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Abstract

This work elaborates the connection between prediction and description in regression analysis. Many
empirical studies aim at description, which requires a valid regression model. I show that regression
models with a strong prediction power can be highly invalid and thus be inappropriate for the purpose
of description. Conversely, valid regression models may have a weak prediction power and they even
need not fit at all. For this reason, measures of prediction power, or of goodness of fit, are not suitable
for assessing the validity of regression models. I develop a simple validity test, which can be applied
to all kinds of regression models with an arbitrary number of regressors. It is very powerful in large
samples and performs well also in small samples, given that the validity of the regression model is
sufficiently low and that there is not too much noise in the true regression equation.
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1. Motivation

LINEAR regression is probably the most widely used method of data analysis in economics

and it is the main subject matter of classical econometrics. Among many other scientific

areas, it is frequently applied in social and natural sciences, too. We can accomplish two

goals with regression analysis, viz., prediction and description. Prediction requires no structural

assumption about the regression equation Y = f (X) + ε, where Y represents the dependent

2



Frahm, 2024 • A Test for the Validity of Regression Models

variable, f is the regression function, X is some vector of regressors, and ε is the regression

error. Thus, prediction does not force us to specify any probabilistic model. Quite the contrary,

description is based on the fundamental assumption that the regression model Y = f (X) + ε is

valid, i.e., that f (X) corresponds the conditional mean of Y given X.

Apparently, most empirical studies try to describe the impact of X on Y rather than to predict

Y by a (linear or nonlinear) regression on X. Nonetheless, those studies often try to legitimate

some regression model Y = f (X) + ε by demonstrating its capability to predict Y. Thus, it

seems that description is often confounded with prediction. Indeed, a regression model may

very well have a strong prediction power and it can also possess a good fit, i.e., be accurate in

explaining the distribution of Y, but the same model can still be invalid—even to a very high

degree—and thus it can be completely unsuitable for the purpose of description. Conversely, a

valid regression model Y = f (X) + ε can have a weak prediction power and f (X) even need

not fit to Y at all. However, in that case f is the only regression function that describes the impact

of X on Y, appropriately. This problem becomes even more serious when model selection is

based on measures of prediction power or of goodness of fit rather than validity.

It is shown that even an optimal predictor f (X) of Y need not constitute a valid regression

model Y = f (X) + ε, but a valid regression model Y = f (X) + ε must always be based on an

optimal predictor f (X) of Y. Simply put, optimality is a necessary, but not a sufficient condition

for validity. This link seems to be often misunderstood in practice. Because regression analysis

plays such an important role in empirical research, and validity is a conditio sine qua non in

most applications, the given problem is relevant from a practical point of view. This work

contains some new and surprising insights about the question of validity, which hopefully are

interesting for the audience. Thus, I think that it is relevant from a theoretical perspective, too.

Whether or not a regression model is valid can very well depend on the choice of regressors,

which means that also the choice of their transformation can have an essential impact on the

validity of the model. However, validity tests can rarely be found in the literature. Here, I do

not mean goodness-of-fit tests, tests on null hypotheses concerning the regression parameters,

or information criteria like, e.g., the Akaike information criterion or the Bayesian information

criterion. These kind of specification tests do not address the question of validity. Further, many

specification tests are based on the classical assumptions of the Gaussian linear regression model,

which are very restrictive and hardly applicable in most real-life situations. Sometimes, also

a visual inspection of the regression errors is recommended to assess the validity of a given

regression model, but usually this procedure is insufficient, too, which is shown later on.

A main purpose of this work is to present a genuine test for the null hypothesis that a given

regression model is valid. It is simple and thus easy to implement. More importantly, the validity

test can be applied to all kinds of regression models with an arbitrary number of regressors. It

is very powerful in large samples and performs well also in small samples, provided that the

validity of the regression model is sufficiently low and that there is not too much noise in the

true regression equation. If the test rejects the null hypothesis of validity, the given regression

model is (significantly) invalid and so it should be abandoned. Put another way, one should

3
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consider another regression model or, at least, change or transform the variables. However,

this holds true only if one wants to describe the impact of X on Y by some regression model

Y = f (X) + ε. By contrast, if one just wishes to predict Y by X, the regression model may very

well be invalid and he or she should focus on the prediction power of f (X).

2. Theoretical Background

2.1. Prerequisites

The elements of an Euclidean space are considered column vectors. Random variables and

random vectors are always denoted by capital Roman letters. The same holds true for subsets of

the Euclidean space and real-valued matrices. A small Roman letter indicates a real number,

an Euclidean vector, or a function. For example, Z = (Z1, . . . , Zd) is a d-dimensional random

vector, whereas z = (z1, . . . , zd) ∈ Rd represents some realization of Z. By contrast,
{

Z1, . . . , Zn
}

denotes a set of n random variables or random vectors Z1, . . . , Zn. A small Greek letter can

either be a random variable, a real number, or an Euclidean vector. An equality or inequality

between two (random) vectors means that the assertion holds true componentwise (and almost

surely). Further, Var(Z) denotes the covariance matrix of Z and Var(Z) > 0 means that it is

positive definite. The transpose of Z is denoted by Z′, 0 symbolizes the zero scalar or a vector of

zeros, depending on the given context. The same holds true for the symbol 1, respectively. The

rank of a (random or real-valued) matrix A is written as rk A.

Moreover, ∧ stands for the logical “and,” ∨ denotes the logical “or,” := means “is defined

as,” N :=
{

1, 2, . . .
}

, ⌈·⌉ is the ceiling function, i.e., ⌈x⌉ is the lowest integer that is greater than

or equal to x ∈ R, Id is the d × d identity matrix, and Nd(µ, Σ) is the d-dimensional normal

distribution with mean vector µ and covariance matrix Σ. The univariate normal distribution

with mean µ and variance σ2 is symbolized by N (µ, σ2), tν denotes Student’s t-distribution with

ν degrees of freedom, χ2
δ is the χ2-distribution with δ degrees of freedom, and Fν

δ denotes the

F-distribution with ν numerator and δ denominator degrees of freedom. Weak convergence, i.e.,

convergence in distribution, is indicated by⇝ and
p→ denotes convergence in probability. The

additional remark “n → ∞,” i.e., that the sample size tends to infinity, is dropped for notational

convenience. The symbol Φ denotes the cumulative distribution function of the standard normal

distribution, whereas ϕ is its probability density function. Finally, if (x, y) 7→ f (x, y) is a real-

valued differentiable function of x ∈ A ⊆ Rk and y ∈ B ⊆ Rl , then ∂
∂x f (· , y) represents the

partial derivative of f with respect to x given y, whereas ∂
∂y f (x, ·) is defined mutatis mutandis.

Now, let (Ω,A, P) be some probability space, where A is a σ-algebra on Ω, and L2 be the

Hilbert space of all square-integrable random variables, which is equipped with the inner

product E(XY) for all X, Y ∈ L2. Further, let X1, . . . , Xm, Y ∈ L2 be some random variables and

(X, Y) with X = (X1, . . . , Xm) be the corresponding (m + 1)-dimensional random vector. It is

assumed that Var(Y) > 0 unless otherwise stated. Moreover, let D ⊆ Rm be some (Borel) set

such that P(X ∈ D) = 1 and f be a regression function, i.e., any real-valued function on D such

that f (X) ∈ L2. Henceforth, we may consider
{

X1, . . . , Xm
}

our basic set of regressors.
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The corresponding regression equation is given by

Y = f (X) + ε, (1)

where the m components of X are called explanatory variables or regressors and Y is referred

to as the dependent variable.1 The regressors, X1, . . . , Xm, and the dependent variable, Y, are

fixed, which implies that they do not depend on the choice of the regression function f .2 By

contrast, the regression error is defined by ε := Y − f (X). Hence, ε represents a residual, i.e.,

it is not considered fixed and so it is not treated like a regressor. Nevertheless, for notational

convenience, I refrain from using any index in order to clarify that ε depends on Y, X, and f .

We conclude that Equation 1 is satisfied just by definition, irrespective of how we choose the

dependent variable Y, the regressors X1, . . . , Xm, and the regression function f . Put another way,

as long as we do not make any assumption about the joint distribution of X and ε, Equation 1 is

purely tautological. Consequently, it does not represent any model—apart from the very fact that

the surrounding framework is just a probabilistic model of reality.

2.2. Main Goals of Regression Analysis

2.2.1. Prediction

Let G ̸= ∅ be the set of all regression functions and F be a nonempty subset of G. Suppose that

the realization of the random variable Y is unknown, i.e., Y is unobservable, whereas the random

variables X1, . . . , Xm are observable. In order to predict Y by X, one typically tries to find an

element of F that minimizes the mean square prediction error

E(ε2) = E
((

Y − f (X)
)2
)

.

Thus, f (X) is called an optimal predictor of Y if and only if f minimizes E(ε2) among all

regression functions in F . Consequently, f ∈ F is said to be optimal if and only if f (X) is an

optimal predictor of Y. In general, an optimal regression function need not be unique.

For example, suppose that F is a parametric family of regression functions. This means that

F =
{

f (· , θ) : θ ∈ Θ ⊆ Rq}, where f (· , θ) is a function of x ∈ D and θ is a parameter vector that

belongs to some parameter space Θ. Further, assume that f (X, ·) is differentiable, almost surely,

at each θ ∈ Θ and that ∂
∂θ E(ε2) = E

(
∂
∂θ ε2). Let f (X, θ∗) with θ∗ ∈ Θ be an optimal predictor of Y.

Under the usual regularity conditions of optimization theory (see, e.g., Boyd and Vandenberghe,

2009, Section 5.5), it turns out that θ∗ must be a Karush-Kuhn-Tucker (KKT) point. In particular,

if θ 7→ E(ε2) is convex, we can use Slater’s regularity condition. Then, each KKT point θ∗ leads

us to an optimal predictor f (X, θ∗) of Y and it is guaranteed that the given minimum is global.

1The dependent variable, Y, can be called also “regressand” (Greene, 2012, p. 52), but this term is not commonly used.
Further, I do not call the components of X “independent,” since they usually depend on each other and also on Y.

2A counterexample is Y = α + βX + ε with X = βZ, where Z ∈ L2 is a fixed random variable.
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Moreover, if there are no (equality or inequality) constraints regarding θ at all, then

E
(

∂

∂θ
f (X, θ∗) ε∗

)
= 0 (2)

is a necessary and sufficient condition for an optimal prediction of Y, where ∂
∂θ f (X, θ∗) is the

derivative of f (X, ·) at θ∗ and ε∗ := Y − f (X, θ∗) denotes the associated regression error.

Further, suppose that θ = (µ, η), where µ ∈ R is a location parameter. Then, the family F is

closed under translations, i.e., f ∈ F ⇒ λ + f ∈ F for all λ ∈ R. In this case, θ∗ also minimizes

the variance of the regression error ε. Moreover, we have that ∂
∂µ f (X, θ) = 1 and thus Equation 2

leads us to the two (necessary and sufficient) conditions E(ε∗) = 0 and Cov
(

∂
∂η f (X, θ∗), ε∗

)
= 0.3

For example, consider a linear predictor, i.e., f (X, α, β) = α + β′X with α ∈ R and β ∈ Rm. It

holds that ∂
∂β f (X, α, β) = X and so we obtain the typical orthogonality conditions E(ε∗) = 0 and

Cov(X, ε∗) = 0 of linear regression, i.e., the regressors 1, X1, . . . , Xm are exogenous.4 However,

it is worth emphasizing that exogeneity does not represent any model assumption. It is just a

simple result of minimizing the mean square error E(ε2) by using a linear regression function.

2.2.2. Description

If our aim is to predict some unobservable variable Y, we need no structural assumption.5 Then,

the goal is to find any observable variables X1, . . . , Xm in order to minimize the mean square

error E(ε2) of the regression equation Y = f (X) + ε. Since the regressors X1, . . . , Xm are intended

only to predict the variable Y, their choice is rather arbitrary and so they need not have any

particular meaning. In any case, the stronger the prediction power of f (X), the lower the mean

square error. Hence, prediction means to search for some appropriate regressors and to combine

these variables by taking some regression function from F in order to minimize E
(
ε2).

By contrast, if we want to describe the impact of X on Y, the situation is completely different.

Then, the regressors are chosen in order to explain the relationship between X and Y. Hence,

they have a particular meaning and so their choice is not arbitrary. Moreover, the given regression

function should be valid. To be more precise, let x 7→ g(x) = E(Y | X = x) be a real-valued

function on D that quantifies the conditional mean of Y given X = x. The function g is referred

to as the true regression function of Y given X.6 Correspondingly, Y = g(X) + ϵ is said to be the

true regression equation. Further, the regression function f ∈ F is called valid if and only if

f (X) = E(Y | X) ⇐⇒ E(ε | X) = 0 .

Simply put, the regression function f is valid if and only if f (X) = g(X). Two regression

3In the special case of θ = µ, the second condition evaporates.
4There exist several nonequivalent definitions of exogeneity in the literature. Throughout this work, a regressor is
said to be exogenous if and only if it is not correlated with the residual of the given regression model.

5Some authors refer to “control” when speaking about description (see, e.g., Fomby et al., 1984, p. 400).
6From E(Y2) < ∞ it follows that ∞ > Var(Y) = Var

(
E(Y|X)

)
+ E

(
E(Y2 | X)

)
+ E

(
E2(Y | X)

)
, i.e., E

(
E2(Y | X)

)
=

E
(

g2(X)
)
< ∞, which means that g(X) ∈ L2. Thus, g is indeed a regression function.

6
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functions f̂ and f̃ are considered identical if and only if f̂ (X) = f̃ (X). Thus, f is valid if and only

if f = g. The family F is called adequate if and only if it contains a valid regression function, i.e.,

g ∈ F . By contrast, if F is inadequate, we cannot describe the impact of X on Y by a regression

model Y = f (X) + ε with f ∈ F , appropriately. Then, we can at best minimize the mean square

description error

E
(
(ε − ϵ)2) = E

(
(g(X)− f (X))2) .

Validity is a substantial model assumption.7 Therefore, whenever we use a regression equation

Y = f (X) + ε for the sake of description, it is considered a regression model. A regression model

is said to be valid if and only if the corresponding regression function, f , is valid. Another

expression for validity, which can often be found in the literature, is to say that the regression

model is “well-specified.” However, this terminology seems to be ambiguous.8

For example, a linear regression model presumes that

E(Y | X) = α + β′X .

Another well-known example is the probit model, where Y is a binary variable, so that

E(Y | X) = P(Y = 1 | X) = Φ(α + β′X).

