from single crystals of α-quartz, which is the thermodynamically stable

phase of quartz below 573 ◦C. Only in this phase, quartz has piezoelectric proper-

ties. The physical properties and manufacturing of quartz crystals were thoroughly
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Figure 2.4. Coordinate system for describing a quartz crystal and some principal cuts.

described by Brice [26], and many books on piezoelectricity treat quartz crystals in

some detail, see for example [27, 117].

In order to apply the mechanical theory to real materials like quartz, a Carte-

sian coordinate system with XYZ axes must be defined, in which the mathematical

analysis can be carried out. This link is provided by the science of crystallogra-

phy. In crystallography, properties of crystals are described in terms of the natural

coordinate system formed by the edges of the unit cell of the crystal lattice. The

axes of this coordinate system are termed the a, b, and c axes, and are defined in a

unique way for the basic crystal systems [8]. Quartz belongs to the trigonal crystal

system. It has one main axis of threefold symmetry, which is chosen to be the c

axis. Moreover, there are three equivalent secondary axes of twofold symmetry, de-

noted by a1, a2, a3, which lie in a plane perpendicular to the c axis. The Z axis of

the Cartesian coordinate system is identified with the c axis of the crystallographic

system, and one of the axes of twofold symmetry is taken as the X axis. The Y axis

of the Cartesian system is then chosen perpendicular to the X and Z axes so that

a right-handed coordinate system results as shown in Fig. 2.4. In tensor notation,

the three Cartesian axes X, Y , Z correspond to the indices 1, 2, 3 (or x, y, z), which

must be converted to condensed matrix notation by Table 2.2.

Quartz exists in optical right-handed and left-handed forms. In right-handed

quartz, the plane of polarization of polarized light passing along the Z axis is rotated

clockwise, in left-handed quartz the plane of polarization is rotated counterclockwise.

In most technical applications, right-handed quartz crystals are employed. Table 2.3

summarizes the material constants cE
pq, ekp, and εS

ik for right-handed quartz in the
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Table 2.3. Elastic, piezoelectric, and dielectric constants for right-handed quartz [26]
(Units: cE

pq in 109 Pa, eip in 10−2 Cm−2, and εS
ij in 10−12 Fm−1).




T1

T2

T3

T4

T5

T6

D1

D2

D3




=




86.74 6.99 11.91 17.91 0.0 0.0 17.1 0.0 0.0

6.99 86.74 11.91 −17.91 0.0 0.0 −17.1 0.0 0.0

11.91 11.91 107.2 0.0 0.0 0.0 0.0 0.0 0.0

17.91 −17.91 0.0 57.94 0.0 0.0 4.06 4.06 0.0

0.0 0.0 0.0 0.0 57.94 35.82 0.0 0.0 0.0

0.0 0.0 0.0 0.0 35.82 39.88 −34.2 −34.2 0.0

17.1 −17.1 0.0 4.06 0.0 0.0 39.21 0.0 0.0

0.0 0.0 0.0 4.06 0.0 −34.2 0.0 39.21 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.03



·




S1

S2

S3

S4

S5

S6

E1

E2

E3




representation of Eqs. (2.148) and (2.149) in the form
(

T

D

)
=

(
cE et

e εS

)
·
(

S

E

)
. (2.166)

Due to the symmetry properties of quartz, many of the 36 elastic constants, 18

piezoelectric constants, and 9 dielectric constants are zero, and only a few of the

non-zero constants are unique. There are only 18 non-zero elastic constants, of

which six are unique, five non-zero piezoelectric constants, of which two are unique,

and three non-zero dielectric constants, of which two are unique.

The ability to operate a quartz crystal as a sound transducer depends on the

orientation, in which the crystal is cut from the raw material. Several principal cuts

are shown in Fig. 2.4. The most commonly used cut for sound transducers is the X-

cut, with the acoustically active surfaces being perpendicular to the X axis. In this

cut, vibrational motion in the direction of the X axis can be excited by applying an

electric field in this direction. The mechanical, piezoelectric, and dielectric behavior

of a quartz crystal in this mode of operation is mainly described by the variables

T11, S11, E1, and D1 and the constants cE
11, e11, and εS

11.

2.6.2 Thickness Excitation of a Thin Piezoelectric Plate

The acoustic sensor developed in this work employs an X-cut quartz crystal disk

as a sound transducer, which is operated in the thickness expander mode, that is it

expands and contracts in the direction of the X axis. In this section, a model for

this mode of operation will be developed. Parts of the treatment presented in this

section follow closely the one given by Trusler [177, pp. 145].

The geometry for this model is depicted in Fig. 2.5. The thickness of the crystal is

assumed to be 2l and the area of each major surface is denoted by A. The x1 axis of
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Figure 2.5. Geometry for describing the motion of a thin piezoelectric quartz plate.

the Cartesian coordinate system is perpendicular to the surfaces of the crystal with

the origin at the center between the two surfaces, and the center plane of the crystal

lies in the x2x3 plane of the coordinate system. In thickness expander mode, the

compressing and expanding motion of the crystal is in the direction of the x1 axis.

It is assumed that the crystal is so thin that the lateral motion of the crystal can be

neglected. This case is equivalent to the situation where the crystal is mounted by

lateral clamping, which hinders lateral motion. Then the motion can be described

by a one-dimensional model, in which only the elements S1 and T1 of the condensed

strain and stress matrices are non-zero.

Since both surfaces are coated with the conducting electrode material, they form

equipotential surfaces. As piezoelectric materials do not carry free charges, the elec-

trical flux density on the lateral edge of the disk must vanish. The component of the

electrical flux density perpendicular to the surfaces of the crystal D1 is independent

of the position of the surface and, according to Gauss law, it is equal to the charge

density on the surface, D1 = Q/A, where Q denotes the amount of charges on one

surface. Furthermore, it is assumed that all dynamic variables have a harmonic

dependence on time. Hence, they contain a factor exp(iωt).

When using the electric current I, a sign convention must be introduced [175,

p. 179]. In electric circuit theory, the sign of the current is chosen so that the current

has a positive sign if it flows from the plus to the minus pole of the active element of

the circuit. For the present situation, which is illustrated in Fig. 2.6, the orientation

of the coordinate system is chosen such that the x1 axis points upwards. In this

coordinate system, an active element is placed so that the current flows upwards

through it, whereas a passive element is placed so that the current flows downwards

through it. A piezoelectric crystal acts as an active element if it is operated as a

receiver (see Fig. 2.6a). In this case, the current is defined by I = dQ/dt, and the

electric flux density becomes D1 = I/(iωA). If a piezoelectric element is operated
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as a sender, it acts as a passive element (see Fig. 2.6b). Then the current is defined

by I = −dQ/dt, and the electric flux density is given by D1 = −I/(iωA).

active

element

passive

element

I

I

+
-

x1

Ze

a)

active

element

passive

element

I

I

+

-

x1

Ze

b)

~

Figure 2.6. Sign convention for the electric current. a) Operation of a piezoelectric
crystal as receiver and b) operation as sender.

Since the electric flux density is used to describe the electric field in the crystal,

Eqs. (2.160) and (2.161) are the obvious choice to describe the piezoelectric material.

For the chosen geometry, they take the form

T1 = cD
11S1 − h11D1 (2.167)

E1 = −h11S1 + βS
11D1. (2.168)

The numerical values of the constants in these equations for right-handed α-quartz

are given by cD
11 = 86.74 · 109 Pa, h11 = 4.36 · 109 N C−1, and βS

11 = (εS)−1 =

39.97 · 10−12 F m−1 [26].

In order to derive a differential equation for the motion of the crystal, the deriva-

tive of the first of these two equation with respect to x1 is taken, and the strain is

replaced by S1 = ∂u1/∂x1, where u1 denotes the displacement. One obtains

∂T1

∂x1

= cD
11

∂2u1

∂x2
1

, (2.169)

where it has been assumed that D1 is constant within the piezoelectric material.

The equation of motion, written in terms of the stress, reads [8]

∂T1

∂x1

= ρc
∂2u1

∂t2
, (2.170)

in which ρc denotes the density of the piezoelectric material. When both equations

are combined, the differential equation for the motion of the plate is obtained as

∂2u1

∂x2
1

− ρc

cD
11

∂2u1

∂t2
= 0. (2.171)
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Eq. (2.171) represents a hyperbolic differential equation, which describes the propa-

gation of longitudinal elastic waves in the piezoelectric material. The coefficient

of the second term is related to the speed at which these waves propagate by

wc = (cD
11/ρc)

1/2, where the index ‘D’ refers to the condition of constant dielec-

tric flux density. As all variables contain the harmonic factor exp(iωt), the second

derivative with respect to time can be replaced by ∂2/∂t2 = −ω2 so that Eq. (2.171)

takes the form

∂2u1

∂x2
1

+ w2
cω

2u1 = 0. (2.172)

A general solution of this equation is given by

u1(x1, t) = [A0 sin(kx1) + A1 cos(kx1)] exp(iωt) (2.173)

with k = ω/wc. The two constants A0 and A1 must be determined from appropriate

boundary conditions.

Before solving Eq. (2.172) for different boundary conditions, it is useful to es-

tablish some further relations. The electromechanical coupling constant for the

thickness expander mode, which provides a measure for the magnitude of the piezo-

electric effect, is given by

K2
t =

h2
11

βS
11c

D
11

. (2.174)

In general, it is defined as the ratio of the output electrical energy delivered to an

electric load and the input mechanical energy for the piezoelectric effect or, for the

inverse piezoelectric effect, as the ratio of the output mechanical energy delivered to

a mechanical load and the input electrical energy. With the numerical values for h11,

β11, and cD
11 given above, the electromechanical coupling constant for the thickness

expander mode is Kt = 0.095. Compared with piezoelectric ceramics, which may

have coupling constants up to Kt = 0.5, the coupling constant for quartz is rather

small.

Another important quantity for the describing the mechanical behavior of the

plate is the relative displacement of the two surface ∆u1 = u1(l)−u1(−l). With the

general solution of the wave equation, Eq. (2.173), the relative displacement can be

expressed as

∆u1 = 2A0 sin(kl) exp(iωt). (2.175)

The electrical boundary condition, which was already introduced above, can be

further elaborated on in order to derive an expression for the electric flux density.
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Since the operation as a receiver is treated first in the following section, the sign

convention for the current depicted in Fig. 2.6a must be applied. The potential

difference between the electrodes of the plate is given by

V = −
x1=l∫

x1=−l

E1 dx1 = h11

x1=l∫

x1=−l

∂u1

∂x1

dx1 − 2lβS
11D1, (2.176)

where Eq. (2.168) has been inserted for E1. By substituting the general solution

of the wave equation into Eq. (2.176) and using the expression for the relative

displacement of the electrodes, the potential can be written as

V = ∆u1h11 − 2lβS
11D1. (2.177)

If the electrical impedance of the external circuit is denoted by Ze, Ohm’s law

yields V = ZeI = iωAD1Ze for the potential. This relation is substituted into

Eq. (2.177), which can then be solved for D1. One finds the expression

D1 =
h11∆u1

2lβS
11

1

1 + iωZeC0

(2.178)

for the electric flux density, in which C0 = A/2lβS
11 represents the static capacity of

the piezoelectric plate.

After these preliminary considerations, the wave equation for the plate can now

be solved for different boundary conditions. If the transducer is operated as a re-

ceiver, that is if sound waves arrive at one or both surfaces of the transducer, the

relevant quantity required to describe its behavior is the mechanical input admit-

tance. Conversely, if it is operated as a sender, that is if it is excited electrically and

generates sound waves, the relevant quantity to describe its behavior is the electrical

input admittance.

In order to prepare the discussion of the operation as a receiver and sender in the

following sections, the mechanical input admittance is calculated for a case in which

sound arrives at one surface of the transducer and the other surface is free. This

result is then used to obtain the mechanical resonance frequencies of the transducer

for operation in vacuum. The mechanical boundary conditions for this case are given

by

T1(x = −l) = 0 (2.179)

T1(x = l) = −(F/A) exp(iωt). (2.180)
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F is the total force exerted by the arriving sound on the surface x1 = l, and the

ratio F/A represents the acoustic pressure at this surface. The minus sign arises

because the stress tensor is the negative pressure tensor. The constitutive equation

for the piezoelectric material, Eq. (2.167), can now be used to determine the two

constants A0 and A1 in the general solution of the wave equation, Eq. (2.173). For

this purpose, Eq. (2.173) and the result for the electric flux density, Eq. (2.178), are

substituted into Eq. (2.167) for both boundary conditions, which yields a system of

two linear equations for the two unknown variables A0 and A1. The solution of this

system is given by

A0 =
F/(2Aρcwcω)

(K2
t /kl) sin(kl)(1 + iωC0Ze)−1 − cos(kl)

(2.181)

A1 =
F/(2Aρcwcω)

sin(kl)
. (2.182)

With these results, the solution of the wave equation is complete, and the mechanical

input admittance is obtained as

Ym =
v

F
= −iω

F
[A0 sin(kl) + A1 cos(kl)]

=
i/(2Aρcwc)

cot(kl)− (K2
t /kl) (1 + iωC0Ze)−1

− i/(2Aρcwc)

tan(kl)
. (2.183)

The first term on the right hand side results from the term A0 sin(kx1) in the solution

to the wave equation, while the second term results from A1 cos(kx1).

First, the solution corresponding to the second term is examined more closely.

Resonance occurs whenever the imaginary part of the mechanical admittance be-

comes infinite, that is whenever Im(Ym) → ∞. Thus, the second term is resonant

whenever tan(kl) → 0, which is equivalent to kl = n(π/2) with even values of n.

In this case, the first term vanishes because cot(kl) → ∞. The term A1 cos(kx1)

is symmetric with respect to the coordinate x1 and therefore does not contribute

to the relative displacement of the transducer surfaces. At low frequencies, this

term dominates, and the approximation tan(kl) ≈ kl applies so that Ym = 1/(iωm),

where m = 2Alρc is the mass of the transducer. Thus, the second term describes

pure translations of the transducer back and forth along the x1-axis, which are

not piezoelectrically active, but are controlled by the mass of the transducer. The

translational motion of the transducer is coupled to the longitudinal motion of the

arriving sound wave at x1 = l.

The first term in Eq. (2.183) determines the relative displacement of the trans-

ducer surfaces and therefore is responsible for thickness vibrations of the transducer.



Piezoelectric Sound Transducers 61

This term is piezoelectrically active and, thus, is coupled to the electric field. From

the resonance condition Im(Ym) →∞, it follows that it is resonant whenever

Re[cot(kl)− (K2
t /kl) (1 + iωC0Ze)

−1] = 0. (2.184)

For arbitrary values of the electrical impedance of the external circuit Ze, the res-

onance frequencies are determined by the solutions for kl of this equation. For

the present purposes, however, it is sufficient to consider the limiting cases of

open-circuit and short-circuit conditions. Under open-circuit conditions, that is

for Ze → ∞, the resonance condition takes the form cot(kl) = 0. With k = ω/wc

and w2
c = cD

11/ρc, the resonance frequencies are obtained as

fp
res = n

wc

4l
, (2.185)

with n = 1, 3, 5, . . . being odd. They are called parallel resonance frequencies.

Under short-circuit conditions, that is for Ze = 0, Eq. (2.184) simplifies to

cot(kl) =
K2

t

kl
. (2.186)

Mason [117, p. 66] showed that for small values of K2
t , which is satisfied for quartz

with K2
t ≈ 0.009, this equation has the approximate solutions

kl = n
π

2
− K2

t

n(π/2)
. (2.187)

The resonance frequencies are given by

f s
res = n

wc

4l

[
1−

(
2Kt

nπ

)2
]

, with n = 1, 2, 3, . . . , (2.188)

and are called series resonance frequencies. The series resonance frequencies are by

nwc(2Kt/nπ)2/4l smaller than the parallel resonance frequencies.

Eq. (2.185) can be used to estimate the thickness of a piezoelectric transducer for

a given resonance frequency. For an X cut quartz crystal with a resonance frequency

of 10 MHz, one obtains 0.286 mm, where the value wc = 5730 m s−1 for the speed

of sound in quartz has been used [177].

2.6.3 Operation as a Receiver

So far the mechanical load of the fluid on the transducer has been ignored. In

practise, not only the front face of the transducer, but also the back face is in
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contact either with a fluid or solid medium. The mechanical load presented by the

medium at the back face can be taken into account by the boundary condition

T1(x1 = −l) = Zb
a

∂u1

∂t
, (2.189)

where Zb
a represents the acoustic impedance of the medium at the back of the

transducer. This boundary condition replaces Eq. (2.179). Generally, the presence of

a mechanical load results in finite values of the mechanical admittance at resonance,

and the resonance frequencies are changed by a small amount.

The wave equation, Eq. (2.171), must now be solved for the new boundary con-

ditions, Eq. (2.189) and Eq. (2.180). The solution is again assumed to be of the

form of Eq. (2.173), and the procedure to determine the constants A0 and A1 is the

same as before. Although an exact treatment is possible, the solution is simplified if

the approximation |(Zb
a /ρcwc) cot(kl)| ≈ 0 is introduced. This approximation holds

at any frequency, if the backing impedance Zb
a is small compared with the acoustic

impedance of the piezoelectric material ρcwc. Near the mechanical resonances, it

is always satisfied because in that case cot(kl) ≈ 0. Since the transducer in the

acoustic sensor is operated near its resonance frequency, the approximation is fully

justified. Within this approximation, one obtains

A0 sin(kl) =
−F/(2Aωρcwc)

cot(kl)− (K2
t /kl)(1 + iωC0Ze)−1 + i(Zb

a /2ρcwc)
. (2.190)

The symmetric term in Eq. (2.173) with the constant A1 can entirely be neglected

because it does not contribute to the relative displacement of the transducer surfaces.

The mechanical admittance for these boundary conditions is then given by

Ym =
v

F
= −iωA0 sin(kl)

F

=
i/(2Aρcwc)

cot(kl)− (K2
t /kl)(1 + iωC0Ze)−1 + i(Zb

a /2ρcwc)
. (2.191)

Under open-circuit conditions, the first two terms in the denominator cancel at the

mechanical resonance frequencies. Thus, the mechanical admittance at resonance is

simply Ym = 1/(AZb
a ). This result is useful for calculating the reflection coefficient

χRe for plane waves normally incident at the front face of the transducer, which is

given by Eq. (2.97), from the knowledge of the acoustic backing impedance. For

an ideal lossless piezoelectric plate as in this model, the reflection coefficient would

vanish at resonance if the plate were in contact with the same medium at the front

and back.
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An important quantity to characterize the transducer in receiving mode is its

sensitivity, which is defined as the ratio of the generated voltage in the transducer

and the acoustic pressure of the arriving sound wave at the front face of the trans-

ducer. The current flowing through the transducer is given by I = iωAD1, and the

electrical flux density D1 is related to the relative displacement of the transducer

by Eq. (2.178). Both relations can be combined to yield the current through the

transducer

I =
iωC0h11∆u1

1 + iωC0Ze

exp(iωt), (2.192)

and the output voltage is given by

V = ZeI =
iωC0h11∆u1Ze

1 + iωC0Ze

exp(iωt). (2.193)

Under short-circuit conditions (Ze → 0), the current becomes

I = iωC0h11∆u1 exp(iωt), (2.194)

and the output voltage under open-circuit conditions (Ze →∞) is given by

V = h11∆u1 exp(iωt). (2.195)

For the acoustic pressure pa = F/A, the relative displacement of the transducer

surfaces ∆u1 = 2A0 sin(kl) exp(iωt) is determined by Eq. (2.190). Thus, the sensi-

tivity under open-circuit conditions at resonance is

V/pa =
2ih11

ωZb
a

. (2.196)

High sensitivity is achieved if the backing impedance Zb
a is small. However, if the

transducer is in contact with the sample fluid at both faces, the backing impedance is

determined by the sample fluid and cannot be used to tune the sensitivity. In general,

the sensitivity of the transducer is larger for a compressed gas with a moderate

density and low speed of sound than for a high density liquid with a large speed of

sound. For example, for a quartz transducer with a resonance frequency of 10 MHz

operating in liquid water at 300 K and 0.1 MPa |V/pa| ≈ 93 µV Pa−1, whereas in

compressed gaseous argon at 300 K and 10 MPa |V/pa| ≈ 2.5 mV Pa−1.

2.6.4 Operation as a Sender

When the transducer is operated as a sender, a harmonic potential is applied across

the two surfaces of the crystal so that it vibrates in the thickness expander mode
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at the frequency of the electric field and radiates sound into the media at its front

and at its back face. In this case, the electrical input impedance Ze (or admittance

Ye) is the relevant quantity to characterize the behavior of the transducer. It can

be calculated in the same way as the mechanical input impedance for operation

of the transducer in the receiving mode. Again, the wave equation for the plate,

Eq. (2.171), has to be solved subject to appropriate boundary conditions.

Now the medium in front of the transducer has the acoustical impedance Z f
a, and

the acoustical impedance of the medium at the back of the transducer is Zb
a . The

boundary conditions for the normal stress read

T1(x1 = −l) = Zb
a

∂u1

∂t
(2.197)

T1(x1 = l) = −Z f
a

∂u1

∂t
. (2.198)

As in the preceding sections, the solution of the wave equation takes the form of

Eq. (2.173), and the constants A0 and A1 must be determined for these boundary

conditions. The solution for A0 is found to be

A0 sin(kl) =
h11D1/ρcwcω

cot(kl) +
iZ f

a

ρcwc

+
i(Z f

a − Zb
a )[i(Z f

a/ρcwc) cot(kl)− 1]

2ρcwc + i(Z f
a + Zb

a ) cot(kl)

≈ h11D1/ρcwcω

cot(kl) + i(Z f
a + Zb

a )/2ρcwc

. (2.199)

Again, the first term in the solution of the wave equation, Eq. (2.173), with the

coefficient A0 describes the thickness vibrations of the transducer, while the second

term with the coefficient A1 describes purely symmetric translational motions, which

are important only at low frequencies and contribute little otherwise. Therefore, this

term is negligible close to the resonances of the transducer, and A1 need not be known

for the purposes of this section. As before, the approximations Zb
a /(wcρc) cot(kl) ≈ 0

and Z f
a/(wcρc) cot(kl) ≈ 0 have been introduced in the second line of Eq. (2.199).

The approximate expression for A0 sin(kl) becomes exact if Z f
a = Zb

a .

The electrical input impedance can now be found by inserting the relative dis-

placement ∆u1 = 2A0 sin(kl) with A0 sin(kl) as given by Eq. (2.199) and the elec-

trical flux density D1 = −I/(iωA) into the expression for the voltage across the

crystal, Eq. (2.177). The minus sign of the electric flux density is due to the sign

convention for sending mode (see Sec. 2.6.2 and Fig. 2.6). The result is inserted into

Ohm’s law Ze = V/I, and one obtains for the electric input impedance

Ze =
1

iωC0

(
1− K2

t /kl

cot(kl) + i(Z f
a + Zb

a )/2ρcwc

)
. (2.200)
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The electric input admittance is given by Ye = 1/Ze so that

Ye = iωC0

(
1 +

K2
t /kl

cot(kl)−K2
t /kl + i(Z f

a + Zb
a )/2ρcwc

)
. (2.201)

The moduli of both quantities are depicted in Fig. 2.7 as a function of frequency

for a 10 MHz quartz transducer of diameter 15 mm operating in unbounded gaseous
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Figure 2.7. Theoretical electrical input impedance and admittance of a 10 MHz X-cut
quartz transducer of diameter 15 mm operating in (a) unbounded gaseous argon at 300 K
and 0.1 MPa and (b) unbounded liquid propane at 300 K and 10 MPa.
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argon at 300 K and 0.1 MPa and unbounded liquid propane at 300 K and 10 MPa.

In these examples, the acoustic load impedances are purely resistive and equal to

the acoustic impedance of the fluid Za = ρw. When operating in gaseous argon, |Ze|
has a minimum close to the series resonance and a maximum close to the parallel

resonance, whereas |Ye| has a maximum close to the mechanical series resonance

and a minimum close to the mechanical parallel resonance. Furthermore, the static

capacity contributes little to the impedance and admittance in the vicinity of the

resonances. With increasing acoustic impedance of the fluid, which shown here

for a state in the liquid region of propane, the maxima and minima of |Ze| and

|Ye| are shifted further away from the mechanical resonance frequencies in vacuum

and the frequency range, in which the maxima and minima occur, becomes broader.

Moreover, the impedance and admittance are by several orders of magnitude smaller

than for the operation in a low density gas, and the static capacity yields a large

contribution to the impedance and admittance in the vicinity of the resonances.

Since one is usually interested in high signal levels, the transducer should be

operated at that frequency, for which the power output P = ZeI
2 = YeV

2 is max-

imum. It is interesting to consider first the excitation by an ideal current source

(zero source impedance) and ideal voltage source (infinite source impedance). In

the first case, the power output is maximum when Ze takes its largest value, that is

close to the parallel resonance frequency, and, in the second case, the power output

is maximum when Ye takes its largest value, that is close to the series resonance fre-

quency. In practice, real sources have non-zero finite impedances, and the frequency

of maximum power output is between the frequencies of the maxima of Ze and Ye.

When the transducer is excited with a constant current source at the unloaded

parallel resonance frequency, the impedance given by Eq. (2.200) is used to charac-

terize its behavior. At the parallel resonance, the impedance becomes

Ze =
1

iωp
resC0

+

(
2h11

ωp
res

)2

Ym, (2.202)

where Ym = (Z f
a + Zb

a )/A is the mechanical admittance of the transducer. The

impedance at resonance consists of a contribution due to the capacity of the trans-

ducer and a contribution due to the mechanical admittance, which represents the

acoustic load impedances at the front and back faces of the transducer. The capac-

itance can be compensated by an inductance placed in series with the transducer.

Then, the impedance is purely resistive and is simply determined by the mechanical

admittance Ze = (2h11/ω
p
res)

2Ym.
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Conversely, if the transducer is excited with a constant voltage source at the

vacuum series resonance frequency, the admittance given by Eq. (2.201) is used to

characterize its behavior. The admittance at the series resonance frequency is

Ye = iωs
resC0 + α2

tYm, (2.203)

where the transformation factor αt is given by

αt = Ah11/lβ
S
11. (2.204)

The expressions for αt is obtained by combining Eqs. (2.201) and (2.191) with ω =

ωs
res and using the expressions C0 = A/2lβS

11, K2
t = h2

11/(β
S
11c

D
11), w2

c = cD
11/ρc and

Eqs. (2.187) and (2.188).

The capacitance can be compensated by an inductance placed in parallel with

the transducer. The admittance is then purely resistive and determined solely by

the mechanical admittance Ye = α2
tYm.

2.6.5 Equivalent Circuit Model

Near a piezoelectric resonance, the electric properties of the transducer in sending

mode can be represented by the equivalent circuit model depicted in Fig. 2.8. The

capacitance C0 represents the static capacitance of the transducer, and the resistance

R1, the inductance L1, and the capacitance C1 describe the mechanical properties of

the unloaded transducer in vacuum. If dielectric losses are significant, they can be

accounted for by an additional resistance R0 in parallel with the capacitance C0. A

mechanical load on the transducer can be incorporated in the circuit by a complex

impedance ZL
e in series with the elements R1, L1, and C1 in the series branch. If the

transducer is surrounded by a fluid, the mechanical load on the transducer is equal

to A(Z f
a +Zb

a )/α2
t , where the transformation factor αt is given by Eq. (2.204). In the

following, it is assumed that dielectric losses are negligible and that the transducer

is operated in vacuum without mechanical loading.

By the rules of network theory, the electric admittance of the equivalent circuit

can be found as

Ye = iωC0 +

R1 − i

(
ωL1 − 1

ωC1

)

R2
1 +

(
ωL1 − 1

ωC1

)2 . (2.205)
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Figure 2.8. Equivalent circuit model of a thickness expander mode piezoelectric trans-
ducer near resonances.

