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Abstract

Traditional approaches to Arbitrage Pricing Theory (APT) propose a factor model, but empirical
applications of APT are, nowadays, based on seemingly unrelated regression. I drop the factor model
and assume only that the market is ergodic. This enables me to apply the theory of Hilbert spaces
in a natural way. The expected return on any asset can always be approximated by an affine-linear
function of its betas and we are able to estimate the relative number of assets that violate the APT
equation by taking the expected returns and betas in the market into account. I present a simple
sufficient condition for the APT equation in its inexact form. Further, I show that the APT equation
holds true in its exact form if and only if an equilibrium market is exhaustive, which means that
it must be possible to replicate the betas and idiosyncratic risk of each asset by some strategy that
diversifies away all approximation errors in the market.
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1. Motivation

The Arbitrage Pricing Theory (APT) and the Capital Asset Pricing Model (CAPM) are commonly
seen as the most significant theories of capital market. Stephen Ross develops the APT in
a working paper in 1971, which is published later on in Ross (1982). He discusses the APT
in Ross (1976a) and in Section 9 of Ross (1976b). Ross vividly advocates the APT, typically
in collaboration with Richard Roll, in a series of contributions in the 1980s. Roll and Ross
(1984a) show how APT can be implemented in portfolio management. Roll and Ross (1980)
investigate the APT empirically, which is followed by a reply (Roll and Ross, 1984b) to some
critical remarks by Dhrymes et al. (1984). Further, Roll and Ross (1983) compare the APT with
its main competitor, i.e., the CAPM, whereas Ross and Walsh (1983) describe how the APT can
be used for international asset pricing.

The CAPM is based on the assumption that all market participants aim at maximizing a
mean-variance objective function, whereas the APT makes (almost) no behavioral assumption.
It presumes only that market participants try to exploit arbitrage opportunities and so it can be
considered a robust alternative to the CAPM. The main idea of APT is simple: If there exists an
arbitrage opportunity, the market cannot be in equilibrium and, conversely, if the market is in
equilibrium, there cannot exist any arbitrage opportunity. Ross (1976a) argues that, in this case,
the expected return on Asset i must essentially be

µi = λ0 +
m

∑
j=1

λjβij (1)

for any positive integer m. More precisely, the APT equation asserts that the cost of capital of
Asset i, µi, is an affine-linear function of its betas, βi1, βi2, . . . , βim, where λ0 represents the time
value of money and λ1, λ2, . . . , λm are referred to as the market prices of risk.

The behavioral assumption of APT, namely that the market is arbitrage-free, seems to be
negligible from an economic point of view, but the structural assumptions that are usually made
in the literature are quite strong. It is typically assumed that the return on Asset i follows a
factor model

Ri = µi +
m

∑
j=1

βijFj + εi, (2)

where Fj is some unobservable risk factor, βij is the associated factor loading, and εi denotes the
idiosyncratic risk of Asset i. The reader can find a large number of structural conditions that
guarantee that the idiosyncratic risks can be diversified away (see, e.g., Admati and Pfleiderer,
1985, Chamberlain and Rothschild, 1983, Connor and Korajczyk, 1995, Huberman, 1982, Ingersoll,
1984, Jarrow and Rudd, 1983, Reisman, 1988). The problem is that the factor model is very
restrictive. In its most stringent form it presumes that the idiosyncratic risks are uncorrelated.
Weaker forms allow ε1, ε2, . . . to be correlated, but the correlation must be sufficiently low in
order to preserve their diversifiability.1

The CAPM is not based on a factor model but on the mean-variance portfolio-optimization

1For a nice overview of factor models that are used in APT see, e.g., Connor and Korajczyk (1995).

2



Frahm, 2018 • Arbitrage Pricing Theory in Ergodic Markets

approach developed by Markowitz (1952). It does not make any distributional assumption—
besides the basic assumption that the second moments of the asset returns are finite.2 Hence, it
seems to be highly desirable to drop the factor model in APT, which is actually done by McElroy
et al. (1985). They observe that Eq. 2 is a linear regression equation and so the asset returns can
be represented by a system of seemingly unrelated regression (SUR) equations. Nonetheless,
their focus is empirical rather than theoretical. To understand their arguments, I should note that
Roll and Ross (1980) propose a two-step estimation procedure for the market prices of risk. In
the first step, the expected returns and betas are estimated by maximum likelihood, based on the
given factor model of asset returns. In the second step, the market prices of risks are estimated
by applying an ordinary least-squares (OLS) regression of the expected-return estimates on
the beta estimates that have been obtained in the first step. Estimating the parameters of a
factor model requires a distributional assumption. If this assumption is violated, the resulting
estimators are inconsistent or, at least, inefficient. Moreover, the two-step estimation approach
leads to a well-known errors-in-variables bias: Even if the proposed factor model is correct, the
two-step estimator for the market prices of risk is inconsistent if the number of assets grows
to infinity but the number of time-series observations stays fixed. To reduce the errors-in-
variables bias, the assets are typically grouped into portfolios, which makes the entire approach
somewhat arbitrary and, unfortunately, it turns out that the empirical results essentially depend
on the chosen groups (Antoniou et al., 1998, Clare and Thomas, 1994). Another problem is
that the factors are unobservable, which makes an economic interpretation difficult—not to say
impossible (Chen and Jordan, 1993). These problems can be avoided by applying a nonlinear
SUR estimator (McElroy et al., 1985),3 which is based on observable variables and estimates the
parameters of the SUR equations, i.e., the betas and the market prices of risk, simultaneously.4

To the best of my knowledge, there is no theoretical foundation of APT in the context of
SUR. Is it still possible to justify APT if we drop the factor model? At first glance, this question
seems to be of minor importance, at least from an econometric point of view, since the factor
model can be considered a SUR in which the residuals are uncorrelated in the cross section.5

Hence, the SUR estimators might be inefficient but, apparently, not inconsistent. I will show
that this naive conclusion is utterly wrong. APT can only be justified if the SUR equations
are properly specified, i.e., we must not omit any risk factor whose market price differs from
zero. Nevertheless, even if the SUR equations are properly specified, we cannot guarantee
that the APT equation holds true for each asset in the market. APT just states that Eq. 1 must
essentially be satisfied in an equilibrium market. The problem is that the number of assets for
which the APT equation is violated as well as the magnitude of each approximation error, i.e.,
ui := µi − λ0 −∑m

j=1 λjβij, can be arbitrarily large.
The main contributions of this work are as follows:

(i) APT is discussed in the context of ergodic markets. Ergodicity enables us to apply the

2It is not presumed that the asset returns have a joint normal distribution (Markowitz, 2012).
3The attribute “nonlinear” is somewhat misleading. In fact, the regression equations are linear, but the parameter
restrictions mentioned by McElroy et al. (1985) are nonlinear.

4McElroy et al. (1985) presume that the time value of money, λ0, equals the risk-free interest rate.
5I do not distinguish between observable and unobservable regressors.
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theory of Hilbert spaces in a natural way and thus to weaken the basic assumptions of
APT, substantially.

(ii) It is shown that the expected return on any asset can always be approximated by an
affine-linear function of its betas. Further, a useful result concerning the approximation
quality is provided.

(iii) It is proved that the approximation errors are essentially zero if and only if the market
prices of all common risks that are omitted in the return equation equal zero, provided
that there exists some properly specified return equation.

(iv) A simple sufficient condition for the APT equation in its inexact form is presented. It is
shown that the condition is implied by the standard assumptions of APT.

(v) It is demonstrated that the APT equation holds true in its exact form if and only if it is
possible to replicate all betas and idiosyncratic risks such that the approximation errors in
the market vanish.

The rest of this work is organized as follows: In Section 2, I introduce the notation and discuss
the basic assumptions. Section 3 represents the main part of this work. It is divided into two
subsections. Section 3.1 presents the general results and Section 3.2 focuses on equilibrium
markets. Section 3.1.1 contains the approximate APT equation, whereas in Section 3.1.2, I discuss
the specification problem. Further, Section 3.2.1 contains the inexact APT equation and in Section
3.2.2, I derive the exact APT equation. Finally, Section 4 concludes this work. All proofs can be
found in the appendix unless the given statement is trivial.