More generally, a generalized linear model implies that

E(Y | X) = l−1(α + β′X),

where l : R → R is referred to as a link function and it is presumed that l is invertible.

One typically tries to quantify the marginal impact of X on Y, i.e., ∂
∂x g(X), in which case it is

implicitly assumed that the true regression function g is differentiable, almost everywhere. For

example, let the linear regression model Y = α + β′X + ε be valid. Then, the marginal impact of

X on Y is just β. Further, if the probit model is valid, the marginal impact is ϕ(α + β′X)β. More

generally, for a (valid) generalized linear model with link function l, we obtain the marginal

impact β/l′
(
l−1(α + β′X)

)
. Here, l′ symbolizes the derivative of l, which is presumed to exist

and to be nonzero at l−1(α + β′X), almost surely. However, if the given regression model

Y = f (X) + ε is invalid, the marginal impact of X on Y can be grossly misjudged by ∂
∂x f (X), i.e.,

the partial derivative of the chosen regression function f ∈ F .

I focus on the mean of Y conditional on X, although other characteristics of the (conditional)

distribution of Y can be interesting as well. Indeed, one might argue that mean regression is

inappropriate if the distribution of Y is skewed or discontinuous. This argument presumes

that we aim at quantifying another functional like, e.g., a quantile (Koenker and Basset, 1978,

Koenker, 2005) or an expectile (Aigner et al., 1976, Newey and Powell, 1987),9 or that we even

7Some authors require even more than validity. E.g., Hastie et al. (2009, p. 28) presume also that ε is independent of X.
8I will come back to this point in Section 4.
9See, e.g., Schulze Waltrup et al. (2015) for a nice overview of these measures.
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want to assess the overall distribution of Y given X. This has become increasingly popular

during the last years (Kneib et al., 2023). Then, mean regression is certainly not the best choice.

However, this is not the intention behind this work. Here, I deliberately refer to the conditional

mean of Y. I have chosen the mean-regression approach mainly for three reasons:

1. Mean regression is still the most popular regression approach in empirical research.

2. It is quite appealing from a mathematical point of view, since we are able to apply well-

known rules from probability theory in order to derive the desired results.

3. There is a close relationship between the mean square error and the mean conditional

error, i.e., between prediction and description, which will be elaborated below.

The latter point is probably the main reason for confusion and misunderstanding in applied

econometrics. Thus, I will clarify this point before presenting and discussing the validity test.

2.3. The Connection between Prediction and Description

Hence, the goal of prediction is to minimize the mean square prediction error

E(ε2) = E
((

Y − f (X)
)2
)

,

whereas description aims at minimizing the mean square description error

E
(
(ε − ϵ)2) = E

(
(g(X)− f (X))2) .

These goals are distinct and should thus be treated differently in practical applications.

Before going further, I would like to make two basic but quite important observations:

1. There always exists a valid regression function, viz., x 7→ g(x) = E(Y | X = x), and

2. there cannot exist any other valid regression function, i.e., g is unique.

This leads us to our first proposition.10

Proposition 1. The true regression function of Y given X is the only valid regression function in G.

For example, let the regression model Y = f̂ (X) + ε̂ with f̂ ∈ F be valid. If the regression

model Y = f̃ (X) + ε̃ with f̃ ∈ F is valid, too, then it holds that f̃ (X) = g(X) = f̂ (X) and thus

ε̃ = ε̂. Hence, Y = f̃ (X) + ε̃ is essentially the same as Y = f̂ (X) + ε̂. Thus, it makes no difference

at all whether we use f̂ or f̃ to describe the impact of X on Y.

The following proposition observes that every optimal regression function represents the best

possible fit to the true regression function, irrespective of whether or not the given family F of

regression functions is adequate. Hence, it is natural to use an optimal predictor of Y if we want

to describe the impact of X on Y as best as possible. Nonetheless, our main goal still is to describe

10All nontrivial proofs of the following statements can be found in the appendix.
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Validity Case

V2 = 0 f (X) ̸= g(X) = Y
0 < V2 < 1 f (X) ̸= g(X) ̸= Y
V2 = 1 f (X) = g(X), i.e., f is valid

Table 1: Different cases of validity.

the impact of X on Y and not to predict Y. Otherwise, we should take some additional regressors

into account in order to increase our prediction power, i.e., to decrease the mean square error.11

Proposition 2. A regression function f̂ ∈ G is optimal among F if and only if

f̂ ∈ arg min
f∈F

E
((

g(X)− f (X)
)2
)

.

In any case, for each regression function f ∈ G, we have that

E
(
(Y − f (X))2) = E

(
(Y − g(X))2)+ E

(
(g(X)− f (X))2). (3)

Thus, E(ε2) = E(ϵ2) + E
(
(ε − ϵ)2) with ε = Y − f (X) and ϵ = Y − g(X), i.e., E(ϵ2) ≤ E(ε2).

Thus, we are able to decompose the mean square error E
(
(Y − f (X))2) into two parts:

1. The first part, E
(
(Y − g(X))2), measures the fluctuation of Y around E(Y | X), which shall

not be explained by a regression of Y on X, whereas

2. the second part, E
(
(g(X)− f (X))2), quantifies the deviation of f (X) from E(Y | X), which

is zero if and only if the regression function f is valid.

This suggests to quantify the validity of the regression model Y = f (X) + ε or, equivalently, of

the corresponding regression function f , by

V2 :=
E(ϵ2)

E(ε2)
=

E
(
(Y − g(X))2)

E
(
(Y − f (X))2

) ∈
[
0, 1

]
,

provided that Y ̸= f (X), i.e., ε ̸= 0. Otherwise, we have that f (X) = g(X) and so we may set

V2 = 1.12 Anyway, f is valid if V2 = 1 and it is invalid if V2 < 1. In the particular case of

V2 = 0 we have that Y = g(X) ̸= f (X), i.e., f fails to capture the perfect functional relationship

between X and Y. Table 1 summarizes the different cases of V2.

In order to judge whether or not a given regression model Y = f (X) + ε is appropriate, one

typically uses the coefficient of determination

R2 := 1 − E(ε2)

Var(Y)
.

11In fact, overfitting is not an issue at all when trying to predict Y by X, provided that we know P.
12From Y = f (X) it follows that g(X) = E(Y | X) = E( f (X) | X) = f (X).

9
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To be more precise, R2 measures the prediction power of the regression equation Y = f (X) + ε

or, equivalently, of the corresponding predictor f (X). In fact, we have that R2 = 1 if and only

if E(ε2) = 0. Nonetheless, we can only guarantee that R2 ≤ 1 because E(ε2) may very well be

greater than Var(Y), in which case the coefficient of determination becomes negative.13

By applying R2, one usually presumes that the mean of ε is zero and also that f (X) and ε are

uncorrelated. For example, consider a linear regression model Y = α + β′X + ε in which the

exogeneity conditions E(ε) = 0 and Cov(X, ε) = 0 are satisfied. Then, we have that

R2 =
Var( f (X))

Var(Y)
∈
[
0, 1

]
,

in which case the coefficient of determination quantifies the proportion of the total variance of Y
that can be explained by the variance of f (X).

Furthermore, since ϵ = Y − g(X) with g(X) = E(Y | X), we have that E(ϵ | X) = 0 and thus

E(ϵ) = Cov(g(X), ϵ) = 0. Hence, let

S2 := 1 − E(ϵ2)

Var(Y)
=

Var(g(X))

Var(Y)
∈
[
0, 1

]
be the explanation power of X, i.e., the proportion of the total variance of Y that can be explained

by the variance of g(X).14 The explanation power does not depend on the chosen regression

function—it only depends on the choice of regressors.

The following theorem marks the basic result regarding the validity measure.

Theorem 1 (Validity). Let Y = f (X) + ε be any regression model. In the case of R2 < 1, we have that

V2 =
1 − S2

1 − R2

and otherwise V2 = S2 = 1. In any case, it holds that R2 ≤ S2, where R2 = S2 if and only if V2 = 1.

Hence, the validity of a regression model Y = f (X) + ε essentially depends both on the

explanation power of X and on the prediction power of f (X). This creates a trade-off, which

can be best understood by observing Figure 1. We can see that a regression model is valid if

and only if R2 attains its maximum S2. For example, if the explanation power, S2, is zero, the

coefficient of determination, R2, must be zero, too, in order to obtain a valid regression model.

Analogously, if S2 = 1 also R2 = 1 is required for V2 = 1. In any case, the higher S2 the lower

V2 for any given R2. Put another way, the higher the explanation power of X, the higher the

prediction power of f (X) must be in order to guarantee that the given regression model is valid.

This can lead to astonishing phenomena and adverse effects, which might often be overlooked

in practical applications. I will come back to this point in Section 3.2.

The problem is that the explanation power of the chosen regressors, i.e., S2, is unknown in

real life and thus we cannot draw any conclusion about the validity of the regression model just

13A simple example is Y = −1 + ε with Y ∼ N (0, 1), so that ε = Y + 1 and thus E(ε2) = 2, i.e., R2 = −1.
14Thus, S2 can be considered the coefficient of determination of the true regression equation Y = g(X) + ϵ.

10
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Figure 1: Dependence between R2 and V2 given S2.

Ratio Definition Range Meaning Object

A2 S2 + V2 − 1
(
− 1, 1

]
Accuracy Y = f (X) + ε

R2 1 − E(ε2)
Var(Y)

(
− ∞, 1

]
Prediction power f (X)

S2 1 − E(ϵ2)
Var(Y)

[
0, 1

]
Explanation power X

V2 E(ϵ2)
E(ε2)

[
0, 1

]
Validity f

Table 2: Regression ratios of Y = f (X) + ε = g(X) + ϵ with g(X) = E(Y | X).

by considering its coefficient of determination. In fact, a valid regression model Y = f (X) + ε

must be based on an optimal predictor f (X). Nonetheless, if the explanation power of X is low,

a regression model must have a weak prediction power. Theorem 1 reveals that the coefficient of

determination of a valid regression model must even be zero if S2 = 0. This demonstrates that

R2 shall not be used as a validity measure. The same holds true for any other measure that does

not take the explanation power of the regressors into account, even if it controls for the number

of parameters, like the Akaike information criterion or the Bayesian information criterion.

In practical applications, we typically want to find some regressors X1, . . . , Xm with a strong

explanation power. Then, the latter is considered an additional goal of description, i.e., it does

not supersede the validity of the regression function f . Thus, we try to maximize the sum of

1. the explanation power of the regressors and

2. the validity of the regression model.

The explanation power, S2, is a measure for our ability to select appropriate regressors, whereas

the validity, V2, quantifies our ability to combine those regressors. Simply put, for a delicious

dinner we need both good ingredients and a careful preparation.

11
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Thus, let us define the accuracy of the regression model Y = f (X) + ε by

A2 := S2 + V2 − 1 ∈
(
− 1, 1

]
.

In fact, we always have that A2 > −1 because, according to Theorem 1, S2 = 0 implies V2 > 0.

Theorem 2 (Accuracy). Let Y = f (X) + ε be any regression model. We have that A2 = V2R2.

Hence, the accuracy, A2, of any regression model equals the product of its validity, V2, and

prediction power, R2, where V2 and R2 are related to one another according to Figure 1 or,

equivalently, by Theorem 1. Table 2 summarizes the regression ratios.

Ideally, we should achieve A2 = 1, which implies S2 = V2 = 1, but this is virtually impossible

in real-life applications. The trivial regression model is

Y = E(Y) + ε ,

in which the basic set of regressors is empty. This model is always valid, but we have that S2 = 0

and thus A2 = 0. Hence, we should at least try to accomplish A2 > 0, i.e., S2 > 0 and V2 > 0.

2.4. General Conditions for Validity

This section contains some general conditions for the validity of a regression model.

2.4.1. Necessary Conditions

Theorem 3 (Necessary Conditions). Suppose that the family F is adequate and let Y = f̂ (X) + ε̂

with f̂ ∈ F be some valid regression model. The following assertions hold true:

(i) E(ε̂) = 0

(ii) Var(ε̂) = E
(
Var(ε̂ | X)

)
(iii) Cov(h(X), ε̂) = 0 for every real-valued function h on D with h(X) ∈ L2.

(iv) The regression function f̂ is optimal among F .

(v) If the regression function f̃ ∈ F is optimal among F , too, then f̃ = f̂ . This means that also the
regression model Y = f̃ (X) + ε̃ is valid and we have that ε̃ = ε̂.

Theorem 3 immediately leads us to the following corollary. Thus, its proof can be skipped.

Corollary 1. If the conditions of Theorem 3 are satisfied, the following assertions hold true:

(i) E(ε̂2) = Var(ε̂)

(ii) Cov(X, ε̂) = 0

(iii) Cov
(

f̂ (X), ε̂
)
= 0

12
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(iv) Cov
(

f (X), ε̂
)
= 0 for all f ∈ F .

(v) E
(

f (X)ε̂
)
= 0 for all f ∈ F .

Thus, X and ε are uncorrelated if the regression model Y = f (X) + ε is valid. Nonetheless,

they need not be independent. For example, suppose that (X, Y) has an elliptical distribution

(Cambanis et al., 1981, Kelker, 1970) with Var(X) > 0. Then, the linear regression model

Y = α + β′X + ε with β = Var(X)−1Cov(X, Y) and α = E(Y)− β′E(X) is valid. However, ε is

independent of X only if the (multivariate) distribution of (X, Y) is normal.

We conclude that the typical exogeneity conditions of linear regression, i.e.,

E(ε) = 0

Cov(X, ε) = 0,
(4)

are always satisfied if the regression model Y = f (X) + ε is valid, which holds true even if f
is nonlinear. However, the exogeneity of the chosen regressors X1, . . . , Xm is only a necessary,

but not a sufficient condition for validity. By using a parametric family of regression functions,

exogeneity can often be accomplished by specifying θ ∈ Θ such that E
(

f (X, θ)
)
= E(Y) and

Cov(X, Y) = Cov
(
X, f (X, θ)

)
, but this does not guarantee that the regression model is valid.

For example, the regressors in a linear regression model Y = α + β′X + ε with Var(X) > 0 and

β = Var(X)−1Cov(X, Y) are always exogenous just by construction. Nonetheless, this does not

mean that the linear regression model is valid. I will come back to this crucial point later on.

2.4.2. Sufficient Conditions

Let (X1, Y1), . . . , (Xn, Yn) be a sample of (not necessarily independent) observations of (X, Y).
For notational convenience, from now on I will use the random m × n matrix

X =


X11 · · · X1n

...
...