If the admittance is split up into real and imaginary parts, the equations for the

conductance and susceptance are obtained as

Ge =
R1

R2
1 + [ωL1 − 1/(ωC1)]2

(2.206)

and

Be = ωC0 − ωL1 − 1/(ωC1)

R2
1 + [ωL1 − 1/(ωC1)]2

. (2.207)

One way of describing the behavior of electric circuits is to plot the real and

imaginary parts of the admittance in the complex GB plane. By eliminating the

term ωL1 − 1/(ωC1) from Eqs. (2.206) and (2.207), the equation of the resonance

curve in the GB plane is found to be

(
G− 1

2R1

)2

+ (B − ωC0)
2 =

(
1

2R1

)2

. (2.208)

This equation represents a circle with the radius 1/2R1 and the center at (1/2R1, ωC0),

which is depicted in Fig. 2.9. The circle is completely formed by the circuit elements

of the series branch R1, L1, and C1 and represents the vibration of the crystal. The

term ωC0 results in a shift of the circle along the B axis and does not affect the

shape of the circle. The circle can be interpreted as a parameterized curve with ω

or f as a parameter. The direction of the parametrization is clockwise.

The series resonance frequency is the frequency at which the imaginary part of

the admittance of the series branch vanishes, and the parallel resonance frequency
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Figure 2.9. Parameterized resonance curve in the complex GB plane.

is the frequency at which the admittance of the circuit, which is formed solely by

the elements C0, C1, and L1 without R1, vanishes. In terms of the circuit elements,

the series resonance frequency is given by

f s
res =

1

2π

1√
L1C1

. (2.209)

and the parallel resonance frequency is given by

fp
res =

1

2π

√
C0 + C1

C0L1C1

. (2.210)

In the circle diagram, the series resonance occurs at the maximum of the conduc-

tance, and the point belonging to the parallel resonance is found as the intersection

of a straight line from the origin to the point of maximum conductance with the

circle.

Besides the series and parallel resonance frequencies, there are further character-

istic frequencies, as can be seen from the diagram. The series resonance frequency

is slightly larger than the frequency fmax, which belongs to the maximum of Ye,

and the parallel frequency is slightly smaller than the frequency fmin, which belongs

to the minimum of Ye. The resonance frequency fr and anti-resonance frequency

fa occur at the cuts of the circle with the G axis. These characteristic frequencies

cannot be excited and, therefore, bear no significance for the present work.

Two other useful quantities to describe the electrical behavior of piezoelectric

transducers are the quality factor Q and the bandwidth ∆f . The quality factor is
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defined as the ratio of the inductive or capacitive reactance and the resistance at

the series resonance of the series branch of the circuit and is given by

Q =
ωs

resL1

R1

=
1

ωs
resC1R1

. (2.211)

The bandwidth is defined as the difference between the frequencies at which

the susceptance has a minimum and a maximum or, equivalently, at which the

conductance takes half the value of the maximum value. From these conditions, the

bandwidth can be determined in terms of the circuit parameters as

∆f =
R1

2πL1

. (2.212)

With this result for the bandwidth, the quality factor can be represented by

Q =
f s

res

∆f
. (2.213)

It is the ratio of the series resonance frequency and the bandwidth. The bandwidth

can be interpreted as a measure for the losses of the transducer. Large quality

factors are usually desired, which describe transducers with small losses.
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3 The Speed of Sound Apparatus

This chapter describes the speed-of-sound apparatus developed during the course

of this work in detail. Central element of the apparatus is the acoustic sensor,

which materializes the pulse-echo measurement technique. The following section

introduces the measurement principle, and Sec. 3.2 describes the practical realization

of the acoustic sensor. The acoustic sensor resides in a pressure vessel, which is

thermostatted in a circulating liquid bath thermostat. The pressure vessel and

thermostat are described in Sec. 3.3, and Secs. 3.4 and 3.5 treat the temperature

and pressure measurement system, respectively. Sec. 3.6 presents the electronic

devices and circuitry for signal generation and detection.

3.1 Measurement Principle

The acoustic sensor employs a pulse-echo technique because this is the preferred

method to measure the speed of sound in liquids. Basic principle of this technique is

the measurement of the time of flight of a short sound signal over a precisely known

distance in the sample liquid. If the sound signal propagates as a plane wave, the

speed of sound is simply determined as the distance divided by the time the signal

needs to travel the distance.

In this work, a double path length type sensor was chosen, which was first devel-

oped by Muringer et al. [135] at the van der Waals Laboratory in Amsterdam in the

1980s. This sensor was used to measure the speed of sound in n-heptane. At the

same time, a similar sensor was described by Kortbeek et al. [93], also at the van

der Waals Laboratory, and applied to measure the speed of sound in compressed

argon [93], helium [94], nitrogen [95], and methane [96] under pressures up to 1000

MPa. More recently, similar instruments were developed by Ball and Trusler [12],

Benedetto et al. [20], and Pires and co-workers [146, 147, 148].

The measurement principle of the acoustic sensor is illustrated in Fig. 3.1. A

piezoelectric quartz crystal of diameter 15 mm with a resonance frequency of 8

MHz is mounted between two reflectors at distances of about L1 = 20 mm and

L2 = 30 mm to the reflectors. The crystal is excited with a sinusoidal burst signal

consisting of 60 to 100 cycles at its resonance frequency and radiates sound signals in

both directions into the sample liquid. At the reflector faces, they are partly reflected
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Figure 3.1. Measurement principle of the acoustic sensor.

and partly transmitted into the reflector material. The reflected signals travel back

to the crystal, which now acts as a receiver. Due to the different distances, the

echoes from the two reflectors arrive successively at the crystal, separated by a time

difference ∆t (dotted line in Fig. 3.1). With the assumption that the sound signals

propagate as ideal plane waves, the speed of sound is determined by

w =
2(L2 − L1)

∆t
. (3.1)

The chosen values for L1 and L2 ensure that the first and second received echoes

are clearly separated up to speeds of sound of 2000 m s, which is sufficient for most

liquids and compressed gases.

Having the sender and receiver as one and the same object between two reflectors

has significant advantages over other possibilities. First, the signals radiated by

the piezoelectric crystal in both directions in the sample liquid are exploited by the

measurement principle. Second, as the way the signal takes through the circuitry

and the mechanical branch of the sensor is the same for both signals except for the
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difference of the distances between the reflectors and the crystal, the distortion of the

signals and delay times in electronic devices and cables are equal for both signals

and therefore exactly cancel in the measurement of the time difference ∆t. This

cancellation simplifies the measurement analysis to a great extend. Moreover, the

crystal is in contact with the sample liquid at both major faces so that the acoustic

impedance of the medium at the front and back is the same. This situation is

favorable when the crystal is operated as a receiver because with the same medium in

the front and back the reflection coefficient of the crystal takes the smallest possible

value under resonance conditions (see Sec. 2.6.3). In practise, the propagation of the

sound signals in the sample liquid deviates slightly from ideal plane wave propagation

due to diffraction effects. Therefore, a small correction has to be applied to the

measured time difference, which will be described in Sec. 4.2.

For the measurement of the time difference, the original method suggested by

Kortbeek et al. [93] is modified. At a time ∆t after the first burst signal, the piezo-

electric crystal is excited by a second burst signal (dashed-dotted line in Fig. 3.1).

The second signal has the same shape as the first signal, but the sign is reversed and

the amplitude is reduced to account for sound attenuation. The time interval ∆t

and the amplitude of the second burst are adjusted so that the first echo from the

second signal exactly cancels the second echo from the first signal. This cancellation

can very accurately be monitored on an oscilloscope screen. If complete cancella-

tion is achieved, the time difference between the two emitted signals equals the time

difference between the arrival of the first and second echoes of the first signal at the

crystal.

Figure 3.2. Shape of a typical received echo signal for a measurement in a water-like
liquid.
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Fig. 3.2 depicts an example of a typical received echo signal for a measurement in

a water-like liquid. In this example, the transducer was excited by 30 sinus cycles.

The signal consists of three different regions: A short transient region at the start,

where the vibration amplitude increases until the maximum amplitude is reached, a

long intermediate region, where the signal amplitude has reached its maximum value

and is nearly constant, and a transient region at the end, where the amplitude decays

to zero. The cancellation of the echoes is observed in the intermediate region, where

the maximum amplitude is reached. In compressed gases, the transient regions at

the start and end of the signals become longer due to the lower mechanical load.

3.2 Acoustic Sensor

Figure 3.3. Cut through the acoustic sensor.

The acoustic sensor consists of four main parts as shown in a cut through the

sensor in Fig. 3.3. All parts of the sensor are made of the highly corrosion resistant

stainless steel 1.4571. The partition of the sensor is chosen in the reflector planes

and in the center of the sensor in the plane where the crystal is mounted so that

these surfaces are easy to access during manufacturing. In order to achieve optimal

parallelism between the reflector planes and the crystal, the end planes of the four

parts were finely finished on a lathe. After that they were subject to a heat treatment

to remove self stresses in the material and to recrystallize the steel structure (one

hour at 1050 ◦C in vacuum). In the last manufacturing step, all planes were lapped

to a mirror-like finish. The parts of the sensor are held together by stainless steel

screws (material: 1.4301). Blind holes are connected to the surrounding sample
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liquid by small holes so that the blind volumes can easily be evacuated. Both end

faces of the sensor are equipped with conical reflecting surfaces. The opening angle of

the cones was optimized so that signals transmitted into the reflector are damped in

the reflector material by multiple reflections at the side walls of the reflector. With

this feature, disturbing signals from reflections at the rear faces of the reflectors

could be reduced to a negligible level.

1
0

m
m

1
5

m
m

electrode (gold)

Figure 3.4. Geometry of the piezoelectric crystal electrodes.

The piezoelectric crystal has a diameter of 15 mm and is about 0.358 mm thick.

Both faces are partially coated by gold electrodes, whose shape is depicted in Fig. 3.4.

The main area of the electrodes has a diameter of 10 mm, and small contact areas

are lead to the outer edges of the crystal with an offset angle of about 180 degrees

on both sides. With this geometry, only the inner area of the crystal with 10 mm

diameter is acoustically active. The reasons for the dimensioning will be discussed in

Sec. 4.2, where diffractions effects in the sound field of the sensor will be examined.

Electrical connections to the electrodes are made by small forks, which are clamped

on the crystal in the regions of the contact areas. The crystal is held on the center

plane of the sensor by four small stainless steel tabs in the outer electrode-free region.

One electrode is connected to ground potential via the stainless steel parts of the

acoustic sensor. The second electrode is lead to the exterior of the pressure vessel

by a high pressure electrical feed through (see Sec. 3.3). The connection to the feed

through is provided by a nickel wire, whose ends are welded to the contact fork and

to the stainless steel wire of the electrical feed through.

Figs. 3.5 and 3.6 show photos of the sensor. In Figures 3.5a and 3.5b, both sides

of the sensor with the high-potential and grounded electrodes are shown. Fig. 3.6

additionally shows the sensor as mounted at the closure of the pressure vessel and

the nickel wire used to lead the signal to the exterior of the pressure vessel. The

sensor is mounted at the closure of the vessel for easy access when opening the vessel.

The required sample volume amounts to about 0.25 liters, which includes the inner

volume of all high-pressure parts of the system.
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Figure 3.5. Photo of the acoustic sensor. a) high-potential electrode visible, b) grounded
electrode visible.

Figure 3.6. Photo of the acoustic sensor mounted at the closure of the pressure vessel
with electrical connections.

3.3 Thermostat and Pressure Vessel

The thermostat of the speed of sound apparatus is depicted in Fig. 3.7. The acoustic

sensor resides in the pressure vessel, which is filled with the sample liquid. The

pressure vessel is mounted in the center of a circulating liquid bath thermostat.

An inclined blade stirrer mounted above the pressure vessel provides an downwards
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Figure 3.7. The circulating liquid bath thermostat.

directed flow in the center of the thermostat and a upwards directed flow in the

outer ring volume, which is formed by a cylindrical baffle plate and the cylindrical

surface of the thermostat container. The pressure vessel is placed below the stirrer,

where the thermostatting fluid1) is optimally mixed to ensure homogeneity of the

temperature field in the vessel. In order to avoid splashing of the thermostatting

liquid and formation of a rotation paraboloid, a circular plate is mounted above the

stirrer, and radial baffle plates ensure that the flow is directed radially towards the

outer ring volume in the upper part of the thermostat.

In the upper part of the ring volume, the thermostatting liquid passes along heat

exchanger pipes, which form part of the secondary circuit of a liquid bath cryostat

(Lauda, type KRYOMAT RUK 90) filled with ethanol. In the lower part, the fluid

flows along electrical heaters, which are used for temperature control above ambient

temperature and for fine tuning the temperature below ambient temperature. The

1) Silicone oil, Lauda, type Thermo 180 (above ambient temperature) and Kryo 85 (below ambient
temperature).
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electrical heater is operated by a PID controller (Julabo, type LC 6). The controller

thermometer measures the temperature in the thermostatting liquid in the region

below the stirrer, where the liquid is optimally mixed. The apparatus is operated

in an air-conditioned laboratory room, in which the temperature is kept constant

within 1 K over a day. During the course of the measurements, it was found that

the temperature set by the PID controller drifted by up to 15 mK over a day. In

order to avoid this drift, the controller was placed in an air-conditioned isolated

wooden box, in which the temperature was kept constant at 25 ◦C within 0.1 K.

With this control mechanism, the temperature inside the pressure vessel was kept

constant within 0.5 mK over a few hours, which ensures that the temperature is

constant in the pressure vessel for at least the time it takes to measure the speed of

sound at one state point. The temperature is measured by a Pt25 sensor (Chino,

type R800-2) in the upper part of the wall of the pressure vessel (see Fig. 3.7).

Furthermore, a second Pt25 sensor (Tinsley, type 5187SA) and several industry-type

Pt100 sensors are used to measure the temperature in the thermostatting liquid in

the immediate vicinity of the pressure vessel. The temperature in the region of the

speed of sound measurement in the sample liquid is assumed to be equal to the

temperature measured by the Pt25 sensor in the wall of the pressure vessel.

The pressure vessel is shown in Fig. 3.8. Its body and the parts of the closure are

fabricated of stainless steel type 1.4418. The sealing of the closure is provided by a

polymer seal. First, o-rings of different materials (NBR, Viton, silicone encapsulated

by FEP) were used. With water as a sample liquid, NBR o-rings could be used over

a wide temperature range between 273 K and 353 K and pressures up to 100 MPa.

However, with the other liquids examined in this work (propane, propene, partially

flourinated hydrocarbons), NBR and Viton o-rings dissolved in the sample liquid

causing the speed of sound of the sample to change with time. In this case, silicone

o-rings encapsulated by the highly chemically resistant polymer FEP proved to be

more suitable. However, after being subject to 100 MPa for a few times, they had to

be exchanged because the FEP protection had been deformed and extruded into the

free space behind the o-ring and small gaps between the pressure vessel body and the

closure. Second, special sealing rings were tested, which consist of a stainless steel

spring with c-shape cross section, whose outer face is encapsulated by PTFE. The

spring ensures that the PTFE encapsulation is always tightly pressed against the

faces of the groove, even during evacuation. Furthermore, the sample liquid enters

the inner volume of the ring and supports the sealing under pressure. With this

sealing ring, the most chemically resistant and most durable sealing was achieved.
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Figure 3.8. Cut through the pressure vessel with the acoustical sensor.
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Figure 3.9. Cut through the electrical feed through in the closure of the pressure vessel.
a) Homemade feed through; b) Commercial feed through (SITEC, type 770.8350).

The pressure vessel is connected to ground potential. Since one electrode of the

piezoelectric crystal is connected via the acoustic sensor to the pressure vessel, the

pressure vessel acts as an electric shield against external noise. The other electrode

has to be connected to the center conductor of a coaxial cable at the exterior of

the pressure vessel, which connects the acoustic sensor to the signal generation and

detection devices. For the transmission of the signal through the closure of the

pressure vessel, an electrical feed through is required. Constructive solutions for

this problem are described in the literature [155, 168] or are commercially available.

In the first instance, the feed through described by Straty [168] was adopted and

modified. A cut through the feed through is shown in Fig. 3.9a. The conductor

is a stainless-steel wire of diameter 0.5 mm. A PTFE part with conical shape on

both ends provides the electrical insulation and the high-pressure seal. At both

ends, conical supports made of PCTFE, which has better mechanical properties

than PTFE, prevent the PTFE from extruding under the high-pressure load. The

PCTFE parts have small tubes at their ends, which serve as insulations between the
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stainless-steel wire and the grounded closure of the pressure vessel.

The liquid-filled interior of the pressure vessel and the feed through present a

large capacitance to the electric signal. Since, at the operation frequency of 8 MHz,

high-frequency effects already play a dominant role, the electric impedance of the

whole arrangement comprising the pressure vessel, acoustic sensor, and feed through

must match the impedance of the coaxial cable, which connects the feed through

with the devices for signal generation and detection. Since the coaxial cable must

withstand the temperature in the thermostat, the cable type RG 188 with PTFE

dielectric and jacket was chosen. The characteristic wave impedance of this cable

type is 50Ω. In order to match the impedance of the cable, an inductance, which

compensates for the large capacitance of the pressure vessel, is placed between the

center conductor of the cable and the wire of the feed through. The value of the

inductance is optimized manually so that the signal amplitude takes its highest

possible value. For the optimization process, the pressure vessel was filled with

liquid water and mounted in the thermostat in its final position.

The inductance for impedance matching is located as close as possible to the

inner wall of the closure just at the outer end of the electrical feed through so that

the cable ends as close as possible to the piezoelectric crystal. The inductance is

soldered to the center conductor of the cable at one end and to the center conductor

of a standard SMA connector at the other end. The whole arrangement is housed

in a small tube, which is held by a hollow screw in the closure of the pressure vessel.

The screw assures that the connector is plugged into the stainless-steel wire of the

feed through and that the outer conductor of the cable is connected to the grounded

closure of the pressure vessel.

This electrical feed through was used for the water, propane, propene and R227ea

measurements. It provided a tight seal at high temperatures up to 420 K and under

pressures up to 100 MPa, but sometimes it failed at low temperatures (240 K, 260

K). Moreover, after being subject to 420 K and 100 MPa for a few times, the tube

end of the inner PCTFE part had extruded and the nickel wire had been shifted

towards the suspension of the acoustic sensor. In the worst case, short circuits

occurred.

Second, a commercially available electrical feed through was used (SITEC, type

770.8350), which is also shown in Fig. 3.9. The conductor is made of stainless steel,

and the insulation and sealing is provided by a heat shrinkable PTFE tubing. The

stainless steel conductor has a conical extension at the high pressure side, which

is pressed in a conical depression of the same shape in the closure of the pressure
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vessel by fastening the nut at the exterior of the feed through. Since the vertex of

the cone is directed outwards, the high pressure inside the pressure vessel acts upon

the bottom of the cone and supports the sealing. The inductance for impedance

matching is arranged in a similar way as for the homemade feed through between

the conductor of the feed through and the center conductor of the cable.

The nitrogen and R365mfc measurements were carried out with the commercial

feed through. After being subject to 100 MPa pressure for about 10 times, the PTFE

tubing had extruded outwards, and short circuits occurred. Then, the feed through

had to be demounted, and the tubing had to be renewed. Sometimes the sealing

failed, especially when the apparatus was cooled from a high to a low temperature.

However, in such cases, it was often possible to restore the sealing by imposing it to

high pressure. With the commercial feed through, longer durabilities over the whole

temperature range of the apparatus could be achieved.

3.4 Temperature Measurement System

The resistances of the thermometers are measured with an alternating current bridge

system, which consists of the bridge (ASL, type F18), a multi-channel switch box

(ASL, type SB148/SB158), and a reference resistor module (ASL, type FR4) with

four resistors with resistance values of 10 Ω, 25 Ω, 100 Ω, and 300 Ω. The resistors

are housed in a thermostat, with which the temperature of the resistors is kept

constant at 30 ◦C.

The two Pt25 sensor were calibrated at the national metrology institute, the

PTB in Berlin, according to the ITS-90 [150], and the Pt100 sensors were calibrated

against the Pt25 sensors. The reference resistors were calibrated at the PTB in

Brunswick. In order to keep long term drift and hysteresis effects of the resistances

to a minimum, the resistors were permanently kept at constant temperature by the

built-in thermostat from the calibration procedure on, during the transport from the

PTB to the laboratory room and all measurements undertaken during the course

of this work. The bridge measures the ratio of the thermometer resistance and the

reference resistance. The resistances of the Pt25 sensors were measured with the

100 Ω reference resistors and the resistances of the Pt100 sensors with the 300 Ω

reference resistors.

The total uncertainty of the temperature measuring chain consists of the uncer-

tainty of the thermometer calibration, the uncertainty of the reference resistors and

the uncertainty of the measurement of the resistance ratio. The uncertainties of
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the thermometers and the reference resistors are taken from the PTB calibration

certificates. The absolute uncertainty of the Chino Pt25 thermometer amounts to

1.5 mK between -40 ◦C and 30 ◦C (2.0 mK between 30 ◦C and 420 ◦C), and the

relative uncertainty of the 100 Ω resistor is 4 · 10−7. The absolute uncertainty of

the resistance ratio measurement is reported in the factory calibration certificate of

the bridge and amounts to 1 · 10−7. This corresponds to an uncertainty of about 0.1

mK in the temperature measurement. The absolute uncertainty of the temperature

measuring chain adds up to 1.7 mK (2.2 mK). The total uncertainty of the temper-

ature measurement must additionally include the stability of the temperature in the

thermostat, which is estimated to be better than 0.5 mK, and the homogeneity of

the temperature field inside the pressure vessel. Thus, the total absolute uncertainty

of the temperature inside the pressure vessel uT is estimated to be better than 3

mK over the whole temperature range covered by the apparatus.

3.5 Pressure Measurement and Filling System

Figs. 3.10 and 3.11 depict the sample liquid and nitrogen branches of the pres-

sure measurement and filling system. The different components of the system are

connected by a high-pressure tubing system2). The two branches of the tubing sys-

tem are coupled by a differential pressure indicator (DPI). One branch contains the

sample liquid, and serves for filling the pressure vessel with the sample liquid and

setting the pressure in the pressure vessel. The other branch is filled with nitrogen

and couples the pressure measurement devices to the sample liquid via the DPI.

Before the sample liquid is filled into the apparatus, the pressure vessel and the

tubing system are evacuated. A rotary slide-valve vacuum pump (Pfeiffer, type DUO

10) is connected to the high-pressure tubing system by a vacuum tubing system. In

order to prevent oil vapor from the vacuum pump from entering the high-pressure

tubing system and the pressure vessel, a cold trap operated with liquid nitrogen

is located in the vacuum system near the vacuum pump. During evacuation, the

pressure is measured near the transition piece between the vacuum and high-pressure

tubing system by a Pirani gauge (Pfeiffer, type TPR 261). The filling process is

started after the pressure has decreased below 0.05 Pa. Usually this state is reached

after evacuating the system for about an hour. Since, in this pressure range, the fluid

flow in the high-pressure tubes is in the molecular flow regime, the remaining fluid

particles in the high-pressure side of the system are no longer transported towards

2) SITEC, type Micro 1000 bar, internal tube diameter: 2.4 mm.
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Figure 3.10. The sample liquid branch of the pressure measurement and filling system.

the vacuum pump by the pressure gradient. For this reason, the pressure in the

pressure vessel and the high pressure tubes remains of the order 1 Pa and decreases

only extremely slowly. In this pressure regime, the ideal gas equation of state can

be applied to estimate the mass of the fluid remaining inside the system, which has

an internal volume of approximately 0.25 liters. If it is assumed that the remaining

fluid is air, the mass in the system is about 3.5 · 10−9 kg at the temperature 293 K,

which is negligibly small compared with a sample mass of about 0.25 kg, when the

system is filled with liquid water at ambient temperature and pressure.

In order to fill the sample liquid into the apparatus, the sample container is

heated by a temperature controlled heating pad wrapped around it. When the vapor

pressure in the container is higher than the vapor pressure of the sample liquid at the

highest temperature in the liquid branch of the tubing system, the pressure difference

between the container and tubing system ensures that sample liquid streams into the

apparatus. The sample liquid can then be pressurized within the apparatus up to

100 MPa with a variable-volume hand pump (SITEC, type 750.1100). If additional
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Figure 3.11. The nitrogen branch of the pressure measurement and filling system.

sample liquid must be refilled to reach the highest pressures, the pressure vessel and

the liquid branch of the differential pressure indicator cell can be disconnected by

closing valves V3, V4, and V5, and the pressure in the hand pump can be reduced

below the vapor pressure in the heated sample container. Then sample liquid can

be refilled into the internal volume of the hand pump. After that the sample liquid

in the hand pump can be pressurized again and the valves V3, V4, and V5 can be

opened.

The pressure inside the pressure vessel is measured by two nitrogen operated

pressure balances with measurement ranges 5 MPa (Degrange & Huot, type DPG5)

and 100 MPa (Degrange & Huot, type 5203). The nitrogen branch of the system is

coupled to the liquid branch by a differential pressure indicator (Ruska, type 2413-

705). The differential pressure indicator cell consists of two conical chambers, which

are separated by a thin stainless steel diaphragm. At the top side of the diaphragm,

the movable core of a differential transformer is welded on. The transformer yields

an electrical signal once a pressure difference between the two chambers occurs. This

signal is evaluated by an indicator. If the indicator is calibrated to zero with equal

pressures on both sides of the membrane, it can be used to adjust the pressures

in the nitrogen and in the liquid branch. In the nitrogen branch, pressures higher

than the nitrogen container pressure are generated by a pneumatically controlled
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compressor (Maximator, type DLB 75-2-GG). Fine adjustment of the pressure is

made by the built-in variable-volume hand pump of the pressure balance and an

additional hand pump (Degrange & Huot, type 42302).

The basic component of a pressure balance is a piston-cylinder system, in which

an oil-lubricated piston rotates within a cylindrical cavity. The pressure is measured

by balancing the force of the nitrogen pressure acting upon the bottom face of the

piston and the gravitational force of calibrated masses acting upon the top of the

piston to static equilibrium. The pressure is then obtained as

pPB =

gloc

n∑
i=1

mi(1 + ρair/ρm)

Ap(p, ϑ)
, (3.2)

where gloc is the local gravitational acceleration in the laboratory room, the mi

denote the masses on the pressure balance, and Ap is the area of the piston face.

The term in the parentheses represents the correction for the buoyancy of the masses

in the air of the laboratory room. In this term, ρair is the density of air, and ρm is

the density of the stainless steel masses.

The piston area changes with temperature and pressure so that small corrections

have to be applied:

Ap(p, ϑ) = Ap(p0, ϑ0)[1 + (αcyl + αp)(ϑ− ϑ0)][1 + λp(p + p0)]. (3.3)

In this equation, A0 denotes the piston area at the reference state (ϑ0 = 20 ◦C, p0 =

1 bar), αcyl and αp are the thermal expansion coefficients of the cylinder and the

piston, respectively, and λp is the pressure coefficient.

When Eq. (3.3) is inserted into Eq. (3.2), a quadratic equation for the pressure

results, which has the solution

pPB =
1

2λp

(
−1 +

√
1 + 4λp[1 + (αcyl + αp)(ϑ− ϑ0)]

)
. (3.4)

The values of the masses, the piston area and the pressure coefficient for the

two pressure balances were determined by a calibration at the PTB in Brunswick.

The local gravitational acceleration gloc in the laboratory room was determined

experimentally by the Institute of Geophysics at the University Hamburg to gloc =

9.8137627 m s−2 with an uncertainty ug = 1 ·10−7 m s−2 [37]. The pressure measured

by the balances is the pressure in the system minus the ambient pressure, which has

to be added to obtain the total pressure in the system. The ambient pressure in
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the laboratory room is measured at the geodesic head of the pressure balances by a

capacitive pressure transducer (Vaisala, type PTB220).

As the pressure balances and the acoustic sensor are located at different geodesic

heads in the laboratory room, the pressure measured by the pressure balances differs

from the pressure in the pressure vessel. In order to obtain the pressure in the

pressure vessel, a correction must be applied. The hydrostatic pressure difference

between two points in a fluid at different geodesic heads is generally given by

∆phydro = ρgloc∆h, (3.5)

where ρ is the fluid density and ∆h denotes the difference between the geodesic

heads.

∆h = 238 mm2

T = T = 1 KH T, u

DPI diaphragm

transfer tube

thermostat

acoustic sensor

∆h = 448 mm1

T = T = 0.5 Kamb T, u

∆h = 404 mm3

T = T = 15 mKT T, u

Figure 3.12. Separation of the pressure transfer system for the calculation of the hydro-
static pressure correction.