2. Notation and Basic Assumptions

Any assertion about a random quantity is meant to be valid almost surely. Let
{

Xn
}

be any
random sequence. Almost sure convergence is denoted by Xn → X, convergence in probability
is indicated by Xn

p→ X, and convergence in distribution is symbolized by Xn  X. Every tuple
x = (x1, x2, . . . , xn) ∈ Rn is considered a column vector, and all random quantities that occur in
this work shall have finite second moments. Each statement that involves an index i is meant to
be true for all i ∈ I, where the index set I should always be clear from the context. The symbol 0
represents a vector of zeros, whereas 1 is a vector of ones. Further, the identity matrix is denoted
by I.

I will frequently use the Linear Regression Theorem, which is a fundamental result of econo-
metrics:

Theorem 1 (Linear Regression Theorem). Let Y be a random variable, X0 ≡ 1, and X = (X1, X2, . . . , Xm)

an m-dimensional random vector with m ∈N.6 There exists a vector (β0, β1, . . . , βm) that satisfies the
following equivalent conditions:

(i) (β0, β1, . . . , βm) = arg min(b0,b1,...,bm)
E
((

Y−∑m
j=0 bjXj

)2
)

,

6In the case of m = 0, the random vector X is void.
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(ii) Var(X)(β1, β2, . . . , βm) = Cov(X, Y) and β0 = E(Y)−∑m
j=1 β jE(Xj),

(iii) Y = ∑m
j=0 β jXj + ε with E(ε) = 0 and Cov(Xj, ε) = 0.

If the covariance matrix of X is positive definite, the vector (β0, β1, . . . , βm) is unique. It holds that

(β1, β2, . . . , βm) = Var(X)−1Cov(X, Y) (3)

and

β0 = E(Y)−
m

∑
j=1

β jE(Xj). (4)

In any case, the orthogonal projection ∑m
j=0 β jXj and the residual ε are unique.

Throughout this work, I say that

Y = β0 +
m

∑
j=1

β jXj + ε (5)

is a linear equation, and it is a linear regression equation if and only if the three equivalent
conditions mentioned by the Linear Regression Theorem are satisfied. The Linear Regression
Theorem does not require any other assumption. It can be applied both to empirical and to
theoretical distributions. If the distribution is empirical, we obtain the well-known results
from OLS regression. Otherwise, the Linear Regression Theorem provides some useful insights
regarding the linear relationship between the random variables X1, X2, . . . , Xm and Y.

I assume that the market contains an infinite number of assets, which can either be risky
or riskless. Let Ri be the (rate of) return on Asset i after some investment period. Dividends
that occur during the investment period are considered part of the corresponding asset return.
Further, let X = (X1, X2, . . . , Xm) be any random vector. Suppose, without loss of generality,
that the components of X are centralized, i.e., E(Xj) = 0, and that the covariance matrix of X is
positive definite, i.e., Var(X) > 0.7 We can always express the return on Asset i by the linear
equation

Ri = µi +
m

∑
j=1

βijXj + ε i. (6)

The intercept µi denotes the expected return on Asset i and the slope coefficients βi1, βi2, . . . , βim

are referred to as its betas. Further, the random variables X1, X2, . . . , Xm represent some common
risks, whereas ε i is the idiosyncratic risk of Asset i. Hence, ∑m

j=1 βijXj can be considered the
systematic part and ε i the unsystematic part of the unexpected return Ri − µi. From E(Ri) = µi

and E(Xj) = 0 it follows that E(ε i) = 0.
Eq. 6 can be represented in matrix form as R = µ + BX + ε with R = (R1, R2, . . . , Rn),

7This assumption is justified in Section A.1.1.
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µ = (µ1, µ2, . . . , µn),

B =


β11 β12 · · · β1m

β21 β22 · · · β2m
...

...
...

βn1 βn2 · · · βnm

 , (7)

and ε = (ε1, ε2, . . . , εn). I omit the number n for notational convenience, but the reader should
keep in mind that all vectors and matrices refer to the first n assets in the market.

I do not require a strict factor model, i.e., the idiosyncratic risks ε1, ε2, . . . need not be uncorre-
lated. Further, the given return equation (6) need not represent an approximate factor model
(Chamberlain and Rothschild, 1983), where the sequence of the largest eigenvalues associated
with

{
Var(ε)

}
is bounded above. Further, I do not presume that the common risks are strictly

exogenous, i.e., E(ε i |X) = 0, which is a typical assumption in APT.8 In factor analysis it is
assumed that the common risks are unobservable, whereas they must be observable for SUR
estimation. Burmeister and McElroy (1988) propose an estimation procedure that works with
both observable and unobservable variables.9 From a theoretical point of view, it is irrelevant
whether the common risks are observable or unobservable. In any case, the common risks are
usually correlated with each other and so we may allow the idiosyncratic risk of Asset i, ε i, to be
correlated with X1, X2, . . . , Xm, too. Hence, a key observation of this work is that Eq. 6 need not
be a linear regression equation. This important remark can be found also in Renault et al. (2017),
but I did not find any other author drawing attention to this point. The given approach makes
(almost) no distributional assumptions regarding the asset returns and common risks. We will
see that ergodic markets provide enough structure in order to obtain the typical results of APT,
and we are able to produce even more useful insights.

Let θi := (µi, βi1, βi2, . . . , βim) be a vector that contains the expected return on Asset i and its
betas. Consider the empirical distribution function of the parameter vectors θ1, θ2, . . . , θn, i.e.,

x 7−→ Fn(x) :=
1
n

n

∑
i=1

1θi≤x, ∀ x = (x0, x1, . . . , xm) ∈ Rm+1. (8)

Here A 7→ 1A denotes the indicator function, i.e., 1A = 1 if A is true and otherwise 1A = 0.
Further, let F be any cumulative distribution function on Rm+1. I assume that Fn(x)→ F(x) for
all x ∈ Rm+1. Hence, F represents the empirical distribution function of all expected returns and
betas in the market.

The expected returns and betas are deterministic.10 Nonetheless, we can imagine an Rm+1-
valued random vector θ = (ϑ0, ϑ1, . . . , ϑm) with cumulative distribution function F. More
precisely, let

(
Ω,A, P

)
be a probability space, where A is the Borel σ-algebra on Ω = Rm+1 and

P is the probability measure on A induced by F. Put another way, P is the empirical measure

8See, for example, Connor and Korajczyk (1995, p. 97) as well as Roll and Ross (1980, p. 1076). However, strict
exogeneity can be important in empirical applications, in particular if somebody wants to estimate the expected
returns and betas.

9See also Chen and Jordan (1993) for an empirical investigation of factor and time-series analysis in the context of
APT.

10Gagliardini et al. (2016) propose a similar approach, but they consider θ1, θ2, . . . , θn stochastic.
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of the expected returns and betas that can be “observed” in the market.11 Let f be any (Borel)
measurable function from Rm+1 to R, so that f (θ) can be considered a random variable. If the
integral of f (θ) with respect to P exists, it is denoted by E

(
f (θ)

)
. Any second moments that are

based on the empirical measure P are indicated, in the same way, by the symbols “Var” and
“Cov.” These moments should be distinguished from E, Var, and Cov, which refer to the asset
returns, the common risks, and the idiosyncratic risks.

I assume that the parameter sequence
{

θn
}

is ergodic. This means that

1
n

n

∑
i=1

f (θi) −→ E
(

f (θ)
)

(9)

for each integrable function f of θ, i.e., E
(
| f (θ)|

)
< ∞. Hence, we can treat the expected returns

and betas in the market as if they were random variables. However, these parameters are in
fact deterministic and thus E

(
f (θ)

)
should be understood as an empirical mean rather than a

probabilistic expectation. Any market that satisfies the aforementioned requirements is said to
be ergodic.