Xm1 · · · Xmn


to symbolize the sample observations X1, . . . , Xn of X. Correspondingly,

x =


x11 · · · x1n

...
...

xm1 · · · xmn


denotes some realization of X. Thus, x is a real-valued m × n matrix of fixed regressor values.

Moreover, Y = (Y1, . . . , Yn) contains the sample observations of Y and ε = (ε1, . . . , εn) contains

the corresponding sample errors with ε i = Yi − f (Xi) for i = 1, . . . , n.

Now, let f be a linear regression function. Hayashi (2000, p. 7) says that X is strictly exogenous if

and only if E(ε |X) = 0. Strict exogeneity is a classical, but quite restrictive assumption of linear

13
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regression analysis. However, we can readily extend Hayashi’s definition of strict exogeneity

to nonlinear regression models. To be more precise, the (linear or nonlinear) regression model

Y = f (X) + ε with f ∈ F satisfies the strict exogeneity assumption if and only if E(ε |X) = 0.

The Gaussian model (GM) presumes that Y = α1 + X′β + ε, n > m, rk
[
1 X′] = m + 1, and

ε |X ∼ Nn(0, σ2In) with σ2 > 0. It represents another classical assumption of linear regression

analysis. Obviously, the GM implies strict exogeneity.

This leads us to the next theorem, which provides sufficient conditions for the validity of a

regression model.

Theorem 4 (Sufficient Conditions). Let f ∈ F be some regression function. If anyone of the following
assertions holds true, the regression model Y = f (X) + ε is valid and so the family F is adequate.

(i) E(ε) = 0 and ε is independent of X.

(ii) E(ε) = 0 and Var(ε | X) = Var(ε).

(iii) X is strictly exogenous.

(iv) The GM is satisfied.

Thus, if we have found a regression function f such that E(ε) = 0 and ε is independent of X,

we can be sure that f is valid. However, this goes far beyond validity and, in general, there is

no regression function at all that satisfies this quite ambitious condition. For example, suppose

once again that (X, Y) possesses an elliptical distribution, where the covariance matrix of X
is positive definite. It has already been observed that there exists a (unique) valid regression

model Y = α + β′X + ε, but ε cannot be independent of X unless (X, Y) is normally distributed.

The next theorem emphasizes the special role of elliptical distributions in linear regression

analysis. It states that we can select, i.e., exclude or include, any component of an elliptically

distributed random vector at discretion in order to create a valid linear regression model.

Theorem 5 (Elliptical Distributions). Suppose that Z = (Z1, . . . , Zd) with Z1, . . . , Zd ∈ L2 is some
random vector possessing an elliptical distribution with Var(Z) > 0. Further, let

{
X1, . . . , Xm, Y

}
be

any subset of
{

Z1, . . . , Zd
}

. Then, the linear regression model

Y = α + β′X + ε

with X = (X1, . . . , Xm) is valid if and only if the parameters α and β are such that System 4 is satisfied,
which is equivalent to β = Var(X)−1Cov(X, Y) and α = E(Y)− β′E(X).

2.4.3. Equivalent Conditions

The following theorem provides equivalent conditions for validity.

Theorem 6 (Equivalent Conditions). The regression model Y = f (X) + ε with f ∈ F is valid, and
so the family F is adequate, if and only if the following equivalent assertions hold true:

14
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(i) The regression function f is optimal among G.

(ii) E(ε) = 0 and Var(ε) = E(Var(ε | X)).

(iii) E(ε2) = E
(
(Y − g(X))2)

The first part of that theorem asserts that a regression function f is valid if and only if it is

optimal among the set G of all regression functions. Put another way, validity is equivalent to

global optimality. Thus, if we want to describe the impact of X on Y, appropriately, we must find

the best predictor f (X) of Y among the set G(X) :=
{

f (X) : f ∈ G
}

of all possible predictors of

Y based on X. This goal can be highly ambitious if the true regression function, g, is not simple.

2.5. Projection Theorems

Let F be any family of regression functions. We have that

E
(
(Y − f (X))2) = Var

(
Y − f (X)

)
+ E2(Y − f (X)

)
for all f ∈ F . A translation of f affects only the mean, but not the variance of Y − f (X). Thus,

if F is closed under translations and the regression function f̂ is optimal among F , it must

hold that E(ε̂) = 0 with ε̂ = Y − f̂ (X). Further, let F (X) :=
{

f (X) : f ∈ F
}

be the set of all

predictors of Y that are obtained by choosing some regression function f from F and applying

f to the vector X of regressors. The error of the regression model Y = f̃ (X) + ε̃ with f̃ ∈ F is

said to be orthogonal to F (X) if and only if E
(

f (X)ε̃
)
= 0 for all f ∈ F . The following theorem

is an immediate consequence of Hilbert’s projection theorem and thus its proof can be skipped.

Theorem 7 (Projection Theorem I). Let F (X) be a closed and convex subset of L2.

(i) The family F contains a unique regression function f that is optimal among F .

(ii) If F (X) is a vector subspace of L2, then f is the unique element of F such that ε = Y − f (X) is
orthogonal to F (X).

Let V be any family of regression functions such that V(X) is a vector subspace of L2. Thus,

if f is the optimal regression function among V , it holds that E( f (X)ε) = 0 with ε = Y − f (X).

Moreover, if V is closed under translations, we have that E(ε) = 0 and thus Cov( f (X), ε) = 0.15

For example, let L :=
{

x 7→ a + b′x : a ∈ R, b ∈ Rm} be the family of linear regression functions.

In this case, the typical exogeneity conditions E(ε) = 0 and Cov(X, ε) = 0 are satisfied if and

only if ε is orthogonal to L(X), which means that f (X) is the best linear predictor based on X.

The next proposition guarantees that f ∈ F is optimal if the corresponding error ε = Y − f (X)

is orthogonal to F (X), provided that the family F contains an optimal regression function at all.

This holds true irrespective of whether or not the family F is adequate.

15This implies that R2 ≥ 0, i.e., in this case the coefficient of determination quantifies the proportion of the total
variance of Y that can be explained by the variance of f (X).
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Proposition 3. Suppose that the regression function f̂ ∈ F is optimal among F and consider another
regression function f̃ ∈ F . Then, the error ε̃ = Y − f̃ (X) cannot be orthogonal to F (X).

The next theorem is similar to Theorem 7 and thus it can be considered a variant of Hilbert’s

projection theorem. However, it does not require that F (X) is some vector subspace of L2. It

even need not be closed and convex. The essential requirement is that the family F is adequate.

Theorem 8 (Projection Theorem II). If the family F is adequate, it contains a unique regression
function f that is optimal among F . The regression function f coincides with the unique valid regression
function in F , and f is the unique element of F such that ε = Y − f (X) is orthogonal to F (X).

Hence, if the family F is adequate, a regression function that is optimal among F (and

thus valid) is always characterized by an orthogonal projection of Y onto F (X). Otherwise,

i.e., if F is inadequate, there can very well exist some regression function f̂ that is optimal

among F and this may even be unique. Nonetheless, f̂ cannot be valid.16 In this case, the error

ε̂ = Y − f̂ (X) even need not be orthogonal to F (X). For example, suppose that Y = 0X + ϵ,

where X, ϵ ∼ N (0, 1) are independent, and let F (X) =
{

λ + X : λ ∈ R
}

be the set of predictors

of Y. Obviously, the family F is inadequate. It turns out that f̂ (X) = X is the optimal predictor

of Y among F (X). However, the error ε̂ = Y − f̂ (X) is not orthogonal to F (X), since ε̂ = ϵ − X
and thus E

(
f̂ (X)ε̂

)
= E

(
X(ϵ − X)

)
= −1. In fact, F (X) is closed and convex, but it is not a

vector subspace of L2. However, F is closed under translations and so we have that E(ε̂) = 0.

Nonetheless, X is endogenous, since Cov(X, ε̂) = −1, too.

2.6. Hierarchy of Regression Properties

Although validity implies both optimality and exogeneity, in general, the latter properties are

neither necessary nor sufficient for one another. It has been shown at the end of Section 2.5 that

an optimal regression function need not produce exogenous regressors and thus it can very well

violate the typical exogeneity conditions of linear regression. Conversely, if F is a family of

nonlinear regression functions, it can happen that f ∈ F is suboptimal although it satisfies the

exogeneity conditions. Then, exogeneity can even prevent f from being optimal.

For example, consider the family of cubic regression functions of the form x 7→ f (x, α, β) =

α + β
3 x3 with α, β ∈ R and suppose that Y = X + ϵ, where X, ϵ ∼ N (0, 1) are independent.

Thus, we obtain ∂
∂x f (x, α, β) = βx2, ∂

∂α f (x, α, β) = 1, and ∂
∂β f (x, α, β) = 1

3 x3. The regressor X
is exogenous if and only if Cov(X, Y) = Cov

(
X, f (X, α, β)

)
, i.e., E(XY) = E

(
X f (X, α, β)

)
. We

have that E(XY) = 1 and Stein’s lemma reveals that E
(
X f (X, α, β)

)
= E

(
∂

∂x f (X, α, β)
)
= β.

Hence, the exogeneity conditions E(ε) = Cov(X, ε) = 0 are satisfied if and only if α = 0 and

β = 1. Due to Equation 2, optimality requires E
(

∂
∂β f (X, α, β) ε

)
= 1

3 E
(
X3ε

)
= 0, i.e., E

(
X3ε

)
= 0,

but with α = 0 and β = 1 we obtain E
(
X3ε

)
= −2.17 By contrast, for α = 0 and β = 3

5 , the cubic

regression function becomes optimal. Hence, if the given regression function satisfies the typical

exogeneity conditions, it cannot be optimal.

16A typical example is a linear regression of Y on X where the true regression function of Y given X is nonlinear.
17This can be shown by using the formula E(Xk) = k!/

(
2

k
2 k

2 !
)

for each even integer k.
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We conclude that the GM is stronger than strict exogeneity, which implies validity, which is

equivalent to global optimality, which is sufficient for optimality, orthogonality, and exogeneity.

Further, if the predictor f (X) stems from some vector subspace of L2, i.e., F = V , optimality

and orthogonality are equivalent, and if F contains all linear regression functions, orthogonality

implies exogeneity. In particular, if we focus on linear regression analysis, i.e., F = L, then

optimality, orthogonality, and exogeneity are even equivalent. Moreover, if F is adequate,

optimality, orthogonality, validity, and global optimality are equivalent. Finally, if F = L is

adequate, optimality, orthogonality, validity, global optimality, and exogeneity are equivalent. A

typical example is a linear regression of Y on X where (X, Y) is elliptically distributed. However,

in general, exogeneity is only a necessary but not a sufficient condition for validity.

The following theorem summarizes our previous findings, where the abbreviation

• V means that f ∈ F is valid, i.e., E(ε | X) = 0,

• GM means that the Gaussian model is satisfied,

• SE means that X is strictly exogenous, i.e., E(ε |X) = 0,

• OP means that f is optimal among F , i.e., f ∈ arg minF E(ε2),

• GOP means that f is globally optimal, i.e., it is optimal among G,

• EX means exogeneity, i.e., E(ε) = 0 and Cov(X, ε) = 0, whereas

• OR means orthogonality, i.e., E
(

f (X)ε
)
= 0 for all f ∈ F .

Theorem 9 (Hierarchy). Let F ⊆ G be any family of regression functions, V be a family of regression
functions such that V(X) is a vector subspace of L2, and L be the family of linear regression functions.

• GM ⇒ SE ⇒ V ⇔ GOP ⇒ OP ∧ OR ∧ EX

• F = V : OP ⇔ OR

• F ⊇ L: OR ⇒ EX

• F = L: OP ⇔ OR ⇔ EX

• g ∈ F : OP ⇔ OR ⇔ V ⇔ GOP ⇒ EX

• g ∈ F = L: OP ⇔ OR ⇔ V ⇔ GOP ⇔ EX

Figure 2 illustrates some important aspects of Theorem 9. In most cases, exogeneity is only a

necessary but not a sufficient condition for validity. This holds true even if we concentrate on

the family of linear regression functions, i.e., F = L, or if F is adequate, i.e., g ∈ F . Hence, a

(linear) regression model can very well satisfy the exogeneity conditions without being valid.

This underpins the importance of a genuine validity check in practical applications, provided

that we want to describe the impact of X on Y and not to predict Y by X.
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Orthogonality

Validity = 
Global optimality

Strict exogeneity

Exogeneity

Optimality

Gaussian model

(i) General

Optimality = Orthogonality = 
Exogeneity

Validity = 
Global optimality

Strict exogeneity

Gaussian model

(ii) F = L

Exogeneity

Optimality = 
Orthogonality = Validity = 

Global optimality

Strict exogeneity

Gaussian model

(iii) F is adequate

Optimality = 
Orthogonality = Validity = 

Global optimality = 
Exogeneity

Strict exogeneity

Gaussian model

(iv) F = L is adequate

Figure 2: Hierarchy of regression properties.

2.7. The Basic Set of Regressors

Suppose for the sake of simplicity but without loss of generality that the true regression equation

is Y = X1 + X2 + ϵ, where X1, X2, ϵ ∼ N (0, 1) are independent, and assume that F = L. Since

we have that g(X) = X1 + X2 with X = (X1, X2), the family of linear regression functions is

adequate and Theorem 9 tells us that validity and exogeneity are equivalent in this particular

case. Now, consider the linear regression model Y = X1 + ε, which means that ε = X2 + ϵ.

Since it holds that E(ε) = Cov(X1, ε) = 0, the typical exogeneity conditions of linear regression

seem to be satisfied. Further, we also have that E(ε | X1) = 0, which suggests that the mean

conditional error of the given regression model is zero, too. Nonetheless, it turns out that the

simple regression model is invalid, since f (X) = X1 ̸= X1 + X2 = g(X)! What is the reason?

Actually, we represent the dependent variable Y by two regressors, i.e., X1 and X2. Hence, there

are in fact three exogeneity conditions, but the third one is violated because Cov(X2, ε) = 1 ̸= 0.

Further, E(ε | X1, X2) = X2 ̸= 0 clearly indicates that the given regression model is invalid.

Therefore, we should always keep in mind that the entire concept of description requires us to

fix some (random) vector X = (X1, . . . , Xm) of regressors in advance, which must not be changed,

intermediately. Even if we choose some regression function f ∈ F that is not influenced by some

component of X at all, we still try to describe the impact of all regressors, i.e., X1, . . . , Xm, on the

dependent variable Y. Put another way, we try to find E(Y | X1, . . . , Xm). By contrast, suppose
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that we would have chosen only X1 as regressor right from the start. Then, the linear regression

model Y = X1 + ε, in fact, would have satisfied all exogeneity conditions and so it would have

been valid. Consequently, the mean conditional error of this (simple) linear regression model,

i.e., E(ε | X1), would have been zero, too. To sum up, whether or not a linear regression model

suffers from an omitted-variable bias depends on our basic set of regressors, i.e.,
{

X1, . . . , Xm
}

.