The pressure balances and the ambient pressure transducer are placed at the same

geodesic head as the diaphragm of the differential pressure indicator cell so that no

hydrostatic pressure correction is required for the nitrogen branch of the system and

the ambient pressure measurement. For the sample liquid branch, the hydrostatic

pressure correction is separated into three contributions, which correspond to three

regions with different temperatures as shown in Fig. 3.12. The tubes inside the

thermostat have the same temperature as the pressure vessel (uncertainty: uT =

15 mK). If the thermostat temperature is higher than the ambient temperature

the high pressure tubes above the thermostat are heated by electrical heaters at a

temperature slightly larger than the thermostat temperature (uncertainty: uT = 1
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K). If the thermostat temperature is lower than the ambient temperature, the tubes

above the thermostat are kept at ambient temperature. The tube leading down

to the differential pressure indicator is also at ambient temperature. The ambient

temperature was measured by a simple mercury thermometer (uncertainty: uT = 0.5

K). The differences between the geodesic heads were measured with an uncertainty

u∆hi
= 1 mm. The hydrostatic pressure correction becomes

∆phydro = gloc[−ρ(Tamb, p)∆h1 + ρ(TH, p)∆h2 + ρ(TT, p)∆h3], (3.6)

and the pressure is given by

p = pamb + pPB + ∆phydro. (3.7)

The total uncertainty of the pressure measurement is the sum the the uncertain-

ties of the three contributions upamb
, upPB

, and u∆phydro
and the uncertainty of the

pressure transmission by the differential pressure indicator uDPI.

The uncertainty of the pressure balances upPB
are reported in the PTB calibra-

tion certificates3). The ambient pressure transducer was calibrated by the man-

ufacturer, and the uncertainty of the ambient pressure measurement is reported

in the calibration certificate as upamb
= 7 Pa. According to the specifications of

the manufacturer, the uncertainty of the differential pressure indicator is given by

uDPI = max(70 Pa, 5 · 10−6p) after calibration of the zero position of the indicator.

The uncertainty of the hydrostatic pressure correction consists of several con-

tributions, which are due to the uncertainty of the local gravitational acceleration

ug, the uncertainty of the measured differences between the geodesic heads u∆hi
,

and the uncertainty of the density of the sample fluid uρ. The uncertainty of the

density generally depends on the accuracy of the equation of state, from which it is

calculated. Since for all measured fluids accurate equations of state were available

or became available during the course of this work, the uncertainty of the density is

conservatively estimated to be 0.1 %. For some fluids, for example water, it is even

much better than 0.1 %. The uncertainty of the local gravitational acceleration can

be neglected because it is several orders of magnitude smaller than the uncertainties

of the other variables. The influence of the remaining variables on the hydrostatic

pressure correction must be estimated by the error propagation law and is given by

u∆phydro
≈

(
∂∆phydro

∂ρ

)
uρ +

∑
i

(
∂∆phydro

∂∆hi

)
u∆hi

, (3.8)

3) The uncertainty upPB is given by (0.27 ·10−5 bar2 +0.16 ·10−8p2
PB +0.42 ·10−15 bar−2 ·p4

PB)1/2

for the Degranges & Huot 5203 pressure balance and by (1.6 · 10−7 bar2 +1.6 · 10−9p2
PB)1/2 for

the Degranges & Huot DPG5 pressure balance.
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where it has been assumed that the uncertainties are due to systematic measurement

errors.

The uncertainty of pressure measurements is usually reported in terms of the

relative uncertainty εp, which is therefore also used here. The relative uncertainty

of the pressure measurement system with resolution of the different contributions

to the total uncertainty is shown for both pressure balances in Fig. 3.13. The main

contribution to the uncertainty is due to uncertainty of the pressure balances with

constant magnitude of about 0.0045 % over large parts of pressure range of the

apparatus. At pressures above 10 MPa, the uncertainty of the differential pressure

indicator contributes 0.0005 %, while the contributions due to the uncertainty of

the ambient pressure measurement and of the hydrostatic pressure correction are

negligible. Thus, the total uncertainty of the measured pressures above 10 MPa

is 0.005 %. At lower pressures, the relative uncertainties of the ambient pressure

measurement, the hydrostatic pressure correction, and the differential pressure in-

dicator increase because their absolute uncertainty is constant. At pressures below

1 MPa, the relative uncertainty of the pressure measurement can be as high as 0.02

%, mainly due to the uncertainty of the transmission of the pressure by the DPI

and the uncertainty of the pressure balances, but it decreases to about 0.006 % at

5 MPa. Since the D&H 5203 pressure balance has a constant absolute uncertainty

of 430 Pa below 10 MPa, the uncertainty of the pressure measurement decreases

between 5 MPa and 10 MPa from 0.01 % near 5 MPa to 0.005 % at 10 MPa.
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Figure 3.13. Contributions to the relative measurement uncertainties of the pressure for
the pressure balance DPG5 (left) and for the pressure balance 5203 (right). In both cases,
the sample liquid is propane at 260 K.
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3.6 Signal Generation and Detection

Oscilloscope

Switch

Puls- and delay

generator

Function

generator

GPI-Bus

GPS receiver DS345

DG535

TDS520D

Limp

GPS167

Data acquisition

computer

Figure 3.14. Arrangement of electronic devices and circuitry for signal generation and
detection.

Fig. 3.14 depicts the arrangement of the electronic devices and circuitry for sig-

nal generation and detection. The arbitrary wave function of a function generator

(Stanford Research Systems, type DS345) with a sampling frequency of 40 MHz

is employed to generate the electric signals, with which the piezoelectric crystal is

excited. The points of the signals are calculated on the data acquisition computer

and transferred into the internal memory of the function generator via the GPIB

interface of the computer. The function generator generates a digitized signal, which

is transformed into an analog signal by a built-in low pass filter at the output of the

function generator. The function generator also triggers a pulse and delay generator

(Stanford Research Systems, type DG535) and a digital storage oscilloscope (Tek-

tronix, type TDS520D), on which the signal cancellation is monitored. The function

generator itself is triggered by the internal trigger rate generator with a repetition

rate of 10 Hz. With this repetition rate it is ensured that all echoes from the pre-

vious experiment have decayed to a negligible level. The pulse and delay generator
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is employed to control an electronic switch (Mini-Circuits, type ZYSWA-2-50DR,

absorptive), which either directs the generated signal towards the acoustic sensor

or, in the other position, directs the received pulse-echo pattern to the oscilloscope.

A GPS (Global Positioning System) receiver with roof antenna (Meinberg, type

GPS167TGP) serves as a frequency standard. It is equipped with a oven-controlled

rubidium oscillator, which is frequency-locked to the received GPS signal, and deliv-

ers several highly accurate 10 MHz TTL compatible square wave reference signals,

which are connected to the time bases of the function and pulse and delay gener-

ators. When the receiver is synchronized to the GPS system, the frequency of the

10 MHz reference signals, and thus the frequency of the time basis of the function

generator, has a relative uncertainty of 1 · 10−12.

All electronic devices are connected by standard RG58 coaxial cables with 50 Ω

characteristic wave impedance. At the operating frequency of 8 MHz, high frequency

effects already become important and must be taken into account. This means that

all impedances the signal passes on its way through the system must match the

50 Ω characteristic wave impedance of the cables. Therefore, the input resistance

of the oscilloscope is set to 50 Ω. Furthermore, the complex impedance of the

mechanical part of the system, formed by the acoustic sensor, the pressure vessel

and the electrical feed through, must be transformed close to the real impedance of

50 Ω. This is achieved by placing an inductance as close as possible at the exterior

of the pressure vessel between the center conductor of the cable and the conductor

of the electrical feed through as was described in Sec. 3.3.

With an excitation signal of 4 V peak-to-peak amplitude – the signal amplitude

is limited to 5 V peak-to-peak due to the electronic switch –, the amplitude of the

first two echoes of the received pulse-echo pattern is about 20 to 40 mV depending

on the sample liquid and the pressure and temperature of the state point. If the

amplitude of the received signal is not large enough to observe the cancellation with

high resolution, an amplifier (amplifier research, type 1W1000A) is placed between

the switch and the oscilloscope. This is particularly required at supercritical low

density states, where the sound signals in the sample fluid are strongly attenuated.

With the amplifier, the signal amplitude is increased by a factor of about 60.

For the generation of the signal cancellation, the time difference between the

two generated bursts is adjusted manually in the data acquisition software and

transferred to the function generator so that changes in the received signal can be

observed immediately on the oscilloscope screen. The cancellation of the signals can

be observed with high accuracy so that a resolution of at least 5 ppm in the measured
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time difference is achieved. Since the cancellation depends on the amplitudes, but

not on the time difference between the two signals, the resolution increases with

larger time differences, that is with decreasing speeds of sound, and is as small as 1

ppm at time differences of 50 µs. Since the relative uncertainty of the frequency of

the time basis of the function generator is by some orders of magnitude smaller than

the resolution of the time difference measurement, the uncertainty of the measured

time difference is essentially equal to the resolution.

The data acquisition computer is used to perform the time, temperature and

pressure measurements and to store the measured data digitally. The function gen-

erator and the ASL bridge system are connected to the data acquisition computer

via a GPIB interface, while the ambient pressure transducer and the pressure bal-

ance DPG5 are connected via serial RS232 interfaces. The data acquisition software

was developed within the graphical programming environment Labview (National

Instruments, Version 6i).
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4 Measurement Analysis

If the acoustic sensor were perfectly rigid and the sound signals propagated as plane

waves, the working equation for the determination of the speed of sound would be

given by

w =
2(L2 − L1)

∆t
=

∆L

∆t
.

In practice, there are small deviations from this simple model, which must be ac-

counted for in the analysis of the measurements. The stainless steel material of the

acoustic sensor and the piezoelectric crystal expand and contract with temperature

and are compressed under pressure, changing the distances between the crystal and

the reflectors. Moreover, the propagation of the sound signals deviates from plane

wave propagation because of diffraction of the emitted signals at the edges of the

acoustically active area of the crystal. This effect results in measured time differ-

ences which are smaller than in the case of plane wave propagation. Additionally,

if the fluid is dispersive, the measured speeds of sound must be corrected to the

thermodynamic speeds of sound. This latter correction generally depends on the

fluid and therefore will be discussed individually for each measured fluid in Chap. 5.

The behavior of the sensor material and the piezoelectric crystal under the influ-

ence of temperature and pressure is described in the following section and a diffrac-

tion correction for the time difference is developed in Sec. 4.2. Sec. 4.3 describes

the determination of the acoustic path length ∆L by calibration measurements in

pure liquid water at ambient pressure. Based on this acoustic model of the sensor

and on the calibration measurements, an estimate for the uncertainty of the speed

of sound measurement is derived in Sec. 4.4. Sec. 4.5 reports measurements of the

speed of sound in liquid water under pressure, which were carried out to validate

the apparatus.

4.1 Variation of the Acoustic Path Length with Tempera-

ture and Pressure

The frame for modelling thermal expansion and deformation of a solid under pressure

is provided by continuum mechanics [25, 171]. As the material of the acoustic
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sensor and the piezoelectric crystal is deformed only elastically in the temperature

and pressure range of the apparatus, linear elastic theory can be applied. The

deformation of a solid is described in terms of the strain S = δL/L0, which measures

the change of the length δL relative to the length L0 at a reference state with

temperature T0 and p0. Here, the state (T0 = 273.15 K, p0 = 0.1 MPa) is chosen as

the reference state.

Changes of the acoustic path length with temperature and pressure can be cal-

culated by

∆L(T, p) = [∆L(T0, p0) + Lc(T0)]

[
1 + αAS

th (T − T0) +
1

E
(1− 2ν)(p− p0)

]

−Lc(T0)[1 + αc
th(T − T0)], (4.1)

where αAS
th and αc

th represent the thermal expansion coefficients of the sensor material

and the piezoelectric crystal, Lc is the thickness of the crystal and E and ν are the

elastic modulus and the Poisson number of the sensor material.

The change of length due to thermal expansion is described by the average thermal

expansion coefficient αth. The differential thermal expansion coefficient βth is defined

by

βth =

(
∂S(T )

∂T

)

p

, (4.2)

and the average thermal expansion coefficient αth is obtained by integrating βth

between T0 and T as

αth :=
1

T − T0

T∫

T0

βth(T ) dT. (4.3)

Values for the elastic modulus and the Poisson number of the sensor material,

the stainless steel 1.4571, are taken from the database FEZEN [72]. The Poisson

number is ν = 0.3, independent of temperature. The reference values for the elastic

modulus as a function of temperature are summarized in Table 4.1. For practical

calculations, the temperature dependence of E is represented by a linear fit of the

form

E(T ) = e0 + e1

(
T

T0

− 1

)
(4.4)

to the data in Table 4.1. The values of the coefficients e0 and e1 are reported in

Table 4.2. The relative uncertainties of the elastic modulus εE as calculated from

Eq. (4.4) and of the Poisson number εν are estimated to be 5 %.
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Table 4.1. Reference data for the elastic modulus E, the average thermal expansion coef-
ficient αth between 0 ◦C and the given temperature, and the differential thermal expansion
coefficient βth of the stainless steel 1.4571 [72].

ϑ / ◦C E / 103 N/mm2 αth / 10−6 K−1 βth / 10−6 K−1

-100 206 14.9 13.3
0 198 16.0 15.8

20 196 16.1 16.1
100 190 16.7 17.2
200 182 17.2 18.1
300 174 17.7 18.8
400 166 18.1 19.5
500 158 18.4 20.1
600 150 18.8 20.7
700 142 19.1 21.3
800 134 19.4 21.9
900 127 19.7 22.4

1000 120 20.0 22.9

Table 4.2. Numerical values of the coefficients ei of Eq. (4.4), bi of Eq. (4.5), and ci of
Eq. (4.6) as obtained from polynomial fits.

i ei / 103 N/mm−2 bi / 10−6 K−1 ci / 10−6 K−1

0 197.9137 17.7656 13.0874
1 21.797 5.08059 7.2112
2 -3.7448 -0.87369
3 1.8672
4 -0.34148

The reference values for the thermal expansion coefficient from the database

FEZEN [72], which are also reported in Table 4.1, are not accurate enough to pre-

dict the thermal expansion of the sensor accurately because the properties of the

stainless steel may vary considerably depending on the charge it was taken from and

the conditions of the manufacturing processes it was subject to. In order to keep the

properties as close as possible to the reference specifications, all parts of the sensor

were subject to a heat treatment after the major steps of the manufacturing process

as was described in Sec. 3.2.

For the pre-analysis of the calibration measurements, the data for the differential

thermal expansion coefficient βth reported in Table 4.1 were represented by a fourth
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Figure 4.1. The differential thermal expansion coefficient of stainless steel 1.4571 as a
function of temperature.

order polynomial as

βth =
4∑

i=0

bi

(
T

T0

− 1

)i

(4.5)

in the temperature range between 173 K (-100 ◦C) and 873 K (600 ◦C). The numer-

ical values of the coefficients bi are reported in Table 4.2, and the fitting function

together with the data from Table 4.1 is shown in Fig. 4.1. During the calibration

procedure, which will be described in Sec. 4.3, the coefficient b0 was adjusted so that

the temperature dependence of the speed of sound in liquid water at ambient pres-

sure is optimally represented by the calibration measurements. Since the working

temperature range of the apparatus (240 K to 420 K) is larger than the range of the

calibration measurements (274 K to 368 K), the thermal expansion coefficient must

be extrapolated below 273 K and above 368 K. Therefore, the higher coefficients of

the polynomial, which especially describe the nonlinear behavior below 273 K, are

retained unchanged as obtained from the fit after the calibration.

The thermal expansion coefficient of α-quartz as a function of temperature was

reported by Brice [26]. Since α-quartz is a crystalline material with different proper-

ties in different spatial directions, the thermal expansion coefficient depends on the
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Table 4.3. Reference data for the differential thermal expansion coefficient β⊥ perpen-
dicular and β‖ parallel to the optical Z-axis as reported by Brice [26].

ϑ / ◦C β⊥th / 10−6 K−1 β
‖
th / 10−6 K−1

-100 10.3 4.9
-50 11.8 6.0

0 13.1 7.0
25 13.7 7.5

100 15.6 8.8
200 17.9 10.4
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Figure 4.2. The differential thermal expansion coefficient of α-quartz perpendicular to
the optical Z-axis as a function of temperature.

orientation, in which the crystal is cut from the raw material. Table 4.3 presents the

data reported by Brice for the differential thermal expansion coefficient of α-quartz

in the directions perpendicular and parallel to the Z-axis. The relative uncertainties

of the data were estimated by Brice to be lower than 2 %. For an X-cut α-quartz,

which is applied in the acoustic sensor, the thermal expansion parallel to the X-axis,

that is perpendicular to the Z-axis, contributes to the acoustic path length.
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Therefore, the data for β⊥th were fitted to a second order polynomial of the form

βc
th = β⊥th =

2∑
i=0

ci

(
T

T0

− 1

)i

. (4.6)

The numerical values of the coefficients are also reported in Table 4.2, and the data

and the fitted polynomial function are depicted in Fig. 4.2. The compression of the

quartz crystal under pressure is neglected because it contributes only little to the

total change of the acoustic path length.

With the temperature dependent elastic modulus and thermal expansion coeffi-

cient of stainless steel 1.4571, Eqs. (4.4) and (4.5), and the temperature dependent

thermal expansion coefficient of α-quartz, Eq. (4.6), changes of the acoustic path

length can be calculated by Eq. (4.1). It is instructive to examine the magnitude

of influences of temperature and pressure. A temperature change of 20 K changes

the acoustic path length by about 0.03 %. The influence of the pressure is much

smaller, amounting to only 0.02 % for the highest measured pressures of 100 MPa.

4.2 Diffraction Effects

The working equation for the determination of the speed of sound with the acoustic

sensor, w = ∆L/∆t, is based on the assumption that the sound signals propagate

as plane waves in the sample fluid. However, diffraction due to the finite size of the

piezoelectric crystal, which generates the sound waves, cause deviations of the real

wave propagation from this simplified model. This effect results in small phase shifts

of the received echoes, which are evaluated in the measurement of the time difference

∆t, compared with plane wave propagation. In order to apply the simple working

equation correctly, a model must be developed, with which the difference between

the time differences of plane wave and real wave propagation can be estimated.

From a physical point of view, the sound field in front of a piezoelectric transducer

can be calculated by applying Huygens’ principle. Every point of the sound source is

viewed as a point source emitting an outgoing spherical sound wave. The field at an

arbitrary point in front of the source can then be constructed from a superposition

of the waves emitted from all points of the source by an integration over the surface

of the source.

If the surface of the sound source vibrated with a uniform amplitude distribution,

in a first approximation, the sound field in front of the source could be viewed as

composed of two contributions as illustrated in Fig. 4.3. In front of the center of
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Figure 4.3. Contributions to the sound field in front of a piezoelectric disk.

the source, the spherical waves originating from all points on the source surface

superimpose to form a plane wave. However, the spherical waves originating from

the points on the edges of the surface, the edge waves, superimpose this plane wave

so that the wave, which a finite-size receiver placed at some distance in front of the

source would measure, has a small phase shift compared with the plane wave. The

edge wave contribution to the sound field can be minimized by using sound sources

with non-uniform vibration amplitude distributions. For this reason, a piezoelectric

quartz crystal with the electrode forms shown in Fig. 3.4 was chosen. Since the

electrodes cover only the inner circular area with 10 mm diameter of the piezoelectric

crystal with 15 mm diameter, the amplitude of the crystal vibration has a Gaussian-

like distribution (see also Fig. 4.8 below). With this electrode geometry, edges waves

are reduced, but diffraction still influences the sound field and must be accounted

for.

Diffraction effects in the sound field in front of sound transducers and their influ-

ence on the results of measurements of the speed and absorption of sound have been

investigated by many authors before. A review of different methods to calculate

diffraction effects in pulse-echo experiments was published by Gitis and Khimunin

[65]. Often an expression derived by Williams [189] is applied. This expression

provides the velocity potential field in front of a circular plane piston source with

uniform vibration amplitude distribution for continuous sinusoidal excitation. For

example, Khimunin [90] applied the result of Williams to calculate diffraction correc-

tions for pulse-echo measurements of the speed of sound. Subsequently, Khimunin

[91] extended the model by including sound absorption. A historical review of dif-
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ferent methods for the calculation of the transient sound field in front of a planar

piston source with uniform vibration amplitude was given by Harris [73]. In a second

article, Harris [74] introduced a model for the calculation of the sound field in front

of planar piston sources with non-uniformly vibration amplitude distributions and

transient excitation.

In the remainder of this section, a model based on the work of Harris [74] will

be developed, which provides a correction for diffraction effects within the geometry

of the acoustic sensor. First, the model of a baffled point source will be derived.

This result is then used to construct the Rayleigh integral [153], which – in the

form given below – describes the transient sound field in front of a non-uniformly

vibrating sound source in terms of the velocity potential. After that, the average

acoustic pressure measured by a circular receiver, which is placed at a distance in

front of the source, is calculated. These results are finally applied to calculate a

diffraction correction for the time difference measurement within the geometry of

the acoustic sensor. As was shown by Khimunin [91], the absorption of sound on

the diffraction correction is negligible. Therefore, the theory for the propagation

of sound in ideal fluids derived in Sec. 2.2.1 can be applied, which simplifies the

analysis greatly.

First, the velocity potential field of a baffled point source radiating sound into an

ideal fluid will be derived. For this purpose, the solution of the wave equation for

outgoing spherical waves is required. The wave equation for an ideal fluid, Eq. (2.15),

reads

∇2pa − 1

w2

∂2pa

∂t2
= 0,

and the Laplace operator in spherical coordinates is given by

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
, (4.7)

where the dependencies on the polar and azimuthal angle have been omitted because

the field of a spherical wave depends only on the radial coordinate r. Inserting the

Laplace operator into the wave equation, yields

1

r2

∂

∂r

(
r2∂pa

∂r

)
− 1

w2

∂2pa

∂t2
= 0. (4.8)

The solution of this partial differential equation for the acoustic pressure pa can

easily be derived by introducing the new dependent variable [198]

P = rpa. (4.9)
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In terms of P , the wave equation takes the form

∇2P − 1

w2

∂2P

∂t2
= 0, (4.10)

which has the same structure as the wave equation for plane waves. Therefore, the

general solution for P can be written in analogy with the solution for plane waves

(see Sec. 2.3) as

P = P (t± r/w) (4.11)

The minus sign describes an outgoing spherical wave, and the plus sign represents

an incoming spherical wave. Thus, the solution for pa is

pa =
P (t− r/w)

r
, r 6= 0, (4.12)

where only the outgoing wave has been considered.

With this result, the velocity potential and pressure field of a point source in free

space can be constructed (see also Morse and Ingard [134, Secs. 7.1 and 7.4]). A

finite spherical source with radius a placed at the origin is considered, which can

be viewed as a vibrating sphere. The surface of the sphere moves with the velocity

v(t) = vr(t, r = a) and generates the volume flow V̇ (t) = 4πa2v(t) at the surface. At

the surface, the radial component of the momentum balance in spherical coordinates

reads

ρ
∂vr

∂t
= −∂pa

∂r
, (4.13)

in which ρ denotes the fluid density. With the volume flow V̇ and the transformation

P = rpa, it becomes

ρ

4πa2

∂V̇

∂t
= −1

r

∂P

∂r
+

P

r2
. (4.14)

If the radius of the sphere is negligible compared with the wave length of the emitted

sound waves, that is if a ¿ λ, the derivative ∂P/∂r is much smaller than the term

P/r and can safely be neglected. This condition is satisfied here because the result

for the point source will be derived from the one for the finite source below by taking

the limit a → 0. Hence, the momentum balance simplifies to

ρ

4πa2

∂V̇

∂t
=

P

r2
. (4.15)
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The pressure on the surface of the sphere is therefore given by

pa(t, r) =
ρ

4πr

∂V̇

∂t
. (4.16)

At a distance r from the source, the wave arrives by a time r/w later so that the

pressure there is given by

pa(t, r) =
ρ

4πr

∂V̇

∂t

∣∣∣∣∣
t=t−r/w

, (4.17)

where the derivative has to be taken at the time t − r/w. By using the relation

between the velocity potential and the acoustic pressure, pa = ρ (∂Ψ/∂t), the ex-

pression

Ψ(t, r) =
V̇ (t− r/w)

4πr
(4.18)

for the velocity potential is obtained.

In the following, the velocity potential is used as the primary variable to describe

the sound field. This simplifies numerical calculations because derivatives with re-

spect to time need not be evaluated when calculating the velocity potential. The

acoustic pressure can be found after the solution for the velocity potential field has

been obtained by pa = ρ (∂Ψ/∂t).

In the next step, a point source is considered in the presence of an infinite plane

wall, which is assumed to be perfectly rigid. The fluid medium is confined to one

z

x

y

original sourceimage source

Figure 4.4. Construction of the sound field of a point source in the presence of an infinite
plane wall.
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side of the wall. At the surface of the wall, the normal fluid velocity is zero. Then,

according to Eq. (2.12), the pressure gradient on the surface is also zero. The field

of the source can be constructed by imagining that the boundary plane is replaced

by a continuation of the fluid into the region behind the plane. In order to retain the

boundary condition of zero pressure gradient on the plane, the effect of the boundary

is replaced by an image source, which is placed symmetrically with respect to the

plane in the continuation of the fluid medium as shown in Fig. 4.4, where the surface

of the wall corresponds to the xy plane at z = 0. Both, the original source and the

image source radiate into free space. The superposition of the parts of the waves

from the original source and from the image source in the half space of the original

source constitutes the sound field of the original source in the presence of the infinite

rigid wall. The part from the image source represents the reflected wave from the

boundary surface. The parts of both waves in the half space of the image source

have no physical reality.

If the distance of the original source from the wall is much smaller than the wave

length of the radiated sound wave, the original and image source can be viewed as if

they coincided on the surface of the wall. Then, the influence of the distance of the

source from the wall on the sound field is negligible and the source and its image are

close enough together so that they can be considered as a single source with double

strength. In this limiting case, the reflected wave adds to the original wave yielding

a source with strength 2V̇ . Such a source is called baffled point source. The velocity

potential field in front of the wall is given by

Ψ(t, r) =
V̇ (t− r/w)

2πr
, (4.19)

where r is the distance from the source as before.

With the model of the baffled point source, the field in front of a sound source,

which forms a portion of the plane wall, can now be constructed. The geometry for

this situation is depicted in Fig. 4.5. At every point of the surface of the source,

a baffled point source is placed. The distance of a point P0 on the surface of the

source with respect to the origin is represented by the vector r0, the vector r̃ de-

scribes the position of a point P in front of the source with respect to the origin,

and R represents the distance between P and P0. In order to keep the model as

general as possible, it is assumed that the velocity distribution on the source sur-

face is non-uniform and that it can produce an arbitrary transient wave form. The

velocity potential field in front of the source can be viewed as a superposition of

the fields of baffled point sources placed at every point of the surface of the source.
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A

P0

r
~

Figure 4.5. Geometry for evaluation of the transient sound field of a sound source with
non-uniform vibration amplitude at a point P .

Mathematically, every infinitesimal surface element dA represents a baffled point

source with source strength 2v0dA, v0 is the velocity of the element normal to the

surface. An integration of the velocity potential over the entire surface of the source

yields [73]

Ψ(r̃, t) =

∫

A

v0(r0, t−R/w)

2πR
dA. (4.20)

This expression is known as the Rayleigh integral [153]. It describes the transient

velocity potential at a point P due to the motion of a source with surface area

A, which is located in the plane z = 0 and radiates into the positive z half space

containing an isotropic, homogeneous, ideal fluid medium. The non-uniform source

velocity is in a direction normal to the source plane and is described by the function

v0(r0, t).

