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Abstract

Copula theory is used to analyze extremal dependence in a general framework. An analytical expression
for the extremal-dependence coefficient (EDC) of regularly varying elliptically distributed random
vectors is derived. The EDC is a natural measure of systemic risk and extreme value theory is applied
in order to estimate the EDC of the G–7 countries. The given results turn out to be quite sensitive to
the tail index of daily asset returns and thus a scenario analysis is conducted. In the worst case, the
probability that the financial market collapses during the next 10 years exceeds 50%. Hence, we must
not neglect the risk of a financial collapse during a relatively short period of time.
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1. Motivation

IT is a stylized fact that the distribution of short-term asset returns exhibits heavy tails and
tail dependence. These phenomena as well as other well-known stylized facts that can be
observed for stocks, stock indices, foreign exchange rates, etc., are often reported during the

last decades (see, e.g., Bouchaud et al., 1997, Breymann et al., 2003, Cont, 2001, Ding et al., 1993,
Dobrić et al., 2013, Eberlein and Keller, 1995, Embrechts et al., 1997, Engle, 1982, Fama, 1965,
Frahm and Jaekel, 2015, Junker and May, 2005, Mandelbrot, 1963, McNeil et al., 2005, Mikosch,
2003). Figure 1 shows normal Q–Q plots of daily log-returns on the MSCI country indices for
Germany and USA from 1999-01-04 to 2018-03-02,1 which means that the chosen period covers
the dot-com collapse at the beginning of 2000 and the financial crisis 2007–2008. We can see that
the normal-distribution hypothesis is highly misleading—at least if we refer to daily log-returns.
In fact, the probability of extremes is much higher than suggested by the normal distribution.
Nowadays, this simple but far-reaching statement has become folklore in the finance literature.

-0.1 -0.05 0 0.05 0.1
-0.1

-0.05

0

0.05

0.1

-0.1 -0.05 0 0.05 0.1
-0.1

-0.05

0

0.05

0.1

Figure 1: Normal Q–Q plots of daily log-returns from 1999-01-04 to 2018-03-02 on the MSCI
country indices for Germany (left) and for USA (right).

Which model is appropriate if we aim at taking heavy tails and tail dependence properly into
account? Figure 2 illustrates the joint distribution of the log-returns considered in Figure 1. The
scatter plot reveals the following effects:

(i) The central region of the distribution seems to be normal or, at least, elliptically contoured,

(ii) there is a large number of outliers or extreme values,

(iii) extreme values typically occur simultaneously, and

(iv) their distribution is asymmetric.

The last point is based on the observation that the magnitude of extreme values on the lower left
appears to be larger compared to the upper right of the scatter plot.

1The index points are based on USD total returns and the number of observations is n = 4804.
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Figure 2: Scatter plot of daily log-returns from 1999-01-04 to 2018-03-02 on the MSCI country
indices for Germany and for USA (black points). The red contours represent the deciles
of the bivariate normal distribution that is fitted to the data.

Let F be the (cumulative) distribution function of some random variable, whereas F−1 denotes
the associated quantile function, i.e., p 7→ F−1(p) := inf

{
x ∈ R : F(x) ≥ p

}
. More specifically,

let X = (X1, X2, . . . , X7) be the vector of daily log-returns on the MSCI indices for the G–7
countries, i.e., Canada, France, Germany, Italy, Japan, UK, and USA. Further, let Fi be the
distribution function of the log-return on Country i = 1, 2, . . . , 7. The event Xi ≤ F−1

i (p) with
p ∈ (0, 1) is said to be a p-shortfall, where p is the corresponding shortfall probability.2 The
expected number of shortfalls during m ∈N trading days amounts to mp and thus, on average,
a p-shortfall occurs after p−1 trading days. Hence, we can say that the event Xi ≤ F−1

i (p) is a
p−1-day shortfall and, correspondingly, that F−1

i (p) is a p−1-day quantile.
From time to time the financial market collapses. Figure 3 shows the historical log-performance

of each G–7 country index from 1999-01-03 to 2018-03-02. It reveals that the G–7 countries are
typically affected by the same economic shocks, but there are a few exceptions. For example,
Italy had a drawdown in 1999 while the other countries performed well during this period.
Moreover, the recession in Europe from mid 2014 to the end of 2015 cannot be observed neither
in Japan nor in the USA. Figure 4 contains the number of G–7 countries that had a 100-day
shortfall at the same trading day. We can see the financial turmoil after the dot-com bubble at
the end of the 20th century and during the financial crisis 2007–2008. Additionally, there are
some simultaneous shortfalls in 2011, which occurred due to the Greek debt crisis.