For example, consider the true regression equation

Y = a + bX + cW + ϵ,

where the 3-dimensional random vector (W, X, Y) possesses an elliptical distribution with

positive definite covariance matrix and the parameters a, b, c ∈ R are as described in Theorem 5,

i.e., System 4 is satisfied. Further, let us assume that Cov(X, W) ̸= 0 and c ̸= 0. Hence, the linear

regression model

Y = a + bX + ε (5)

is invalid, since X becomes endogenous after omitting the regressor W.18 By contrast, the linear

regression model

Y = α + βX + ε, (6)

in which α and β are chosen according to Theorem 5, too, is still valid and so the single regressor

X is exogenous. The reason is that, in fact, we do not omit the variable W in Equation 6, since in

this case our basic set of regressors is just
{

X
}

. Thus, we try to explain only the impact of X on

Y. By contrast, in Equation 5 we try to explain the impact of X and W on Y. More precisely, the

linear regression model reads

Y = a + bX + 0W + ε .

Thus, our basic set of regressors is
{

X, W
}

, but we omit the regressor W and so the resulting

regression model becomes invalid.

2.8. Variable Selection

Correspondingly, there seems to be a widespread opinion, namely that we should select the

“right” (number of) regressors when applying regression analysis. More precisely, consider the

linear regression model

Y = α + β′X + ε

based on X = (X1, . . . , Xm) and suppose that all exogeneity conditions are satisfied. Further,

assume that β1, . . . , βm ̸= 0 and let X1, . . . , Xm be correlated with each other. Now, it is typically

argued that one should not exclude or include any (other) regressor (see, e.g., Fomby et al., 1984,

Section 18.2.1). The arguments go like this: Excluding some regressor leads to endogeneity and

including another regressor makes no sense at all because its regression coefficient is zero.

Unfortunately, both arguments are flawed. In fact, we can very well ignore each regressor

18From ε = cW + ϵ we conclude that Cov(X, ε) = c Cov(X, W) ̸= 0.
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without producing endogeneity and, in general, the regression coefficient of any additional

regressor is nonzero. Ignoring some variable just means to reduce our basic set of regressors,

whereas taking some additional variable into account means to extend that set. However, for

each arbitrary set of regressors, we can calculate the regression parameters α, β1, . . . , βm by

β = Var(X)−1Cov(X, Y) and α = E(Y)− β′E(X),

so that the linear regression model Y = α + β′X + ε obeys all exogeneity conditions.

For example, suppose that E(X1) = E(X2) = E(X3) = E(Y) = 0,

Var(X) =


1 1

2
1
2

1
2 1 1

2
1
2

1
2 1

 , and Cov(X, Y) =


1

1

1

 .

Then, the regressors of the linear regression model

Y =
2
3

X1 +
2
3

X2 + ε

are exogenous. What happens if we exclude X2? In that case, our basic set of regressors just

reduces to
{

X1
}

and so our regression model is now

Y = X1 + ε ,

in which X1 and ε are still uncorrelated. By contrast, if we include X3, our basic set of regressors

becomes
{

X1, X2, X3
}

and the regression model turns into

Y =
1
2

X1 +
1
2

X2 +
1
2

X3 + ε .

Once again, all exogeneity conditions are satisfied and the regression coefficient of X3 is, in fact,

nonzero. However, none of these models need to be valid, since exogeneity is only a necessary

but not a sufficient condition for validity—according to Figure 2 or, equivalently, Theorem 9.

Moreover, the choice of regressors is typically motivated by arguments that focus on optimality

rather than validity (see, e.g., Shibata, 1981). This is usually associated with the common problem

that the probability measure P is unknown in real life. Thus, if the family F of regression

functions is parametric, we have to estimate the parameters of the (optimal) regression function.

This creates estimation risk, which can lead to overfitting. This must be taken into account, too.

However, optimality is not the same as validity. More precisely, prediction aims at minimizing

the mean square prediction error, E
(
ε2), whereas description means to minimize the mean

square description error E
(
(ε − ϵ)2). Hence, the selection criteria of prediction do not apply

to description. Therefore, mixing up the main goals of regression analysis, i.e., prediction and

description, and applying flawed arguments of variable selection can be highly misleading.

As already mentioned at the beginning of Section 2.2.2, the selection of variables should
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depend on our principal goal:

• If we want to predict Y by X, the choice of X is rather arbitrary, since we only try to achieve

a strong prediction power. Hence, X1, . . . , Xm are selected for pure statistical reasons.

• By contrast, if we want to describe the impact of X on Y, the choice of X is not arbitrary. It

is driven by theoretical considerations that go beyond statistics.

More precisely, prediction aims at maximizing R2. This requires us to find some variables

X1, . . . , Xm with a strong explanation power, S2, and also an optimal regression function f ∈ F
in order to minimize the mean square prediction error. In general, this goal can be accomplished

without exogeneity and it is not necessary at all that f is valid. By contrast, description aims at

maximizing V2. In that case, we search within F for the true regression function g, given the

regressors X1, . . . , Xm, in order to minimize the mean square description error. Then, in fact we

should guarantee that f satisfies the typical exogeneity conditions of linear regression. However,

in general, exogeneity alone does not suffice—even not if we focus on linear regression analysis,

i.e., search for g within the set L of linear regression functions. The problem is that L need not

be adequate, in which case each f ∈ F is invalid. Thus, I recommend to apply a genuine validity

test, i.e., a test for the null hypothesis that f = g. Such a test is developed in the next section.

3. The Validity Test

3.1. Test Statistic

Let f ∈ F be a regression function, (X1, Y1), . . . , (Xn, Yn) be a sample of n ≥ 1 (not necessarily

independent) observations of (X, Y), and ε1, . . . , εn with ε i = Yi − f (Xi) for i = 1, . . . , n be the

associated sample errors. Consider any partition

P =
{{

ε1,1, . . . , εn1,1
}

, . . . ,
{

ε1,r, . . . , εnr ,r
}}

of
{

ε1, . . . , εn
}

into r ∈
{

1, . . . , n
}

subsamples with n1, . . . , nr ≥ 1 such that ∑r
j=1 nj = n.

Henceforth, each statement about ε i,j, i.e., the ith error within the jth subsample, is tacitly

understood to hold true for i = 1, . . . , nj and j = 1, . . . , r. Similarly, each assertion about ε i

implicitly refers to i = 1, . . . , n. In general, the distribution of ε i,j depends on the information

that has been used to create the partition of errors. For example, assume that the errors ε1, . . . , εn

are sorted in ascending order, ε∗1 ≤ . . . ≤ ε∗n, and grouped into r = n ≥ 2 singular subsamples{
ε∗1
}

, . . . ,
{

ε∗n
}

. Then, we can expect that the mean of ε∗1 is less than the mean of ε∗2, etc.

Suppose that P depends only on X, i.e., on the sample observations X1, . . . , Xn of X.19 Then,

conditional on X, it makes no difference at all whether we consider ε i before or after it has been

assigned to any subsample. Splitting
{

ε1, . . . , εn
}

into r subsamples by using only information

that is contained in X does not even change the joint distribution of errors conditional on X.

Simply put, P has no influence on the (conditional) distribution of ε = (ε1, . . . , εn).

19This does not mean that P must depend on X, but that it must not depend on any information that goes beyond X.
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If (X1, Y1), . . . , (Xn, Yn) are independent, then (ε1, X1, Y1), . . . , (εn, Xn, Yn) are independent,

too, since ε i is a function of (Xi, Yi). In this case, ε1, . . . , εn are even independent conditionally on

X.20 Further, the (conditional) distribution of ε i depends on X only through Xi, i.e., the sample

observation of X that is associated with ε i.

Let εk be the element of the entire sample
{

ε1, . . . , εn
}

of errors that coincides with the element

ε i,j of the jth subsample of errors. We conclude that

E(ε i,j |X) = E(εk | Xk).

Moreover, if the regression function f is valid, we have that E(εk | Xk) = 0 and thus

E(ε i,j |X) = 0.

This means that the (conditional) means of the errors within each subsample are zero, irrespective

of how we create the subsamples according to the given realizations x1, . . . , xn of X1, . . . , Xn.

This is the key observation for developing the validity test.

The following theorem, whose proof can be skipped, strengthens the aforementioned results.

Theorem 10 (Partition of errors). Let f ∈ F be some regression function, (X1, Y1), (X2, Y2), . . . be
an infinite sample of independent observations of (X, Y), 1 ≤ r ≤ n, and X :=

{
X1, X2, . . .

}
. Assume

that the partition P of
{

ε1, . . . , εn
}

into r subsamples depends only on X1, . . . , Xn.

(i) P has no influence on the joint distribution of ε1, . . . , εn conditional on X .

(ii) The errors ε1, . . . , εn are independent conditionally on X .

(iii) The distribution of ε i given X depends only on Xi.

In particular, if the regression function f is valid, the mean of ε i,j given X is zero.

Consider any regression model Y = f (X) + ε with f ∈ F and fix some number r ∈ N. Let

(X1, Y1), (X2, Y2), . . . be an infinite sample of independent observations of (X, Y) and x1, x2, . . .

be the corresponding sample realizations of X. The following arguments implicitly refer to

the conditional probability measure P(· | X1 = x1, X2 = x2, . . .). Put another way, the sample

realizations x1, x2, . . . of X are considered fixed. Further, let

Pn :=
{{

ε1,1,n, . . . , εn1,n,1,n
}

, . . . ,
{

ε1,r,n, . . . , εnr,n,r,n
}}

with n ≥ r be some partition of errors based on x1, . . . xn. This means that Pn depends on the

entire sample size n and, especially, it is determined only by the first n sample realizations of X,

where ε i,j,n denotes the ith error within the jth subsample, which possesses the size nj,n. Hence,

we are concerned with r triangular arrays
{

ε i,1,n
}i=1,...,n1,n

n=r,r+1,..., . . . ,
{

ε i,r,n
}i=1,...,nr,n

n=r,r+1,... of errors.

20P(ε ≤ e |X) = ∏n
i=1 P(εi ≤ ei | Xi) = ∏n

i=1 P(εi ≤ ei |X) for all e = (e1, . . . , en) ∈ Rn.
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For each j ∈
{

1, . . . , r
}

and n ≥ r, define

Tj,n :=
1√nj,n

∑
nj,n
i=1 ε i,j,n√

1
nj,n

∑
nj,n
i=1

(
ε i,j,n − 1

nj,n
∑

nj,n
i=1 ε i,j,n

)2
,

provided that 1
nj,n

∑
nj,n
i=1

(
ε i,j,n − 1

nj,n
∑

nj,n
i=1 ε i,j,n

)2
> 0, whereas

Tj,n :=


0, nj,n < 2 ∨ ε1,j,n = . . . = εnj,n,j,n = 0

−∞, nj,n ≥ 2 ∧ ε1,j,n = . . . = εnj,n,j,n < 0

+∞, nj,n ≥ 2 ∧ ε1,j,n = . . . = εnj,n,j,n > 0

,

given that 1
nj,n

∑
nj,n
i=1

(
ε i,j,n − 1

nj,n
∑

nj,n
i=1 ε i,j,n

)2
= 0.

The principal assumption is that

(
T1,n, . . . , Tr,n

)
⇝ Nr(0, Ir)

if f is valid, which is motivated by Theorem 10. More precisely, if (i) the observations of (X, Y)
are independent, (ii) the partition of errors depends only on the first n observations of X, and

(iii) f is valid, then the (conditional) mean of ε i,j,n is zero for i = 1, . . . , nj,n, j = 1, . . . , r, and

n = r, r + 1, . . . . Moreover, since the errors are (conditionally) independent, the same holds true

for T1,n, . . . , Tr,n for each n ≥ r. Finally, from the continuous mapping theorem we conclude that

Tn :=
r

∑
j=1

T2
j,n =

r

∑
j=1

(
∑

nj,n
i=1 ε i,j,n

)2

∑
nj,n
i=1

(
ε i,j,n − 1

nj,n
∑

nj,n
i=1 ε i,j,n

)2 ⇝ χ2
r .

However, it can happen that nj,n < 2 or ε1,j,n = . . . = εnj,n,j,n = 0, in which case we set Tj,n

to zero and reduce the number of degrees of freedom of χ2 by one. In fact, we can ignore the

given subsample if its size is too small in order to provide any evidence against the validity of f .

Similarly, if we observe that ε1,j,n, . . . , εnj,n,j,n = 0, there is absolutely no evidence at all against

the validity of f , too. By contrast, if we observe that ε1,j,n = . . . = εnj,n,j,n ̸= 0 (and nj,n is large),

we have a clear evidence against the validity of f . Thus, we do not ignore this subsample.

Hence, let 0 ≤ δ ≤ r be the number of subsamples with nj,n ≥ 2 and 1
nj,n

∑
nj,n
i=1 ε2

i,j,n > 0. If the

entire sample size n is large, the test statistic Tn is approximately χ2
δ-distributed, provided that

the regression function f is valid. Thus, we should reject the null hypothesis that f is valid if

and only if

p =

{
1 − Fχ2

δ
(tn), δ > 0

1, δ = 0

falls below some low (nominal) level of significance, where Fχ2
δ

is the cumulative distribution

function of χ2
δ and tn is the given realization of the test statistic Tn. Synonymously, we should
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reject the regression model Y = f (X) + ε if the p-value is sufficiently low.

Before going further, I would like to point out some practical aspects of the validity test. In

most cases, we can guarantee that nj,n ≥ 2 and we also have that 1
nj,n

∑
nj,n
i=1 ε2

i,j,n > 0 for j = 1, . . . , r.

This means that δ coincides with r. Further, even if all errors ε1,j,n, . . . , εnj,n,j,n are in fact zero, it

can actually happen that 1
nj,n

∑
nj,n
i=1 ε2

i,j,n > 0, numerically. This can lead to erroneous results, e.g.,

when running a Monte Carlo simulation with V2 = 1 and S2 = 1, i.e., Y = f (X). Thus, if the

validity test is implemented by a number cruncher, I recommend to take only those subsamples

into account for which 1
nj,n

∑
nj,n
i=1 ε2

i,j,n ≥ υ > 0, where υ is the machine precision.