Ergodicity is a typical assumption in econometrics. It guarantees that the sample distribution
of time-series or cross-sectional observations converges to their stationary or population distri-
bution, respectively. Thus, although the observations may depend on each other, the empirical
distribution should be close to the theoretical one if the number of observations is sufficiently
large. However, in our context the “sample” Θ =

[
θ1 θ2 · · · θn

]′
=
[
µ B
]
∈ Rn×(m+1) contains

the expected returns and betas in the market. Further, n is not a number of observations—it
is the number of assets that are taken into consideration. This must be emphasized because
ergodic theory usually is applied to time-series or cross-sectional data. By contrast, here I refer to
the parameters of the linear equation R = µ + BX + ε, which are deterministic but not stochastic.
This seems to be a novel approach in APT.12

The ergodicity assumption enables us to consider ϑj an element of a Hilbert spaceH, where ϑ0

represents the expected return and ϑ1, ϑ2, . . . , ϑm are the betas of an asset in an abstract sense. The
inner product ofH is E(ϑjϑk) = limn→∞

1
n ∑n

i=1 θijθik, i.e., the vectors ϑj, ϑk ∈ H are orthogonal
if and only if 1

n ∑n
i=1 θijθik → 0. The well-known Projection Theorem guarantees that there exists

a unique orthogonal projection of ϑ0 onto the subspace spanned by 1, ϑ1, ϑ2, . . . , ϑm. We can use
the Linear Regression Theorem in order to understand the projection in more detail. In the case
of Var(ϑ) > 0 with ϑ := (ϑ1, ϑ2, . . . , ϑm), it yields the parameters

λ := (λ1, λ2, . . . , λm) = Var(ϑ)−1Cov(ϑ, ϑ0) (10)

and

λ0 := E(ϑ0)−
m

∑
j=1

λjE(ϑj) (11)

11Hence, the random vector θ is just the identity θ : ω 7→ ω.
12A similar approach can be found in Ingersoll (1984, 1987, Chapter 7). However, the ergodic-market approach chosen

in this work can be considered more general. This will be explained in the subsequent analysis.
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of the linear regression equation

ϑ0 = λ0 +
m

∑
j=1

λjϑj + υ . (12)

I assume that the investors know the expected returns and betas in the market, which means
that they are able to calculate the parameters λ0, λ1, . . . , λm.

3. Ergodic Markets

3.1. The General Case

3.1.1. Approximate APT Equation

In an ergodic market, we can always approximate the cost of capital of Asset i, µi, by the
affine-linear function λ0 + ∑m

j=1 λjβij. Here, the parameters λ0, λ1, . . . , λm are given by Eq. 10
and Eq. 11, i.e., they minimize the variance of the residual υ in Eq. 12. Then we obtain the
expectation equation

µi = λ0 +
m

∑
j=1

λjβij + ui, (13)

where ui represents an approximation error. This holds true for any number and type of common
risks, X1, X2, . . . , Xm, irrespective of whether the market is in equilibrium or not.

The parameters λ0, λ1, . . . , λm of Eq. 13 are determined by the empirical distribution of all
expected returns and betas in the market. To the best of my knowledge, most approaches that
can be found in the literature are based on an orthogonal or oblique projection of µ onto the
column space of

[
1 B
]

(see, e.g., Gagliardini et al., 2016, Ingersoll, 1984, 1987, Chapter 7), and
so the parameters λ0, λ1, . . . , λm depend on the number of assets, i.e., n. By contrast, here the
parameters of the expectation equation are independent of n. In fact, they depend only on the
second moments of the random vector θ = (ϑ0, ϑ1, . . . , ϑm), whose components take place in the
Hilbert space H. They are uniquely determined by F if the covariance matrix of ϑ is positive
definite. This is equivalent to the statement that 1

n

[
1 B
]′[

1 B
]

converges to a matrix with full
rank.13 Otherwise, there exist infinitely many λ’s such that Var(ϑ)λ = Cov(ϑ, ϑ0). Then we can
set m− rank Var(ϑ) components of λ to zero and so we may ignore the associated components
of ϑ. Hence, I assume that Var(ϑ) > 0 without loss of generality.

Although it is always possible to approximate µi by λ0 + ∑m
j=1 λjβij, the quality of approxima-

tion essentially depends on σ2
υ := Var(υ). This is expressed by the next two theorems.

Theorem 2 (Approximate APT equation). The expected return on Asset i amounts to

µi = λ0 +
m

∑
j=1

λjβij + ui, (14)

13This assertion is proved in Section A.1.2.
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where the parameters λ0, λ1, . . . , λm are given by λ = Var(ϑ)−1Cov(ϑ, ϑ0) and λ0 = E(ϑ0) −
∑m

j=1 λjE(ϑj). Further, we have that

1
n

n

∑
i=1

(
µi − λ0 −

m

∑
j=1

λjβij

)2

−→ σ2
υ < ∞ (15)

with σ2
υ = Var(ϑ0)−Cov(ϑ, ϑ0)′Var(ϑ)−1Cov(ϑ, ϑ0) ≥ 0.

The residual ui represents the error of the affine-linear approximation µi ≈ λ0 + ∑m
j=1 λjβij

and thus 1
n ∑n

i=1 u2
i is the mean square approximation error. In general, we cannot expect that

1
n ∑n

i=1 u2
i → 0. However, Theorem 2 guarantees that the limit of the mean square approximation

error is finite and it enables us to assess the number of assets in the market for which the
approximation error is sufficiently low. Before I come back to this point, note that

Var(ϑ0) = lim
n→∞

µ′µ

n
−
(

lim
n→∞

1′µ

n

)2

, (16)

Cov(ϑ, ϑ0) = lim
n→∞

B′µ
n
−
(

lim
n→∞

B′1
n

)(
lim
n→∞

1′µ

n

)
, (17)

and

Var(ϑ) = lim
n→∞

B′B
n
−
(

lim
n→∞

B′1
n

)(
lim
n→∞

1′B
n

)
. (18)

Thus, if the number of assets that we take into consideration is large, it is possible to approximate
the second moments of θ by

Var(ϑ0) ≈
1
n

n

∑
i=1

(µi − µ̄)2, (19)

Cov(ϑ, ϑ0) ≈
1
n

n

∑
i=1

(βi − β̄)(µi − µ̄), (20)

and

Var(ϑ) ≈ 1
n

n

∑
i=1

(βi − β̄)(βi − β̄)′, (21)

where µ̄ = 1
n ∑n

i=1 µi, βi = (βi1, βi2, . . . , βim), and β̄ = 1
n ∑n

i=1 βi. Similarly, we are able to
approximate σ2

υ by the mean square approximation error 1
n ∑n

i=1 u2
i . Geweke and Zhou (1996)

consider 1
n ∑n

i=1 u2
i a measure of pricing errors, which suggests that some assets are mispriced.

However, up to now we cannot say why any µi should be “incorrect.” For this reason, I prefer
the term approximation error.

The abstract residual υ = ϑ0 − λ0 − ∑m
j=1 λjϑj of Eq. 12, which takes place in the Hilbert

space H, is a measurable function of θ and the same holds true for 1|υ|≥τ, where τ is any
positive number. This leads to the following corollary, which is an immediate consequence of
Chebyshev’s inequality and thus I skip its proof.

9
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Corollary 1 (Approximation error). For every τ > 0 we have that

1
n

n

∑
i=1

1|ui |≥τ −→ P
(
|υ| ≥ τ

)
≤ σ2

υ

τ2 . (22)

Hence, the proportion of assets whose approximation error exceeds the interval (−τ, τ)

cannot be greater than min
{
(συ/τ)2, 1

}
. For example, suppose that the market contains 10000

assets and let the standard deviation of υ be 1%. Corollary 1 tells us that less than about
10000 · (0.01/0.02)2 = 2500 assets in the market have an approximation error that exceeds
the critical amount of ±2%. This estimation is based on Chebyshev’s inequality and so it is
very conservative. If we know the probability distribution of υ, we can essentially refine our
statement about the approximation quality. If we knew, e.g., that υ is normally distributed, we
could say that only about 10000 · 2 Φ(−0.02/0.01) = 455 assets in the market are affected by an
approximation error whose absolute value is greater or equal than 2%.