Simultaneous shortfalls are not evenly spread over time. It is obvious that the systemic risk
prevails in times of crisis, i.e., the probability of concomitant shortfalls substantially increases
after the financial market collapses. Put another way, simultaneous shortfalls appear in clusters.
However, in this work I ignore the time-series aspect of simultaneous shortfalls and focus on
the cross-sectional dependence structure of extreme asset returns. This can be done by means of
extreme value theory and the basic methodology is presented in the next section.

2If Fi is strictly increasing, then −F−1
i (p) is the value at risk of Xi at the confidence level 1− p (Artzner et al., 1999).
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Figure 3: Natural logarithm of the MSCI G–7 country indices from 1999-01-03 to 2018-03-02. The
indices are set to 1 at January 3, 1999.

Figure 4: Number of G–7 countries that had a 100-day shortfall at the same trading day from
1999-01-04 to 2018-03-02.

2. Theoretical Background

The phenomenon that extreme asset returns typically occur simultaneously is denoted by tail
dependence, which is part of copula theory and extreme value theory. The reader can find a
profound treatment of copula theory, e.g., in Joe (1997) and Nelsen (2006), whereas Mikosch
(2003, Ch. 4) gives a nice overview of extreme value theory. I recapitulate some basic tools of
copula theory and of extreme value theory in this section.

2.1. Tail vs. Extremal Dependence

The reader needs no specific knowledge about copulas in order to understand the following
arguments, but he should be aware of Sklar’s theorem (Sklar, 1959): Let F be the joint distribution
function of any random vector X = (X1, X2, . . . , Xd) and Fi the (marginal) distribution function

4
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of Xi (i = 1, 2, . . . , d). Then there exists a distribution function C : [0, 1]d → [0, 1] such that

F(x) = C
(

F1(x1), F2(x2), . . . , Fd(xd)
)

for all x = (x1, x2, . . . , xd) ∈ Rd. The function C is referred to as the copula of X. It represents
the joint distribution function of the random vector U =

(
U1, U2, . . . , Ud

)
with Ui := Fi(Xi).

If the marginal distribution functions of X are continuous, each component of U is uniformly
distributed on [0, 1] and C is unique on [0, 1]d. I maintain this assumption throughout this work.

The lower tail-dependence coefficient (TDC) of a pair of random variables Xi and Xj (Joe,
1997, p. 33) is defined as

λL := lim
p↘ 0

P
(
Uj ≤ p |Ui ≤ p

)
= lim

p↘ 0

Cij(p, p)
p

,

where Cij is the copula of (Xi, Xj). Correspondingly, the upper TDC is given by

λU := lim
p↗ 1

P
(
Uj > p |Ui > p

)
= lim

p↗ 1

1− 2p + Cij(p, p)
1− p

.

Here, it is implicitly assumed that the corresponding limits exist. Loosely speaking, the lower
TDC is the probability that Country j crashes given that Country i crashes or, equivalently, that
Country i crashes given that Country j crashes. If λL or λU is positive, then Xi and Xj are said to
be (lower or upper) tail dependent.

The TDC is a popular risk measure, but the problem is that it is defined only for the bivariate
case and so we must restrict to some pair of G–7 countries. There are several ways to extend
the concept of tail dependence to the case of d > 2 (De Luca and Rivieccio, 2012, Ferreira
and Ferreira, 2012). In this work, I focus on the notion of extremal dependence (Frahm, 2006).
The extremal-dependence coefficient (EDC) introduced by Frahm (2006) seems to be a natural
measure of systemic risk, i.e., the risk of a collapse of the entire financial market.

In the following, I use the shorthand notation

min ζ := min
{

ζ1, ζ2, . . . , ζd

}
and max ζ := max

{
ζ1, ζ2, . . . , ζd

}
,

where ζ = (ζ1, ζ2, . . . , ζd) is any random vector.

Definition 1 (Lower and upper EDC). The lower EDC of X is defined as

εL := lim
p↘ 0

P
(

max U ≤ p | min U ≤ p
)
,

whereas its upper EDC is defined as

εU := lim
p↗ 1

P
(

min U > p | max U > p
)
,

provided the corresponding limits exist.
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We can also write, equivalently,

εL = lim
p↘ 0

P
(

max U ≤ p
)

P
(

min U ≤ p
) and εU = lim

p↗ 1

P
(

min U > p
)

P
(

max U > p
) .