3.2. Linear Regression Models

In the following, I will frequently refer to the true regression equation Y = g(X) + ϵ, where g
is the true regression function of Y given X and ϵ is the corresponding residual. Thus, it holds

that E(ϵ) = 0 and I assume that ϵ is independent of X. The true regression equation can be

considered the data-generating process of Y. By contrast, Y = f (X) + ε always represents some

regression model. More precisely, I focus on linear regression models that are specified such

that the exogeneity conditions of linear regression are satisfied. Hence, f (X) = α + β′X is the

(unique) optimal linear predictor of Y. Proposition 2 tells us that f (X) is the best choice, among

the set L(X) of linear predictors of Y based on X, also if we want to describe the impact of X on

Y—irrespective of whether or not the family L of linear regression functions is adequate.

3.2.1. Simple Regression

Consider a simple linear regression model Y = α + βX + ε, i.e., X is a random variable. Hence,

the given regression function is x 7→ f (x) = α + βx. Further, let (X1, Y1), . . . , (Xn, Yn) be a sam-

ple of n independent observations of (X, Y) and suppose that the subsample
{

ε1,1,n, . . . , εn1,n,1,n
}

contains all errors that are associated with f (Xi) ≤ 0, i.e., α + βXi ≤ 0, whereas the errors in the

subsample
{

ε1,2,n, . . . , εn2,n,2,n
}

stem from f (Xi) > 0, i.e., α + βXi > 0, for i = 1, . . . , n.

If the linear regression model is valid and the subsample sizes are large, we can expect that

Tn =
2

∑
j=1

(
∑

nj,n
i=1 ε i,j,n

)2

∑
nj,n
i=1

(
ε i,j,n − 1

nj,n
∑

nj,n
i=1 ε i,j,n

)2

is approximately χ2
2-distributed, provided that δ = r = 2. Hence, we should reject the linear

regression model if p = 1 − Fχ2
2
(tn) falls below some low level, where tn is the realization of Tn.

To illustrate the practical importance of the validity test, let us consider the following example:

Suppose that Y = g(X) + ϵ with

x 7→ g(x) =

{
−c, x ≤ 0

c, x > 0
(7)

and c ≥ 0, where X, ϵ ∈ N (0, 1) are independent.
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True:
Y =

{
−c + ϵ, X ≤ 0

c + ϵ, X > 0

with c ≥ 0 and X, ϵ ∈ N (0, 1) being independent.

Model: Y = α + βX + ε with α = 0 and β = 0.7979c.

Impact: ∂
∂x f (X) = 0.7979c, ∂

∂x g(X) = 0

Moments:
E(ε) = Cov(X, ε) = 0, E(ε | X) =

{
−c

(
0.7979X + 1

)
, X ≤ 0

−c
(
0.7979X − 1

)
, X > 0

Ratios:
A2 =

0.6366c2(
1 + 0.3634c2

)(
1 + c2

) ,

R2 =
0.6366c2

1 + c2 , S2 =
c2

1 + c2 , V2 =
1

1 + 0.3634c2

Table 3: Fact sheet of the piecewise constant regression equation.

We can express Y, equivalently, by the linear regression model

Y = α + βX + ε

with α = 0 and β = 2cϕ(0), where ϕ(0) = 0.3989 represents the density of the standard normal

distribution at 0. Hence, the error of the linear regression model is ε = Y − 2cϕ(0)X and it is

evident that E(Y) = 0, i.e., E(ε) = 0, too. Further, we have that

Cov(X, ε) = E(Xε) = E(XY)− 2cϕ(0) = 0

because

E(XY) =
∫ ∞

−∞
xE(Y | X = x)ϕ(x)dx = −c

∫ 0

−∞
xϕ(x)dx + c

∫ ∞

0
xϕ(x)dx = 2cϕ(0).

Hence, Y = 0.7979cX + ε satisfies the typical exogeneity conditions of linear regression. That

is, X is exogenous and f (X) = 0.7979cX is the best linear predictor of Y based on X. However,

we have that g(X) = E(Y | X) = ±c, depending on whether X ≤ 0 or X > 0. Thus, for all c > 0,

the conditional mean of Y essentially differs from f (X) and so the linear regression model is

clearly invalid. Actually, the true marginal impact of X on Y is ∂
∂x g(X) = 0, almost surely, but

the linear regression model suggests a marginal impact of ∂
∂x f (X) = 0.7979c, which is positive if

c > 0. Simply put, we have a spurious regression.

Table 3 summarizes the given example. It contains the true regression equation (“True”),

the linear regression model (“Model”), the suggested and the true marginal impact of X on

Y (“Impact”), the unconditional moments and the mean conditional error (“Moments”), and
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(i) Regression ratios (ii) Prediction power vs. validity

Figure 3: Piecewise constant regression equation.

the corresponding regression ratios (“Ratios”). Figure 3 (i) clarifies how the regression ratios

depend on the parameter c. For example, let us assume that c = 1, which leads us to the validity

V2 = 0.7335. Hence, although the linear regression model is clearly invalid, the coefficient of

determination amounts to R2 = 0.3183, which is quite high. In fact, as is shown by Figure 3 (i),

the lower V2, the higher R2. More precisely, the linear regression model is valid if and only if it

does not fit at all (c = 0), and the better it fits (c → ∞), the more it is invalid. This adverse effect

can be seen also in Figure 3 (ii), which clarifies how V2 and R2 are connected through S2. Hence,

the stronger the explanation power of X, i.e., S2, the more invalid the linear regression model.

This is a prime example of why we should not rely on R2 in order to verify the validity of any

regression model. The regressor X is exogenous for all c ≥ 0. Hence, endogeneity is no problem

at all in this context. Furthermore, the regression coefficient β = 0.7979c is positive for all c > 0.

Finally, the coefficient of determination approaches 0.6366 as c tends to infinity. Thus, even the

prediction power can be very strong. For these reasons, the linear regression model appears to

be well-specified and the usual validity checks would never reveal that it is actually invalid.

How to apply the validity test in this situation? In the first step, we can estimate the regression

parameters α and β by ordinary least squares (OLS). Thus, let α̂ and β̂ be the corresponding OLS

estimators, which lead us to the sample predictions Ŷ1, . . . , Ŷn with Ŷi := α̂ + β̂Xi for i = 1, . . . , n.

Further, let ε̂1, . . . , ε̂n with ε̂ i := Yi − Ŷi for i = 1, . . . , n be the corresponding prediction errors.

Now, we split the entire sample
{

ε̂1, . . . , ε̂n
}

of errors into two subsamples, where the error ε̂ i is

assigned to the first subsample if Ŷi ≤ 0, whereas it is put into the second subsample if Ŷi > 0

for i = 1, . . . , n. Thus, our test statistic is

Tn =
2

∑
j=1

(
∑

nj,n
i=1 ε̂ i,j,n

)2

∑
nj,n
i=1

(
ε̂ i,j,n − 1

nj,n
∑

nj,n
i=1 ε̂ i,j,n

)2 ,

where we can assume that n1,n, n2,n ≥ 2, 1
n1,n

∑
n1,n
i=1 ε̂2

i,1,n > 0, and 1
n2,n

∑
n2,n
i=1 ε̂2

i,2,n > 0. Hence, the
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(i) Scatter plot (ii) OLS predictions vs. prediction errors

Figure 4: 100 realizations of X vs. Y = ±1 + ϵ.

number of degrees of freedom of Tn is δ = r = 2.21

Figure 4 (i) contains n = 100 simulated observations of X and Y = ±1+ ϵ, i.e., the parameter c
equals 1. The OLS estimates of α = 0 and β = 0.7979 are α̂ = 0.1148 and β̂ = 0.7571, respectively.

The corresponding regression line can be found in Figure 4 (i), too. Further, the ordinary R2

based on the OLS estimates amounts to 0.3202, and the corresponding p-value of the F-test for

H0 : β = 0 is virtually zero. Figure 4 (ii) is a residual plot. It contains the OLS predictions of Y
together with the associated prediction errors, which look fine, too.

All in all, Figure 4 suggests that the linear regression model is appropriate, but we know that

the opposite is true. In fact, the true regression curve, which is depicted on the left-hand side of

Figure 4, is piecewise constant and it jumps up at x = 0. Thus, it is far away from being linear.

With the best will in the world, this cannot be seen just by a visual inspection of the original or

the fitted data. What does the validity test tell us in this situation? The value of the test statistic

is 10.2570, i.e., its p-value amounts to 0.0059. Thus, after applying the validity test, the linear

regression model can be rejected on every meaningful significance level.

Here, we have assumed that the regression model is linear just for the sake of simplicity but

without loss of generality. Indeed, we could have used any other parametric regression function

f (· , θ) with θ ∈ Θ ⊆ Rq, instead, and estimate the parameter vector θ in some appropriate way.

In the light of our previous findings, a natural estimator is given by

θ̂ ∈ arg min
θ∈Θ

Ê
(
(Y − f (X, θ))2),

where Ê denotes the empirical mean. Then, given that the conditions mentioned in Section 2.2.1

21We can always guarantee that n1,n, n2,n ≥ 2 by choosing some appropriate threshold for the sample predictions,
without destroying the fundamental result expressed by Theorem 10, given that our choice is based only on X
and n ≥ 4. This holds true even if β̂ = 0, but then we cannot provide any meaningful threshold for the sample
predictions.
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are satisfied, we obtain the estimating equation

Ê
(

∂

∂θ
f (X, θ̂) ε̂

)
= 0,

which leads us to a generalized method-of-moments estimator. Of course, any other estimation

procedure can be applied as well, but at least we should guarantee that the resulting estimator

is consistent for the parameter vector θ∗ from Equation 2, which minimizes the mean square

error E(ε2). Nonetheless, the validity test applies to any choice of θ ∈ Θ. That is, we need not

limit ourselves to an optimal regression function in order to test for validity.

Hence, suppose that f (· , θ) ∈ F is some parametric regression function, where the (unknown)

parameter vector θ is specified in some arbitrary way, and let the sample size be n ≥ q. Further,

let θ̂ ∈ Θ be some consistent estimator for θ and Ŷ1 = f (X1, θ̂), . . . , Ŷn = f (Xn, θ̂) be the sample

predictions of Y with their associated prediction errors ε̂1, . . . , ε̂n. In the previous example, the

threshold for each sample prediction, which has been used in order to create the partition of{
ε̂1, . . . , ε̂n

}
, was deliberately set to 0. However, in most applications it is not clear how to set

the threshold, and usually we prefer to split the entire sample into more than two subsamples.

In order to solve this problem, we can simply rearrange the sample predictions Ŷ1, . . . , Ŷn in

ascending order, which leads us to the sorted predictions Ŷ∗
1 ≤ . . . ≤ Ŷ∗

n . Next, we split the set{
Ŷ∗

1 , . . . , Ŷ∗
n
}

into r ∈
{

1, . . . , n
}

subsets P1,n, . . . , Pr,n of the form

Pj,n :=
{

Ŷ∗⌈
(j−1)n

r

⌉
+1

, . . . , Ŷ∗⌈
jn
r

⌉}
for j = 1, . . . , r. Since r does not exceed n, the subsets P1,n, . . . , Pr,n are pairwise disjoint and

nonempty. Hence, each subset Pj,n contains nj,n ≥ 1 predictions and each prediction leads us

to the associated prediction error. In this way, we construct a partition Pn =
{

P1,n, . . . , Pr,n
}

of{
ε̂1, . . . , ε̂n

}
, i.e., we create r subsamples of prediction errors. If the sample size n is large, each

subsample contains nj,n ≈ n
r errors, i.e., it shares approximately 1

r of the entire sample. Since θ̂ is

a consistent estimator for θ, Pn depends only on X1, . . . , Xn as n tends to infinity. More precisely,

the sample predictions Ŷ1, . . . , Ŷn depend on θ̂, which in turn depends on the whole sample

(X1, X1), . . . , (Xn, Yn). Nonetheless, if we assume that f (X, ·) is continuous at θ, almost surely,

we can expect that Pn is asymptotically equivalent to the partition of errors that we would

obtain, in the same way, if the parameter vector θ were known.

Now, I would like to explain why the partition of errors should be created in that particular

way, irrespective of whether or not the regression function f is parametric. If f is invalid, we

want to find some partition of errors that is based only on X (and on θ̂, given that f is parametric),

such that the errors are either positive or negative in most subsamples. In this case, we can

expect that Tn is high enough in order to reject the (invalid) regression model Y = f (X) + ε.

By contrast, if the errors take both positive values and negative values in most subsamples,

they cancel out each other. Then, Tn might be too low to reject the given regression model. The

principal idea is that the sign of E(ε | X = x) depends on x mainly through the prediction f (x).
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True: Y = a + bX + c(X2 − 1) + ϵ

with a, b, c ∈ R and X, ϵ ∼ N (0, 1) being independent.

Model: Y = α + βX + ε with α = a and β = b.

Impact: ∂
∂x f (X) = b, ∂

∂x g(X) = b + 2cX

Moments: E(ε) = Cov(X, ε) = 0, E(ε | X) = c(X2 − 1)

Ratios:
A2 =

b2

(2c2 + 1)(b2 + 2c2 + 1)
,

R2 =
b2

b2 + 2c2 + 1
, S2 =

b2 + 2c2

b2 + 2c2 + 1
, V2 =

1
2c2 + 1

Table 4: Fact sheet of the quadratic regression equation.

To be more precise, consider some prediction f (x0) with x0 ∈ D. If E(ε | X = x0) ≷ 0, it should

hold that E(ε | X = x) ≷ 0 for most other x ∈ D such that f (x) ≈ f (x0). Thus, all errors that are

associated with a similar prediction should be grouped together when creating the subsamples.

Our basic assumption about the mean conditional error can be violated in some applications.

Put another way, it can happen that the sign of E(ε | X = x) depends on x not mainly through

f (x).22 In this case, we could apply any other function h : D → R instead of f to the sample

realizations of X. However, this could require more effort both from a conceptual and from a

numerical point of view. Further, the main problem is that, in real life, we do not know the true

regression function and thus we are not able to calculate the mean conditional error. Anyway,

the method presented here is not wrong in any sense. At most, it might be inefficient with regard

to the power of the validity test. The particular charm of creating the subsamples of errors by

using the sample predictions of Y is its simple applicability to multiple regression analysis.

The true regression function, g, of the dependent variable Y = ±c + ϵ is piecewise constant.