3.1.2. Proper Specification

In APT we are particularly interested in the case of σ2
υ = 0, i.e., υ = 0, which means that

ϑ0 = λ0 + ∑m
j=1 λjϑj. Put another way, in this case the APT equation µi = λ0 + ∑m

j=1 λjβij is
essentially satisfied. An economic argument for υ to be zero is provided in Section 3.2.1. The
main focus of this section is on the question of whether or not Eq. 6 is properly specified in the
following sense.14

Definition 1 (Proper specification). The return equation Ri = µi + ∑m
j=1 βijXj + ε i is said to be

properly specified if and only if σ2
υ = 0.

Suppose that there exists an arbitrarily large number of common risks X1, X2, . . . , XM such
that the return equation

Ri = µi +
M

∑
j=1

βijXj + εi (23)

is properly specified. More precisely, the residual ν of the linear regression equation

ϑ0 = κ0 +
M

∑
j=1

κjϑj + ν (24)

equals zero. The problem is that the number of common risks, M, can be very large. Is it possible
to omit some common risks in Eq. 23? More precisely, is the return equation given by Eq. 6
properly specified for any (small) number m < M of common risks? The next theorem states
that this is true if and only if the market prices of the omitted risks, i.e., κm+1, κm+2, . . . , κM, equal
zero.

Theorem 3 (Proper specification). Suppose that the return equation Ri = µi + ∑M
j=1 βijXj + εi is

properly specified. The return equation Ri = µi + ∑m
j=1 βijXj + ε i with m < M is properly specified if

14I still do not require an equilibrium market.
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and only if κj = 0 for all j > m, in which case it holds that λj = κj in ϑ0 = λ0 + ∑m
j=1 λjϑj + υ for all

0 ≤ j ≤ m.

Hence, the investors may ignore the omitted risks Xm+1, Xm+2, . . . , XM if (and only if) κj = 0
for all j > m. Of course, this is possible only if they know all expected returns and betas in the
market, which is a standard assumption in APT. In real life, however, the market participants
have to apply an econometric test for the null hypothesis H0 : κm+1, κm+2, . . . , κM = 0 that is
based on some estimation procedure for the expected returns and betas. This can be done by
using a (nonlinear) SUR estimator. As already mentioned, SUR estimation avoids the well-
known errors-in-variables bias, which is often prevalent when applying APT in practice.

If some investor rejects H0, he should expect that the return equation (6) is not properly
specified, in which case he must not ignore the omitted risks. Otherwise, the mean square
approximation error does not tend to zero and the return equation might suffer from an omitted-
variables bias. This means that the chosen estimators are consistent for λ0, λ1, . . . , λm, but not for
the regression parameters κ0, κ1, . . . , κm, which belong to Eq. 24. By contrast, he could assume
that Eq. 6 is properly specified if the null hypothesis cannot be rejected. Put another way, in this
case, the (small) set of m common risks seems to be sufficient.

3.2. Market Equilibrium

In this section, I investigate the question of whether it is possible to strengthen Theorem 2 by
assuming that the market is in equilibrium. We obtain the typical result of APT, namely the
inexact APT equation. Moreover, we are able to derive the exact APT equation by assuming that
the market is exhaustive. The precise meaning of “exhaustive” will be clarified below.

3.2.1. Inexact APT Equation

The quality of approximation is not directly related to the joint distribution of the idiosyncratic
risks. It rather depends on the orthogonal projection of ϑ0 onto the subspace of H that is
spanned by (1, ϑ). Nonetheless, we can expect that there exists an indirect relationship between
the approximation errors and the idiosyncratic risks. I will come back to this point later on.

Let
{

wn/n
}

with wn = (wn1, wn2, . . . , wnn) ∈ Rn be any investment strategy, i.e., any sequence
of portfolios. More precisely, the vector wn contains the components of the last row of a triangular
array 

w11

w21 w22
...

...
. . .

wn1 wn2 · · · wnn

 (25)

and thus it may depend on n, i.e., the number of assets that we take into consideration. Let ξ be
any random variable. I assume that (X, ξn) (X, ξ) with ξn := 1

n ∑n
i=1 wniε i.

Now, consider the portfolio u/n ∈ Rn with u = (u1, u2, . . . , un), which will play a major
role in the subsequent analysis. Since the market is ergodic, we have that 1

n ∑n
i=1 ui → 0. This

11
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means that the strategy
{

u/n
}

is asymptotically self-financing.15 It cannot have any rate of return
because (in the limit) the invested capital is zero. However, its profit amounts to

Pn :=
1
n

n

∑
i=1

uiRi =
1
n

n

∑
i=1

ui

(
µi +

m

∑
j=1

βijXj + ε i

)
(26)

=
1
n

n

∑
i=1

uiµi +
m

∑
j=1

(
1
n

n

∑
i=1

βijui

)
Xj +

1
n

n

∑
i=1

uiε i . (27)

Since the market is ergodic, it holds that

1
n

n

∑
i=1

uiµi =
1
n

n

∑
i=1

ui

(
λ0 +

m

∑
j=1

λjβij + ui

)
(28)

=

(
1
n

n

∑
i=1

ui

)
︸ ︷︷ ︸

→ 0

λ0 +
m

∑
j=1

(
1
n

n

∑
i=1

βijui

)
︸ ︷︷ ︸

→ 0

λj +
1
n

n

∑
i=1

u2
i︸ ︷︷ ︸

→ σ2
υ

−→ σ2
υ (29)

and
m

∑
j=1

(
1
n

n

∑
i=1

βijui

)
︸ ︷︷ ︸

→ 0

Xj −→ 0 . (30)

Hence, it follows that Pn  P = σ2
υ + ξ with σ2

υ ≥ 0 and Var(ξ) ≥ 0. If the market is efficient
in the sense of Fama (1970), E(P) = σ2

υ typically increases with Var(P) = Var(ξ).16 Hence, the
approximation errors and the idiosyncratic risks are interconnected.

The following definition is inspired by Ross (1976a).

Definition 2 (Well-diversified strategy). The strategy
{

wn/n
}

is said to be well-diversified if and
only if

1
n

n

∑
i=1

wniε i
p−→ 0 . (31)

Some authors (see, e.g., Chamberlain and Rothschild, 1983) require that some traders are risk
averse and assume that

Var

(
1
n

n

∑
i=1

wniε i

)
−→ 0. (32)

Put another way, the sequence
{ 1

n ∑n
i=1 wniε i

}
must converge in mean square to zero, which

implies that
{

wn/n
}

is well-diversified. However, focusing on the variance is not necessary
and, actually, APT does not require any risk-averse investor.

I make only the following assumption:

A. There exists a rational investor possessing a continuous and strictly increasing utility

15Any portfolio w = (w1, w2, . . . , wn) ∈ Rn is said to be self-financing if and only if ∑n
i=1 wi = 0.

16Here, it is implicitly assumed that E(ξ) = 0, which does not follow from E(ξn) = 0.
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function u : R→ R. Let c be the initial capital of the investor. If Pn
p→ p ∈ R then

E
(
u(c + aPn)

)
−→ u

(
c + ap

)
, ∀ a > 0. (33)

Assumption A is equivalent to the statement that the sequence
{

u(c + aPn)
}

is asymptotically
uniformly integrable, provided that Pn converges in probability to p (van der Vaart, 1998,
Chapter 2.5). Note that if

{
u/n

}
is well-diversified, we have that Pn

p→ σ2
υ .

The next theorem can be considered the main result of APT.

Theorem 4 (Inexact APT equation). Let Assumption A be satisfied and suppose that the market is in
equilibrium. If 1

n ∑n
i=1 uiε i

p→ 0, then

1
n

n

∑
i=1

(
µi − λ0 −

m

∑
j=1

λjβij

)2

−→ 0 . (34)

Hence, if the market is in equilibrium, the variance of υ must be zero—provided that
{

u/n
}

is a well-diversified strategy, i.e., 1
n ∑n

i=1 uiε i
p→ 0. The latter condition is essential and ensures

that the inexact APT equation is not trivially satisfied for every arbitrary set of common risks. I
will come back to this point below.