In the present acoustic sensor, the piezoelectric crystal is excited by a sinusoidal

burst signal of 60–100 cycles. A typical received echo signal consists of a short tran-

sient region at the start, where the vibration amplitude increases to its maximum,

a long intermediate region, where the signal amplitude is nearly constant, and a

transient region at the end, where the amplitude decays to zero (see Fig. 3.2). Since

the cancellation of the echoes is observed in the intermediate region, the signals

can be viewed as continuous sinusoidal signals for the purposes of the diffraction

correction. The source velocity function for non-uniform vibration can therefore be

written as

v0(r0, t) = v0(r0) exp(iωt), (4.21)
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where it has been assumed that the dependence on time and on position can be

separated. v0(r0) is the distribution of the surface velocity, which depends on the

position on the surface. With this source velocity function, the Rayleigh integral

becomes

Ψ(r̃, t) = exp(iωt)

∫

A

v0(r0) exp(−ikR)

2πR
dA, (4.22)

in which k = ω/w represents the wave number.

x

y

z

P

R1

r

O

R2

ρ1

ρ2

ρ

~

R

Θ1

Figure 4.6. Geometry for determining the velocity potential at a point P .

For the evaluation of the integral over the surface of the source, the geometry

shown in Fig. 4.6 is introduced. If the source were excited by a δ impulse at time

t = 0, then at the later time R/w only points on the source with a distance R from

the point P would contribute to the velocity potential at P . The set of these points

forms the segment of a circle, whose center coincides with the point O and whose

radius ρ satisfies ρ2 + z2 = R2. ρ1 and ρ2 are the radii of the circles with centers at

O, which touch the surface of the source first and last, respectively. Θ1 is the angle

with vertex at O formed by the segment of the circle with radius ρ, which lies within

the source boundary. Θ1 changes with R and is zero for ρ < ρ1 and ρ > ρ2. The

origin of the coordinate system is shifted to the point O and cylindrical coordinates

are introduced. With dA = ρ dρ dΘ, Eq. (4.22) becomes

Ψ(r̃, t) = exp(iωt)

ρ2∫

ρ1

Θ1(ρ)∫

0

vσ(ρ, Θ) exp(−ikR)

2πR
dΘ ρ dρ. (4.23)
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In order to distinguish the velocity in the different reference frames, v0 refers to

coordinates with respect to the origin of the space-fixed Cartesian coordinate system

and vσ to observer-based coordinates. Substitution of ρ by the new integration

variable R by using the relation R2 = ρ2 + z2 yields

Ψ(r̃, t) = exp(iωt)

R2∫

R1

Θ1(R)∫

0

vσ(R, Θ) exp(−ikR)

2π
dΘ dR. (4.24)

x

y

z

P

Oρ

R

Θ

z

Ω
r0

r

Figure 4.7. Geometry for determining the velocity potential field in front of a finite
circular source with radius a located at the origin.

The acoustically active region of the piezoelectric crystal, that is the area of

the surface covered by the electrodes, forms a circle (see Fig. 3.4). It is assumed

that the source velocity distribution is symmetric with respect to the center of the

crystal. Therefore, the sound field in front of the crystal is symmetric with respect

to the center axis of the crystal, and the geometry can be described by cylindrical

coordinates as shown in Fig. 4.7. The origin is located in the center of the source,

the radius of the source is denoted by a, and r0 refers to the distance between a point

on the source surface and the center of the source. Because of the symmetry, the

point receiver can always be placed vertically above the y axis at the point (r, z). At

this position, the velocity potential field is symmetric with respect to the yz plane

so that the integration over Θ between 0 and Θ1 can be replaced by an integration

between 0 and the half angle Ω of the circle segment. The result of this integration

must then be multiplied by a factor of two. Thus, the Rayleigh integral for the
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circular source geometry takes the form

Ψ(r, z, t) =
exp(iωt)

π

R2∫

R1

Ω(R)∫

0

vσ(R, Θ) exp(−ikR) dΘ dR. (4.25)

Table 4.4. Models for source velocity distributions.

Model Functional Form
Polynomial distribution v0(r0) = A[1− (r0/a)2]n; r0 < a

Uniformly vibrating source v0(r0) = A; r0 < a

Simply supported source v0(r0) = A[1− (r0/a)2]; r0 < a

Clamped source v0(r0) = A[1− (r0/a)2]2; r0 < a

Gaussian distribution v0(r0) = A exp(−br2
0/a2)

In order to evaluate Rayleigh integral, the velocity distribution on the surface of

the source must be specified. Different models have been described in the literature

[73, 134], from which a selection is summarized in Table 4.4. For each model, the

source velocity normal to the surface is specified as a function of the radial coordinate

r0. The uniformly vibrating source, simply supported source, and clamped source

are special cases of the polynomial source velocity distribution with n = 0, 1, and

2, respectively.

Graphs of the velocity distributions for the geometry of the piezoelectric crystal

are depicted in Fig. 4.8. The functional form of the polynomial distributions is lim-

ited to the acoustically active surface of the source, while the Gaussian distribution

extends to infinity. With this assumption, the evaluation of the Rayleigh integral

for the Gaussian distribution is simplified, while changing the result for the veloc-

ity potential only little, because the distribution decays to zero rapidly outside the

source surface. The Gaussian distribution with b = 2 is assumed to provide the

closest description of the crystal vibration and will therefore be used to calculate

the diffraction correction. The acoustically active area of the source is the circular

area of the crystal covered by the electrodes. Its motion is described by the peak

of the Gaussian distribution. The crystal is clamped in the outer ring area without

electrodes, which is modelled by the tail of the distribution. Diffraction corrections

will also be calculated for the other distributions in order to examine the influence

of the source velocity distribution on the sound field in the sensor.

The Rayleigh integral, Eq. (4.25), is evaluated in the the observer-based coor-

dinate system with the coordinates R = wt and Θ, whereas the source velocity
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Figure 4.8. Graphs of the source velocity distributions given in Table 4.4 within the
geometry of the piezoelectric crystal.

distributions in Table 4.4 are formulated in the source-centered frame. Thus, the

source velocity distributions must be written in terms of observer-based coordinates.

The relation between source-centered to observer-based coordinates is established

by applying the law of cosine to the triangle formed by the distances r, r0, and

(R2 − z2)1/2 and the angle Θ in Fig. 4.7:

r2
0 = R2 − z2 + r2 − 2(R2 − z2)1/2r cos Θ. (4.26)

With the new variables

γ = R2 − z2 + r2 − a2 (4.27)

and

η = 2(R2 − z2)1/2r, (4.28)

one finds

cos Θ = (a2 − r2
0 + γ)/η. (4.29)
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Thus,

(r0

a

)2

= 1− η cos Θ− γ

a2
. (4.30)

With this result, the polynomial distribution takes the form

vσ(R, Θ) = A[(η cos Θ− γ)/a2]n (4.31)

in observer-based coordinates, and the result for the Gaussian distribution is

vσ(R, Θ) = A exp{−(γ + a2)/a2} exp{η cos Θ/a2}. (4.32)

In both cases, the integration over Θ in Eq. (4.25) can be carried out analytically.

For the polynomial distribution with n = 0, 1, and 2, one obtains

Ψ(r, z, t) =
A exp(iωt)

π

R2∫

R1

Ω exp(−ikR) dR, (4.33)

Ψ(r, z, t) =
A exp(iωt)

πa2

R2∫

R1

[η sin Ω− γΩ] exp(−ikR) dR, (4.34)

Ψ(r, z, t) =
A exp(iωt)

πa4

R2∫

R1

[(
η2

2
+ γ2

)
Ω− 2γη sin Ω

+
η2

4
sin 2Ω

]
exp(−ikR) dR, (4.35)

respectively.

Since the Gaussian distribution extends to infinity, the upper integration limit is

the angle π, and the integral can also be solved analytically with the result

Ψ(r, z, t) =
A exp(iωt)

π

R2∫

R1

exp{−(γ + a2)/a2}
π∫

0

exp{η cos Θ/a2} dΘ dR

= A exp(iωt)

R2∫

R1

exp{−(γ + a2)/a2}I0(η/a2) dR, (4.36)

where I0 is the modified Bessel function of the first kind of order zero, for which the

relation

I0(z) =
1

π

π∫

0

exp{z cos Θ} dΘ (4.37)
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Table 4.5. Values for the lower and upper integration limits R1 and R2, and the angle
Ω in Eqs. (4.33) to (4.36) in regions I and II.

R1 R2 Ω

Region I [z2 + (r − a)2]1/2 [z2 + (r + a)2]1/2 cosΩ =
r2 − a2 + R2 − z2

2r(R2 − z2)1/2

Region II
ρ > a− r

R > [z2 +(r+a)2]1/2

z [z2 + (r + a)2]1/2 cosΩ =
r2 − a2 + R2 − z2

2r(R2 − z2)1/2

Region II
ρ ≤ a− r

R ≤ [z2 +(r+a)2]1/2

z [z2 + (r + a)2]1/2 Ω = π

holds for arbitrary values of z [1, p. 376].

In order that Eqs. (4.33)-(4.36) yield the velocity potential Ψ as a function of

the coordinates r and z and time t, the limits of the integration R1 and R2 must

be expressed in terms of r and z, and the angle Ω must be written as a function of

R, r, and z. These relations can be derived by simple geometrical considerations.

Three different cases can be distinguished, depending on the position of the point

receiver relative to the source. The half space z ≥ 0 in front of the source plane is

partitioned into two regions, one with r > a (denoted by I), which is the volume in

front of the source plane without the cylindrical volume in front of the source, and

one with r ≤ a (denoted by II), which forms the cylindrical volume in front of the

source.

If the point receiver is placed somewhere in region I (see Fig. 4.7), the lower and

upper integration limits are given by R1 = [z2+(r−a)2]1/2 and R2 = [z2+(r+a)2]1/2.

For a point receiver placed in region II, R1 = z, and R2 = [z2+(r+a)2]1/2. The angle

Ω is found by considering a projection of the three-dimensional situation depicted

in Fig. 4.7 onto the source plane as shown in Fig. 4.9 for the regions I and II. An

expression for Ω is obtained by applying the law of cosine to the triangle formed by

Ω, the source radius a, the distance between the center of the source and the origin r,

and the projection of R into the source plane, which is denoted by ρ = (R2− z2)1/2.

If ρ ≤ a− r, Ω = π. The results for R1, R2 and Ω are summarized in Table 4.5.

With the velocity potential field of a circular source, the pressure measured by

a circular receiver can now be constructed. A finite circular receiver with surface

Ah, which is placed at a distance h in front of and parallel to the source, detects
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Figure 4.9. Geometry for determining the angle Ω a) in region I and b) in region II.
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Figure 4.10. Geometry for determining the average velocity potential detected by a finite
circular receiver in front of a circular source.

the average pressure acting on its surface. The average pressure is related to the

average velocity potential by

〈p(r, z, t)〉 = ρ
∂〈Ψ(r, z, t)〉

∂t
= ρ

∂

∂t

∫

Ah

Ψ(rh, z, t) dAh, (4.38)

where the angular brackets denote an average over the receiver surface, r and z

specify the center of the receiver and Ψ(rh, z, t) is the local velocity potential at

the point (rh, z) on the receiver surface at time t. The geometry for this situation

is depicted in Fig. 4.10. The receiver is located at a distance z in parallel with
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the source plane, has a radius h, and the distance between the projection of its

center onto the source plane and the source center is denoted by r. The position

of a surface element dAh = rh drh dΘh on the receiver surface is described by the

cylindrical coordinates rh and Θh with the origin in the source center. Within this

geometry, the average velocity potential on the receiver surface is given by

〈Ψ(r, z, t)〉 =
2

πh2

r2∫

r1

Θh(rh)∫

0

Ψ(rh, z, t)rh dΘh drh (4.39)

The factor of two arises because the angle Θh measures only half circle segments on

the surface.

For axisymmetric source distributions, the integrand Ψ(rh, z, t) is independent of

the angle Θh, and Eq. (4.39) simplifies to

〈Ψ(r, z, t)〉 =
2

πh2

r2∫

r1

Ψ(rh, z, t)Θh(rh)rh drh. (4.40)

The function Ψ(rh, z, t) is determined by one of the Eqs. (4.33)-(4.36), depending

on the source velocity distribution, where the variable r must be replaced by rh,

because rh represents the positions on receiver surface and r refers to the center of

the circular receiver.

As for the integration over the source surface, the values of the integration limits

r1 and r2 must be expressed in terms of r and h, and the angle Θh(rh) must be

expressed in terms of r, rh, and h. Again, three different cases must be distinguished,

which depend on the size and position of the receiver relative to the source. Case

I refers to the situation in which r > h, while in case II r ≤ h. In case II, two

different subcases arise with rh > h − r and rh ≤ h − r. The geometry for these

three situations is depicted in Fig. 4.11, and the results for r1, r2, and Θh(rh) are

summarized in Table 4.6. The results for r1 and r2 can easily be extracted from

Fig. 4.11. The value of the angle Θh is determined by applying the law of cosine to

the triangle formed by rh, r, and h as

cos Θh(rh) =
r2
h + r2 − h2

2rrh

, (4.41)

in case I and in the subcase rh > h− r of case II. In case II, if rh ≤ h− r, Θh = π.

With the results collected in Table 4.6, the average velocity potential detected

by a circular receiver can be calculated by Eq. (4.40). The solution of the integral
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Figure 4.11. Geometry for the integration over a finite circular receiver located at r.

requires a twofold integration, which, in general, must be carried out numerically.

For all numerical calculations described below, the twofold integration was carried

out with an algorithm published by Press et al. [151, pp. 155].

These general results can now be applied to the geometry of the acoustic sensor.

The time difference is measured by adjusting the time difference between two exciting

burst signals so that the second echo from the first excitation signal cancels the first

echo from the second excitation signal (see Sec. 3.1). Since this time difference

exactly equals the time difference between the arrival of the first echoes from each

reflector, if only one burst is applied to excite the piezoelectric crystal, the diffraction

correction is derived for this latter situation because it is simpler to model than the

cancellation of two echo signals. The model of the acoustic sensor, for which the



114 Measurement Analysis

Table 4.6. Values for the lower and upper integration limits r1 and r2 and the angle Θh

in the integration over a circular receiver.

Case r1 r2 Θh

I r − h r + h cos Θh =
r2
h + r2 − h2

2rrh

II
rh > h− r

0 r + h cos Θh =
r2
h + r2 − h2

2rrh

II
rh ≤ h− r

0 r + h Θh = π

diffraction correction will be derived, is depicted in Fig. 4.12. In the acoustic sensor,

sender and receiver are both realized by the piezoelectric crystal, and therefore both

have circular geometry and the same size. The reflections at the stainless steel

reflectors are assumed to be ideal so that – as for the point source in front of a

plane wall in the beginning of this section – the spaces behind the reflector planes

can be viewed as a continuation of the sample fluid. The detection of the first two

echo signals by the piezoelectric crystal is modelled as a separate detection of each

echo by two receivers, which are placed on an axis with the reflectors and sender at

distances L1 and L2 in the continuation of the fluid behind the reflectors.

Within this model, diffraction corrections are derived for the transit times the

two signals need to travel the distances 2L1 and 2L2. The diffraction correction for

the time difference between the arrival of the first two echoes is then the difference

of the diffractions corrections for the two transit times.

If a signal propagated as a plane wave, the longitudinal velocity and velocity

receiver receiversender

L1 L1 L2 L2

reflector reflector

Figure 4.12. Model of the acoustic sensor for the calculation of the diffraction correction.
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potential at a distance z from the source would be given by

vpw
l (z, t) = A0 exp(iωt) exp(−ikz), (4.42)

and

Ψpw(z, t) =
A0

ik
exp(iωt) exp(−ikz). (4.43)

The acoustic pressure detected by a receiver placed at this distance in parallel and

on an axis with the source would be

ppw
a = A0ρw exp(iωt) exp(−ikz) = A0ρw exp(iωt)[cos(kz)− i sin(kz)], (4.44)

where the relation w = ω/k has been used.

On the other hand, the average acoustic pressure of the sound field in front of a

finite circular source with non-uniform vibration amplitude measured by a circular

receiver placed at the distance z in parallel and on an axis with the source is in

general given by Eq. (4.38). In order to evaluate this equation, the expression for

the velocity potential field of the source must be inserted, and the geometry of the

sensor model must be adapted. These steps are exemplified here for the case of a

simply-supported source with polynomial velocity distribution with n = 1. If the

sender and receiver have the same size and are located on an axis, the integration

over the angular coordinate on the receiver surface Θh yields π, independent of

the source velocity distribution, and the average velocity potential detected by the

receiver becomes

〈Ψ(z, t)〉 = A0 exp(iωt)
2

πa4

a∫

0

R2(rh)∫

z

(η sin Ω− γΩ)

·(cos(kR)− i sin(kR))rh dR drh. (4.45)

This expression may be written in the form

〈Ψ(z, t)〉 = A0 exp(iωt)(C + iD) (4.46)

with

C =
2

πa4

a∫

0

R2(rh)∫

z

(η sin Ω− γΩ) cos(kR)rh dR drh (4.47)
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and

D = − 2

πa4

a∫

0

R2(rh)∫

z

(η sin Ω− γΩ) sin(kR)rh dR drh. (4.48)

The average pressure is then given by

〈pa(z, t)〉 = ρ
∂〈Ψ〉
∂t

= A0ρwk exp(iωt)(−D + iC), (4.49)

and the ratio of the pressure and the plane wave pressure is given by

〈pa(z, t)〉
ppw

a (z, t)
=

k(−D + iC)

cos(kz)− i sin(kz)

= −k[D cos(kz) + C sin(kz)] + ik[−D sin(kz) + C cos(kz)]

= A + iB

with

A(z) = −k[D cos(kz) + C sin(kz)] (4.50)

and

B(z) = k[−D sin(kz) + C cos(kz)]. (4.51)

The phase advance of the real wave ϕ(z) due to diffraction compared with the plane

wave is determined by

tan ϕ(z) = B(z)/A(z). (4.52)

The difference due to diffraction between transit times of the plane wave and real

wave is given by

∆tdc(z) =
ϕ(z)

2π
Tp =

ϕ(z)

2πf
=

ϕ(z)

ω
, (4.53)

where Tp = 1/f denotes the period of the wave.

Applying this result to the model of the sensor, one obtains

∆tdc = [ϕ(2L2)− ϕ(2L1)]/ω (4.54)

for the diffraction correction to the measured time difference. The time difference

for plane wave propagation, which must be inserted into the working equation of

the sensor w = ∆L/∆tpw, is then found as

∆tpw = ∆tm + ∆tdc. (4.55)
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The diffraction correction depends on the geometry of the sensor, that is the

radius of the piezoelectric crystal and the distances between the crystal and the

reflectors, and the frequency and the wave number of the sound waves. Since the

frequency is fixed at f = 8 MHz, the dependence on the wave number can be

replaced by a dependence on the value of the speed of sound. As the geometry

is also fixed, the diffraction correction can be represented solely as a function of

the speed of sound. For the following calculations, the source and receiver radius

was set to a = h = 5 mm, which is the radius of the electrode area on the crystal,

and the values L1 = 19.9430 mm and L2 = 29.8025 mm measured by the coordinate

measuring machine were used for the distances between the crystal and the reflectors.

Small changes of the acoustic path length, for example due to thermal expansion or

compression of the sensor under pressure, have only a very small influence on the

diffraction correction and are therefore neglected.

With this model, the diffraction correction was calculated as a function of the

speed of sound in the sample fluid for the different source velocity distributions

listed in Table 4.4. For the Gaussian distribution, the four different values 1, 2,

3, and 4 of the width of the distribution b were considered. The results of these

calculations are depicted in Fig. 4.13, which displays the percentage contribution

of the diffraction correction to the measurement value of the speed of sound as a

function of the speed of sound. For all source velocity distributions, the diffraction

correction increases from values between 0 % and 0.001 % for a speed of sound

of 500 m s−1 to values between 0.006 % and 0.01 % for a speed of sound of 2000

m s−1. Thus, the diffraction correction contributes only little to the measurement

value of the speed of sound. However, for high precision measurements, this small

contribution cannot be neglected. The diffraction corrections for the source with

Gaussian amplitude distribution and for the model of a clamped source increase

monotonically with the speed of sound, whereas for the planar piston source with

uniform vibration amplitude and for the model of a simply-supported source the

increase is superimposed by a pattern of local maxima and minima. This oscillating

behavior is due to the edge wave contributions to the sound field, which are most

pronounced for the planar piston source with uniform vibration amplitude and for

the model of a simply-supported source because, in these cases, the source velocity

distribution decays to zero very rapidly at the edge of the source. The behavior of

the piezoelectric crystal in the sensor is approximated by the Gaussian distribution

with width b = 2. As all speeds of sound measured in this work were smaller than

1700 m s−1, the diffraction correction is always smaller than 0.006 %.
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Figure 4.13. Percentage contribution of the diffraction correction to the measured time
difference as a function of the speed of sound in the sample fluid for different source velocity
distributions.

For the integration of the diffraction correction in the measurement analysis,

the contribution to the measured time difference is represented by a third-order

polynomial function, whose coefficients were fitted to the results for the Gaussian

distribution with b = 2. The polynomial representation has the form

∆tdc

µs
= 3.886503 · 10−7

( w

m s−1

)
+ 3.165669 · 10−12

( w

m s−1

)2

+7.158732 · 10−15
( w

m s−1

)3

, (4.56)

which ensures that the diffraction correction vanishes in the limit w → 0. It rep-

resents the correction to the measured time difference within 1 % for values of the

speed of sound between 50 m s−1 and 2000 m s−1. The uncertainty of the diffraction

correction is estimated to be smaller than 0.001 %, which accounts for the incomplete

knowledge of the amplitude distribution of the source vibration.



Calibration Procedure 119

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020
D

if
fr

a
c
ti
o
n

c
o

rr
e

c
ti
o
n

/
%

500 750 1000 1250 1500 1750 2000

Speed of sound / m s-1

8 MHz

1 MHz

5 MHz

10 MHz

15 MHz

Figure 4.14. Percentage contribution of the diffraction correction to the measured time
difference as a function of the speed of sound in the sample fluid for different excitation
frequencies.

As the final point in this section, it is instructive to examine the influence of the

frequency and transducer radius on the diffraction correction. Figs. 4.14 and 4.15

show the percentage contribution of the diffraction correction to the measured time

difference as a function of the speed of sound for selected values of the frequency

and transducer radius. In Fig. 4.14, the transducer radius was held constant at a =

5 mm, while in Fig. 4.15 the frequency was fixed at 8 MHz. As can be observed from

Figs. 4.14 and 4.15, the diffraction correction decreases with increasing frequency

and increasing transducer radius. With the present choice of 5 mm for the radius of

the acoustically active area and 8 MHz for the frequency, the diffraction correction

is always smaller than 0.01 % for measured speeds of sound up to 2000 m s−1.

4.3 Calibration Procedure

For the determination of the speed of sound at a given temperature and pressure

with the acoustic sensor by the working equation w = ∆L/∆tpw, two quantities

must be measured, the acoustic path length ∆L and the time difference ∆t between

the two emitted burst signals. Since the acoustic path length is determined by
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Figure 4.15. Percentage contribution of the diffraction correction to the measured time
difference as a function of the speed of sound in the sample fluid for different transducer
radii.

the geometry of the sensor, it is fixed during a series of measurements except for

changes due to thermal expansion and compression under pressure, which, however,

can accurately be predicted with the model developed in Sec. 4.1. Therefore, the

acoustic path length is usually determined only once before starting a series of

measurements, whereas the time difference must be measured at every state point.

There are two different ways of determining the acoustic path length: either by

measuring it directly by means of a length measurement device or by calibration

measurements with a fluid, for which the speed of sound is accurately known. In

principle, the first method is the most desirable because it avoids the uncertainties

introduced by calibration measurements, for example uncertainties due to impurities

of the sample of the calibration fluid or the uncertainties of the reference values

of the speed of sound in the calibration fluid. For this reason, it was first tried

to measure the distances between the crystal and the reflectors by a coordinate

measuring machine. It turned out that this method was not reliable because, when

touching the crystal surface with the sensor of the coordinate measuring machine, the

crystal was deformed. Therefore, it was decided to develop a calibration procedure
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for the determination of the acoustic path length.

Water was chosen as the calibration liquid because it is the liquid for which the

speed of sound is most accurately known. Several authors have measured the speed

of sound in liquid water at ambient pressure in the temperature range between 273 K

and 373 K with high accuracy, see for example [13, 62, 68, 69, 78, 99, 120, 190], and,

furthermore, with the ‘IAPWS formulation 1995 for the thermodynamic properties

of ordinary water substance for general and scientific use’ by Wagner and Pruß [187]

an accurate fundamental equation of state is available, from which reference values

for the speed of sound can be calculated.

Table 4.7. Literature data sets for the speed of sound in liquid water at ambient pressure
(0.101325 MPa). Abbreviations: PE: pulse-echo, IF: interferometer.

Author Year Method Data T Uncertainty
Aleksandrov [4] 1976 PE 9 273–373 K < 0.008 %
Barlow [13] 1967 PE 43 296–353 K < 0.01 %
Del Grosso [69] 1972 IF 148 273–368 K < 0.001 %
Fujii [62] 1993 IF 41 293–348 K < 0.001 %
Greenspan [68] 1957 PE 100 274–373 K < 0.03 %
Holton [78] 1968 PE 2 323 K < 0.2 %
Kroebel [99] 1976 IF 20 276–307 K < 0.003 %
McSkimin [120] 1965 PE 37 296–352 K < 0.03 %
Petitet [143] 1983 PE 12 253–295 K < 0.05 %
Wilson [190] 1959 PE 11 274–364 K < 0.05 %

Details of the literature data sets are summarized in Table 4.7. In order to identify

the best reference values for the speed of sound in liquid water at ambient pressure,

the literature data from the different sources listed in Table 4.7 are compared with

the IAPWS formulation in Fig. 4.161). The data sets of Del Grosso and Mader

[69] and of Fujii and Masui [62] show the highest internal consistency and agree

among each other and with the IAPWS formulation within 0.004 %. The data of

Greenspan and Tschiegg [68] are also very consistent, but lie by about 0.025 %

above the IAPWS formulation. The data of Aleksandrov and Larkin [4], Barlow

and Yazgan [13], Kroebel and Mahrt [99], McSkimin [120], Petitet et al. [143], and

Wilson [190] show higher scatter than the other data sets, with the data of Kroebel

1) For this and all other comparisons in the remainder of this work, the temperatures reported in
older publications, which were measured according to the IPTS-48 temperature scale [166, 167]
and IPTS-68 temperature scales [30, 145], were converted to the current practical temperature
scale ITS-90 [150] by the procedures described by Blanke [23, 24], Douglas [39], and Fay [56].
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and Mahrt having the highest internal consistency. With the exception of the data

of Petitet et al. and of Wilson, these data sets agree with the IAPWS formulation

within 0.01 %. From this comparison, it is evident that the data sets of Del Grosso

and Mader [69] and of Fujii and Masui [62] are the most accurate data available.

For this reason, these two data sets were chosen as reference data for the calibration

of the acoustic sensor. As the IAPWS formulation represents the most accurate

density data for liquid water at ambient pressure in the low temperature range up

to about 315 K within 1 ppm and the speed of sound data of Del Grosso and Mader

agree with the IAPWS formulation within their quoted uncertainty of 0.001 % in

this temperature range, they are chosen as the primary reference data in the low

temperature range between 273.15 K and 315 K.

A thorough discussion of the differences between the data sets of Del Grosso and

Mader, Fujii and Masui, and Kroebel and Mahrt was given by Marczak [116]. He

concluded that small differences between the three data sets at low temperatures,

which were attributed to temperature measurement errors by Fujii and Masui [62],

cannot be due to such errors, because the influence of the temperature measurement

uncertainties reported by the authors of the three data sets is lower than the dif-

ference between the data. Marczak suggested that differences in the purity of the

water samples might be the most likely reason for the differences between the data.

Purified water for the calibration measurements was available from two different

sources: a deionization station (Wasseraufbereitung und Regenerierstation GmbH,

type Reinstwassersystem Ultra Clear UV Plus) and a double distillation apparatus

(Heraeus Quarzglas, type Destamat Bi 18 E). Before filling the water sample into

the apparatus, it was carefully degassed. For this purpose, the sample container

was connected to a vacuum pump so that gas phase was continuously removed. By

mechanically knocking at the container, the formation of gas bubbles was initiated.

This procedure was applied until the bubble formation had decreased to a negligible

level. Before disconnecting the sample container from the vacuum pump, it is closed

by a high pressure valve so that the water remains under vapor pressure in the

container until it is filled into the apparatus.