Now, consider another example in which g is quadratic. More precisely, suppose that

Y = a + bX + c(X2 − 1) + ϵ (8)

with a, b, c ∈ R and X, ϵ ∼ N (0, 1) being independent. Further, let the (simple) linear regression

model be

Y = α + βX + ε (9)

with α = a and β = b. Hence, we obtain the regression error ε = c(X2 − 1) + ϵ with

E(ε) = cE
(
X2 − 1

)
+ E(ϵ) = 0

22In particular, this holds true if some component of x has no impact on f (x) but on the sign of E(ε | X = x).
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(i) Regression ratios (ii) Prediction power vs. validity

Figure 5: Ratios for the quadratic regression equation with b = 1.

and

Cov(X, ε) = cCov
(
X, X2)+ Cov(X, ϵ) = 0 .

This means that the typical exogeneity conditions of linear regression are satisfied. Actually,

it does not matter how we choose the parameters a and b of the true regression equation (8).

It always turns out that Ŷ = α + βX is the best linear predictor of Y based on X, provided

that α = a and β = b. Moreover, Ŷ has some prediction power for all β ̸= 0 and X is always

exogenous (even if β = 0). Further, the mean conditional error is E(ε | X) = c(X2 − 1). Hence,

the linear regression model given by Equation 9 is invalid if and only if c ̸= 0. In this case, the

conditional mean of Y is a quadratic function of X and the (true) marginal impact of X on Y
is ∂

∂x g(X) = b + 2cX. Thus, it depends on X itself, which is completely overlooked if we use

a linear regression model. Table 4 summarizes the given example. Once again, this fact sheet

also contains the ratios A2, R2, S2, and V2, i.e., the accuracy, the coefficient of determination, the

explanation power, and the validity. Figure 5 (i) shows how the regression ratios depend on the

parameter c if b = 1 and the red line in Figure 5 (ii) clarifies how the validity and the prediction

power of the linear regression model are connected with one another for different values of S2.

Figure 6 (i) contains a scatter plot based on 100 independent copies of X and Y = −1 + X +

0.2(X2 − 1) + ϵ, which have been obtained by Monte Carlo simulation. Hence, the regression

coefficients are given by α = a = −1 and β = b = 1, whereas the hidden parameter c of the

true regression function amounts to 0.2. The coefficient of determination is R2 = 0.4808. Thus,

we conclude that the prediction power is fairly strong. Further, the validity is V2 = 0.9259,

which indicates that the regression model is slightly invalid. The OLS estimates of α and β are

α̂ = −1.0345 and β̂ = 1.1221, respectively, which have been used to create the regression line in

Figure 6 (i). The ordinary R2 based on the OLS estimates amounts to 0.5195. Hence, the fit is

very good, compared with values that can usually be observed in real life. The F-test for the

null hypothesis that β = 0 leads us to a p-value of virtually zero. Finally, the residual plot can

be found in Figure 5 (ii), where the residuals are based on the given OLS estimates of α and β.
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(i) Scatter plot (ii) OLS predictions vs. prediction errors

Figure 6: 100 realizations of X vs. Y = −1 + X + 0.2(X2 − 1) + ϵ.

Both the numerical and the graphical results appear good. I think that nobody of us would

recognize that the given regression model is invalid just by applying the usual validity checks.

The graph of the true regression function x 7→ g(x) = −1 + x + 0.2(x2 − 1) can be found in

Figure 6 (i). Thus, we have that ∂
∂x g(x) = 1 + 0.4x. Hence, especially for higher absolute values

of x, the impact of X on Y is severely misunderstood when using the linear regression model.

We conclude that the linear regression model serves well in order to predict Y, but it cannot

describe the impact of X on Y, appropriately. In fact, the crux of the matter is that we ignore the

regressor X2 in Equation 9, but there is no omitted-variable bias at all, since X is exogenous.

How does the validity test perform in this situation? For applying this test, we may simply

use the OLS estimates of α and β. For example, by creating r = 5 subsamples, the validity test

leads us to tn = 12.8996, i.e., to a p-value of 0.0243. Hence, the linear regression model can be

rejected, at least, on a significance level of 5%. This holds true although the validity, V2, is quite

high in this case, i.e., the linear regression model is not so far away from being valid.

3.2.2. Multiple Regression

Now, consider another example, namely the Cobb-Douglas production function

(x1, x2) 7→ π(x1, x2) = b0xb1
1 xb2

2

with b0, x1, x2 > 0 and b1, b2 ∈ R. Here, π(x1, x2) quantifies the total production, i.e., the output,

of some economy, given the capital input x1 and the labor input x2. Further, b0 is some scale

parameter. Thus, we can express the Cobb-Douglas production function, equivalently, by

(log x1, log x2) 7→ log π(x1, x2) = log b0 + b1 log x1 + b2 log x2 .
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True: Y = a + b1K + b2L + cKL + ϵ with K
L
ϵ

 ∼ N3

 0
0
0

 ,

 1 ρ 0
ρ 1 0
0 0 1

,

where a, b1, b2, c ∈ R and −1 < ρ < 1.

Model: Y = α + β1K + β2L + ε with α = a + cρ, β1 = b1, and β2 = b2.

Impact:
∂

∂(k, l)
f (K, L) =

[
b1
b2

]
,

∂

∂(k, l)
g(K, L) =

[
b1 + cL
b2 + cK

]
Moments: E(ε) = Cov(K, ε) = Cov(L, ε) = 0, E(ε |K, L) = c(KL − ρ)

Ratios:
A2 =

b2
1 + b2

2 + 2b1b2ρ[
c2(1 + ρ2) + 1

][
b2

1 + b2
2 + 2b1b2ρ + c2

(
1 + ρ2

)
+ 1

]
R2 =

b2
1 + b2

2 + 2b1b2ρ

b2
1 + b2

2 + 2b1b2ρ + c2
(
1 + ρ2

)
+ 1

,

S2 =
b2

1 + b2
2 + 2b1b2ρ + c2(1 + ρ2)

b2
1 + b2

2 + 2b1b2ρ + c2
(
1 + ρ2

)
+ 1

, V2 =
1

c2(1 + ρ2) + 1

Table 5: Fact sheet of the Cobb-Douglas-like regression equation.

However, in real life, we cannot expect that the given quantities are related to one another in

that precise manner.23 Moreover, both the capital input and the labor input can be considered

stochastic, which means that the output of the economy is stochastic, too.

Thus, let Y, K, and L be the (natural) logarithms of the output, the capital input, and the labor

input, respectively, of the given economy. Suppose that

Y = a + b1K + b2L + cKL + ϵ (10)

with a = log b0 and 
K
L
ϵ

 ∼ N3




0

0

0

 ,


1 ρ 0

ρ 1 0

0 0 1


 ,

where c ∈ R and −1 < ρ < 1. Hence, log-capital input and log-labor input are correlated if

ρ ̸= 0. Furthermore, their impact on the log-output of the economy is not linear if c ̸= 0. In that

case, there is a synergy of capital and labor, which is quantified by the parameter c.

23Here, I decidedly refrain from discussing whether or not that function is appropriate at all to describe the total
production of an economy. Here, it just serves as a standard example of a multiple regression function in econometrics.
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(i) Scatter plot (ii) OLS predictions vs. prediction errors

Figure 7: Ratios for the Cobb-Douglas regression with b1 = 0.25, b2 = 0.75, and ρ = 0.5.

Consider the (multiple) linear regression model

Y = α + β1K + β2L + ε . (11)

The parameters α = a + cρ, β1 = b1, and β2 = b2 lead us to ε = −cρ + cKL + ϵ, where the

regression error satisfies the typical exogeneity conditions of linear regression, i.e.,

1. E(ε) = −cρ + cE(KL) + E(ϵ) = −cρ + cρ = 0,

2. Cov(K, ε) = E(Kε) = cE(K2L) + E(Kϵ) = 0, and

3. Cov(L, ε) = E(Lε) = cE(KL2) + E(Lϵ) = 0.

This holds true irrespective of how we choose a, b1, b2, c, and ρ, i.e., the parameters of the true

regression equation (10). Hence, the regressors K and L are always exogenous. Put another

way, there is no omitted-variable bias—although we ignore KL in our linear regression model.

Further, the regression parameters β1 and β2 of the linear regression model (11), in fact, coincide

with the regression parameters b1 and b2, respectively, of the true (but nonlinear) regression

equation. All this said, the linear regression model is still invalid if c ̸= 0. Table 5 contains the

fact sheet of the Cobb-Douglas-like regression equation.24

The mean conditional error amounts to E(ε |K, L) = c(KL − ρ). Thus, suppose that there is a

synergy of capital and labor, i.e., c > 0. Then, the log-output of the economy is systematically

overestimated by the linear regression model if KL < ρ and it is systematically underestimated

if KL > ρ. Further, Table 5 reveals that the marginal impact of log-capital and of log-labor on the

log-output of the economy is always underestimated by an amount of cL and cK, respectively.

For example, suppose that b1 = 0.25, b2 = 0.75, and ρ = 0.5. Hence, log-capital and log-labor

are positively correlated, where labor has a stronger impact on output than capital. Figure 7

contains the corresponding regression ratios. As it can be seen, even for higher absolute values of

24The regression ratios can be calculated by applying Isserlis’ theorem.
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c, the prediction power of the linear regression model, i.e., R2, can still be satisfactory, although

the model becomes highly invalid. Once again, this underpins our insights of Section 2.3, where

it has been shown that R2 shall not be used as a validity measure.

Figure 8: Scatter plot for the Cobb-Douglas regression, where the plane represents the fitted
linear regression function and the bent surface illustrates the true regression function.

Consider a Monte Carlo simulation of n = 100 independent observations of (K, L, Y), given

that a = 0, b1 = 0.25, b2 = 0.75, ρ = 0.5, and c = 0.5, in which case the linear regression model

is invalid. The resulting OLS estimates of α = 0.25, β1 = 0.25, and β2 = 0.75 are α̂ = 0.4661,

β̂1 = 0.3155, and β̂2 = 0.8615, respectively. Further, the coefficient of determination is 0.3824,

whereas the ordinary R2, obtained by the OLS estimates, even amounts to 0.4939. Finally, the

F-test leads us to a p-value of virtually zero. The scatter plot in Figure 8 contains the realized

data points in R3. One can see that the graph of the linear regression function, i.e., the plane,

which is based on the given OLS estimates, fits good to the data.

Figure 9 contains the corresponding residual plot. The linear predictions of the log-output

(based on the OLS estimates) can be found on the x-axis and the associated prediction errors are

Figure 9: Residual plot for the Cobb-Douglas regression.
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given on the y-axis.25 Obviously, the quantitative results look fine and also a visual inspection

of the data does not reveal any anomaly. Nonetheless, we already know that the linear regres-

sion model is invalid, since the relationship between log-output, log-capital, and log-labor is

nonlinear. This is illustrated by the bent surface in Figure 8, which represents the true Cobb-

Douglas-like regression function (k, l) 7→ 0.25k + 0.75l + 0.5kl. Now, how does the validity test

perform in that situation, where we apply a multiple regression? With r = 5 subsamples, it comes

to tn = 19.6724, which corresponds to a p-value of 0.0014. Thus, again we can reject the linear

regression model on every meaningful significance level.

3.3. Size and Power

Here, I present the size and power of the validity test for the three examples discussed in the

previous sections, i.e.,

1. the piecewise constant regression equation,

2. the quadratic regression equation, and

3. the Cobb-Douglas-like regression equation.

The given results are obtained by Monte Carlo simulation, where each setting consists of the

following attributes:

• The example e ∈
{

1, 2, 3
}

, containing the true regression equation and the corresponding

linear regression model,

• the parameter c ∈ Ce of the true regression equation, where the parameter set Ce depends

on the given example e, viz.,

– C1 =
{

0, 0.25, 0.5, 0.75, 1
}

,

– C2 =
{
− 0.4,−0.2, 0, 0.2, 0.4

}
, and

– C3 =
{
− 0.5,−0.25, 0, 0.25, 0.5

}
,

• the sample size n ∈
{

100, 500, 1000, 5000, 10000
}

, and

• the number r ∈
{

5, 10
}

of subsamples of the validity test.

The number of Monte Carlo repetitions in every setting amounts to 10000 and each repetition

w ∈
{

1, . . . , 10000
}

creates n independent observations of (X, Y). The given regression model is

rejected if the p-value in Repetition w falls below the (nominal) level of 5%.

Table 6 contains the results of the simulation study, where the true regression equations can

be found on the upper left of each panel. The linear regression models are valid if and only

if c = 0. Hence, this table contains the size, i.e., the rejection rate if c = 0, and the power, i.e.,

the rejection rate in the case of c ̸= 0, for each combination of c, n, and r. On the left-hand side

25An obvious advantage of the residual plot is that it can be applied for an arbitrary number of regressors.

35



Frahm, 2024 • A Test for the Validity of Regression Models

n

c R2 S2 V2 100 500 1000 5000 10000 100 500 1000 5000 10000

Y = ±c + ϵ r = 5 r = 10

0 0 0 1.0000 0.0309 0.0138 0.0141 0.0105 0.0120 0.1389 0.0343 0.0265 0.0195 0.0188
0.25 0.0374 0.0588 0.9778 0.0775 0.2169 0.5009 0.9996 1.0000 0.2231 0.4330 0.8190 1.0000 1.0000
0.50 0.1273 0.2000 0.9167 0.2562 0.8818 0.9981 1.0000 1.0000 0.5103 0.9918 1.0000 1.0000 1.0000
0.75 0.2292 0.3600 0.8303 0.5638 0.9990 1.0000 1.0000 1.0000 0.8329 1.0000 1.0000 1.0000 1.0000

1 0.3183 0.5000 0.7335 0.8289 1.0000 1.0000 1.0000 1.0000 0.9714 1.0000 1.0000 1.0000 1.0000

Y = −1 + X + c(X2 − 1) + ϵ r = 5 r = 10

−0.4 0.4310 0.5690 0.7576 0.7400 1.0000 1.0000 1.0000 1.0000 0.8825 1.0000 1.0000 1.0000 1.0000
−0.2 0.4808 0.5192 0.9259 0.2256 0.8831 0.9985 1.0000 1.0000 0.4229 0.9465 0.9996 1.0000 1.0000

0 0.5000 0.5000 1.0000 0.0300 0.0133 0.0131 0.0134 0.0095 0.1344 0.0299 0.0239 0.0216 0.0209
0.2 0.4808 0.5192 0.9259 0.2225 0.8806 0.9983 1.0000 1.0000 0.4101 0.9455 1.0000 1.0000 1.0000
0.4 0.4310 0.5690 0.7576 0.7458 1.0000 1.0000 1.0000 1.0000 0.8869 1.0000 1.0000 1.0000 1.0000

Y = 0.25K + 0.75L + cKL + ϵ r = 5 r = 10

−0.50 0.3824 0.5294 0.7619 0.5212 0.9994 1.0000 1.0000 1.0000 0.7053 0.9996 1.0000 1.0000 1.0000
−0.25 0.4298 0.4711 0.9275 0.1522 0.6978 0.9689 1.0000 1.0000 0.3298 0.8018 0.9911 1.0000 1.0000

0 0.4483 0.4483 1.0000 0.0309 0.0152 0.0117 0.0123 0.0122 0.1423 0.0318 0.0258 0.0204 0.0184
0.25 0.4298 0.4711 0.9275 0.1497 0.6951 0.9673 1.0000 1.0000 0.3259 0.8064 0.9919 1.0000 1.0000
0.50 0.3824 0.5294 0.7619 0.5263 0.9995 1.0000 1.0000 1.0000 0.6927 0.9995 1.0000 1.0000 1.0000

Table 6: Size (c = 0) and power (c ̸= 0) of the validity test.

one can find also the prediction power, R2, the explanation power, S2, and the validity, V2, for

each parameter c that is taken into consideration. The accuracy, A2, follows immediately by

S2 + V2 − 1 (or V2R2) and so this measure is dispensed with in order not to overload the table.