Theorem 4 does not claim that the APT equation µi = λ0 + ∑m
j=1 λjβij is satisfied for each asset

in the market. It only asserts that 1
n ∑n

i=1 u2
i → 0. This means that the APT equation must hold

true only in the abstract sense, i.e., ϑ0 = λ0 + ∑m
j=1 λjϑj. Put another way, in an equilibrium

market, we must have that
1
n

n

∑
i=1

1ui 6=0 −→ P
(
υ 6= 0

)
= 0 . (35)

Hence, Eq. 1 indeed can be violated, but only for an evanescent proportion of assets. This means
that the relative number of approximation errors must vanish if the number of assets that we
take into consideration, n, grows to infinity. To the best of my knowledge, Al-Najjar (1998) is
the first author who comes to the same conclusion. Similar arguments can be found also in
Gagliardini et al. (2016) as well as Renault et al. (2017). However, the absolute number and
magnitude of the approximation errors can be arbitrarily large and so, in general, ui cannot be
considered negligible.

There is no universal answer to the question of how to pick the common risks. Of course, this
depends on the particular case, but at least we can check whether Eq. 6 is properly specified
by applying a nonlinear SUR estimator. This leads to the estimated residuals û1, û2, . . . , ûn.
According to Theorem 4, we may expect that 1

n ∑n
i=1 û2

i is close to zero if the number of assets,
n, is sufficiently large and the return equation is properly specified. However, the meaning of
being “close to zero” depends on the desired significance level, which should be determined
from the outset in order to avoid a selection (or publication) bias.

Now, Eq. 13 can be interpreted in the usual way: The cost of capital of Asset i, µi, is essentially
an affine-linear function of its betas. The term λjβij represents the risk premium of Asset i that
can be attributed to the common risk Xj. The regression coefficient λj is referred to as the market

13
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price of risk that is related to Xj, whereas βij quantifies the exposure of Asset i to that common
risk. Moreover, the intercept λ0 is the time value of money, whereas the approximation error
ui is the part of µi that cannot be attributed to one of the aforementioned price determinants.
Nonetheless, the market is in equilibrium and thus ui cannot be considered a pricing error.

Each approximation error ui is deterministic and, by construction, it holds that E(ε i) = 0.
Thus, we have that

E

(
1
n

n

∑
i=1

uiε i

)
=

1
n

n

∑
i=1

E(uiε i) =
1
n

n

∑
i=1

uiE(ε i)︸ ︷︷ ︸
= 0

= 0.

This is a major result of our basic ergodicity assumption made in Section 2. On the one hand,
it allows us to consider all expected returns and betas deterministic. On the other hand, it
enables us to specify the market prices of risk, λ0, λ1, . . . , λm, in the limiting case n→ ∞. That
is, we do not have to fix any finite number, n, of assets. By contrast, Gagliardini et al. (2016)
consider µi and βi1, βi2, . . . , βim realizations of a random vector and focus on a finite subset of
the asset universe. The reader can verify that the ergodicity assumption maintained in this work
essentially simplifies their proof of the APT equation.

Theorem 4 goes beyond the property E
( 1

n ∑n
i=1 uiε i

)
= 0. It requires the Weak Law of Large

Numbers 1
n ∑n

i=1 uiε i
p→ 0. Put another way, on average, the quantity uiε i must vanish if the

number of assets that we take into consideration grows to infinity. Whether or not this condition
is fulfilled depends essentially on the approximation errors and thus on the given set of common
risks: Theorem 4 implies that the return equation is properly specified, but in Section 3.1.2 we
have seen that this holds true only if the market prices of the omitted risks equal zero. This
means that the Weak Law of Large Numbers might be violated if we choose the set of common
risks in an arbitrary way.

The Weak Law of Large Numbers is satisfied if the idiosyncratic risks follow an approximate
factor model (Chamberlain and Rothschild, 1983). Suppose that u 6= 0 for some sufficiently
large number n.17 Now, we have that

Var

(
1
n

n

∑
i=1

uiε i

)
=

u′Var(ε)u
n2 =

(
u′u
n

)(
ũ′Var(ε)ũ

n

)
, ũ :=

u
‖u‖ , (36)

and according to Theorem 2 it holds that u′u/n → σ2
υ < ∞ . It is well-known that x′Var(ε)x

cannot exceed the largest eigenvalue of Var(ε) for any vector x ∈ Rn with ‖x‖ = 1. Chamberlain
and Rothschild (1983) assume that the sequence of the largest eigenvalues associated with{

Var(ε)
}

is bounded above. Thus, ũ′Var(ε)ũ/n vanishes as n grows to infinity, and because
1
n ∑n

i=1 u2
i converges to a finite number σ2

υ , it holds that Var
( 1

n ∑n
i=1 uiε i

)
→ 0.18 We conclude that

the sequence
{ 1

n ∑n
i=1 uiε i

}
converges in mean square to zero, which implies that 1

n ∑n
i=1 uiε i

p→ 0,
i.e., the Weak Law of Large Numbers is satisfied.

Theorem 4 does not presume that 1
n ∑n

i=1 wniε i
p→ 0 for any strategy

{
wn/n

}
other than

{
u/n

}
.

17Otherwise, the Weak Law of Large Numbers is trivially satisfied.
18Gagliardini et al. (2016) point out that one could make the weaker assumption ũ′Var(ε)ũ = o(n).
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By contrast, Ross’ (1976a) line of argument goes like this:

(i) Form a self-financing portfolio wn = (wn1, wn2, . . . , wnn) ∈ Rn, i.e., ∑n
i=1 wni = 0, such that

∑n
i=1 wniε i → 0.

(ii) The profit of the portfolio wn can be decomposed into three parts:

Pn =
n

∑
i=1

wniµi +
m

∑
j=1

(
n

∑
i=1

wniβij

)
Xj +

n

∑
i=1

wniε i . (37)

The first part is risk-free, the second part is systematic, and the third part is unsystematic.
The latter vanishes as n grows to infinity. Hence, if n is a large number of assets, we have
that

Pn ≈
n

∑
i=1

wniµi +
m

∑
j=1

(
n

∑
i=1

wniβij

)
Xj . (38)

(iii) Moreover, choose the portfolio wn such that ∑n
i=1 wniβij = 0. Hence, the systematic part of

Pn can be ignored and thus Pn ≈ ∑n
i=1 wniµi.

(iv) The term ∑n
i=1 wniµi is risk-free and in case ∑n

i=1 wniµi 6= 0 the market cannot be in
equilibrium, since any rational investor would try to make as much money as possible
out of nothing. Thus, for all portfolios wn with ∑n

i=1 wni = 0 and ∑n
i=1 wniβij = 0, we must

have that ∑n
i=1 wniµi = 0. This means that µ must belong to the column space of

[
1 B
]
, i.e.,

there must exist some parameters λ0, λ1, . . . , λm such that µi = λ0 + ∑m
j=1 λjβij.

Argument iv requires that the Strong Law of Large Numbers ∑n
i=1 wniε i → 0 is satisfied for

all strategies
{

wn
}

that are such that wn is orthogonal to the column space of
[
1 B
]
. Theorem 4

shows that this is not necessary at all. Moreover, Argument iv is based on the idea that all vectors
take place in the n-dimensional Euclidean space, which represents a finite-dimensional Hilbert
space. However, in order to diversify away the idiosyncratic risks by the strategy

{
wn
}

, the
number of assets, n, must grow to infinity and thus Ross’ whole line of argument is somewhat
misleading. He observes that this is just a heuristic and shows that the APT equation is, at least,
essentially true (Ross, 1976a, p. 347), i.e.,

∞

∑
i=1

(
µi − λ0 −

m

∑
j=1

λjβij

)2

< ∞ . (39)

This result is slightly stronger than 1
n ∑n

i=1
(
µi − λ0 −∑m

j=1 λjβij
)2 → 0, i.e., the quintessence of

Theorem 4, and requires some additional assumptions that go beyond the scope of this work.