The influence of dissolved air on the speed of sound in liquid water was examined

by Greenspan and Tschiegg [66]. They prepared water samples, which were 10 %

and 100 % saturated with air, and measured the difference in the speed of sound at

0 ◦C and 31.8 ◦C. They concluded that the effect of dissolved air on the speed of

sound is less than 10 ppm at both temperatures, even for fully saturated water. Since

the solubility of air in water is greatest at 0 ◦C, it can be safely concluded that the
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dissolved gases, which remain after the degassing process, have a negligible effect on

the speed of sound in the whole temperature range of the calibration measurements

between 1 ◦C and 95 ◦C. In a different publication, Greenspan and Tschiegg [68]

reported that even using local tap water increased the speed of sound only by 30

ppm compared with distilled water.

Before filling the water sample into the apparatus, the thermostat temperature

is set to 20 ◦C, and the pressure vessel and the high pressure tubing system are

evacuated. The water is then filled in by sucking it from the sample container at

vapor pressure into the evacuated system. Ambient pressure in the pressure vessel

is maintained by opening the nitrogen branch of the high pressure tubing system to

ambient pressure and adjusting the pressure in the sample liquid branch to ambient

pressure by using the differential pressure indicator.

When performing the calibration measurements for the first time for the sensor in
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Figure 4.17. Percentage deviations of speed of sound data in liquid water at ambient
pressure measured in August 2004 and of literature data from the IAPWS formulation for
water [187] as a function of temperature.
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August 2004, the temperature was simply changed in steps of 5 K in either direction,

that is to lower and higher temperatures. In this first calibration, measurements

were taken in the temperature range between 5 ◦C and 80 ◦C. Initially, the acoustic

path length ∆L = 2(L2 − L1) as measured by the coordinate measuring machine

at ambient temperature and the thermal expansion coefficient of the stainless steel

1.4571 as given in the database FEZEN [72] was used in the measurement analysis.

The results of this pre-analysis were compared with the IAPWS formulation [187]

and with the data of Del Grosso and Mader [69] and of Fujii and Masui [62] by

plotting the deviations of the speed of sound data and the two literature data sets

from the IAPWS formulation against temperature. The acoustic path length ∆L

at (T0, p0) and the thermal expansion coefficient were then adjusted so that the

deviation pattern of the data agreed optimally with that of the two literature data

sets. In this first calibration, the thermal expansion coefficient was assumed to be

constant and the different thermal expansion of the quartz crystal and the stainless

steel material of the sensor was neglected. The two parameters were determined as

∆L(T0, p0) = 0.0197222 m (4.57)

and

αth = 15.7 · 10−6 K−1. (4.58)

The results of these calibration measurements after adjustment the two parame-

ters are shown in Fig. 4.17. The diagram shows percentage deviations of the mea-

sured speeds of sound and of the chosen reference data from the IAPWS formulation

as a function of temperature. All data agree with the literature data and the equa-

tion of state within 0.005 %. The data are very consistent at low temperatures, with

the exception of a few data points at 293.15 K. Above 330 K, they tend to scatter,

but still agree among each other within 0.004 %. At low temperatures, the deviation

pattern is similar to that of the literature data, whereas at high temperatures the

data lie mainly between the equation of state and the literature data.

With this calibration, measurements on propane and propene were carried out.

During the course of these measurements taken after August 2004, it was found

that the direction, in which the temperature is changed, has a small influence of up

to about 50 ppm on the result of the speed of sound. This effect is illustrated by

measurement results for the speed of sound in liquid propene in Fig. 4.18, which

shows percentage deviations of speed of sound data at the state point (300 K, 30.1

MPa) measured over a period of five days. Percentage deviations instead of the
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absolute speed of sound data are used to compare the data because measurements

are generally not taken at exactly the same state point due to changes in the ambient

temperature and pressure in the laboratory room. Before the first measurement,

the temperature was set by heating the system to 300 K. The first 7 measurements

were then taken without changing the temperature and pressure. Before the other

measurements, the temperature was changed to 280 K, 320 K and 340 K, and then

it was set to 300 K again by heating the system up to or cooling it down to 300

K. Since the pressure in the apparatus depends on the ambient pressure in the

laboratory room, one can clearly identify the days on which the measurements were

taken. The groups of data with nearly the same pressure were measured on the

same day. As one can see from Fig. 4.18, the first data taken while the temperature

was not changed agree within 6 ppm. The data taken after a temperature change to

280 K lie below the data taken at constant temperature, but the agreement is still

within 8 ppm. The results of the measurements, before which the temperature was

increased lie by about 10 ppm (20 K increase) or 15 ppm (40 K increase) lower on

the average.
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From this investigation, it was concluded that the apparent difference acoustic

path length ∆L depends on the way the temperature is changed. It is well re-

producible, when the temperature is increased in the system from a lower to the

desired temperature, but it is lowered when the temperature is decreased from a

higher temperature to the desired temperature. The same effect was observed when

the calibration with water was repeated in August 2005.

Is is assumed that this hysteresis effect is due to the different thermal expansion of

the stainless steel material of the acoustic sensor and the quartz crystal. The quartz

crystal has different thermal expansion coefficients in the direction of the optical Z-

axis of the crystal lattice (α⊥th ≈ 13 ·10−6 K−1) and perpendicular to this axis (α
‖
th ≈

7 · 10−6 K−1). In the acoustic sensor, the Z-axis is perpendicular to the axis of the

sensor. Thus, the thermal expansion of the sensor material (αth ≈ 16 · 10−6 K−1) is

approximately two times higher than that of the crystal perpendicular to the sensor

axis. This is not a problem if the temperature is increased because the crystal can

slide over the stronger expanding stainless steel surface even though it is clamped.

However, if the temperature is decreased, the contracting stainless steel material

might prevent the crystal from sliding on it so that the crystal is bent. In this

case, the acoustic path length ∆L and thus the speed of sound changes. This would

explain the effect observed in Fig. 4.18. In order to obtain the best reproducibility,

the thermostat must be heated from a lower to the desired temperature, when setting

a new temperature.

In August 2005, the calibration was repeated. In this second calibration, the

temperature range was extended down to 1 ◦C and up to 95 ◦C with measurements

taken in steps of 5 ◦C. When the temperature had to be decreased by 5 ◦C, it

was first decreased by about 10 ◦C, except for the measurement at 1 ◦C and 5 ◦C,

and then increased by 5 ◦C to the desired temperature. With this procedure, the

reproducibility of the speed of sound data over the whole temperature range was

within 20 ppm. The apparatus was filled every day with newly prepared water to

avoid changes of the water purity by corrosion. After a change of the thermostat

temperature, the system was allowed to equilibrate for about two to three hours

before a measurement was taken.

The measurements were first analyzed by applying the calibration function deter-

mined in August 2004. These results are depicted in Fig. 4.19. With the experience

of the influence of temperature changes, the new data are very consistent over the

whole temperature range of the measurements. As one can observe, the speed of

sound data are by about 0.005 % higher than the data taken in August 2004. This
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Figure 4.19. Percentage deviations of speed of sound data in liquid water at ambient
pressure measured in August 2005 and of literature data from the IAPWS formulation for
water [187] as a function of temperature.

means that the sensor material or the mounting of the sensor pieces must have

changed between August 2004 and August 2005. For this reason, a new calibration

function was determined. When adjusting the acoustic path length ∆L at (T0, p0)

and the thermal expansion coefficient, it turned out that it is not possible to ex-

actly reproduce the deviation pattern of the literature data over the full temperature

range. Therefore, it was decided to include the full temperature dependence of the

thermal expansion coefficient of the sensor material as described by Eq. (4.5). Only

the coefficient b0 of the polynomial was adjusted to match the deviation pattern

of the literature data, while the remaining coefficients were taken as reported in

Table 4.2. It is believed that retaining the higher terms improves the extrapolation

behavior of the calibration function below 1 ◦C and above 95 ◦C. Furthermore, the

different thermal expansion behavior of the quartz crystal and the stainless steel

over the thickness of the crystal is included as given by Eq. (4.1). The crystal



Assessment of Measurement Uncertainty 129

thickness was determined by measurement with a coordinate measuring machine as

LC = 0.3575 mm, and the parameters of the calibration function were determined

as

∆L(T0, p0) = 0.01972102 m, b0 = 15.2 · 10−6 K−1. (4.59)

The data after the parameter optimization are depicted by the squares in Fig. 4.19.

Compared with the first calibration, the deviations of the speed of sound data from

the IAPWS formulation now agree much better with the deviation pattern of the

chosen reference data from the literature. The agreement with the reference data

is within 0.002 % over the complete temperature range of the calibration. The in-

fluence of temperature measurement errors on the speed of sound will be discussed

more closely in the following section. With these results, it appears convincing that

the calibration measurements show the correct temperature dependence at high tem-

peratures. Beside the present data, the literature data of Fujii and Masui [62], of Del

Grosso and Mader [69], and even the data of Greenspan and Tschiegg [68], although

having a constant systematic error of about 0.02 %, show similar dependencies on

temperature at high temperatures (see Fig. 4.16), while the IAPWS formulation

deviates by up 0.004 %, which, however, is within the uncertainty of 0.005 % of the

IAPWS formulation reported by the authors. This observation justifies the choice

of the literature data sets of Del Grosso and Mader [69] and of Fujii and Masui [62]

instead of the IAPWS formulation as the reference for the calibration.

The difference between the two calibrations performed in August 2004 and 2005

raises the question, which calibration is to be used in the analysis of the propene and

propane measurements. Therefore, measurements in both fluids at some state points

were repeated after the calibration in August 2005. Based on these measurements,

it was concluded that the change in the sensors must have occurred between the

measurements of the two fluids. Therefore, the propene measurements were analyzed

according to the August 2004 calibration, and the propane measurements according

to the August 2005 calibration.

4.4 Assessment of Measurement Uncertainty

One speed of sound measurement triple consists of a temperature measurement, a

pressure measurement, and a speed of sound measurement. A complete measure-

ment value must also include estimates for the uncertainty of each measurement.

The uncertainties of the temperature and pressure measurement were already dis-
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cussed in Secs. 3.4 and 3.5 so that only the uncertainty of the speed of sound

measurement remains to be determined.

There are two possibilities to describe the uncertainty of the speed of sound

measurement. First, it can simply be reported as the uncertainty of the measured

speed of sound value. Second, an additional contribution due to the uncertainty

of the temperature and pressure measurement can be included. This additional

contribution to the uncertainty is called state point assignment error because it

describes the influence of the temperature and pressure measurement uncertainties

on the speed of sound measurement value, which vary with the temperature and

pressure dependence of the speed of sound. In this section, only the first contribution

to the uncertainty is discussed. Since the state point assignment error generally

depends on the sample liquid, it is discussed individually for each measured fluid in

the following chapter.

The measurement value of the speed of sound is determined by w = ∆L/∆t, and

the uncertainty of the speed of sound according to the error propagation law is given

by

uw =
1

∆t
u∆L +

∆L

(∆t)2
u∆t, (4.60)

and the relative uncertainty is determined by

εw =
uw

w
= ε∆L + ε∆t. (4.61)

The uncertainty of the acoustic path length ∆L must be determined from the

calibration measurements described in the preceding section, while the uncertainty

of the measurement value of the time difference is simply the sum of the uncertainty

of the time difference measurement and the uncertainty of the diffraction correction.

The uncertainty of the time measurement was estimated to be u∆tm = 50 · 10−12 s

in Sec. 3.6. The largest relative uncertainty of the time difference measurement

occurs for the measurement of the shortest time difference. If a speed of sound

of about 2000 m s−1 were measured, the measurement value of the time difference

would be ∆tm = 10 ·10−6 s. Therefore, an estimate of the relative uncertainty of the

measurement value of the time difference is given by ε∆tm < 5 ppm. The relative

uncertainty of the diffraction correction was estimated in Sec. 4.2 to be ε∆td < 0.001

%. Thus, the total uncertainty of the time difference measurement becomes

ε∆t < 0.0015 %. (4.62)
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The uncertainty of the acoustic path length is mainly determined by the calibra-

tion measurements and depends on several influence factors: the uncertainty of the

time difference measurement, the uncertainty of the reference speed of sound data,

the difference between the calibration measurements and the reference data for the

speed of sound in water, the uncertainty of the temperature measurement, and the

uncertainty, with which the ambient pressure can be realized in the apparatus. For

measurements under pressure, the uncertainty of the change of the acoustic path

length due to the compression of the sensor must additionally be included.

The uncertainty of the reference values for the speed of sound were reported by

both Del Grosso and Mader [69] and Fujii and Masui [62] as 0.001 %, although larger

differences of about 0.003 % between the two data sets exist at low temperatures.

For the reasons discussed in the preceding section, the data of Del Grosso and Mader

[69] were chosen as reference data in the temperature range between 273.15 K and

315 K. With this choice, the uncertainty of the reference data is estimated to be

0.001 % over the complete temperature range of the calibration, and the agreement

between the calibration measurements and the two literature data sets is estimated

from Fig. 4.19 to be within at least 0.002 %.

The influence of the temperature and pressure measurement uncertainty can be

estimated from the IAPWS formulation. The measurement uncertainty of the pres-

sure consists of three contributions, which are due to uncertainty of the ambient

pressure measurement, the uncertainty of the zero pressure indicator, and the un-

certainty of the hydrostatic pressure correction. For liquid water these uncertainties

amount to 7 Pa, 69 Pa, and 35 Pa, respectively. This yields a total uncertainty of

111 Pa for the pressure measurement. Relative changes in the speed of sound due

to this pressure measurement error as calculated from the IAPWS formulation are

smaller than 1 · 10−7 over the whole temperature range of the measurements and

can safely be neglected.

Fig. 4.20 depicts the influence of small errors in the temperature measurement

on the speed of sound at 0.103125 MPa in the temperature range between 273.15

K and 373.15 K. The influence of small temperature measurement errors vanishes

at 347.30 K because the speed of sound has a maximum at this temperature. The

largest influence occurs at the lowest temperature, amounting to 0.001 % for an

uncertainty of 3 mK of the temperature measurement. With this contribution, the

total uncertainty of the acoustic path length at ambient pressure becomes 0.0055 %.

For measurements under high pressures, the relative uncertainty of the change of

the acoustic path length due to compression can be estimated by applying the error
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propagation law to the last term of the first line of Eq. (4.1):

ε∆L(p) ≈ ε∆L(p0) +
(1− 2ν)p

E
εE +

2νp

E
εν . (4.63)

The relative uncertainties of the elastic modulus and the Poisson number are both

estimated to be 5 %. Both additional terms depend linearly on pressure. The

highest contribution occurs at the highest measured pressure 100 MPa and amounts

to 0.001 % for the term due to the uncertainty of the elastic modulus and 0.0015 %

for the term due to the uncertainty of the Poisson number.

The total relative uncertainty of the acoustic path length can be expressed as

ε∆L(p) = 0.0055% + 2.5 · 10−5 %

MPa
· p, (4.64)

where the pressure has to be inserted in MPa. The uncertainty increases from 0.0055

% at ambient pressure to 0.008 % at 100 MPa.

With the uncertainty of the time difference measurement and of the acoustic path

length, the uncertainty of the speed of sound measurement value becomes

εw(p) = 0.007% + 2.5 · 10−5 %

MPa
· p . (4.65)

Besides the contributions to the uncertainty of the speed of sound discussed in

this section, sample impurities can also contribute significantly to the uncertainty.
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Such contributions individually depend on the purity of the samples used for the

measurements. Furthermore, the reproducibility of the speed of sound measurements

at the same state point also contributes to the uncertainty. These contributions will

be discussed separately for every investigated liquid in the following chapter.

4.5 Measurements in Liquid Water under Pressure

In order to validate the instrument, the speed of sound in liquid water was measured

under pressure. Water is one of the best investigated fluids concerning its thermo-

physical properties, and the speed of sound under pressure was measured by many

authors before. Table 4.8 summarizes details of literature data sets, and Fig. 4.21

shows their distribution in the T ,p plane.

From Table 4.8 it is evident that the data of Fujii [61] are the most accurate data

for the speed of sound in liquid water presently available with a quoted uncertainty

of 0.005 %. Fujii measured the three isotherms 303.15 K (30 ◦C), 313.15 K (40 ◦C),

Table 4.8. Literature data sets for the speed of sound in water. Data already listed in
Table 4.7 are not considered here. Abbreviations: PE: pulse-echo, IF: interferometer, PA:
photo-acoustic, sat. liq.: saturated liquid.

Author Year Method Data T / K p / MPa Uncertainty
Aleksandrov [4] 1976 PE 186 270–647 70 < 0.02 %
Aleksandrov [5] 1979 PE 60 266–423 100 < 0.03 %
Aleksandrov [6] 1980 PE 37 473–673 50 < 0.14 %
Barlow [14] 1967 PE 72 290–367 80 < 0.02 %
Benedetto [20] 2003 PE 90 274–394 90 < 0.05 %
Chávez [29] 1985 PE 54 273–535 sat. liq. < 0.05 %
Erokhin [41] 1979 IF 238 453–653 50 < 1.9 %
Erokhin [42] 1980 IF 219 648–773 50 < 0.1 %
Evstefeev [48] 1979 PE 53 423–573 10 < 0.2 %
Fujii [61] 1994 PE 47 313–323 200 < 0.005 %
Holton [78] 1968 PE 32 323 1000 < 0.2 %
Mamedov [114] 1979 93 273–623 70 < 0.3 %
Novikov [139] 1968 IF 99 423–583 9.7 < 1.0 %
Petitet [143] 1983 PE 93 252–293 350 < 0.05 %
Petitet [144] 1986 PE 73 479–973 300 < 0.5 %
Wilson [190] 1959 PE 77 274–365 97 < 0.05 %
Wiryana [191] 1998 PA 42 353–473 3500 < 0.1 %
Ye [193] 1990 PE 45 290–343 47 < 0.06 %
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and 323.15 K (50 ◦C), under pressures up to 200 MPa. Therefore, these three tem-

peratures were chosen for the test measurements. The measurements were carried

starting at ambient pressure in steps of 10 MPa up to 100.1 MPa. The measurement

results are reported in Appendix B, Table B.1.
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Figure 4.21. Distribution of literature data for the speed of sound in water in the p,T
plane. The lines are the phase boundaries [186, 187].

In this special case, the speed of sound measurements at ambient pressure on

every isotherm are directly calibrated against the data of Fujii and Masui [62] at

ambient pressure. The acoustic path length is optimized so that the deviation of

the data from the IAPWS formulation is exactly equal to the deviation of the data

of Fujii and Masui from the IAPWS formulation at the same temperature. The

direct calculation of the acoustic path length from the reference data of Fujii and

Masui is not possible because they were measured at slightly different temperatures.

With this procedure, the uncertainty of the acoustic path length is reduced consid-
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erably. In this temperature range, the reference data sets of Del Grosso and Mader

and of Fujii and Masui show the best agreement among each other (see Fig. 4.19).

Therefore, the quoted uncertainty 0.001 % of the data of Fujii and Masui appears

reasonable. Since the calibration measurements exactly match the reference data,

there is no contribution to the uncertainty from a difference between the present

data and the data of Fujii and Masui in this special case. The contributions to the

uncertainty due to time difference measurement errors is the same as that for the

calibration described in the preceding section. The influence of the temperature

measurement error is estimated from Fig. 4.20 to be 5 ppm within the temperature

range of the measurements. The total uncertainty also includes the uncertainty of

the change of the acoustic path length under pressure and is given by

εw = 0.003% + 2.5 · 10−10 %

MPa
· p (4.66)

Fig. 4.22 depicts percentage deviations of the present data and of the data of

Fujii from the IAPWS formulation for the three measured isotherms. Both data sets

agree with the IAPWS formulation within 0.02 %. They show the same systematic

deviations from the IAPWS formulation and agree among each other within 0.01 %.

Our data show less scatter than the data of Fujii and are more consistent. Observing

the scatter of the data at this fine resolution, Fujii’s estimation of 0.005 % for the

uncertainty of his data appears to be too optimistic. The comparison shows that

the present data are even more accurate than the data of Fujii, and it demonstrates

the capability of the instrument for highly accurate speed of sound measurements.

Unfortunately, the high accuracy cannot be transferred to measurements in other

fluids because then the calibration has the higher uncertainty discussed in the last

section, and additional allowances due to sample impurities have to be included in

the uncertainty.
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5 Measurements in Pure Fluids

With the instrument described in the preceding chapters, the speed of sound in

compressed nitrogen and in the liquid and supercritical region of the pure fluids

propane, propene (propylene), and the refrigerants 227ea (1,1,1,2,3,3,3-heptafluoro-

propane) and 365mfc (1,1,1,3,3-pentafluorobutane) was measured in the temperature

range between 240 to 420 K and under pressures up to 100 MPa. In this chapter,

the results of these measurements are presented, discussed, and compared with

literature data and equation of state models. These comparisons are carried out on

the basis of the NIST Reference Database RefProp [108], in which the most accurate

fundamental equations of state for each fluid presently available are implemented.

The following section describes the sample preparation, and then each of the

Secs. 5.2 to 5.6 reports and discusses the measurement results for one fluid.

5.1 Sample Preparation

Accurate measurements of the speed of sound require samples with high purity.

Therefore, the liquid samples were degassed from eventually dissolved low boiling

gases, such as nitrogen or oxygen, and then their purity was analyzed with a gas

chromatograph (Perkin Elmer, type Clarus 500), which was equipped with a ther-

mal conductivity detector and a packed column (Porapak Q 80/100 Mesh). In the

analysis of the chromatograms, peak areas were approximately interpreted as mole

fractions of the components. Nitrogen, oxygen and water impurities and the main

component could unambiguously be detected, while no attempt was made to iden-

tify the peaks of other than these substances. The resolution of the purity analysis

with the gas chromatograph was better than 0.001 %.

For the degassing procedure, the sample container was placed in an ultrasonic

bath and heated at the bottom to about 50 ◦C. While the container was continuously

being treated with ultrasound, its valve was opened several times to remove the gas

phase from the container.

Before a sample is filled into the apparatus, the pressure vessel and tubing system

are carefully evacuated. Then, the temperature in the thermostat is set to about

20 ◦C. For sample fluids with a vapor pressure below ambient pressure, the sample

container is mounted upside down on top of the thermostat and heated to about
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50 ◦C. After opening the container valve, the liquid flows into the apparatus. For

sample fluids with vapor pressure larger than ambient pressure, the sample container

is placed in upright position on top of the thermostat. The container is heated to

about 50 ◦C, which is higher than the temperature in any other part of the high

pressure system. After opening the container valve, the gas phase in the sample

container flows into the high pressure system, where it condenses.

After a new sample had been filled in or the pressure had been changed, the

pressure vessel was allowed to equilibrate for at least an hour before a measurement

was taken.

5.2 Nitrogen

Besides the measurements in liquid water, which were reported in Sec. 4.5, the speed

of sound in compressed nitrogen was measured in order to validate the apparatus.

Moreover, these measurements serve to examine the capability of the apparatus,

which was primarily designed for liquid samples, for measurements in compressed

gases. Nitrogen is well suited for this purpose because it is readily available in high

purity. Furthermore, the speed of sound in nitrogen has been measured by many

authors before, for example [32, 95, 197], and with the fundamental equation of state

developed by Span et al. [161] an accurate basis for comparisons is available. Costa

Gomez and Trusler [32] measured the speed of sound in nitrogen with a spherical

resonator on the four isotherms 250 K, 275 K, 300 K, and 350 K under pressures up

to 30 MPa. This data set enables a comparison of the present pulse-echo technique

with the spherical resonator. In the pressure range, where the data sets overlap,

they should agree within the uncertainties of the two completely different methods.

The data set of Kortbeek et al. [95] covers the temperature range between 123 K

to 298 K under pressures from 85 MPa to 1000 MPa. Kortbeek et al. claimed an

uncertainty of 0.02 % for their data. Further literature data sets for the speed of

sound in nitrogen were reviewed by Span et al. [161].

The nitrogen sample was purchased from Westfalen AG with a manufacturer

specified purity of 99.999 vol. %. The sample purity was checked with the gas

chromatograph, and no impurities were detected within the resolution of the chro-

matograph, which is about 0.001 %.

The speed of sound was measured along six isotherms in the temperature range

between 275 K and 400 K in steps of 25 K under pressures up to 100 MPa. The

lowest pressure on an isotherm was chosen as the lowest pressure at which the



Nitrogen 139

two successive echoes relevant for the time difference measurement could clearly be

distinguished. At lower pressures, the slow decay of the first echo extended too far

into the second echo for the cancellation to occur. On the four isotherms 275 K, 300

K, 325 K, and 350 K, the lowest pressure was 20.1 MPa, whereas at 375 K and 400

K it was 25.1 MPa. The reproducibility of the data at the same state point after

temperature and pressure cycles was better than 0.001 %.

According to Costa Gomez and Trusler [32], the propagation of sound waves in

nitrogen is already influenced by dispersion phenomena at very low frequencies in

the audio regime because the vibrational relaxation time for the nitrogen molecule

is significantly longer than the period of the sound waves. Costa Gomez and Trusler

argued that the vibrational mode of the nitrogen molecules does not participate in

the propagation of sound waves, if the relation f/p ≥ 30 Hz·MPa−1 is satisfied. Since

the present measurements were carried out at 8 MHz, it can safely be concluded that

the vibrational mode is not excited at all. This means that the frequency of the

present measurements lies in the infinite frequency regime above the dispersion step

in Fig. 2.2. Thus, the present data can easily be corrected to the thermodynamic

speed of sound by Eq. (2.137), which requires only the correction of the ideal gas

heat capacities.

The contribution of the vibration to the ideal gas heat capacities can be calculated

by means of statistical thermodynamics. If the vibration is described by the model

of the linear oscillator, the contribution to the ideal gas heat capacities is given by

[9]

cvib =
Rm

M

{
T vib/T exp(−T vib/2T )

1− exp(−T vib/T )

}2

, (5.1)

where T vib represents the characteristic temperature of the vibrational mode. The

thermodynamic speed of sound w0 is obtained from the measured speed of sound w

by applying the correction

w0 = w

√
cp

cv

cv − cvib

cp − cvib
(5.2)

with cvib according to Eq. (5.1). Eq. (5.2) corresponds to Eq. (2.137) in Sec. 2.5. All

measured speed of sound data were corrected according to Eq. (5.2). Values for the

isochoric and isobaric heat capacities were calculated from the fundamental equation

of state of Span et al., and the characteristic temperature of the vibration was taken

from the work of Laher and Gilmore [103] as T vib = 3352.2 K. The measurement

results are reported in Table B.2 in Appendix B.
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Since the nitrogen sample is of very high purity, the influence of impurities on

the measurement uncertainty is negligible. The uncertainty of the data is given by

Eq. (4.65) plus an additional contribution introduced by the reproducibility. The

total uncertainty of the speed of sound measurement becomes

εw(p) = 0.008% + 2.5 · 10−5 %

MPa
· p . (5.3)

The state point assignment error due to the uncertainties of the temperature and

pressure was estimated by the equation of state of Span et al. [161]. It amounts to 3

ppm for the temperature measurement and 0.0025 % for the pressure measurement.

The uncertainty of the speed of sound data including the state point assignment

error is given by

εw(p) = 0.011% + 2.5 · 10−5 %

MPa
· p . (5.4)

In Figs. 5.1 and 5.2, the present data are compared with the fundamental equation

of state of Span et al. and literature data. The plots show percentage deviations of

the data from the equation of state as a function of pressure. The present data are

very consistent and agree with the equation of state within at least 0.02 % over the

entire temperature and pressure range of the measurements. The agreement of the

present data and the data of Costa Gomes and Trusler is generally within 0.01 %, in

most cases even better. At the lowest measured pressures, the present data approach

the equation of state and the data of Costa Gomez and Trusler and agree with them

within 0.005 % or better. This comparison shows that the pulse-echo technique of

the present apparatus yields essentially the same results as the spherical resonator

method within the uncertainty of both methods.

From the data set of Kortbeek et al. [95] only four data overlap with the present

measurements, namely at 275 K and 298 K at the pressure 85 MPa and 100 MPa.