The power of the validity test is very strong for sample sizes n ≥ 1000 or if the parameter

c exceeds some critical threshold. Even for values of V2 above 90%, its power turns out to be

satisfactory whenever n ≥ 500. In the case of Y = ±c + ϵ, which is depicted in the first panel of

Table 6, the coefficient of determination decreases with the validity of the linear regression model.

This counterintuitive relationship between V2 and R2, which is also illustrated by Figure 3 (ii),

has already been discussed in Section 3.2.1. However, the validity test is not affected by R2. It

reliably indicates the invalidity of the regression model even if R2 is high.

If we choose r = 10 subsamples for the validity test, and the sample size is small, i.e., n = 100,

the size of the test always exceeds its nominal level of 5%. Hence, one should split the sample

of regression errors into 5 rather than 10 subsamples when applying the validity test to small

samples. By contrast, for larger sample sizes, the size of the test is much smaller than 5%. This is

because the unknown regression parameters are estimated by OLS. If we would use instead the

true regression parameters, the rejection rates would, in fact, increase to 5% if c = 0. However,

the overall power of the validity test is significantly stronger with 10 subsamples.

In many econometric applications, the sample size is quite small. More precisely, one often

uses quarterly data for regression analysis, in which case the validity test might be questionable.

The results of the Monte Carlo study provided in Table 6 are based on the assumption that the

explanation power of X, i.e., S2, is quite low. To be more precise, the variance of the error ϵ of

the true regression equation Y = g(X) + ϵ equals 1, which is relatively high, compared with the

variance of g(X). Hence, it seems reasonable to ask whether or not the validity test works well
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τ

c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y = ±c + ϵ

0 0 0.0854 0.0900 0.0889 0.0882 0.0946 0.0903 0.0904 0.0880 0.0916 0.0894
0.25 1.0000 0.9884 0.7001 0.4023 0.2667 0.2037 0.1705 0.1497 0.1341 0.1209 0.1177
0.50 1.0000 1.0000 0.9901 0.8817 0.6968 0.5342 0.4028 0.3316 0.2736 0.2336 0.2163
0.75 1.0000 1.0000 0.9999 0.9916 0.9287 0.8219 0.6964 0.5786 0.4846 0.4089 0.3464

1 1.0000 1.0000 1.0000 0.9997 0.9878 0.9540 0.8764 0.7882 0.6958 0.6033 0.5281

Y = −1 + X + c(X2 − 1) + ϵ

−0.4 1.0000 1.0000 0.9995 0.9915 0.9489 0.8689 0.7770 0.6712 0.5948 0.5120 0.4385
−0.2 1.0000 0.9998 0.9533 0.7766 0.5795 0.4455 0.3442 0.2867 0.2391 0.2103 0.1843

0 0 0.0833 0.0914 0.0828 0.0896 0.0872 0.0876 0.0852 0.0949 0.0873 0.0865
0.2 1.0000 0.9996 0.9549 0.7784 0.5817 0.4446 0.3411 0.2874 0.2390 0.2105 0.1887
0.4 1.0000 1.0000 0.9998 0.9907 0.9516 0.8789 0.7732 0.6767 0.5913 0.5005 0.4415

Y = 0.25K + 0.75L + cKL + ϵ

−0.50 0.9926 0.9867 0.9505 0.8746 0.7649 0.6620 0.5563 0.4704 0.4030 0.3489 0.3096
−0.25 0.9973 0.9708 0.7961 0.5855 0.4303 0.3122 0.2586 0.2111 0.1858 0.1553 0.1457

0 0 0.0914 0.0854 0.0923 0.0864 0.0889 0.0886 0.0900 0.0857 0.0929 0.0906
0.25 0.9983 0.9652 0.8034 0.5850 0.4184 0.3122 0.2592 0.2201 0.1899 0.1664 0.1445
0.50 0.9917 0.9858 0.9517 0.8747 0.7725 0.6578 0.5650 0.4739 0.4075 0.3473 0.3046

Table 7: Rejection rates with n = 40 and r = 5.

in small samples, given that the variance of ϵ is less than 1.

For example, suppose that we have only 10 years of quarterly data, i.e., n = 40, and that

the true regression equation is Y = g(X) + ϵ with Var(ϵ) = τ2 for 0 ≤ τ ≤ 1. Further, let

r = 5 be the number of subsamples. If τ = 0, the explanation power amounts to 1—except

for Y = ±c + ϵ with c = τ = 0, in which case S2 is not defined at all because Var(Y) = 0. By

contrast, in the case of τ = 1 we are, basically, in the same situation as in Table 6, but now the

sample size is much smaller. Table 7 contains the given results for each combination of c and τ.

The rejection rates are quite satisfactory even for relatively high levels of τ. Of course, if τ

is close to 1 and c is close to 0, i.e., if the explanation power of X is low and the validity of the

linear regression model is high, the rejection rates become low. However, they always exceed

the nominal level of 5%. More importantly, the rejection rates exceed that level also if c = 0. We

can see that the (real) level of significance is rather 10%. This is owed by the fact that the sample

size, n = 40, is quite small and the number of subsamples, r = 5, is relatively high. Thus, each

subsample of errors consists only of 8 observations. It is surprising enough that the validity test

works at all under these unpleasant circumstances.

4. Other Specification Tests

The validity test presented here should be distinguished from other specification tests that can

be found in the literature. There seems to be no common understanding about what should

make up a well-specified regression model. In Section 2.1, I already mentioned that every

regression equation Y = f (X) + ε is satisfied just by the very definition of ε. By contrast, if we
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make any assumption about the joint distribution of X and ε, the regression equation becomes a

regression model, which can very well be violated. Thus, a regression model could be considered

well-specified if and only if the given assumption about the distribution of (X, ε) is satisfied.

For example, we could assume that E(ε | X) = 0, i.e., that the regression model Y = f (X) + ε is

valid. In that case, the regression model would be well-specified if and only if it is valid.26

However, we can find many alternative concepts of model specification in the literature. It

has already been mentioned in Section 2.8 that there is no single way to predict or explain Y
by a regression equation or model. That is, if we have found a well-specified regression model

Y = f (X) + ε, a model based on any other set of regressors can be well-specified, too.27 Hence,

it makes no sense to say that a regression model is well-specified only if we choose X1, . . . , Xm

as explanatory variables. Put another way, it is very well possible to choose any other basic set

of regressors in order to construct a well-specified regression model and we can imagine that

the number of well-specified models for some dependent variable Y can even be infinite.

Thus, let
{

X1, . . . , Xm
}

be a given set of regressors. Let us call Y = f (X) + ε well-specified if

and only if the joint distribution of X and ε satisfies some specific condition A.28 For example, A
can be some regression property that is discussed in Section 2.6, e.g., that the regression model

is valid or optimal, or that the regressors are exogenous, given the chosen regression function f .

Suppose that we want to test for the null hypothesis A, i.e., that the given regression model is

well-specified. Then, we can apply any other test for the null hypothesis B ⊃ A. Here, B ⊃ A
means that B is implied by A. Put another way, B is a necessary condition for A. For example,

according to Figure 2, we can test for validity by testing for optimality or for exogeneity, etc.

However, we can expect that a genuine test for B does not perform as well as a genuine test for

A. More precisely, if the regression model Y = f (X) + ε satisfies B but not A, then the test that

is constructed in order to test for B will not reject the null hypothesis A although it is false.

The reader might ask why we should apply a genuine test for B and not a genuine test for

A if we are interested in testing A? There are many responses to this question. For example,

it could be that we already have a test for B and thus decide to apply the same test for A just

for practical reasons. Another possibility could be that constructing a genuine test for A is

difficult, whereas testing for B is easy. Anyway, I think that everybody of us agree that—for pure

statistical reasons—it is better to apply a genuine test for A and not for B ⊃ A if we actually

want to test for A. However, most specification tests that can be found in the literature actually

suffer from that particular problem, i.e., they do not represent genuine tests for validity.

4.1. Linear Regression Tests

Consider any regression function f ∈ F and let f̂ ∈ F be optimal among F . From Theorem 8

we conclude that f (X) = f̂ (X) if f is valid. Thus, f cannot be valid if f (X) ̸= f̂ (X) and so it

should be rejected. To sum up, indeed we can test for the optimality of f in order to test for its

26This precise notion of model specification is shared, e.g., by MacKinnon (1992).
27In particular, the trivial regression model Y = Y is always well-specified but meaningless.
28More generally, we could also consider some regression model involving X, Y, and ε.
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validity, since optimality is a necessary condition for validity. However, a test for optimality is

not a genuine test for validity. For example, suppose that Var(X) > 0 and let Y = a + b′X + ϵ

be a linear regression model where a and b are such that the typical exogeneity conditions

are satisfied. Since the covariance matrix of X is positive definite, the regression parameters

are uniquely determined by b = Var(X)−1Cov(X, Y) and a = E(Y)− b′E(X). Further, due to

Theorem 7, f̂ (X) = a + b′X is the unique optimal predictor of Y among the set L(X) of linear

predictors based on X. Write b = (b1, b2) and β = (β1, β2), where the parameter vectors b1 and

β1 refer to the same subvector X1 of X = (X1, X2).

Now, many specification tests are based on the hypotheses

H0: b2 = β2 vs.

H1: b2 ̸= β2.

Thus, if H0 is false, f (X) = α + β′X cannot coincide with f̂ (X) = a + b′X.29 This means that the

linear predictor α + β′X cannot be optimal. Hence, the linear regression model Y = α + β′X + ε

cannot be valid either and so it should be rejected.

A particular version of these kind of specification tests (see, e.g., Greene, 2012, p. 177) is given

by

H0: b2 = 0 vs.

H1: b2 ̸= 0.

Here, H0 states that X2 can be dispensed with in order to predict Y by X. If H0 is false, we

should reject the linear regression model Y = α + β′
1X1 + ε, since the predictor f (X) = α + β′

1X1

is suboptimal given the basic set
{

X1, . . . , Xm
}

of regressors.30

All these specification tests do not represent genuine validity tests, since the regression model

Y = α + β′X + ε can be invalid even if the null hypothesis H0 is true. Actually, if we cannot

reject H0, we may only accept the hypothesis that α + β′X is the (unique) optimal predictor of

Y among all linear predictors based on X. Otherwise, we may reject also the null hypothesis

that Y = α + β′X + ε is valid, but the power of such a validity test might be very poor. Another

problem is that these specification tests are typically restricted to linear regression models.

4.2. Artificial Regression Tests

Now, assume that X ̸= 0 is a random variable and consider a (simple) linear regression model

Y = α + βX + ε with α, β ∈ R. Further, suppose that the parameter γ̂ of the quadratic regression

model Y = α + βX + γ̂X2 + ϵ minimizes the mean square error E(ϵ2), where the parameters

α and β stem from the linear regression model. The expanded model is said to be an artificial

29Since the covariance matrix of X is positive definite, α + β′X must differ from a + b′X if H1 is true.
30Nonetheless, the same predictor can still be optimal if our basic set of regressors contains only the regressors in X1.
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regression (MacKinnon, 1992). Hence, the family of regression functions that is taken into

consideration is

F =
{

x 7→ f (x) = α + βx + γx2 : γ ∈ R
}

,

where f̂ ∈ F with x 7→ f̂ (x) = α + βx + γ̂x2 is optimal among F . Thus, we should reject the

linear regression model Y = α + βX + ε if γ̂ ̸= 0 because then γ̂X2 ̸= 0, i.e., f (X) = α + βX ̸=
α + βX + γ̂X2 = f̂ (X). Similarly, Ramsey’s (1969) RESET tests whether the prediction power of

α + βX (with β ̸= 0) can be increased by adding regressors of the form (α + βX)k with k > 1.

However, these kind of specification tests are designed to test for the optimality of Y = α+ βX + ε

but not for its validity. Another problem is that the power of tests based on artificial regressions

essentially depend on the expansion of Y = α + βX + ε, i.e., on the artificial regression equation.

The validity test developed here goes into another direction. In order to test for validity, we

need not find any alternative model whose predictor has a stronger prediction power than the

predictor of the original model. We have seen that the specification tests discussed above just aim

at rejecting the hypothesis that f (X) is optimal among F (X), but the problem is that optimality

is weaker than validity if F ⊂ G. Hence, if F is not rich enough, specification tests based on

the prediction power might be less powerful than genuine validity tests. Nonetheless, a fair

comparison is nearly impossible because the power of specification tests that are based on the

prediction power essentially depends on the alternative model that is taken into consideration.

More precisely, the more we can reduce the mean square error of an invalid (linear) regression

model by applying some alternative (nonlinear) regression model, the more powerful is the test

for optimality. See, e.g., Greene (2012, Section 5.9) for a further discussion of that topic.

4.3. The Durbin-Wu-Hausman Test

A well-known further specification test is developed by Hausman (1978). This test presumes that

we propose a parametric regression function f (· , θ) where the parameter vector θ is not explicitly

specified. Instead, it is assumed that we have some estimator θ̂0 for θ that is asymptotically

efficient and thus consistent under the null hypothesis H0 that f (· , θ) is valid, whereas θ̂0

is inconsistent if f (· , θ) is invalid. Further, there shall be another estimator θ̂1 for θ that is

consistent both under H0 and under any specific alternative hypothesis H1, for which reason it

is asymptotically inefficient under H0. Thus, if H0 is true, we have that

n
(
θ̂1 − θ̂0

)′V−1(θ̂1 − θ̂0
)
⇝ χ2

q

under the usual conditions of asymptotic theory, where V is the asymptotic covariance matrix

of
√

n
(
θ̂1 − θ̂0

)
under H0 and q is the number of parameters.31 By contrast, if H1 is true, the test

statistic should exceed a critical value, given that the sample size is large enough.