3.2.2. Exact APT Equation

Theorem 4 does not say anything about the question of whether the APT equation holds true for
some specific asset. For example, suppose that a riskless asset exists and let r be the risk-free
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interest rate. Consider the linear regression equation

r = µ0 +
m

∑
j=1

β0jXj + ε0 . (40)

Here, the index “0” is just symbolic and shall only denote the riskless asset.
By definition, we have that Var(r) = 0 and from Var(X) > 0 it follows that β0j = 0 as well as

ε0 = 0. Thus, we may conclude that r = µ0 = λ0 + u0, but the problem is that the approximation
error u0 can be arbitrary. In order to obtain the typical result “λ0 = r” we must either assume
that u0 = 0 or provide an economic justification. For the latter purpose, we need the following
definition.

Definition 3 (Orthogonal strategy). The strategy
{

wn/n
}

is said to be orthogonal if and only if

1
n

n

∑
i=1

wniui −→ 0 . (41)

Now, we can simply rephrase Theorem 4 as follows: If the strategy
{

u/n
}

is well-diversified,
it must be orthogonal, provided Assumption A is satisfied and the market is in equilibrium.

Suppose that
{

wn/n
}

is fully diversified (Ingersoll, 1987, p. 177), i.e., the sequence
{

1
n ∑n

i=1 w2
ni

}
is bounded above. In this case, the Cauchy-Schwarz inequality reveals that(

1
n

n

∑
i=1

wniui

)2

≤
(

1
n

n

∑
i=1

w2
ni

)
︸ ︷︷ ︸
≤ x <∞

(
1
n

n

∑
i=1

u2
i

)
︸ ︷︷ ︸

→ 0

−→ 0 , (42)

where x denotes the supremum of
{

1
n ∑n

i=1 w2
ni

}
. This implies that

{
wn/n

}
is orthogonal.

However, the assumption that
{

wn/n
}

is fully diversified is not based on the approximation
errors and, as we will see later on, it is essentially stronger than the orthogonality condition
expressed by Definition 3. Some typical examples of orthogonal strategies are

{
1/n

}
and

{
u/n

}
.

It is clear that the strategy
{

awn/n
}

with a ∈ R is orthogonal if
{

wn/n
}

is orthogonal, and each
linear combination of orthogonal strategies is orthogonal, too. Hence, the set of all orthogonal
strategies is a linear space. Further, any strategy

{
wn/n

}
is orthogonal whenever the sequence{

∑n
i=1 wniui

}
is bounded. In particular, if the number of nonzero approximation errors is finite

then each strategy
{

wn/n
}

is orthogonal.
Now, consider some orthogonal strategy

{
wn/n

}
and let Pn = 1

n ∑n
i=1 wniRi be the corre-

sponding profit. If 1
n ∑n

i=1 wni → γ 6= 0, then the normalized strategy
{

γ−1wn/n
}

is orthogonal,
too, and satisfies the budget constraint 1

n ∑n
i=1 wni/γ→ 1. The following lemma describes the

asymptotic distribution of the profit of a normalized orthogonal strategy.19

Lemma 1 (Normalized orthogonal strategy). Let
{

wn/n
}

be an orthogonal strategy with 1
n ∑n

i=1 wni →

19In the case of γ = 0 we need no normalization at all.
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γ ∈
{

0, 1
}

and 1
n ∑n

i=1 wniβij → βwj. We have that

Pn  P =

 ∑m
j=1 βwj(λj + Xj) + ξ, γ = 0 ,

λ0 + ∑m
j=1 βwj(λj + Xj) + ξ, γ = 1 ,

(43)

and it holds that

E(P) =

 ∑m
j=1 λjβwj, γ = 0 ,

λ0 + ∑m
j=1 λjβwj, γ = 1 ,

(44)

if and only if the sequence
{

ξn
}

is asymptotically uniformly integrable. Moreover, in this case, we have
that Var(ξn)→ Var(ξ) ≥ 0 if and only if also the sequence

{
ξ2

n
}

is asymptotically uniformly integrable.

Lemma 1 does not require a market equilibrium and it does not presume that the strategy{
u/n

}
is well-diversified. Put another way, the prerequisites of Theorem 4 need not be fulfilled.

It tells us that we can create strategies for which the APT equation holds true exactly. In the case
of γ = 1,

{
wn/n

}
represents a secondary asset possessing the betas βw1, βw2, . . . , βwm and the

idiosyncratic risk ξ.
Suppose that Eq. 6 represents an approximate factor model. Let

{
wn/n

}
be a fully-diversified

strategy and assume, without loss of generality, that wn 6= 0 for some sufficiently large number
n. Then it holds that

Var(ξn) = Var

(
1
n

n

∑
i=1

wniε i

)
(45)

=

(
1
n

n

∑
i=1

w2
ni

)
︸ ︷︷ ︸
≤ x <∞

(
w̃′nVar(ε)w̃n

n

)
︸ ︷︷ ︸

→ 0

−→ 0 , w̃n :=
wn

‖wn‖
, (46)

which implies that ξn
p→ 0 and thus ξ = 0. Hence, the profit of a fully-diversified strategy

satisfying the budget constraint, i.e., its return on investment, may contain a systematic but
not an unsystematic part. We conclude that fully-diversified strategies essentially restrict the
possibilities of the market participants to create secondary assets.

For the rest of this work, our main goal is to create secondary assets possessing idiosyncratic
risk. Hence, it is not necessary to require w′nwn = O(n), and (as we have seen above) this strong
assumption can even be harmful. For our purposes, it only matters that the investors are able to
diversify away the approximation errors by the strategy

{
wn/n

}
, i.e., w′nu = o(n). This leads us to

the following definition.

Definition 4 (Replication). A strategy
{

wn/n
}

is said to replicate Asset k if and only if

(i) 1
n ∑n

i=1 wni → 1,

(ii) 1
n ∑n

i=1 wniβij → βkj, and

(iii) 1
n ∑n

i=1 wniε i
p→ εk .
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It is worth emphasizing that this definition does not require the strategy to replicate the
expected return on Asset k but only its betas and idiosyncratic risk.

The following proposition establishes the exact APT equation for a single asset.

Proposition 1 (Exact APT equation). Let Assumption A be satisfied and suppose that the market is in
equilibrium. If Asset k can be replicated by an orthogonal strategy, we have that

µk = λ0 +
m

∑
j=1

λjβkj . (47)

This proposition does not require the asymptotic uniform integrability of
{

ξn
}

, which appears
in Lemma 1. Moreover, it does not presume that 1

n ∑n
i=1 uiε i

p→ 0, i.e.,
{

u/n
}

need not be
well-diversified, which is an essential requirement of Theorem 4. Nonetheless, it is plausible
that the investors have more freedom to replicate any asset if Eq. 6 is properly specified, i.e.,
1
n ∑n

i=1 u2
i → 0. In this case, the orthogonality condition imposed by Definition 4 appears to be

least restrictive.
The following corollary is an immediate consequence of Proposition 1 and so its proof is

skipped. It asserts that the risk-free interest rate, r, equals λ0 if we can replicate the riskless asset
by an orthogonal strategy

{
wn/n

}
. We have that ε0 = 0 and thus it holds that 1

n ∑n
i=1 wniε i

p→ 0,
i.e., the strategy

{
wn/n

}
is not only orthogonal but also well-diversified.

Corollary 2 (Riskless asset). Let Assumption A be satisfied and suppose that the market is in equilib-
rium. Assume that there exists a riskless asset and let r be the risk-free interest rate. If the riskless asset
can be replicated by an orthogonal strategy, we have that r = λ0.

The next definition leads us to the exact APT equation.

Definition 5 (Exhaustive market). The market is said to be exhaustive if and only if each asset can be
replicated by an orthogonal strategy.

The attribute “exhaustive” shall indicate that one can replicate the betas and idiosyncratic risk
of each single asset by combining all assets in the market such that their approximation errors
are diversified away. However, an exhaustive market is not necessarily complete: In a complete
market the investors must be able to replicate all contingent claims.20

The next theorem can be considered the main result of this work. It asserts that the exact APT
equation holds true for all assets if and only if the market is exhaustive.