They are by about 0.2 % larger than the prediction of the equation of state and

therefore lie outside the range of Fig. 5.1. Since the present data agree well with

the data of Costa Gomes and Trusler at low pressures and the pressure dependence

of the speed of sound was shown to be correctly resembled by the water data in

Sec. 4.5, the data of Kortbeek et al. are probably too high.
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5.3 Propane

Propane is a fluid with a wide range of technical applications. For example, it is

used as a basic ingredient in many production processes in the chemical industry

or as a working fluid in refrigeration cycle processes, and it occurs as a secondary

component in natural gas mixtures. Therefore, an accurate fundamental equation

of state for the description of the thermodynamic properties of propane is desirable,

which requires accurate speed of sound data as part of the experimental data set

for the optimization process. Although the speed of sound in propane under high

pressures was measured by several authors before, there are considerable differences

between the different data sets, and it is not known which one is correct. New

accurate speed of sound data can help to decide between the different data sets and

extend the data basis for a new fundamental equation of state. For these reasons,

it was decided to measure the speed of sound in propane.

The propane sample was purchased from Scott Specialty Gases with a manu-

facturer specified purity better than 99.993 vol. %. A gas chromatograph analysis

revealed two peaks with 0.009 area % and 0.003 area % besides the main propane

peak. The first peak was identified as water, while the nature of the second peak

could not be identified. This impurity is probably another hydrocarbon, which is a

remain of the production process. No nitrogen or oxygen was detected. The purity

of the sample is estimate to be 99.988 %. For the remaining impurities, an additional

allowance of 0.005 % is added to the uncertainty of the speed of sound data.

Experimental data for the speed of sound in propane were published by seven

Table 5.1. Literature data for the speed of sound in propane. Abbreviations: PE: pulse-
echo, SR: spherical resonator, DL: diffraction of light by ultrasound, SP: spectroscopically
pure in the infrared regime.

Author Year Method Data T / K p / MPa Purity Uncertainty
He [75] 2002 SR 24 293–323 0.7 > 99.95 % < 0.004 %
Lacam [102] 1956 DL 200 298–498 100 SP < 1 %
Niepmann [137] 1984 PE 241 200–323 60 > 99.95 % < 0.2 %
Noury [138] 1954 DL 118 348–398 15 SP < 1.5 %
Terres [173] 1957 IF 99 293–448 10 > 96 % < 1 m/s (g)

< 5 m/s (l)
Trusler [180] 1996 SR 68 225–375 0.85 > 99.95 % < 0.01 %
Younglove [195] 1981 PE 180 90–300 35 > 99.95 % < 0.05 %
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groups. Details of these literature data sets are summarized in Table 5.1. He et

al. [75], Terres et al. [173], and Trusler and Zarari [180] measured the speed of

sound in the gas phase, while the data of Noury [138] cover the vicinity of the

critical point in the supercritical region. Data in the liquid region were published

by Lacam [102], Niepmann [137], and Younglove [195].

Fundamental equations of state in terms of the Helmholtz free energy as a function

of density and temperature were developed by Miyamoto and Watanabe [128], Span

and Wagner [163], and Lemmon, McLinden, and Wagner [109]. Younglove and Ely

[196] published a thermal equation of state of the MBWR-type, which together

with an equation for the isochoric ideal gas heat capacity can be represented as a

fundamental equation of state.

The distribution of the present measurements and the literature data in the p,T

plane is shown in Fig. 5.3. The present data cover the subcritical liquid region from
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240 K upwards and extend up to 420 K into the supercritical region under pressures

up to 100 MPa. On subcritical isotherms, the lowest pressures, at which measure-

ments were carried out, were chosen close to the vapor pressure. On supercritical

isotherms, measurements were started at the lowest pressure where a clear signal

cancellation could be observed. The measurement results are reported in Appendix

B, Table B.3.

The reproducibility of the speed of sound, when repeating measurements at the

same state point after pressure and temperature cycles, was within 0.002 %. Thermal

relaxation phenomena do not significantly influence the propagation of sound waves

in propane in the frequency range of the present measurements [200, p. 472] so that

no dispersion correction is required. With the reproducibility and the additional

contribution due to sample impurities, the total uncertainty of the speed of sound

measurement is given by

εw(p) = 0.014 % + 2.5 · 10−5 %

MPa
· p . (5.5)

The state point assignment error due to the uncertainties of the temperature and

pressure was estimated by the equation of state of Lemmon et al. [109]. It amounts

to 0.003 % for the temperature measurement and 0.002 % for the pressure mea-

surement. For the lowest measured pressures on the supercritical isotherms, the

influence of the pressure is larger because the isotherms are rather flat in this state

region, and it amounts to 0.005 %. When taking theses additional contributions

into account, the uncertainty of the speed of sound measurement becomes

εw(p) = 0.019 % + 2.5 · 10−5 %

MPa
· p . (5.6)

At the lowest pressures on supercritical isotherms, 0.019 % has to be replaced by

0.022 %.

Fig. 5.4 shows the speed of sound data for the ten measured isotherms as a

function of pressure. In the measured state region, the speed of sound ranges from

about 250 m s−1 to 1700 m s−1.

In the remainder of this section, the present data are compared with the literature

data and equation of state models. The equation of state of Lemmon et al. [109]

is chosen as a reference for these comparisons. In the optimization process of this

equation of state, the present speed of sound data were already used. Figs. 5.5, 5.6,

and 5.7 show percentage deviations of the present data, literature data at similar

temperatures, and the three other equation of state models from the equation of

state of Lemmon et al.
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The present data agree with the equation of state within 0.06 % over the whole

range of temperatures and pressures. This excellent agreement is due to the fact

that they were used by Lemmon et al. in the optimization process of the equation of

state. From the three literature data sets, the data of Younglove at 240 K, 260 K,

280 K, and 300 K agree best with the present data. They are slightly lower than the

present data, but the agreement is within 0.04 % except for a few data, where the

differences are slightly larger. Younglove reported an uncertainty of 0.05 % for his

data. Thus, both data sets agree among each other within the uncertainty quoted

by Younglove.

The data of Niepmann show some scatter and lie about 0.2 to 0.8 % below the

present data. The differences between the data of Niepmann and the present data

are similar on all isotherms except for the highest isotherm, which was measured by

Niepmann, 340 K, and generally increase with pressure. At 340 K, the percentage

deviations from the equation of state range from 0.5 % to 1 %.

The data of Lacam also show some scatter and systematic deviations of up to

2 % from the equation of state. At 300 K, the data agree with the present data

within 0.5 %, but the deviations increase up to 2 % at 420 K, which is the highest
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temperature measured in this work.

This comparison shows that the present data and the data of Younglove are the

most accurate data for the speed of sound in the liquid phase of propane presently

available, and they are well represented by the equation of state of Lemmon et al.

Without the present speed of sound data, it was not possible to identify which one

of the three literature data sets is correct. The present data could not only help

to identify the data set of Younglove as the most accurate, but they are even more

accurate than all previously available literature data for the speed of sound in liquid

propane.

Among the three other equation of state models, the oldest equation of state of

Younglove and Ely provides the best representation of the speed of sound over a

wide range of temperatures, only at high temperatures the deviations increase up

to 0.5 %. The equation of state of Span and Wagner represents the speed of sound

with 0.5 % except for the lowest measured isotherm 240 K, while the equation of

state of Miyamoto and Watanabe shows larger deviations of up to 1 % over the

whole temperature range of the present measurements.
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Figure 5.5. Percentage deviations of measured speeds of sound in liquid propane, liter-
ature data, and three equation of state models from the fundamental equation of state of
Lemmon et al. [109] as a function of pressure at 240 K, 260 K, and 280 K.
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Figure 5.6. Percentage deviations of measured speeds of sound in liquid propane, liter-
ature data, and three equation of state models from the fundamental equation of state of
Lemmon et al. [109] as a function of pressure at 300 K, 320 K, 340 K, and 360 K. Symbols
are the same as in Fig. 5.5.
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ature data, and three equation of state models from the fundamental equation of state of
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5.4 Propene

As propane, propene is a fluid with applications in many technical areas. A review

of the thermodynamic properties of propene was published by Angus et al. [7] in

1980. In this volume, the most recent fundamental equation of state for propene

was published. Only two rather old data sets for the speed of sound in propene

exist in the literature, which were published by Soldatenko and Dregulyas in 1970

[158] and Terres et al. in 1957 [173]. The 100 data of Soldatenko and Dregulyas

were measured with an interferometer and cover parts of the gas and supercritical

region between 193–473 K under pressures up to 10 MPa. The sample purity was

better than 99.5 %, and the uncertainty of the data was estimated to be lower than

0.15 %. The 224 data of Terres et al. were also measured with an interferometer

and cover the gas region between 293–448 K under pressures up to 10 MPa. A few

data were measured in the liquid region. The sample purity was reported to be

approximately 100 %, and the uncertainty was estimated to be 1 m s−1 for data in

the gas region and 5 m s−1 for data in the liquid region. The distribution of both

data sets in the p,T plane is shown in Fig. 5.8. The measurements of this work fill a

gap by providing data in the liquid and supercritical region under high pressures.

The propene sample was purchased from Deutsche Air Liquide with a manufac-

turer specified purity better than 99.95 %. After degassing the sample as described

above, two impurities with 0.008 area % and 0.002 area % besides the main propene

peak were detected by the gas chromatograph, whose nature could not be identi-

fied. They are probably other hydrocarbons, which are remains of the production

process. This leads to the conclusion that the purity of the sample was 99.990 %.

As for propane, an additional allowance of 0.005 % is added to the uncertainty of

the measured speeds of sound to account for influence of the impurities.

Measurements were taken on ten isotherms between 240 K and 420 K under

pressures up to 100 MPa. The distribution of the measurements in the p,T plane

is included in Fig. 5.8. Below 300 K, a Viton o-ring was used to seal the closure of

the pressure vessel, while at higher temperatures FEP encapsulated silicone o-rings

were used. At the lowest and highest temperatures, the o-rings did not withstand

the highest pressures. Therefore, the data at 240 K extend only up to 50 MPa and

at 420 K only up to 80 MPa. At moderate pressures in the supercritical region, the

present data overlap with the data of Soldatenko and Dregulyas. The measurement

results are reported in Appendix B, Table B.4.

Since the propene measurements were analyzed with the calibration function for
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Figure 5.8. Distribution of the present measurements and literature data for the speed
of sound in propene in the p,T plane.

the acoustic path length determined by the August 2004 calibration measurements,

the basic uncertainty of the speed of sound measurement is slightly higher than the

one given by Eq. (4.65). In Eq. (4.65), the value 0.007 % is therefore replaced by

0.009 %. The reproducibility of the speed of sound data for repeated measurements

at the same state point after temperature and pressure cycles was better than 0.002

%. On the subcritical isotherms 340 K and 360 K and on supercritical isotherms,

the reproducibility at the states with low pressures was somehow larger, amounting

to 0.005 %. As for propane, thermal relaxation phenomena do not significantly

influence the propagation of sound waves in the frequency range of the present

measurements [200, p. 471] so that no dispersion correction is required. When

the reproducibility and the additional contribution due to sample impurities are

included, the total uncertainty of the speed of sound measurement is given by

εw(p) = 0.016 % + 2.5 · 10−5 %

MPa
· p . (5.7)

The state point assignment error due to the uncertainties of the temperature and
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pressure was estimated by the equation of state of Angus et al. [7] to be 0.003 %

for the temperature measurement and 0.002 % for the pressure measurement. For

the lowest measured pressures on the supercritical isotherms, the influence of the

pressure is larger, amounting to 0.005 %. When taking these additional contributions

into account, the uncertainty of the speed of sound measurement becomes

εw(p) = 0.021 % + 2.5 · 10−5 %

MPa
· p . (5.8)

At the lowest pressures on the on supercritical isotherms, 0.019 % has to be replaced

by 0.027 %.
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Figure 5.9. The speed of sound in propene as a function of pressure for all measured
isotherms.

Fig. 5.9 shows the speed of sound data for the ten isotherms as a function of

pressure. In the region of the measurements, the speed of sound ranges from about

250 m s−1 to 1700 m s−1 and is of similar magnitude as for propane, which is not

surprising because the propene and propane molecules are very similar.

Figs. 5.10 and 5.11 show percentage deviations of the present data and the two

literature data sets from the fundamental equation of state of Angus et al. [7]. The

present data are very consistent and are represented by the equation of state on

all isotherms within 1.5 %. The two literature data sets generally show similar
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deviations, but scatter more than the present data. On some isotherms, for example

at 340 K or 360 K, the data of Terres et al. in the liquid are by about 1.5 % higher

than the present data. Except for these cases, the agreement among the data sets

is within 1 % in the region where they overlap. The present data will be useful

for establishing a more accurate fundamental equation of state for propene in the

future.
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5.5 Refrigerant 227ea

The refrigerant 227ea (1,1,1,2,3,3,3-heptafluoropropane) is a non-flammable hydroflu-

orocarbon without ozone depletion potential. It is mainly used as a pure substance

as a propellant in aerosol sprays in medical technology. R227ea is employed as the

secondary component in mixtures with R365mfc with 7 or 13 % by weight, which

are used as blowing agents in the production of polyurethane foams for insulation

purposes. Furthermore, R227ea can be used as a low vapor pressure refrigerant in

refrigeration and air-conditioning applications with high condensation temperatures.

Another possible application for mixtures of R365mfc with R227ea as a secondary

component, which is presently being discussed, is the use as a working fluid in

high temperature heat pumps with condensation temperatures of about 100 ◦C [89].

With the addition of R227ea, the flammability of R365mfc is reduced.

Table 5.2. Literature Data for the Speed of Sound in R227ea. Abbreviations: PE: Pulse-
echo, IF: Cylindrical Interferometer, LS: Dynamic Light Scattering, sat. line: Saturated
Gas and Liquid.

Author Year Method Data T / K p / MPa Purity Uncertainty
Benedetto [18] 2001 SR 78 270–370 0.5 > 99.99 % < 0.01 %
Fröba [60] 2005 LS 33 293–375 sat. line > 99.9 % < 0.5 %
Gruzdev [70] 2002 IF 66 273–383 3.5 > 99.99 % < 0.2 %
Pires [148] 2000 PE 259 248–333 65 > 99.98 % < 0.8 %

Four data sets for the speed of sound in R227ea are published in the literature.

The details of these data sets are summarized in Table 5.2 and the distribution of the

data in the p,T plane is depicted in Fig. 5.12. The data set of Benedetto et al. [18]

covers a larger part of the gas region at subcritical temperatures. Fröba et al. [60]

measured the speed of sound in saturated vapor and liquid R227ea, whereas the data

of Gruzdev et al. [70] and Pires et al. [148] cover parts of the liquid region. The data

set of Pires et al. extends up to 65 MPa, but the temperature range is limited by 333

K. The data of Gruzdev et al. cover a larger temperature range, but are restricted

to moderate pressures below 3.5 MPa. At present, there are no data for the speed of

sound in the liquid phase at high pressures above 333 K, and also the speed of sound

at supercritical temperatures has not yet been measured. A fundamental equation

of state for R227ea was developed by Lemmon and Span [112]. The functional form

of the equation is of the so-called short type, which was originally developed by Span

and Wagner [162, 163, 164] for several polar and non-polar fluids before. According
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Figure 5.12. Distribution of the present measurements and literature data for the speed
of sound in R227ea in the p,T plane.

to the authors, this equation of state represents the speed of sound in the liquid

region only within 3 %. The present measurements were undertaken to extend the

range of speed of sound measurements to higher temperatures and pressures.

The R227ea sample was provided by Solvay Fluor & Derivate GmbH in Hanover

and had a purity better than 99.5 % according to the manufacturer’s specification.

The purity of the sample was examined by gas chromatography and found to be

better than 99.975 %. Besides the main R227ea peak, four peaks with 0.010 area %,

0.008 area %, 0.006 area %, and 0.001 area % were detected. The peak with 0.008

area % could be identified as water, and no nitrogen or oxygen was detected. The

nature of the remaining impurities was not identified. It is assumed that they are

other hydrofluorocarbons, which occur as by-products in the production process.

The contribution of the impurities to the uncertainty of the speed of sound data is

estimated to be smaller than 0.01 %.

The present measurements cover the temperature range between 280 K and 420
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K under pressures up to 50 MPa. Only the highest isotherm extends up to 90

MPa. During these measurements, the pressure vessel was sealed with an FEP

encapsulated silicon o-ring. Since this type of o-ring fails after having been exposed

to 100 MPa about four times, it was decided to measure only up to 50 MPa starting

from the lowest to the highest temperature. At 420 K, measurements were also

taken at higher pressures until the sealing failed at 100 MPa. The distribution of

the present measurements in the p,T plane is also shown in Fig. 5.12.

The reproducibility of the speed of sound measurements at the same state point

after pressure and temperature cycles was within 0.01 %, which is much higher than

that for the propane and propene measurements. This is probably due to the use of

a Viton o-ring in the hand pump. R227ea dissolves in the elastomer material and

increases the size of a free Viton o-ring considerably [159]. It is assumed that small

amounts of the elastomer material also dissolve in the R227ea or even react with it,

which causes changes of the speed of sound in the R227ea.

Contrary to nitrogen, propane, and propene, it is not known if thermal relaxation

phenomena influence the propagation of sound waves in R227ea. However, one can

conclude from the comparison of the present data with the data of Gruzdev et al.,

which were measured at 1 MHz, and the data of Fröba et al., which were measured

by a dynamic light scattering technique, given below that the influence of thermal

relaxation on the speed of sound is negligible for the present measurements.

Due to the sample impurities and the reduced reproducibility, the uncertainty of

the speed of sound data is higher than that for the propane and propene data. It is

estimated to be

εw(p) = 0.027 % + 2.5 · 10−5 %

MPa
· p . (5.9)

The state point assignment errors due to the uncertainties of the temperature and

pressure measurements are estimated from the preliminary equation of state of Lem-

mon. They are lower than 0.003 % and 0.002 %, respectively. For the measurements

at the lowest pressures on the supercritical isotherms, the error due to the uncer-

tainty of the pressure measurement is higher, amounting to 0.01 %. Including the

state point assignment error, the uncertainty becomes

εw(p) = 0.032 % + 2.5 · 10−5 %

MPa
· p . (5.10)

At the lowest pressures on the highest subcritical isotherms and on supercritical

isotherms, 0.032 % has to be replaced by 0.04 %.
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Figure 5.13. The speed of sound in R227ea as a function of pressure for all measured
isotherms.

Fig. 5.13 shows the speed of sound data for all measured isotherms as a function

of pressure. Generally, the speed of sound in R227ea is lower than in propane and

propene. In the range of the measurements, it takes values between 200 m/s to 800

m/s.

The new data are currently being used by Lemmon [110] to establish a new

fundamental equation of state for R227ea. In the following, the present data are

compared with a preliminary equation of state for R227ea provided by Lemmon.

Figs. 5.14 and 5.15 show percentage deviations of the present data and of selected

literature data reviewed in Table 5.2 from the fundamental equation of state.

The present data are represented by the equation of state within 0.1 % in the

entire temperature and pressure range of the measurements. They agree with the

data of Gruzev et al. mostly within 0.5 %. The present data are very consistent,

whereas the data of Gruzdev et al. scatter considerably. The data of Pires et al. at

280 K and 320 K are systematically lower than the present data by about 0.8 %. This

large systematic difference is probably due to the different calibration procedures.

Pires et al. determined the acoustic path length in their sensor by a calibration

measurement at 298.15 K and 10 MPa with pure CCl4, for which the speed of sound
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is not as accurately known as for water, which was used as the calibration fluid

in this work. Good agreement between the present data and the data of Fröba et

al. is observed within the quoted uncertainty of 0.5 %. As for propane, the accurate

present data allow to decide which one of the literature data sets is correct. In this

case, the data of Pires et al. are too low by about 0.8 %.
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Figure 5.14. Percentage deviations of the present speed of sound data for R227ea and
literature data from the preliminary fundamental equation of state of Lemmon [110] as a
function of pressure at temperatures at 280 K, 300 K, and 320 K.
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Figure 5.15. Percentage deviations of the present speed of sound data and literature
data for R227ea from the preliminary fundamental equation of state of Lemmon [110] as
a function of pressure between 340 K and 420 K.
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5.6 Refrigerant 365mfc

R365mfc (1,1,1,3,3-pentafluorobutane) is a flammable hydrofluorocarbon, which has

no impact on the ozone layer. It is predominantly used as the main component in bi-

nary mixtures with 7 % or 13 % by weight R227ea in the production of polyurethane

foams for insulation purposes, where a liquid foaming agent with low thermal con-

ductivity and high vapor pressure is required. Besides, mixtures of R365mfc and

R227ea are considered as possible working fluids in high temperature heat pump

systems with condensation temperatures of about 100 ◦C.

In spite of these practical applications, only a very limited number of data for the

thermophysical properties of R365mfc is available in the literature. In particular,

only one data set has been published for the speed of sound in R365mfc by Fröba et

al. [59]. In that work, the dynamic surface light scattering technique was employed

to measure the speed of sound in the saturated gas and liquid. Altogether, 29 data

were reported in the temperature range between 298 K and 460 K. The sample had

a purity better than 99.5 %, and the uncertainty of the speed of sound data was

estimated to be 0.5 %. The speed of sound in the single phase liquid region has not

yet been measured.

The R365mc sample was provided by Solvay Fluor & Derivate GmbH in Hanover.

It had a stated purity better than 99.5 % and was degassed in an ultrasonic bath

before it was filled into the apparatus. Since the vapor pressure of R365mfc at

ambient temperature is lower than the ambient pressure, the sample container was

heated up to at least 50 ◦C, where the vapor pressure amounts to about 0.14 MPa,

during the degassing process.

The purity of the sample was analyzed by gas chromatography, and two peaks

with 0.001 area % and 0.006 area % besides the main R365mfc peak were detected.

The nature of these peaks could not be identified. The purity of the sample is

assumed to be 99.993 %. The contribution of the impurities to the uncertainty of

the speed of sound data is estimated to be lower than 0.004 %.

Fig. 5.16 depicts the distribution of the present data and the data of Fröba et

al. [59] in the p,T plane. The present measurements cover the temperature range

between 250 K and 420 K under pressures up to 100 MPa. Due to the high critical

point of R365mfc at about (460 K, 3.252 MPa), the data cover only a part of the

liquid region. It was first tried to start the measurements at 240 K because the

NIST Reference Database RefProp [108] reports the triple point temperature 239

K. During the cooling process the sample was kept at about 40 MPa and froze before
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Figure 5.16. Distribution of the present measurements and the data of Fröba et al. [59]
for the speed of sound in R365mfc in the p,T plane.

240 K were reached. Therefore, it was decided to start measurements at 250 K. At

this temperature, measurements were taken up to 50 MPa. When it was tried to

increase the pressure from 50 MPa to 60 MPa, the sample froze again. Then the

measurements were continued at 260 K, where it was possible to take measurements

over the full pressure range of the apparatus up to 100 MPa. The measurement

results are reported in Appendix B, Table B.6.

Measurements on the isotherm 300 K were repeated several times with new sam-

ples filled into the apparatus to assess the reproducibility. It was observed that the

reproducibility initially decreased with time by about 0.003 % over a day, indicat-

ing that the sample changes in the apparatus. This is probably due to interactions

between the R365mfc and the polymer materials PTFE and PVDF used inside the

system. Also, interactions between R365mfc and a Viton o-ring used as a seal in the

hand pump could be the cause for these changes. For this reason, the sample was

removed from the apparatus after two complete isotherms were measured (about up

to 10 days), and the apparatus was refilled with R365mfc from the sample container.

When the apparatus was evacuated after it had been filled with R365mfc, it was

observed that it took considerably longer than usual to reach 0.05 Pa, which is the
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lowest pressure indicated by the vacuum pressure gauge. It is believed that the

R365mfc dissolves in the PTFE parts in the pressure vessel and the PTFE seals of

the high pressure valves. Although this provides no problem for the measurements

described in this section, the apparatus must be carefully cleaned and evacuated

before a different sample is filled in.

As for R227ea, it is not known, if thermal relaxation phenomena influence the

propagation of sound waves in R365mfc. However, one can conclude from the com-

parison of the present data with the data of Fröba et al. below that the influence

of thermal relaxation on the speed of sound can be neglected for the present mea-

surements. Since the Fröba et al. data were measured by a dynamic light scattering

technique, they should not be influenced by dispersion effects.

The uncertainty of the speed of sound data is higher than that for the propane

and propene data due to the reduced reproducibility. It is estimated to be

εw(p) = 0.02 % + 2.5 · 10−5 %

MPa
· p . (5.11)

The state point assignment errors were estimated from a preliminary equation of

state of Lemmon [111] and amounts to 0.002 % and 0.003 % for the influence of the

temperature and pressure. On the highest isotherms near the vapor pressure, the

influence of the uncertainty of the temperature measurement is larger, amounting to

0.005 %. Including the state point assignment errors, the uncertainty of the speed

of sound data becomes

εw(p) = 0.025 % + 2.5 · 10−5 %

MPa
· p . (5.12)

For the state points on the highest isotherms near the vapor pressure, 0.025 % must

be replaced by 0.028 %.

Fig. 5.17 shows the measured speed of sound data on all isotherms as a function of

pressure. The speed of sound in R365mfc ranges from about 250 m s−1 to about 1250

m s−1, which is considerably lower than the speed of sound in propane or propene.

For example, the speed of sound in propane in the vicinity of the triple point is

larger than 2000 m s−1, while in R365mfc it is about 1000 m s−1.

As for R227ea, the new data are currently being used by Lemmon [111] to es-

tablish a new fundamental equation of state for R365mfc. Fig. 5.18 compares the

present measurements with a preliminary equation of state provided by Lemmon

[111] and with the data of Fröba et al. [59]. The equation of state represents the

present data generally within 0.1 %, only few data at the highest measured pressure

100.1 MPa on some isotherms show slightly larger deviations. The data of Fröba
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et al. are represented within 0.4 % by the equation of state in the temperature

range of the present measurements, but at higher temperatures their deviations in-

crease. This comparison shows that the present data agree with the data of Fröba

et al. within the quoted uncertainties.
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6 Conclusions and Outlook

In the limit of low frequencies and small amplitudes, the speed at which sound

waves propagate in a fluid is a function of its thermodynamic state only. Since the

square of the speed of sound is the derivative of pressure with respect to density

at constant entropy, accurate speed of sound data sets are useful for developing

equations of state for pure fluids and mixtures, especially under high pressures where

many thermodynamic properties depend strongly on density.

In this work, a new instrument for high-precision measurements of the speed

sound in liquids and compressed gases in the temperature range between 240 K and

420 K and under high pressures up to 100 MPa was developed. The measurement

principle of the acoustic sensor is based on a pulse-echo technique. A piezoelectric

quartz crystal is mounted asymmetrically at distances of 20 mm and 30 mm between

two stainless steel reflectors. The crystal is excited by a sinusoidal burst signal of

60–100 cycles and emits sound signals in both directions into the sample liquid. The

speed of sound is obtained as two times the difference of the distances between the

crystal and the reflectors divided by the difference of the transit times the signals

need to travel these distances. For the extraction of the time difference from the

received pulse-echo pattern, a phase-comparison technique originally developed by

Kortbeek et al. [93] was modified, with which a resolution of the time difference

measurement of at least 5 ppm is achieved.

The acoustic sensor resides in a pressure vessel, which is mounted in a circulating

liquid bath thermostat, whose temperature is kept constant by a PID controller.

The temperature is measured in the wall of the pressure vessel with a calibrated

Pt25 platinum resistance thermometer employing a high-precision alternating cur-

rent bridge system. Measurements of the pressure are performed by two gas pressure

balances operated with nitrogen with measurement ranges of 5 MPa and 100 MPa,

which are coupled to the sample liquid via a membrane-type differential pressure

indicator. The measurement uncertainties are estimated to be smaller than 3 mK

for the temperature and smaller than 0.01 % below 10 MPa or smaller than 0.005

% between 10 and 100 MPa for the pressure.

The acoustic path length and the thermal expansion coefficient of the sensor

material were determined by calibration measurements with distilled and deionized

liquid water at ambient pressure. Corrections for the variation of the acoustic path
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length with temperature and pressure and for diffraction effects are applied in the

measurement analysis.

In order to validate the instrument, the speed of sound in liquid water was mea-

sured on the three isotherms 303 K, 313 K, and 323 K under pressures up to 100

MPa. These speed of sound data have uncertainties smaller than 0.005 % and are

even more accurate than the best literature data for liquid water. Moreover, the

speed of sound in compressed nitrogen was measured on six isotherms between 275

K and 400 K and under pressures between 20 MPa and 100 MPa. These data set

partially overlaps with a very accurate data set measured by Costa Gomez and

Trusler [32] with a spherical resonator, whose accuracy was estimated to be better

than 0.01 %. In the region where the two data sets overlap, their agreement is within

at least 0.01 %. These results demonstrate that the instrument is capable of highly

accurate speed of sound measurements.