There is a close relationship between the test proposed by Hausman and other specification

tests already developed by Durbin (1954) and Wu (1973), for which reason the presented test

31Here, it is implicitly assumed that V has full rank. Otherwise, we have to choose the Moore-Penrose inverse of V, in
which case the number of degrees of freedom of χ2 reduces to rk V.
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is called Durbin–Wu–Hausman (DWH) test. Obviously, the DWH test requires us to specify

some parametric family F of regression functions. Further, there is a general shortcoming due

to the very construction of the test statistic: The DWH test is just designed to detect significant

deviations of θ̂1 from θ̂0, but such deviations need not occur at all if f (· , θ) is invalid, i.e., if H0 is

violated. Hence, the DWH test is not a genuine test for validity. This shall be demonstrated by

its most well-known implementation, namely a test for exogeneity.

Thus, consider a linear regression model Y = α + β′X + ε with X = (X1, . . . , Xm) and

β = Cov(Z, X)−1Cov(Z, Y),

where Z = (Z1, . . . , Zm) is any vector of instrumental variables.32 It is implicitly assumed that

the covariance matrices Cov(Z, X) and Var(X) are regular. This implies that Cov(Z, ε) = 0, i.e.,

the instrumental variables are always exogenous. Further, consider the vector

β0 = Var(X)−1Cov(X, Y).

Now, the hypotheses are given by

H0 : β = β0 vs.

H1 : β ̸= β0.

The regressors X1, . . . , Xm are exogenous under H0, whereas the exogeneity condition is

violated under H1. Hence, if the null hypothesis is true, the OLS estimator β̂0 is consistent, since it

estimates β0 = β. Further, if we assume that the random vector (X, Y, Z) is normally distributed,

β̂0 is even asymptotically efficient. In any case, the OLS estimator becomes inconsistent under

H1. By contrast, the instrumental-variables (IV) estimator β̂1 is consistent both under H0 and

under H1 because it always estimates β. However, β̂1 is asymptotically inefficient under H0.

To sum up, all prerequisites required by Hausman (1978) are satisfied and so we can test for

the null hypothesis that the linear regression model is well-specified—in the sense that β = β0,

i.e., that the components of X are exogenous. According to Theorem 9, exogeneity is equivalent to

optimality if we focus on linear regression. Nonetheless, as we have already seen above, a linear

regression model can even be highly invalid although the chosen regressors are exogenous, i.e.,

the given regression model is optimal. Hence, the DWH test is not a genuine test for validity.

4.4. The Harvey-Collier Test

Another well-known specification test is the ψ-test proposed by Harvey and Collier (1977). It is

based on forecast errors. The authors presume that the GM is satisfied. Before applying the test,

the (fixed) regressor matrix x, together with the associated sample realizations y1, . . . , yn of Y, is

arranged in ascending order, along some pre-specified row of x. Hence, if m > 1, i.e., in the case

of a multiple regression, one has to choose a leading regressor. Then, linear (ex-post) forecasts

32Some components of Z can be identical with the corresponding components of X, but it must hold that Z ̸= X.
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for ym+2, . . . , yn are calculated, recursively, by taking the first m + 1, . . . , n − 1 observations. The

corresponding n − m − 1 forecast errors um+2, . . . , un are used to calculate the Harvey-Collier

test statistic

ψ =

√
n − m − 2
n − m − 1

∑n
i=m+2 ui√

∑n
i=m+2

(
ui − 1

n−m−1 ∑n
i=m+2 ui

)2
.

According to Harvey and Collier (1977), it holds that ψ ∼ tn−m−2, given that the GM is satisfied.

The Harvey-Collier test differs in several aspects from the validity test presented here:

1. In contrast to the validity test, we have to specify some leading regressor in order to apply

the Harvey-Collier test in the case of m > 1.

2. The Harvey-Collier test is designed to falsify the GM, which is even stronger than strict

exogeneity and hardly satisfied in most applications of econometrics.

3. Its power is weak if the forecast errors are symmetrically distributed around 0, which can

very well happen if the true regression function is neither convex nor concave.

Anyway, we may conclude that the Harvey-Collier test is not a validity test.

4.5. Utts’ Rainbow Test

The rainbow test developed by Utts (1982) appears to be similar to the validity test developed

here. Like for the Harvey-Collier test, its basic assumption is that the sample observations

Y1, . . . , Yn of Y with n > m + 1 obey the GM. It consists of two OLS regressions: The first one

is made by using the entire sample and the second one is based on a subsample with size

nS > m+ 1, where the observations of X in that subsample are selected from some central region

of X. The test statistic is

F =
nS − m − 1

n − nS

(
SSE
SSES

− 1
)

,

where SSE stands for the sum of squared errors of the entire sample and SSES denotes the sum of

squared errors of the subsample. According to Utts (1982), it holds that F ∼ Fn−nS
nS−m−1, provided

that the GM is satisfied and the null hypothesis H0 is true. Actually, despite of the similarities,

the rainbow test has not much to do with the validity test presented here—except for the very

fact that subsamples are created, too, in order to apply the test. On the one hand, this test is

based on the very strong assumption that the GM is satisfied. On the other hand, it represents

an analysis-of-variance test, which refers to (conditional) homoscedasticity rather than validity.

However, a valid regression model need not possess a homoscedastic error, i.e., it is not required

that Var(ε | X) = σ2 > 0. We conclude that the rainbow test is a test for the null hypothesis that

the GM is satisfied, but this is much stronger than validity. Hence, it is not a validity test, either.
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5. Conclusion

Evaluating regression models by applying the usual validity checks of regression analysis can

lead us to highly erroneous conclusions. Measures of prediction power, or of goodness of fit, are

misleading when trying to describe the impact of some explanatory variable(s) on a dependent

variable. Regression models with a strong prediction power can be highly inappropriate for the

given purpose, even if they fit well to the data. Conversely, valid regression models may have a

weak prediction power and they even need not fit at all. Also the typical exogeneity conditions

of linear regression are far from sufficient to guarantee that the given regression model is valid.

Genuine tests for the validity of regression models can rarely be found in the literature and a

visual inspection of the data often leads nowhere. The validity test developed here is simple

and it can be applied to all kinds of regression models with an arbitrary number of regressors.

It is very powerful in large samples and performs well also in small samples, given that the

validity of the regression model is sufficiently low and that there is not too much noise in the

true regression equation. Hence, the presented test pursues its mission and thus it should be

applied whenever the main goal of regression is description rather than prediction.

Proofs

Proof of Proposition 2

We have that

E
(
(Y − f (X))2) = E

(
(Y − g(X))2)+ 2E

(
(Y − g(X))(g(X)− f (X))

)
+ E

(
(g(X)− f (X))2)

with

E
(
(Y − g(X))(g(X)− f (X))

)
= E

(
E
(
(Y − g(X))(g(X)− f (X)) | X

))
= E

(
(g(X)− g(X))(g(X)− f (X))

)
= E

(
0(g(X)− f (X))

)
= E(0) = 0,

i.e.,

E
(
(Y − f (X))2) = E

(
(Y − g(X))2)+ E

(
(g(X)− f (X))2).

This is equivalent to

E(ε2) = E(ϵ2) + E
(
(ε − ϵ)2)

for all f ∈ G, which implies E(ϵ2) ≤ E(ε2). Hence, E
(
(Y − f (X))2) is minimal if and only if

E
(
(g(X)− f (X))2) is minimal.
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Proof of Theorem 1

In the case of R2 < 1, we obtain

1 − S2

1 − R2 =
E(ϵ)/Var(Y)
E(ε)/Var(Y)

=
E(ϵ)
E(ε)

= V2.

By contrast, R2 = 1 implies that ε = 0 and thus V2 = 1. Further, Proposition 2 leads us to S2 = 1,

too. The same proposition implies also that R2 ≤ S2, where R2 = S2 if and only if V2 = 1.

Proof of Theorem 2

In the case of V2 > 0, it follows that

A2

V2 =
S2 + V2 − 1

V2 = 1 − 1 − S2

V2 = R2

and thus A2 = V2R2. Otherwise, i.e., if V2 = 0, we have that S2 = 1 and so A2 = 1 + 0 − 1 = 0,

in which case the given formula is valid, too.

Proof of Theorem 3

(i) We have that E(ε̂) = E
(
E(ε̂ | X)

)
= E(0) = 0.

(ii) By applying the variance decomposition theorem, we conclude that

Var(ε̂) = E
(
Var(ε̂ | X)

)
+ Var

(
E(ε̂ | X)

)
= E

(
Var(ε̂ | X)

)
+ Var(0) = E

(
Var(ε̂ | X)

)
.

(iii) From the law of total expectation and E(ε̂) = 0, we conclude that

Cov(h(X), ε̂) = E
(
h(X)ε̂

)
= E

(
E(h(X)ε̂ | X)

)
= E

(
h(X)E(ε̂ | X)

)
= E

(
h(X)0

)
= E(0) = 0 .

(iv) Since f̂ is valid, we have that f̂ = g. Thus, due to Proposition 2, f̂ is optimal among F .

(v) Let f̃ ∈ F be optimal among F , too, and ε̃ = Y − f̃ (X) be the associated regression error.

Then,

E(ε̃2) = E
(
(Y − f̃ (X))2) = E

([
(Y − f̂ (X)) + ( f̂ (X)− f̃ (X))

]2
)

= E
(
ε̂2)+ 2E

((
f̂ (X)− f̃ (X)

)
ε̂
)
+ E

(
( f̂ (X)− f̃ (X))2

)
with

E
((

f̂ (X)− f̃ (X)
)
ε̂
)
= E

(
f̂ (X)ε̂

)
− E

(
f̃ (X)ε̂

)
= 0,
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since both f̂ (X) and f̃ (X) are square-integrable. Thus, we obtain

E(ε̃2) = E
(
ε̂2)+ E

((
f̂ (X)− f̃ (X)

)2
)

and because f̃ is optimal, too, it must hold that E(ε̃2) = E(ε̂2). We conclude that

E
((

f̂ (X)− f̃ (X)
)2
)
= 0,

which means that f̃ (X) = f̂ (X) = g(X) and thus ε̃ = ε̂. Hence, also the regression model

Y = f̃ (X) + ε̃ is valid.

Proof of Theorem 4

(i) Since ε is independent of X, we have that E(ε | X) = E(ε) = 0.

(ii) The variance decomposition theorem tells us that

Var(ε) = E
(
Var(ε | X)

)
+ Var

(
E(ε | X)

)
.

From Var(ε | X) = Var(ε) it follows that Var
(
E(ε | X)

)
= 0 and thus E(ε | X) = E(ε) = 0.

(iii) Fix any sample observation (Xi, Yi) and let ε i = Yi − f (Xi) be the associated sample error.

If X is strictly exogenous, we have that

E(ε i | Xi) = E
(
E(ε i |X) | Xi

)
= E(0 | Xi) = 0

and from (Xi, Yi) ∼ (X, Y) we conclude that (ε i, Xi) ∼ (ε, X), i.e., E(ε | X) = 0.

(iv) The GM implies that X is strictly exogenous, which means that f is valid.

Proof of Theorem 5

It is well-known that the random vector (X, Y) is elliptically distributed, too. Further, Var(Z) > 0

implies that Var(X) > 0, i.e., the exogeneity conditions given by System 4 are equivalent to

β = Var(X)−1Cov(X, Y) and α = E(Y)− β′E(X). Now, from Corollary 5 in Cambanis et al.

(1981), we conclude that E(Y | X) = α + β′X, which means that the linear regression model

is valid. Conversely, if the linear regression model is valid, Theorem 3 (i) and Corollary 1 (ii)

guarantee that the exogeneity conditions given by System 4 are satisfied.

Proof of Theorem 6

(i) This is an immediate consequence of Proposition 2.

(ii) From the variance decomposition theorem, we conclude that

Var(ε) = E
(
Var(ε | X)

)
+ Var

(
E(ε | X)

)
.
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Further, Var(ε) = E(Var(ε | X)) implies that Var
(
E(ε | X)

)
= 0, i.e., E(ε | X) = E(ε) = 0,

which means that the regression model is valid. Conversely, if the regression model is

valid, we obtain E(ε) = 0 by Theorem 3 (i) and Var(ε) = E(Var(ε | X)) by Theorem 3 (ii).

(iii) We already know from Proposition 2 that

E
(
(Y − f (X))2) = E

(
(Y − g(X))2)+ E

(
(g(X)− f (X))2)

for all f ∈ G. Thus, if E(ε2) = E
(
(Y − f (X))2) = E

(
(Y − g(X))2), we have that

E
(
(g(X)− f (X))2) = 0

and so f (X) = g(X). Hence, the regression model Y = f (X) + ε is valid. Conversely, if it

is valid, i.e., f (X) = g(X), it follows that E(ε2) = E
(
(Y − g(X))2).

Proof of Proposition 3

We have that

E(ε̂2) = E(ε̃2) + 2E
(
( f̃ (X)− f̂ (X))ε̃

)
+ E

(
( f̃ (X)− f̂ (X))2),

where ε̂ = Y − f̂ (X), and if ε̃ = Y − f̃ (X) is orthogonal to F (X), we obtain

E
(
( f̃ (X)− f̂ (X))ε̃

)
= E

(
f̃ (X)ε̃

)
− E

(
f̂ (X)ε̃

)
= 0 − 0 = 0 .

Then, it holds that

E(ε̂2) = E(ε̃2) + E
(
( f̃ (X)− f̂ (X))2).

Since the regression function f̂ is optimal, we must have that E(ε̂2) ≤ E(ε̃2), i.e.,

E
(
( f̃ (X)− f̂ (X))2) = 0 .

However, this cannot be true because f̃ ̸= f̂ . Thus, ε̃ cannot be orthogonal to F (X).

Proof of Theorem 8

Suppose that F is adequate and let f̂ be the valid element of F . Due to Theorem 3 (iv,v), f̂ is

the unique optimal regression function among F and Corollary 1 (v) asserts that ε̂ = Y − f̂ (X)

is orthogonal to F (X). Now, consider any regression function f̃ ∈ F . From Proposition 3 we

conclude that ε̃ = Y − f̃ (X) is orthogonal to F (X) only if f̃ = f̂ . This means that f̂ is the unique

element of F that produces an error being orthogonal to F (X).
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