Theorem 5 (Fundamental Theorem). Let Assumption A be satisfied and suppose that the market is in
equilibrium. It is exhaustive if and only if

µi = λ0 +
m

∑
j=1

λjβij (48)

holds true for each asset in the market.

20More details on that topic can be found, e.g., in Biagini (2010), Frahm (2016) as well as Harrison and Pliska (1981,
1983).
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Hence, in an exhaustive equilibrium market all approximation errors vanish. This implies
that the mean square approximation error is zero, too, and thus σ2

υ = 0. Put another way,
the return equation Ri = µi + ∑m

j=1 βijXj + ε i must be properly specified, and it is clear that
also the Weak Law of Large Numbers is fulfilled in this case. The return on a portfolio of a
finite number of assets, satisfying the budget constraint, is a linear combination of single asset
returns. Thus, if the market is exhaustive, also the expected return on the portfolio is an affine-
linear function of its betas. The same holds true for any strategy

{
wn/n

}
with 1

n ∑n
i=1 wni → 1

and 1
n ∑n

i=1 wniβij → βwj, provided its sequence of idiosyncratic risks,
{

ξn
}

, is asymptotically
uniformly integrable.

4. Conclusion

Ergodicity of the expected returns and betas in the market is a natural assumption in APT.
It enables us to define an inner product and thus to apply the theory of Hilbert spaces in a
natural way. The Projection Theorem guarantees that the expected return on any asset can
always be approximated by an affine-linear function of its betas. This general result does not
require the market to be in equilibrium, and it need not even be arbitrage-free. We are able to
estimate the relative number of assets that violate the APT equation by observing the given
expected returns and betas. Irrespective of whether or not the market is in equilibrium, the APT
equation is essentially satisfied only if we do not omit any common risk whose market price
differs from zero, provided there exists an arbitrarily large number of common risks for which
the return equation is properly specified. We are able to test for a proper specification of our
return equation.

Further, in any equilibrium market, the APT equation holds true in its inexact form if the
Weak Law of Large Numbers 1

n ∑n
i=1 uiε i

p→ 0 is satisfied. This simple condition just combines
the approximation error, ui, and the idiosyncratic risk, ε i, of Asset i. We need not assume that
the asset returns obey a strict or an approximate factor model, and the idiosyncratic risks need
not even stem from a linear regression equation. Moreover, the APT equation holds true in its
exact form if and only if the market is exhaustive. This means that the market participants must
be able to replicate the betas and idiosyncratic risk of each asset by some strategy that diversifies
away all approximation errors in the market. Once again, this requires the return equation to
be properly specified, and also the Weak Law of Large Numbers is satisfied in an exhaustive
equilibrium market.

A. Appendix

A.1. Positive Definiteness

A.1.1. Covariance Matrix of Common Risks

Suppose that Var(X) is not positive definite and let N 6= ∅ be the set of all vectors a ∈ Rm with
a 6= 0 such that a′Var(X)a = a′E(XX′)a = E

(
(a′X)2) = 0, i.e., a′X = 0. N represents a linear
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subspace of Rm with k < m dimensions. Now, choose k linearly independent vectors a1, a2, . . . , ak

from N and write X = (X1, X2), where we can assume that the (m− k)-dimensional subvector
X1 is such that Var(X1) > 0. Consider the k×m matrix A =

[
A1 A2

]
=
[
a1 a2 · · · ak

]′. Hence,
we have that AX = A1X1 + A2X2 = 0. Moreover, A2 has full rank and thus X2 = −A−1

2 A1X1,
i.e.,

X =

[
I

−A−1
2 A1

]
︸ ︷︷ ︸

=: T

X1 . (49)

Now, in its matrix form, the return equation reads R = µ + ΓX1 + ε with Γ := BT and Var(X1) >

0.

A.1.2. Covariance Matrix of Abstract Betas

The matrix 1
n

[
1 B
]′[

1 B
]

converges to

A =

[
1 E(ϑ′)

E(ϑ) Var(ϑ) + E(ϑ)E(ϑ′)

]
∈ R(m+1)×(m+1) (50)

and we have that

A

[
−E(ϑ′)

I

]
=

[
0′

Var(ϑ)

]
∈ R(m+1)×m. (51)

Consider any vector x ∈ Rm with x 6= 0. If A has full rank, it holds that[
0

Var(ϑ)x

]
=

[
0′

Var(ϑ)

]
x = A

[
−E(ϑ′)

I

]
x = A

[
−E(ϑ′)x

x

]
=

[
0
y

]
(52)

with y 6= 0. This means that Var(ϑ) has full rank and thus it is positive definite. Now, consider
any vector y ∈ Rm+1 with y 6= 0 and define y := (y1, y2, . . . , ym). We have that

Ay = A

[
y0 + E(ϑ′)y

Var(ϑ)y + E(ϑ)
(
y0 + E(ϑ′)y

)] . (53)

Suppose that Var(ϑ) is positive definite, which means that it has full rank. If Ay = 0 holds true,
we must have that y0 + E(ϑ′)y = 0 and thus Var(ϑ)y = 0, but this can happen only if y = 0

and thus y0 = 0. This contradicts our initial assumption that y 6= 0. We conclude that Ay 6= 0

and so A has full rank.
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A.2. Proofs

A.2.1. Proof of Theorem 1

(i)⇔(ii): We aim at minimizing the mean-square objective function

(b0, b1, . . . , bm) 7−→ E

((
Y−

m

∑
j=0

bjXj
)2
)

(54)

= Var

(
Y−

m

∑
j=1

bjXj

)
+ E2

(
Y− b0 −

m

∑
j=1

bjXj

)
(55)

with

Var

(
Y−

m

∑
j=1

bjXj

)
= Var(Y)− 2

m

∑
j=1

bjCov(Xj, Y) +
m

∑
i,j=1

bibjCov(Xi, Xj)

= Var(Y)− 2 (b1, b2, . . . , bm)
′Cov(X, Y)

+ (b1, b2, . . . , bm)
′Var(X)(b1, b2, . . . , bm).

The optimal value for b0 must be such that E2(Y − b0 − ∑m
j=1 bjXj

)
= 0, i.e., β0 = E(Y) −

∑m
j=1 β jE(Xj). In the case of m = 0, we have accomplished our goal by setting β0 = E(Y).

By contrast, in the case of m > 0, we have to minimize also the quadratic objective function
(b1, b2, . . . , bm) 7→ Var

(
Y−∑m

j=1 bjXj
)
. The covariance matrix of X is positive semidefinite and

so there exists a solution to this minimization problem. It must satisfy the first-order condition

∂Var
(
Y−∑m

j=1 bjXj
)

∂(b1, b2, . . . , bm)
= −2 Cov(X, Y) + 2 Var(X)(b1, b2, . . . , bm) = 0 (56)

and so we obtain Var(X)(β1, β2, . . . , βm) = Cov(X, Y). Moreover, from Var(X) ≥ 0 we conclude
that the vector (β1, β2, . . . , βm) satisfies the second-order condition

∂2Var
(
Y−∑m

j=1 bjXj
)

∂(b1, b2, . . . , bm)2 = 2Var(X) ≥ 0. (57)

Further, it is also clear that E2(Y− b0−∑m
j=1 β jXj

)
> 0 if b0 departs from β0. Hence, (β0, β1, . . . , βm)

with Var(X)(β1, β2, . . . , βm) = Cov(X, Y) and β0 = E(Y) − ∑m
j=1 β jE(Xj), in fact, minimizes

the mean-square objective function. (ii)⇔(iii): The given equations imply that the residual
ε = Y− β0 −∑m

j=1 β jXj is such that

E(ε) = E

(
Y− β0 −

m

∑
j=1

β jXj

)
= E(Y)− β0 −

m

∑
j=1

β jE(Xj) = 0 (58)
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and

Cov(X, ε) = Cov

(
X, Y− β0 −

m

∑
j=1

β jXj

)
(59)