Furthermore, the speed of sound in the liquid and supercritical region of propane,

propene, and the refrigerants 227ea and 365mfc was measured in the temperature

range between 240 K and 420 K under pressures up to 100 MPa. The uncertainty

of the speed of sound data is generally estimated to be smaller than 0.01 %. In-

cluding contributions due to the state point assignment error and due to sample

impurities, increases the uncertainty for each fluid. The uncertainties of the data

for propane and propene are estimated to be 0.025 %, whereas the uncertainties

of the data for R227ea and R365mfc are larger and amount to 0.035 %. The data

for propane, R227ea, and R365mfc were used by Lemmon et al. [109] and Lemmon

[109, 110] to develop new accurate fundamental equations of state for these fluids.

The high accuracy of the data is demonstrated by comparisons with literature data

and equation of state models.

Future research projects on speed of sound measurements in liquids and com-

pressed gases could develop in two directions: First, besides pure fluids, mixtures

could be examined. This requires containers, in which mixtures can be set up gravi-

metrically from the pure substances and stored under pressure in the liquid phase

until they are filled into the apparatus.

Second, the speed of sound apparatus could be extended by a sensor for accurate

density measurements under moderate pressures. With speed of sound measure-

ments over the full pressure range of the apparatus up to 100 MPa and additional

density measurements at moderate pressures, fundamental equations of state, which

cover the complete pressure range, could be developed as follows. With the den-

sity and speed of sound data and additional data for the vapor pressure and the
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density and speed of sound in the gas phase, a fundamental equation of state could

be established which describes the moderate pressure regime accurately. From this

intermediate fundamental equation of state, initial values for the integration method

described in the introduction could be calculated. Furthermore, the speed of sound

data could be represented by a correlation over the full pressure range. Then the

integration method could be applied to determine the thermal equation of state up

to 100 MPa. Finally, the speed of sound data and the derived thermal data could

be used to establish a fundamental equation of state, from which all thermodynamic

properties could be calculated under pressures up to 100 MPa.
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Appendix

A Relations Between Thermodynamic State Vari-

ables

In this appendix, relations between thermodynamic state variables, which have been

used in the main text without prove, will be derived. In particular, relations be-

tween the thermodynamic speed of sound and the thermal equation of state and the

fundamental equation of state will be considered.

In Sec. 2.2.1, it was shown that, under the assumption that the compression and

expansion cycles within a sound wave are almost isentropic processes, the speed of

sound is a thermodynamic state variable and related to the thermal equation of

state by

w2 =

(
∂p

∂ρ

)

s

. (A.1)

For the calculation of the speed of sound, the entropy equation of state in the form

p = p(ρ, s) must be known. However, usually the thermal equation of state is either

given as p = p(ρ, T ) or ρ = ρ(p, T ) with the temperature in place of the entropy

as an independent variable. In order to relate the speed of sound to the thermal

equation of state, the partial derivative (∂p/∂ρ)s must be replaced by derivatives of

the thermal equation of state. This procedure is exemplified here for the case that

the equation of state is given in the form p = p(ρ, T ).

Assume that an arbitrary function Φ depends on two independent variables

x and y, which themselves are function of two variables u and v, that is Φ =

Φ(x(u, v), y(u, v)). The derivative of Φ with respect to u is then given by the chain

rule as
(

∂Φ

∂u

)

v

=

(
∂Φ

∂x

)

y

(
∂x

∂u

)

v

+

(
∂Φ

∂y

)

x

(
∂y

∂u

)

v

. (A.2)

If u = x, Eq. (A.2) reduces to
(

∂Φ

∂x

)

v

=

(
∂Φ

∂x

)

y

+

(
∂Φ

∂y

)

x

(
∂y

∂x

)

v

. (A.3)

Setting Φ = p, v = s, x = ρ, and y = T , yields
(

∂p

∂ρ

)

s

=

(
∂p

∂ρ

)

T

+

(
∂p

∂T

)

ρ

(
∂T

∂ρ

)

s

. (A.4)
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The derivative (∂T/∂ρ)s can be expressed in terms of the isochoric heat capacity

and the derivative (∂p/∂T )ρ. First, an infinitesimal entropy change is represented

by the total differential of the entropy equation of state s = s(ρ, T )

ds =

(
∂s

∂T

)

ρ

dT +

(
∂s

∂ρ

)

T

dρ = 0, (A.5)

which must be zero since the sound propagation is assumed to be isentropic. Dividing

by dT , yields

(
∂s

∂T

)

ρ

= −
(

∂s

∂ρ

)

T

(
∂ρ

∂T

)

s

, (A.6)

which can be rewritten as
(

∂T

∂ρ

)

s

= −
(

∂T

∂s

)

ρ

(
∂s

∂ρ

)

T

. (A.7)

By using the relations

(
∂s

∂T

)

ρ

=

(
∂s

∂u

)

ρ

(
∂u

∂T

)

ρ

=
cv

T
(A.8)

and
(

∂s

∂ρ

)

T

= − 1

ρ2

(
∂p

∂T

)

ρ

, (A.9)

one finds
(

∂T

∂ρ

)

s

=
T

ρ2cv

(
∂p

∂T

)

ρ

. (A.10)

By substituting Eq. (A.10) into Eq. (A.4) and the result into Eq. (A.1), the desired

expression for the speed of sound in terms of derivatives of the thermal equation of

state

[w(ρ, T )]2 =

(
∂p

∂ρ

)

T

+
T

ρ2cv

[(
∂p

∂T

)

ρ

]2

(A.11)

is obtained.

In Eq. (A.8), the definitions of the thermodynamic temperature, T = (∂u/∂s)ρ,

and of the isochoric heat capacity, cv = (∂u/∂T )ρ, have been used. Eq. (A.9) is
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a Maxwell relation, which can be derived by equating the mixed second partial

derivatives of the Helmholtz free energy
[

∂

∂v

(
∂a

∂T

)

v

]

T

=

[
∂

∂T

(
∂a

∂v

)

T

]

v

. (A.12)

With the identifications s = −(∂a/∂T )v and p = −(∂a/∂v)T , and ∂ρ/∂v = −ρ2,

Eq. (A.9) is established.

If the thermal equation of state is given in the form ρ = ρ(p, T ), a similar deriva-

tion leads to the representation

[w(p, T )]−2 =

(
∂ρ

∂p

)

T

− T

ρ2cp

[(
∂ρ

∂T

)

p

]2

(A.13)

for the speed of sound.

An expression for the speed of sound in terms of derivatives of the fundamental

equation of state a = a(ρ, T ) can be derived from Eq. (A.11) by replacing the

pressure by p = ρ2(∂a/∂ρ)T and the isochoric heat capacity by cv = −T (∂2a/∂T 2)ρ.

One finds

[w(ρ, T )]2 = 2ρ

(
∂a

∂ρ

)

T

+ ρ2

(
∂2a

∂ρ2

)

T

− ρ2

(
∂

∂T

[
∂a

∂ρ

]

T

)2

ρ(
∂2a

∂T 2

)

ρ

(A.14)

Similarly, when the Gibbs free energy is used as a fundamental equation of state,

Eq. (A.13) becomes

[w(p, T )]2 =

−
[(

∂g

∂p

)

T

]2 (
∂2g

∂T 2

)

p(
∂2g

∂p2

)

T

(
∂2g

∂T 2

)

p

− ∂

∂p

(
∂g

∂T

)2

ρ

. (A.15)

For the integration scheme for the determination of the thermal equation of state

from speed of sound data, the relation
(

∂cv

∂ρ

)

T

= − T

ρ2

(
∂2p

∂T 2

)

ρ

(A.16)

is required as part of the system of differential equation, which has to be solved.

This relation can be derived by equating the mixed third partial derivatives of the

Helmholtz free energy
(

∂

∂ρ

[
∂2a

∂T 2

]

ρ

)

T

=

(
∂2

∂T 2

[
∂a

∂ρ

]

T

)

ρ

, (A.17)
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in which the isochoric heat capacity cv = −T (∂2a/∂T 2)ρ is inserted on the left hand

side and the pressure p = ρ2(∂a/∂ρ)T on the right hand side.

In Sec. 2.2.2 and 2.5, the relation
(

∂p

∂ρ

)

s

=
cp

cv

(
∂p

∂ρ

)

T

(A.18)

was introduced. In order to establish it, Eq. (A.3) is applied to the entropy by

setting Φ = s, x = T , y = p, and v = ρ, which yields
(

∂s

∂T

)

ρ

=

(
∂s

∂T

)

p

+

(
∂s

∂p

)

T

(
∂p

∂T

)

ρ

. (A.19)

Multiplying by T and using Eq. (A.8) and the similar relation
(

∂s

∂T

)

p

=

(
∂s

∂h

)

p

(
∂h

∂T

)

p

=
cp

T
(A.20)

for the isobaric heat capacity, leads to the expression

cv = cp + T

(
∂s

∂p

)

T

(
∂p

∂T

)

ρ

. (A.21)

The derivative (∂s/∂p)T must be replaced by derivatives of the thermal equation of

state. First, the equality of the second mixed derivatives of the Gibbs free energy

g = g(T, p) is used to establish the Maxwell relation
(

∂s

∂p

)

T

= −
(

∂v

∂T

)

p

=
1

ρ2

(
∂ρ

∂T

)

p

. (A.22)

Second, the derivative of the density with respect to temperature must be replaced

by derivatives of the pressure.

If an arbitrary function Φ(x, y) of two independent variables x and y is held

constant, the total differential of Φ is given by

dΦ =

(
∂Φ

∂x

)

y

dx +

(
∂Φ

∂y

)

x

dy = 0. (A.23)

Dividing by dx and rearranging the result, yields
(

∂y

∂x

)

Φ

= −
(

∂Φ

∂x

)

y

[(
∂Φ

∂y

)

x

]−1

. (A.24)

With the identifications Φ = p, x = T , and y = ρ, one finds
(

∂ρ

∂T

)

p

= −
(

∂p

∂T

)

ρ

[(
∂p

∂ρ

)

T

]−1

. (A.25)
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Substituting Eq. (A.25) into Eq. (A.22) and the result into Eq. (A.21), leads to

cp = cv +
T

ρ2

(
∂p

∂T

)2

ρ

[(
∂p

∂ρ

)

T

]−1

(A.26)

Combining Eqs. (A.26) and (A.11), finally yields Eq. (A.18).

All other thermodynamic relations, which were used in the main text, but not

explicitly proved in this appendix, appear as intermediate results in the above deriva-

tions.
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B Measurement Results

Table B.1. Measurement results for the speed of sound in liquid water under pressure.

T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

T = 303.15 K

303.1538 0.102784 1509.172 303.1530 50.1370 1593.201
303.1538 2.10411 1512.526 303.1544 60.1435 1609.939
303.1540 10.1096 1525.983 303.1544 70.1505 1626.624
303.1541 20.1165 1542.805 303.1544 80.1575 1643.242
303.1538 30.1233 1559.621 303.1542 90.1645 1659.784
303.1535 40.1301 1576.418 303.1546 100.172 1676.236

T = 313.15 K

313.1576 0.102441 1528.904 313.1578 60.1445 1630.908
313.1578 10.1094 1546.163 313.1575 70.1516 1647.528
313.1577 20.1164 1563.323 313.1573 80.1587 1664.035
313.1575 30.1233 1580.374 313.1574 90.1658 1680.426
313.1576 40.1302 1597.336 313.1572 100.173 1696.684
313.1576 50.1373 1614.178

T = 323.20 K

323.2085 0.103686 1542.635 323.2086 60.1449 1646.465
323.2078 10.1106 1560.409 323.2087 70.1519 1663.164
323.2081 20.1174 1577.979 323.2089 80.1588 1679.692
323.2081 30.1242 1595.370 323.2089 90.1659 1696.071
323.2085 40.1311 1612.576 323.2089 100.173 1712.283
323.2085 50.1380 1629.593
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Table B.2. Measurement results for the speed of sound in compressed nitrogen.

T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

T = 275 K
274.9983 20.1142 415.4929 274.9984 50.1358 609.2602
274.9982 22.6159 431.0634 274.9983 60.1430 667.4263
274.9982 25.1176 447.1885 274.9983 70.1502 721.1118
274.9985 27.6194 463.6605 274.9985 80.1574 770.7800
274.9986 30.1211 480.3151 274.9982 90.1646 816.9420
274.9983 40.1286 546.5025 274.9987 100.172 860.0509

T = 300 K

300.0045 20.1136 426.5639 300.0059 50.1348 601.5197
300.0058 22.6152 440.2877 300.0059 60.1420 656.2306
300.0056 25.1170 454.5060 300.0058 70.1492 707.4303
300.0059 27.6188 469.0756 300.0058 85.1599 778.0554
300.0057 30.1205 483.8758 300.0062 100.171 842.2103
300.0061 40.1276 543.5779

T = 325 K
325.0054 20.1139 438.3118 325.0045 50.1357 598.2718
325.0053 22.6158 450.7279 325.0048 60.1429 649.7057
325.0054 25.1176 463.5672 325.0049 70.1501 698.4085
325.0055 27.6194 476.7270 325.0047 80.1572 744.3508
325.0053 30.1212 490.1177 325.0049 90.1643 787.6845
325.0053 40.1284 544.5768 325.0050 100.172 828.6303

T = 350 K

349.9986 20.1160 450.1779 349.9988 50.1376 598.1073
349.9987 22.6179 461.6341 349.9983 60.1447 646.5658
349.9987 25.1196 473.4440 349.9987 70.1517 692.8898
349.9984 27.6214 485.5354 349.9987 80.1586 736.9342
349.9989 30.1231 497.8378 349.9987 90.1656 778.7510
349.9985 40.1303 548.0729 349.9987 100.173 818.4696

T = 375 K
374.9970 25.1176 483.6345 374.9978 50.1356 600.0579
374.9971 27.6193 494.8944 374.9984 60.1472 645.8771
374.9974 30.1211 506.3425 374.9984 70.1543 689.9961
374.9971 32.6229 517.9314 374.9991 80.1612 732.2254
374.9974 35.1246 529.6183 374.9993 90.1682 772.5474

Continued on next page.
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Continued from previous page.

T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

374.9977 40.1283 553.1456 374.9992 100.175 811.0293

T = 400 K

399.9978 25.1206 493.9124 399.9999 50.1384 603.4887
399.9981 27.6223 504.5069 400.0003 60.1456 646.9374
399.9984 30.1240 515.2653 400.0004 70.1528 689.0421
399.9983 32.6257 526.1493 400.0006 80.1601 729.5711
399.9986 35.1274 537.1280 400.0005 90.1673 768.4592
399.9994 40.1310 559.2445 400.0005 100.175 805.7315
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Table B.3. Measurement results for the speed of sound in the liquid and supercritical
region of propane.

T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

T = 240 K

239.9981 1.30427 1113.773 239.9951 17.6162 1252.105
239.9977 2.10477 1121.560 239.9948 20.1179 1270.402
239.9974 3.10535 1131.115 239.9947 25.1214 1305.296
239.9977 4.10604 1140.476 239.9939 30.1250 1338.195
239.9948 4.10602 1140.490 239.9941 35.1285 1369.391
239.9977 5.10662 1149.656 239.9939 40.1319 1399.077
239.9978 6.10773 1158.650 239.9937 45.1353 1427.443
239.9971 7.10853 1167.507 239.9937 50.1387 1454.628
239.9967 8.10964 1176.200 239.9935 60.1456 1505.905
239.9967 9.11030 1184.736 239.9931 70.1526 1553.690
239.9967 10.1110 1193.134 239.9927 80.1598 1598.505
239.9960 12.6128 1213.535 239.9923 90.1668 1640.824
239.9952 15.1144 1233.173 239.9923 100.174 1680.930

T = 260 K
259.9956 1.30258 983.5414 259.9974 35.1262 1275.005
259.9958 2.10221 992.9805 259.9975 40.1297 1307.347
259.9957 3.10375 1004.492 259.9976 45.1332 1338.081
259.9961 4.10435 1015.695 259.9973 50.1368 1367.388
259.9960 5.10507 1026.614 259.9973 60.1444 1422.350
259.9963 6.10593 1037.264 259.9972 70.1514 1473.220
259.9962 7.10663 1047.671 259.9973 80.1584 1520.712
259.9966 8.10702 1057.836 259.9974 90.1655 1565.338
259.9964 9.10776 1067.785 259.9964 100.173 1607.495
259.9967 10.1085 1077.522 260.0024 1.30362 983.5120
259.9966 12.6102 1101.019 260.0022 4.10533 1015.672
259.9965 15.1120 1123.434 260.0020 10.1098 1077.492
259.9968 17.6141 1144.893 260.0017 20.1167 1165.454
259.9971 20.1158 1165.484 260.0012 30.1235 1240.761
259.9970 25.1193 1204.427 260.0019 40.1305 1307.321

T = 280 K

280.0026 1.30337 851.1622 280.0014 40.1310 1220.837
280.0013 1.30177 851.1420 280.0011 45.1345 1253.962
280.0015 2.10178 862.9531 280.0009 50.1381 1285.389

Continued on next page.
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Continued from previous page.

T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

280.0014 3.10256 877.1979 280.0011 60.1451 1343.972
280.0013 4.10327 890.9078 280.0009 70.1521 1397.843
280.0013 5.10402 904.1486 280.0008 80.1590 1447.870
280.0013 6.10483 916.9569 280.0009 90.1660 1494.687
280.0012 7.10557 929.3663 280.0013 100.173 1538.777
280.0016 8.10769 941.4215 280.0029 1.30200 851.1567
280.0018 9.10852 953.1253 280.0028 2.10252 862.9644
280.0018 10.1092 964.5196 280.0033 3.10304 877.1960
280.0016 12.6111 991.7596 280.0036 4.10371 890.9118
280.0016 15.1129 1017.445 280.0032 5.10427 904.1507
280.0014 17.6148 1041.794 280.0034 6.10502 916.9547
280.0016 17.6148 1041.794 280.0009 1.30358 851.1860
280.0015 20.1170 1064.973 280.0019 4.10552 890.9460
280.0019 25.1205 1108.346 280.0020 10.1097 964.5291
280.0014 30.1239 1148.415 280.0019 20.1165 1064.973
280.0013 35.1274 1185.771 280.0014 30.1235 1148.405

T = 300 K

300.0003 1.30344 713.1675 300.0013 35.1265 1101.932
300.0003 2.10401 728.7452 300.0015 40.1301 1139.761
300.0002 3.10451 747.1668 300.0016 45.1335 1175.264
300.0001 4.10512 764.5879 300.0016 50.1370 1208.788
300.0001 5.10562 781.1330 300.0014 60.1440 1270.888
300.0005 6.10613 796.9184 300.0013 70.1509 1327.618
300.0003 7.10668 812.0294 300.0015 80.1578 1380.042
300.0004 8.10732 826.5404 300.0013 90.1649 1428.911
300.0004 9.10793 840.5093 300.0010 100.172 1474.785
300.0011 10.1088 853.9889 300.0038 1.30369 713.1418
300.0017 12.6107 885.8170 299.9961 4.10571 764.6086
300.0020 15.1124 915.3732 300.0039 4.10565 764.5701
300.0020 17.6142 943.0456 299.9963 5.10643 781.1515
300.0016 20.1159 969.1237 300.0035 10.1098 853.9778
300.0016 25.1194 1017.346 300.0033 20.1168 969.1165
300.0016 30.1230 1061.330

T = 320 K
320.0044 2.10294 583.6663 320.0049 50.1374 1137.653
320.0046 3.10370 609.7187 320.0038 60.1432 1203.103
320.0044 4.10490 633.3770 320.0039 70.1502 1262.540

Continued on next page.
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T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

320.0041 5.10503 655.1577 320.0038 80.1572 1317.199
320.0045 6.10569 675.4144 320.0040 90.1642 1367.955
320.0048 7.10634 694.4133 320.0041 100.171 1415.464
320.0048 8.10700 712.3431 320.0481 2.10395 583.3329
320.0050 9.10775 729.3534 319.9973 2.10355 583.7163
320.0051 10.1084 745.5574 319.9975 3.10422 609.7592
320.0050 12.6102 783.1402 319.9976 4.10478 633.4115
320.0045 15.1124 817.3411 319.9977 5.10545 655.1838
320.0048 17.6143 848.8521 319.9974 6.10606 675.4455
320.0051 20.1162 878.1859 319.9974 7.10672 694.4474
320.0050 25.1196 931.6528 319.9988 8.10788 712.3790
320.0050 30.1232 979.7358 319.9993 9.10859 729.3843
320.0049 35.1267 1023.657 319.9993 10.1093 745.5897
320.0049 40.1302 1064.246 319.9994 12.6111 783.1681
320.0051 45.1338 1102.098 319.9996 15.1129 817.3579

T = 340 K

339.9981 3.60491 472.3191 339.9992 35.1268 951.0826
339.9983 4.10532 490.1540 339.9994 40.1299 994.3739
339.9980 5.10610 521.8832 340.0000 45.1332 1034.493
339.9982 6.10682 549.7903 340.0013 50.1367 1071.971
339.9984 7.10849 574.9377 340.0014 60.1437 1140.589
339.9983 8.10921 597.9274 340.0012 70.1506 1202.519
339.9983 9.10981 619.2067 340.0014 80.1575 1259.233
339.9984 10.1105 639.0842 340.0014 90.1644 1311.719
339.9989 12.6116 683.9772 340.0015 100.171 1360.706
339.9990 15.1132 723.7071 340.0027 2.60267 430.5995
339.9987 17.6148 759.6089 340.0022 3.10303 452.6182
339.9991 20.1165 792.5288 340.0022 3.60340 472.2474
339.9993 25.1199 851.5827 340.0027 4.10370 490.0798
339.9991 30.1235 903.8535

T = 360 K
359.9973 3.60291 257.6805 359.9967 12.6105 588.7943
360.0044 3.60440 257.7428 359.9967 15.1123 635.0486
359.9986 3.60427 257.8319 359.9968 17.6141 675.8414
359.9987 3.85408 285.6228 359.9967 20.1158 712.6103
360.0004 3.85464 285.6703 359.9977 25.1200 777.4150
359.9994 3.95413 294.9441 359.9974 30.1235 833.8579
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T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

359.9973 3.95462 295.0009 359.9976 35.1270 884.2941
359.9971 4.10337 307.5336 359.9977 40.1304 930.1574
359.9974 4.60361 342.1046 359.9978 45.1338 972.3991
359.9972 5.10390 369.8770 359.9974 50.1371 1011.686
359.9967 6.10488 414.5481 359.9977 60.1441 1083.207
359.9981 7.10523 450.8153 359.9986 70.1513 1147.408
359.9985 7.10518 450.8102 359.9988 80.1584 1205.953
359.9986 8.10596 481.9503 359.9987 90.1654 1259.987
359.9987 9.10667 509.5395 359.9985 100.172 1310.303
359.9987 10.1073 534.4932

T = 380 K

380.0005 6.10522 260.5611 379.9969 15.1127 552.6023
379.9985 6.10531 260.5566 379.9976 17.6149 598.5089
379.9994 6.60555 293.1744 379.9977 20.1166 639.1515
379.9978 6.60568 293.1741 379.9980 22.6183 675.8861
379.9991 7.10592 320.3950 379.9983 25.1200 709.5603
379.9976 7.10610 320.3854 379.9980 30.1234 769.9383
379.9994 7.60631 344.0499 379.9982 35.1268 823.3510
379.9974 7.60654 344.0337 379.9980 40.1302 871.5634
379.9973 8.10695 365.1269 379.9985 45.1337 915.7338
379.9976 9.10812 401.9056 379.9987 50.1371 956.6329
379.9972 10.1089 433.6051 379.9989 60.1441 1030.754
379.9974 11.1097 461.7497 379.9993 70.1510 1096.962
379.9971 12.1104 487.2257 379.9996 80.1579 1157.136
379.9970 13.1112 510.6099 380.0000 90.1649 1212.528
379.9969 14.1120 532.3047 379.9996 100.172 1263.994

T = 400 K
400.0014 9.10726 305.1686 399.9999 20.1160 573.1887
400.0012 9.60768 324.6554 400.0005 22.6179 612.6424
400.0009 10.1081 342.7712 400.0004 25.1197 648.5354
400.0006 10.6085 359.7224 400.0010 27.6215 681.6036
400.0009 11.1090 375.6702 400.0011 30.1232 712.3548
400.0003 12.1099 404.9945 400.0013 35.1267 768.3406
399.9994 13.1111 431.5800 400.0012 40.1302 818.5892
399.9996 14.1118 455.9723 400.0012 45.1337 864.4167
400.0001 15.1125 478.5858 400.0018 50.1373 906.7101
399.9997 16.1132 499.7120 400.0020 60.1442 983.0535
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T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

399.9995 17.1139 519.5723 400.0020 70.1511 1050.994
399.9997 18.1146 538.3518 400.0021 80.1579 1112.570
399.9996 19.1153 556.1850 400.0017 80.1585 1112.567

T = 420 K

420.0024 11.1087 309.8123 420.0051 21.1157 532.9916
420.0029 11.6090 324.8857 420.0051 22.6167 557.3006
420.0024 12.1101 339.4703 420.0050 25.1183 594.8296
420.0016 12.6104 353.4865 420.0050 27.6199 629.2926
420.0015 13.1107 366.9725 420.0055 30.1214 661.2565
420.0031 14.1108 392.4713 420.0053 35.1260 719.2603
420.0032 15.1115 416.2572 420.0051 40.1295 771.1205
420.0036 16.1122 438.5179 420.0051 45.1331 818.2800
420.0039 17.1130 459.4621 420.0047 50.1367 861.6980
420.0042 18.1137 479.2519 420.0048 60.1438 939.8517
420.0049 19.1143 498.0271 420.0048 70.1508 1009.203
420.0050 20.1150 515.9086
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Table B.4. Measurement results for the speed of sound in the liquid and supercritical
region of propene.

T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

T = 240 K

240.0057 1.30295 1101.202 240.0047 15.1127 1216.781
240.0060 2.10360 1108.744 240.0041 17.6138 1235.087
240.0060 3.10434 1117.998 240.0042 20.1155 1252.765
240.0056 4.10503 1127.067 240.0041 25.1187 1286.478
240.0054 5.10572 1135.965 240.0043 30.1221 1318.241
240.0052 6.10644 1144.689 240.0043 35.1255 1348.340
240.0049 7.10733 1153.262 240.0044 40.1289 1376.978
240.0048 8.10806 1161.667 240.0046 45.1323 1404.324
240.0050 9.10871 1169.931 240.0048 50.1358 1430.518
240.0048 10.1093 1178.057 240.0047 60.1439 1479.926
240.0045 12.6110 1197.797

T = 260 K
259.9987 1.30335 970.6291 260.0000 20.1177 1148.429
259.9984 2.10391 979.8933 260.0001 25.1208 1186.307
259.9984 3.10455 991.1856 260.0000 30.1242 1221.648
259.9983 4.10529 1002.171 260.0001 35.1276 1254.849
259.9985 5.10605 1012.868 260.0003 40.1309 1286.219
259.9979 6.10661 1023.305 260.0001 45.1343 1315.998
259.9980 7.10725 1033.480 260.0001 50.1377 1344.374
259.9986 8.10779 1043.420 260.0001 60.1447 1397.546
259.9983 9.10824 1053.137 259.9999 70.1517 1446.717
259.9976 10.1086 1062.649 259.9967 80.1583 1492.587
260.0000 12.6127 1085.604 259.9965 90.1654 1535.645
259.9999 15.1143 1107.466 259.9967 100.172 1576.307
259.9999 17.6160 1128.374

T = 280 K

279.9970 1.30164 836.3986 279.9964 20.1166 1047.835
279.9967 2.10240 848.1942 279.9976 25.1181 1090.313
279.9970 3.10325 862.3939 279.9967 30.1221 1129.512
279.9971 4.10404 876.0488 279.9970 35.1256 1165.981
279.9970 5.10490 889.2062 279.9966 40.1291 1200.192
279.9966 6.10580 901.9185 279.9966 45.1326 1232.453
279.9958 7.10730 914.2363 279.9963 50.1375 1263.071
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T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

279.9955 8.10806 926.1576 279.9958 60.1445 1319.985
279.9955 9.10875 937.7314 279.9959 70.1514 1372.261
279.9954 10.1095 948.9836 279.9951 80.1571 1420.770
279.9953 12.6112 975.8555 279.9952 90.1638 1466.086
279.9954 15.1129 1001.146 279.9954 100.171 1508.742
279.9978 17.6130 1025.043

T = 300 K

299.9991 1.40274 696.0120 299.9978 17.6129 925.4777
299.9996 1.40249 696.0083 299.9977 20.1145 951.3116
299.9995 2.10273 709.9875 299.9970 25.1179 998.9391
299.9991 3.10318 728.8510 299.9952 30.1210 1042.272
299.9989 4.10379 746.6052 299.9950 35.1245 1082.155
300.0005 5.10416 763.4029 299.9951 40.1279 1119.247
300.0003 6.10472 779.3698 299.9953 45.1313 1154.004
299.9980 7.10716 794.6580 299.9953 50.1347 1186.785
300.0005 8.10602 809.2216 299.9955 60.1416 1247.384
300.0004 9.10668 823.2508 299.9952 70.1486 1302.660
300.0006 10.1074 836.7571 299.9948 80.1564 1353.646
299.9984 12.6110 868.5846 299.9950 90.1634 1401.119
299.9984 15.1128 898.0102 299.9952 100.170 1445.617

T = 320 K
319.9995 2.10438 556.2000 319.9919 22.6161 886.7207
319.9995 3.10515 584.4313 319.9989 25.1191 912.5247
319.9990 4.10581 609.6381 319.9985 30.1226 960.1870
319.9989 5.10644 632.5567 319.9987 35.1261 1003.581
319.9994 6.10710 653.6882 319.9986 40.1295 1043.588
319.9994 7.10776 673.3606 319.9989 45.1330 1080.811
319.9995 8.10842 691.8179 319.9993 50.1364 1115.713
319.9998 9.10844 709.2476 319.9993 60.1433 1179.853
319.9996 10.1090 725.7791 319.9986 70.1503 1237.937
320.0000 12.6108 763.9051 319.9990 80.1573 1291.257
319.9999 15.1124 798.3761 319.9992 90.1643 1340.698
319.9998 17.6142 829.9978 319.9943 100.172 1386.940
319.9999 20.1159 859.3233

T = 340 K

340.0053 4.10499 453.1630 340.0096 25.1187 831.3953
340.0052 5.10568 489.4973 340.0098 30.1222 883.5413
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T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

340.0052 6.10634 520.3822 340.0097 35.1257 930.4603
340.0052 7.10701 547.5948 340.0097 40.1292 973.3267
340.0052 8.10768 572.1210 340.0099 45.1327 1012.950
340.0055 9.10821 594.5722 340.0100 50.1362 1049.889
340.0055 10.1092 615.3671 340.0102 60.1432 1117.347
340.0052 12.6111 661.8336 340.0099 70.1501 1178.057
340.0052 15.1130 702.4873 340.0159 80.1572 1233.521
340.0051 17.6149 738.9419 340.0166 90.1641 1284.784
340.0052 20.1167 772.1766 340.0168 100.171 1332.553

T = 360 K

360.0003 5.10503 311.2643 360.0032 30.1225 812.8071
360.0008 6.10574 370.1519 360.0030 35.1266 863.1363
360.0002 7.10648 413.2797 360.0029 40.1303 908.7234
360.0010 8.10712 448.5406 360.0031 45.1338 950.5863
360.0009 9.10783 478.9229 360.0031 50.1372 989.4236
360.0012 10.1086 505.8924 360.0026 60.1442 1059.933
360.0022 12.6102 563.3230 360.0027 70.1512 1123.026
360.0026 15.1120 611.3745 360.0026 80.1582 1180.434
360.0026 17.6138 653.2634 360.0028 90.1653 1233.311
360.0027 20.1155 690.7209 360.0030 100.172 1282.467
360.0022 25.1190 756.2051

T = 380 K
380.0038 7.10608 268.3348 380.0026 25.1193 687.4354
380.0019 7.35745 283.4849 380.0025 30.1228 748.2255
380.0038 7.60654 297.2930 380.0020 35.1264 801.6876
380.0023 7.85819 310.3191 380.0017 40.1299 849.7467
380.0035 8.10693 322.3461 380.0022 45.1336 893.6294
380.0036 9.10764 364.5605 380.0019 50.1372 934.1597
380.0032 10.1084 399.8435 380.0020 60.1442 1007.381
380.0033 12.6102 470.5522 380.0019 70.1519 1072.586
380.0030 15.1120 526.7289 380.0018 80.1590 1131.695
380.0027 17.6127 574.2597 380.0021 90.1662 1185.989
380.0026 20.1156 615.9309 380.0020 100.173 1236.366

T = 400 K

400.0020 10.1084 309.3025 400.0045 25.1167 625.8160
400.0029 11.1090 343.8377 400.0040 30.1207 690.1665
400.0027 12.1096 374.7503 400.0042 35.1243 746.2953
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T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

400.0029 13.1102 402.6860 400.0043 40.1280 796.4613
400.0031 14.1108 428.2118 400.0041 45.1317 842.0603
400.0032 15.1114 451.7604 400.0044 50.1353 884.0318
400.0041 16.1112 473.6317 400.0042 60.1425 959.5630
400.0042 17.1099 494.1526 400.0051 70.1484 1026.551
400.0044 18.1116 513.4875 400.0052 80.1555 1087.114
400.0043 19.1123 531.7942 400.0052 90.1626 1142.621
400.0043 20.1131 549.2023 400.0052 100.170 1194.032
400.0045 22.6148 589.4138

T = 420 K

419.9962 12.1073 315.0035 419.9961 25.1197 572.2424
419.9965 13.1082 341.8473 419.9961 30.1231 639.0934
419.9963 14.1090 367.2941 419.9960 35.1268 697.1959
419.9962 15.1096 391.2515 419.9963 40.1303 748.9608
419.9960 16.1105 413.7938 419.9963 45.1339 795.8954
419.9963 17.1131 435.0771 419.9968 50.1375 839.0007
419.9962 18.1142 455.1779 419.9967 60.1451 916.3810
419.9960 19.1149 474.2448 419.9969 70.1523 984.8320
419.9961 20.1157 492.3914 419.9969 80.1594 1046.588
419.9960 22.6176 534.3229
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Table B.5. Measurement results for the speed of sound in the liquid and supercritical
region of the refrigerant 227ea.

T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

T = 280 K

280.0035 0.603720 494.0994 280.0040 10.1114 572.8336
280.0038 1.10441 498.9191 280.0048 12.6131 590.2924
280.0035 1.60474 503.6375 280.0043 15.1148 606.8035
280.0037 2.10500 508.2652 280.0040 17.6165 622.4986
280.0043 3.10575 517.2645 280.0044 20.1182 637.4782
280.0044 4.10622 525.9501 280.0056 25.1217 665.6044
280.0042 5.10705 534.3512 280.0053 30.1253 691.6937
280.0038 6.10793 542.4911 280.0046 35.1289 716.1062
280.0042 7.10930 550.3978 280.0047 40.1324 739.0993
280.0043 8.11003 558.0738 280.0048 45.1359 760.8830
280.0047 9.11073 565.5499 280.0048 50.1394 781.6133

T = 300 K
299.9941 1.10305 417.6094 299.9986 12.6125 526.4965
299.9946 1.60341 423.6098 299.9989 15.1141 545.0872
299.9941 2.10383 429.4536 299.9992 17.6158 562.5674
299.9971 3.10645 440.6634 299.9996 20.1175 579.1068
299.9974 4.10719 451.3011 299.9990 25.1221 609.8477
299.9974 5.10793 461.4509 299.9991 30.1255 638.0380
299.9973 6.10865 471.1733 299.9991 35.1289 664.1886
299.9976 7.10936 480.5089 299.9993 40.1323 688.6585
299.9978 8.11009 489.5019 299.9994 45.1357 711.7107
299.9985 9.11014 498.1811 299.9992 50.1391 733.5536
299.9988 10.1108 506.5817

T = 320 K

320.0031 1.10417 332.9553 320.0043 12.6116 466.6571
320.0033 2.10489 349.1085 320.0046 15.1133 487.6095
320.0025 3.10547 363.8180 320.0044 17.6150 507.0584
320.0030 4.10565 377.3858 320.0044 20.1168 525.2728
320.0039 5.10635 390.0383 320.0044 25.1203 558.7145
320.0039 6.10705 401.9342 320.0041 30.1241 589.0279
320.0041 7.10773 413.1778 320.0041 35.1276 616.8973
320.0043 8.10837 423.8657 320.0040 40.1313 642.7960
320.0046 9.10899 434.0623 320.0047 45.1349 667.0608
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T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

320.0042 10.1098 443.8331 320.0051 50.1384 689.9481

T = 340 K

339.9964 1.60311 249.9750 339.9974 12.6115 410.8389
339.9966 2.10344 262.3829 339.9972 15.1133 434.4304
339.9974 3.10408 283.9615 339.9978 17.6148 455.9974
339.9975 4.10477 302.5891 339.9980 20.1166 475.9591
339.9977 5.10541 319.1677 339.9980 25.1201 512.1510
339.9974 6.10600 334.2301 339.9980 30.1236 544.5403
339.9976 7.10668 348.1025 339.9980 35.1270 574.0560
339.9975 8.10811 361.0299 339.9982 40.1305 601.3008
339.9972 9.10894 373.1505 339.9979 45.1342 626.6953
339.9974 10.1097 384.5986 339.9980 50.1377 650.5457

T = 360 K
360.0035 3.60431 209.76342 360.0068 15.11430 385.6209
360.0038 4.10477 223.69018 360.0068 17.61611 409.3941
360.0041 5.10564 247.37102 360.0070 20.11812 431.1227
360.0043 6.10652 267.42612 360.0071 25.12183 470.0037
360.0041 7.10735 285.07002 360.0076 30.12523 504.3614
360.0063 8.10916 300.97840 360.0076 35.12856 535.4053
360.0063 9.10996 315.52936 360.0079 40.13200 563.8809
360.0063 10.1107 329.01183 360.0080 45.13534 590.2901
360.0066 12.6125 359.17157 360.0079 50.13883 615.0017

T = 380 K

379.9993 7.10726 224.9016 380.0009 17.6150 367.4996
379.9991 8.10808 244.6132 380.0010 20.1167 390.9009
380.0000 9.10888 262.0764 380.0007 22.6185 412.3590
380.0000 10.1096 277.8750 380.0013 25.1198 432.2510
380.0000 11.1103 292.3777 380.0012 30.1232 468.3905
380.0006 12.1110 305.8404 380.0015 35.1266 500.7893
380.0002 13.1118 318.4458 380.0017 40.1301 530.3400
380.0006 14.1125 330.3234 380.0019 45.1335 557.6372
380.0001 15.1132 341.5818 380.0021 50.1371 583.0904

T = 400 K
400.0023 10.1078 232.8047 400.0032 20.1156 355.4325
400.0022 11.1086 249.0350 400.0029 22.6176 378.0372
400.0027 12.1093 263.9298 400.0030 25.1193 398.8761

Continued on next page.



190 Measurement Results

Continued from previous page.

T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

400.0027 13.1101 277.7464 400.0031 27.6211 418.2842
400.0027 14.1108 290.6672 400.0031 30.1227 436.4942
400.0027 15.1115 302.8336 400.0029 35.1264 470.0197
400.0028 16.1122 314.3546 400.0032 40.1299 500.4618
400.0032 17.1130 325.3107 400.0038 45.1334 528.4832
400.0030 18.1139 335.7753 400.0037 50.1370 554.5489
400.0030 19.1148 345.7996

T = 420 K

420.0040 13.1092 243.7532 420.0042 27.6203 389.8148
420.0039 14.1099 257.3130 420.0043 30.1221 408.5356
420.0042 15.1106 270.0594 420.0042 35.1253 442.8944
420.0039 16.1114 282.1070 420.0041 40.1289 474.0097
420.0040 17.1122 293.5449 420.0044 45.1326 502.5902
420.0040 18.1130 304.4480 420.0043 50.1361 529.1208
420.0041 19.1137 314.8765 420.0044 55.1397 553.9602
420.0038 12.1084 229.2328 420.0045 60.1432 577.3592
420.0039 20.1147 324.8813 420.0048 70.1504 620.6355
420.0042 22.6166 348.2966 420.0048 80.1575 660.1155
420.0039 25.1184 369.8223 420.0047 90.1653 696.5910
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Table B.6. Measurement results for the speed of sound in liquid region of the refrigerant
365mfc.

T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

T = 250 K

249.9964 1.10524 921.6555 249.9962 12.6112 976.6687
249.9964 2.10581 926.7284 249.9963 15.1128 987.7796
249.9963 3.10629 931.7415 249.9963 17.6145 998.6250
249.9961 4.10688 936.6956 249.9965 20.1162 1009.233
249.9961 5.10739 941.5925 249.9965 25.1197 1029.767
249.9960 6.10831 946.4364 249.9964 30.1232 1049.473
249.9957 7.10889 951.2249 249.9963 35.1267 1068.446
249.9958 8.10814 955.9554 249.9953 40.1298 1086.735
249.9961 9.10881 960.6443 249.9955 45.1332 1104.430
249.9962 10.1095 965.2801 249.9955 50.1367 1121.557

T = 260 K
259.9980 1.10431 881.5677 259.9958 20.1183 973.7958
259.9980 2.10481 886.9571 259.9963 25.1218 995.2141
259.9974 3.10532 892.2756 259.9969 30.1258 1015.717
259.9976 4.10593 897.5254 259.9971 35.1292 1035.405
259.9984 5.10633 902.7031 259.9972 40.1326 1054.353
259.9980 6.10790 907.8238 259.9971 45.1360 1072.647
259.9971 7.10917 912.8867 259.9974 50.1395 1090.325
259.9970 8.10995 917.8838 259.9966 60.1463 1124.064
259.9972 9.11074 922.8231 259.9963 70.1533 1155.908
259.9966 10.1116 927.7103 259.9975 80.1603 1186.110
259.9971 12.6133 939.6793 259.9974 90.1673 1214.882
259.9965 15.1148 951.3417 259.9967 100.174 1242.393
259.9964 17.6166 962.7033

T = 280 K

279.9955 1.10439 803.3083 279.9960 20.1176 905.7148
279.9955 2.10489 809.4137 279.9959 25.1210 929.0056
279.9953 3.10541 815.4221 279.9958 30.1245 951.1694
279.9958 4.10602 821.3350 279.9963 35.1280 972.3370
279.9956 5.10656 827.1570 279.9967 40.1313 992.6241
279.9958 6.10780 832.8932 279.9973 45.1349 1012.137
279.9961 7.10852 838.5460 279.9970 50.1383 1030.929
279.9963 8.10928 844.1188 279.9973 60.1452 1066.642

Continued on next page.
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T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

279.9954 9.11025 849.6194 279.9975 70.1522 1100.181
279.9958 10.1109 855.0439 279.9974 80.1592 1131.866
279.9956 12.6126 868.2947 279.9971 90.1662 1161.953
279.9959 15.1142 881.1350 279.9973 100.172 1190.626
279.9959 17.6159 893.5994

T = 300 K

299.9969 1.10450 727.0963 299.9975 20.1174 841.1458
299.9971 2.10502 734.0609 299.9975 25.1210 866.4418
299.9970 3.10550 740.9013 299.9982 30.1251 890.3439
299.9968 4.10600 747.6075 299.9982 35.1286 913.0644
299.9970 5.10700 754.1873 299.9982 40.1320 934.7355
299.9970 6.10762 760.6470 299.9983 45.1355 955.4830
299.9979 7.10715 766.9609 299.9983 50.1390 975.3853
299.9981 8.10781 773.2044 299.9985 60.1459 1013.064
299.9981 9.10842 779.3399 299.9984 70.1529 1048.274
299.9974 10.1102 785.3677 299.9983 80.1598 1081.398
299.9976 12.6120 800.0633 299.9983 90.1668 1112.745
299.9973 15.1138 814.2243 299.9985 100.174 1142.546
299.9974 17.6157 827.9055

T = 320 K
320.0053 1.10313 652.2757 320.0006 20.1190 779.9832
319.9934 2.10492 660.3661 320.0003 25.1226 807.4372
319.9931 3.10553 668.2375 320.0001 30.1261 833.1938
319.9924 4.10630 675.9168 320.0001 35.1297 857.5144
319.9903 5.10770 683.4099 319.9993 40.1336 880.5863
319.9904 6.10864 690.7398 319.9992 45.1372 902.5939
319.9905 7.10932 697.9113 319.9994 50.1406 923.6323
319.9904 8.11003 704.9310 319.9991 60.1476 963.2452
320.0004 9.11117 711.7661 319.9992 70.1547 1000.074
320.0005 10.1119 718.5217 319.9996 80.1617 1034.591
320.0006 12.6137 734.8611 319.9995 90.1688 1067.145
320.0005 15.1154 750.5041 319.9998 100.176 1098.003
320.0005 17.6172 765.5264

T = 340 K

339.9992 1.10582 578.1534 339.9990 20.1160 722.0333
339.9990 2.10643 587.6467 339.9987 25.1192 751.7822
339.9989 3.10696 596.8302 339.9989 30.1225 779.4654

Continued on next page.
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T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

339.9987 4.10749 605.7315 339.9985 35.1242 805.4163
339.9986 5.10805 614.3598 339.9985 40.1277 829.9307
339.9989 6.10906 622.7510 339.9982 45.1311 853.1856
339.9989 7.10973 630.9185 339.9982 50.1346 875.3405
339.9989 8.10887 638.8574 339.9982 60.1416 916.8579
339.9986 9.10942 646.6210 339.9973 70.1500 955.2657
339.9986 10.1099 654.2023 339.9973 80.1571 991.1170
339.9987 12.6114 672.4332 339.9975 90.1643 1024.811
339.9989 15.1129 689.7404 339.9974 100.171 1056.678
339.9989 17.6144 706.2416

T = 360 K

360.0022 1.10209 503.7389 360.0004 20.1166 667.3068
360.0016 2.10272 515.1993 360.0006 25.1201 699.4996
360.0014 3.10333 526.1435 360.0007 30.1235 729.1854
360.0010 4.10397 536.6366 360.0010 35.1269 756.8297
360.0009 5.10479 546.7254 360.0004 40.1304 782.7753
360.0010 6.10619 556.4503 360.0003 45.1339 807.2747
360.0011 7.10694 565.8425 359.9996 50.1369 830.5223
360.0013 8.10767 574.9355 359.9994 60.1439 873.8904
360.0011 9.10839 583.7530 359.9997 70.1509 913.7996
360.0011 10.1091 592.3172 359.9997 80.1579 950.9084
360.0014 12.6109 612.7340 359.9997 90.1649 985.6855
360.0012 15.1127 631.9222 359.9995 100.172 1018.481
360.0006 17.6149 650.0681

T = 380 K
379.9935 1.10078 427.2749 379.9938 20.1155 615.5578
379.9931 2.10166 441.6587 379.9934 25.1190 650.3331
379.9931 3.10207 455.1163 379.9935 30.1226 682.0782
379.9931 4.10271 467.8002 379.9936 35.1262 711.4161
379.9930 5.10345 479.8231 379.9930 40.1302 738.7893
379.9931 6.10471 491.2680 379.9929 45.1338 764.5134
379.9932 7.10549 502.2121 379.9933 50.1373 788.8314
379.9930 8.10627 512.7080 379.9931 60.1443 833.9678
379.9935 9.10751 522.8075 379.9930 70.1514 875.3113
379.9935 10.1083 532.5405 379.9930 80.1585 913.6044
379.9934 12.6101 555.5033 379.9930 90.1656 949.3881
379.9935 15.1119 576.8129 379.9931 100.173 983.0529

Continued on next page.
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T / K p / MPa w / m s−1 T / K p / MPa w / m s−1

379.9933 17.6137 596.7616

T = 400 K

400.0017 1.60520 355.5224 400.0024 20.1180 566.8596
400.0013 2.10565 364.9449 400.0024 25.1215 604.3133
400.0011 3.10643 382.3765 400.0028 30.1249 638.1405
400.0015 4.10725 398.3077 400.0029 35.1283 669.1586
400.0009 5.10809 413.0523 400.0028 40.1318 697.9238
400.0030 6.10781 426.8037 400.0031 45.1353 724.8279
400.0031 7.10864 439.7661 400.0026 50.1380 750.1635
400.0033 8.10938 452.0331 400.0026 60.1452 796.9819
400.0029 9.11016 463.7031 400.0026 70.1523 839.6647
400.0029 10.1109 474.8478 400.0024 80.1593 879.0590
400.0026 12.6127 500.7808 400.0025 90.1664 915.7696
400.0025 15.1145 524.4761 400.0026 100.174 950.2304
400.0023 17.6162 546.3942

T = 420 K
419.9940 2.10332 280.0197 419.9933 7.10563 378.1990
419.9938 3.10280 305.0827 419.9934 8.10635 392.7626
419.9936 4.10355 326.4912 419.9935 9.10710 406.4023
419.9935 5.10427 345.4077 419.9933 10.1078 419.2571
419.9934 6.10497 362.5067
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[58] Fröba, A.P.: Simultane Bestimmung von Viskosität und Oberflächen-
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[60] Fröba, A.P.; Botero, C.; Leipertz, A.: Thermal diffusivity, sound speed,

viscosity, and surface tension of R227ea (1,1,1,2,3,3,3-heptafluoropropane),

submitted to Int. J. Thermophys., 2005.

[61] Fujii, K.-I.: Accurate measurements of the sound velocity in pure water

under high pressure, National Research Laboratory of Metrology, Personal

Communication, Tsukuba, Japan, 2000.

[62] Fujii, K.-I.; Masui, R.: Accurate measurements of the sound velocity in

pure water by combining a coherent phase-detection technique and a variable

path length interferometer, J. Acoust. Soc. Am., 93 (1) 276–282, 1993.

[63] Gillis, K.A.: Thermodynamic properties of two gaseous halogenated ethers

from speed-of-sound measurements: difluoromethoxy-difluoromethane and 2-

difluoromethoxy-1,1,1-trifluoroethane, Int. J. Thermophys., 15 (5) 821–847,

1994.

[64] Gillis, K.A.; Moldover, M.R.: Practical determination of gas densities

from the speed of sound using square-well potentials, Int. J. Thermophys., 17

(6) 1305-1324, 1996.

[65] Gitis, M.B.; Khimunin, A.S.: Diffraction Effects in Ultrasonic Measure-

ments (Review), Soviet Physics - Acoustics, 14 (4) 413–431, 1969.

[66] Greenspan, M.; Tschiegg, C.E.: Effect of dissolved air on the speed of

sound in water, J. Acoust. Soc. Am., 28 (3) 501, 1956.

[67] Greenspan, M.; Tschiegg, C.E.: Sing-around ultrasonic velocimeter for

liquids, Rev. Sci. Instrum., 28 (11) 897–901, 1957.

[68] Greenspan, M.; Tschiegg, C.E.: Speed of sound in water by a direct

method, J. Res. Natl. Bur. Stand., 59 (4) 249–254, 1957.

[69] Grosso, V.A. del; Mader, C.W.: Speed of sound in pure water, J. Acoust.

Soc. Am., 52 (5) 1442–1446, 1972.

[70] Gruzdev, V.A.; Khairulin, R.A.; Komarov, S.G.; Stankus, S.V.:

Thermodynamic properties of HFC-227ea, Int. J. Thermophys., 23 (3) 809–

824, 2002.

[71] Guedes, H.J.R.; Zollweg, J.A.: Speed of sound in liquid R134a, Int. J.

Refrig., 15 (6) 381–385, 1992.

[72] FEZEN: Datenbank für Stähle und NE-Metalle, Blatt 1.4571.41.03.0,

Physikalische Eigenschaften nach SEW 310, Tafel 43 (DVS, Düsseldorf, 2000).

[73] Harris, G.R.: Review of transient field theory for a baffled planar piston, J.

Acoust. Soc. Am., 70 (1) 10–20, 1981.



Bibliography 201

[74] Harris, G.R.: Transient field of a baffled planar piston having an arbitrary

vibration amplitude distribution, J. Acoust. Soc. Am., 70 (1) 186–204, 1981.

[75] He, M.G.; Liu, Z.G.; Yin, J.M.: Measurements of speed of sound with

a spherical resonator: HCFC-22, HFC-152a, HFC-143a, and propane, Int. J.

Thermophys., 23 (6) 1599–1615, 2002.

[76] Herzfeld, K.F.; Litovitz, T.A.: Absorption and Dispersion of Ultrasonic

Waves (Academic, New York, 1959).

[77] Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B.: Molecular theory of gases

and liquids (John Wiley, New York, 1954).

[78] Holton, G.; Hagelberg, M.P.; Kao, S.; W.H. Johnson, J.: Ultrasonic-

velocity measurements in water at pressures up to 10000 kg/cm2, J. Acoust.

Soc. Am., 43 (1) 102–107, 1968.
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ids für Hochtemperatur Wärmepumpen (in German), p. 71–82 in: DKV-

Tagungsbericht 2005, Band II.1, Deutscher Kälte- und Klimatechnischer

Verein, Stuttgart, 2005.

[90] Khimunin, A.S.: Numerical calculation of the diffraction corrections of the

precise measurement of ultrasound absorption, Acustica, 27 (4) 173–181, 1972.

[91] Khimunin, A.S.: Numerical calculation of the diffraction corrections for

the precise measurement of ultrasound phase velocity, Acustica, 32, 192–200,

1975.

[92] Kinsler, L.E.; Frey, A.R.; Coppens, A.B., Sanders, J.V.: Fundamen-

tals of Acoustics, 4th ed. (Wiley, New York, 2000).

[93] Kortbeek, P.J.; Muringer, M.J.P.; Trappeniers, N.J.; Biswas, S.N.:

Apparatus for sound velocity measurements in gases up to 10 kbar: Experi-

mental data for argon, Rev. Sci. Instrum., 56 (6) 1269–1273, 1985.

[94] Kortbeek, P.J.; Ridder, J.J. van de; Biswas, S.N.; Schouten, J.A.:

Measurement of the compressibility and sound velocity of helium up to 1 GPa,

Int. J. Thermophys., 9 (3) 425–438, 1988.

[95] Kortbeek, P.J.; Trappeniers, N.J.; Biswas, S.N.: Compressibility and

sound velocity measurements on N2 up to 1 GPa, Int. J. Thermophys., 9 (1)

103–116, 1988.

[96] Kortbeek, P.J.; Schouten, J.A.: Measurements of the compressibility and

sound velocity in methane up to 1 GPa, revisited, Int. J. Thermophys., 11 (3)

455–466, 1990.

[97] Kozhevnikov, V.F.; Arnold, D.I.; Briggs, M.E.; Naurzakov, S.P.;

Viner, J.M.; Taylor, P.C.: A pulsed phase-sensitive technique for acoustical

measurements, J. Acoust. Soc. Am., 106 (6) 3424–3433, 1999.

[98] Kraft, K.: Bestimmung von Schallgeschwindigkeit und Schalldämpfung trans-
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[165] Spurk, J.H.; Aksel, N.: Strömungslehre (in German), 6th ed. (Springer,

Berlin, 2006).

[166] Stimson, H.F.: The International Temperature Scale of 1948, J. Res. Natl.

Bur. Stand., 42 (3) 209–217, 1949.

[167] Stimson, H.F.: International Practical Temperature Scale of 1948, J. Res.

Natl. Bur. Stand., 65A (3) 139–145, 1961.

[168] Straty, G.C.: A fluorine compatible low temperature electrical feedthrough,

Rev. Sci. Instrum., 43 (1) 156–157, 1972.

[169] Straty, G.C.: Hypersonic velocities in saturated and compressed fluid

methane, Cryogenics, 15 (12) 729–731, 1975.

[170] Sun, T.F.; Kortbeek, P.J.; Biswas, S.N.; Trappeniers, N.J.;

Schouten, J.A.: An ultrasonic method for the accurate determination of

the melting line: data for cyclohexane and benzene, Ber. Bunsenges. Phys.

Chem., 91 (10) 1013–1017, 1987.
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