= Cov(X, Y)−Var(X)(β1, β2, . . . , βm) = 0 . (60)

Conversely, from Y = β0 + ∑m
j=1 β jXj + ε with E(ε) = 0 and Cov(Xj, ε) = 0 we conclude that

E(ε) = E(Y)− β0 −
m

∑
j=1

β jE(Xj) = 0 (61)

and

Cov(X, ε) = Cov(X, Y)−Var(X)(β1, β2, . . . , βm) (62)

= 0 . (63)

This implies that β0 = E(Y) − ∑m
j=1 β jE(Xj) and Var(X)(β1, β2, . . . , βm) = Cov(X, Y). If the

covariance matrix of X is positive definite, we can invert Var(X) and obtain the solution
(β0, β1, . . . , βm) with

(β1, β2, . . . , βm) = Var(X)−1Cov(X, Y) (64)

and

β0 = E(Y)−
m

∑
j=1

β jE(Xj). (65)

Now, the quadratic objective function is strictly convex and so its solution (β1, β2, . . . , βm) is
unique, which implies that also β0 is uniquely determined by (β1, β2, . . . , βm). Finally, the
second moments of Z = (1, X, Y) are finite, and so the components of Z belong to a Hilbert
space with inner product E(ZiZj). The Projection Theorem guarantees that ∑m

j=0 β jXj and thus
ε = Y−∑m

j=0 β jXj are unique.

A.2.2. Proof of Theorem 2

The regression parameters λ0, λ1, . . . , λm have already been derived at the end of Section 2
and note that ui = µi − λ0 − ∑m

j=1 λjβij. Hence, the residual u2
i is a measurable function of

θi = (µi, βi1, βi2, . . . , βim). Since the market is ergodic, we have that

1
n

n

∑
i=1

(
µi − λ0 −

m

∑
j=1

λjβij

)2

−→ E

((
ϑ0 − λ0 −

m

∑
j=1

λjϑj

)2
)

(66)

= E
(
υ2) < ∞ , (67)

and from E(υ) = 0 we conclude that E
(
υ2) = σ2

υ . Moreover, the Linear Regression Theorem
implies that

Var(ϑ0) = λ′Var(ϑ)λ + Var(υ) = Cov(ϑ, ϑ0)
′Var(ϑ)−1Cov(ϑ, ϑ0) + σ2

υ , (68)
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i.e., σ2
υ = Var(ϑ0)−Cov(ϑ, ϑ0)′Var(ϑ)−1Cov(ϑ, ϑ0) ≥ 0.

A.2.3. Proof of Theorem 3

From υ = 0 we conclude that

ϑ0 = λ0 +
m

∑
j=1

λjϑj = λ0 +
m

∑
j=1

λjϑj +
M

∑
j=m+1

0 · ϑj + 0 (69)

is a linear regression equation. The covariance matrix of (ϑ1, ϑ2, . . . , ϑM) is positive definite and
thus Theorem 1 reveals that κj = 0 for all j > m and κj = λj for all 0 ≤ j ≤ m. Conversely, due
to the same arguments, the linear regression equation

ϑ0 = κ0 +
m

∑
j=1

κjϑj +
M

∑
j=m+1

0 · ϑj + 0 (70)

implies that λj = κj for all 0 ≤ j ≤ m and υ = 0.

A.2.4. Proof of Theorem 4

The asymptotic results at the beginning of Section 3.2.1 reveal that Pn
p→ σ2

υ ≥ 0 if the strategy{
u/n

}
is well-diversified. In the case in which σ2

υ is positive, each investor who satisfies
Assumption A will try to implement an infinitely large amount a > 0 of the strategy

{
au/n

}
in order to maximize his expected utility u

(
c + aσ2

υ

)
. Hence, the aggregated demand for some

asset must exceed its aggregated supply in the market. In this case, the market cannot be in
equilibrium, but this contradicts the prerequisites of the theorem. Thus, it holds that σ2

υ = 0 and
from Theorem 2 we conclude that

1
n

n

∑
i=1

(
µi − λ0 −

m

∑
j=1

λjβij

)2

−→ 0 . (71)

A.2.5. Proof of Lemma 1

The profit of
{

wn/n
}

amounts to

Pn =
1
n

n

∑
i=1

wniµi +
m

∑
j=1

(
1
n

n

∑
i=1

wniβij

)
︸ ︷︷ ︸

→ βwj

Xj +
1
n

n

∑
i=1

wniε i︸ ︷︷ ︸
 ξ

(72)
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with

1
n

n

∑
i=1

wniµi =

(
1
n

n

∑
i=1

wni

)
︸ ︷︷ ︸

→ γ

λ0 +
m

∑
j=1

(
1
n

n

∑
i=1

wniβij

)
︸ ︷︷ ︸

→ βwj

λj (73)

+
1
n

n

∑
i=1

wniui︸ ︷︷ ︸
→ 0

−→ γλ0 +
m

∑
j=1

βwjλj . (74)

From the Continuous Mapping Theorem we conclude that

Pn  P =

 ∑m
j=1 βwj(λj + Xj) + ξ, γ = 0 ,

λ0 + ∑m
j=1 βwj(λj + Xj) + ξ, γ = 1 .

(75)

According to Theorem 2.20 in van der Vaart (1998, p. 17), we have that E(ξn)→ E(ξ) if and only
if the sequence

{
ξn
}

is asymptotically uniformly integrable. We already know that E(ξn) = 0
and thus, if

{
ξn
}

is asymptotically uniformly integrable, we obtain E(ξ) = 0. This leads to

E(P) =

 ∑m
j=1 λjβwj, γ = 0 ,

λ0 + ∑m
j=1 λjβwj, γ = 1 .

(76)

Conversely, this result implies that E(ξ) = 0 and so it is clear that E(ξn) → E(ξ). Hence, the
sequence

{
ξn
}

must be asymptotically uniformly integrable. Further, suppose that also the
sequence

{
ξ2

n
}

is asymptotically uniformly integrable. The Continuous Mapping Theorem
guarantees that ξ2

n  ξ2 and thus Var(ξn) = E(ξ2
n) → E(ξ2) = Var(ξ) ≥ 0. Conversely, since

we have that E(ξ) = 0, Var(ξn) = Var(ξ) just means that E(ξ2
n) → E(ξ2) and so the sequence{

ξ2
n
}

must be asymptotically uniformly integrable.

A.2.6. Proof of Proposition 1

Suppose that Asset k can be replicated by an orthogonal strategy
{

wn/n
}

. Entering a long
position into Asset k and a short position into the strategy

{
wn/n

}
is self-financing. The profit

amounts to

Rk − Pn =

(
µk −

1
n

n

∑
i=1

wniµi

)
+

m

∑
j=1

(
βkj −

1
n

n

∑
i=1

wniβij

)
Xj (77)

+

(
εk −

1
n

n

∑
i=1

wniε i

)
. (78)
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We already know that βkj − 1
n ∑n

i=1 wniβij → 0 and the Continuous Mapping Theorem reveals
that εk − 1

n ∑n
i=1 wniε i

p→ 0. Finally, we have that

µk −
1
n

n

∑
i=1

wniµi =

(
1− 1

n

n

∑
i=1

wni

)
︸ ︷︷ ︸

→ 0

λ0 (79)

+
m

∑
j=1

(
βkj −

1
n

n

∑
i=1

wniβij

)
︸ ︷︷ ︸

→ 0

λj + uk −
1
n

n

∑
i=1

wniui︸ ︷︷ ︸
→ 0

−→ uk , (80)

which means that Rk − Pn
p→ uk. Due to Assumption A and the fact that the market is in

equilibrium, we must have that uk = 0 and thus

µk = λ0 +
m

∑
j=1

λjβkj . (81)

A.2.7. Proof of Theorem 5

The “only-if part” is an immediate consequence of Proposition 1. The “if part” follows from
the fact that each asset represents an orthogonal strategy replicating itself if we have that
µi = λ0 + ∑m

j=1 λjβij and thus ui = 0 for each asset in the market.
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