Hence, the lower EDC can be considered the probability that the entire market collapses given
that some part of the market crashes. Put another way, it is the probability that the whole system
breaks down if some part of the system fails. In that case, the fundamental principle of modern
portfolio theory, i.e., diversification, does no longer work.

Whenever εL or εU is positive, the components of X are said to be (lower or upper) extremal
dependent. It can be shown that

εL = lim
p↘ 0

C(p, p, . . . , p)
1− C(1− p, 1− p, . . . , 1− p)

and εU = lim
p↗ 1

C(1− p, 1− p, . . . , 1− p)
1− C(p, p, . . . , p)

,

where C is the survival copula associated with C (Frahm, 2006). This is defined by

u 7−→ C(u) := ∑
I⊆M

(−1)|I|C
(
(1− u1)

11∈I , (1− u2)
12∈I , . . . , (1− ud)

1d∈I
)

,

where u = (u1, u2, . . . , ud) ∈ [0, 1]d, M :=
{

1, 2, . . . , d
}

, and 1 denotes the indicator function.
Since the marginal distribution functions of X are continuous, C represents the copula of −X.

For convenience, I recapitulate some basic results concerning the TDC and the EDC that can
be found in Frahm (2006).

Proposition 1. Let λL and λU be the tail-dependence coefficients of any pair of random variables. Further,
let εL and εU be the corresponding extremal-dependence coefficients. Then we have that

εL =
λL

2− λL
and εU =

λU

2− λU
.

Hence, the EDC is a convex function of the TDC and we have that εL < λL for all 0 < λL < 1
as well as εU < λU for all 0 < λU < 1 (see Figure 5).

Proposition 2. Let X be a d-dimensional random vector with d > 1 and Xs any subvector of X. Further,
let εL(X) be the lower EDC of X and εL(Xs) the lower EDC of Xs. Similarly, let εU(X) be the upper
EDC of X and εU(Xs) the upper EDC of Xs. Then we have that

εL(X) ≤ εL(Xs) and εU(X) ≤ εU(Xs).

That is, if we extend our economy by adding a new country, the extremal dependence cannot
increase. In general, it decreases after an extension of the market because the greater the number
of countries, the more unlikely it is that the entire world collapses if (at least) one country crashes.
Nonetheless, we should keep in mind that the probability that some country falls into the abyss
usually increases the larger the economy.
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Figure 5: EDC of a 2-dimensional random vector as a function of the TDC.

Proposition 1 and Proposition 2 imply that

εL(X) ≤ εL(Xi, Xj) =
λL(Xi, Xj)

2− λL(Xi, Xj)

for i, j = 1, 2, . . . , d, where λL(Xi, Xj) denotes the TDC of Xi and Xj. Hence, the lower EDC of
every 2-dimensional subvector of X is positive whenever the lower EDC of X is positive, which
means that the lower TDC of each 2-dimensional subvector must be positive, too. Conversely, if
the TDC of any subvector (Xi, Xj) is zero, the components of X cannot be extremal dependent.
The same arguments apply to the upper risk measures. To sum up, if the components of a d-
dimensional random vector X = (X1, X2, . . . , Xd) are extremal dependent, then Xi and Xj are tail
dependent for i, j = 1, 2, . . . , d, but if Xi and Xj are not tail dependent for any i, j ∈

{
1, 2, . . . , d

}
,

then the components of X cannot be extremal dependent, too.
Let the copula C be symmetric in the sense that C(u) = C(u) for all u ∈ [0, 1]d. This sort of

symmetry shall be referred to as transpositional symmetry. If C is transpositionally symmetric,
its “lower left corner” coincides with its “upper right corner,” in which case the lower EDC of X
corresponds to its upper EDC. Then we can simply write ε ≡ εL = εU. A d-dimensional random
vector X has a transpositionally symmetric copula if the distribution of X is symmetric, i.e., if
there exists a location vector µ ∈ Rd such that X− µ has the same distribution as −(X− µ).

The components of a random vector X = (X1, X2, . . . , Xd) are said to be comonotonic if their
dependence is perfectly positive. More precisely, X1, X2, . . . , Xd are comonotonic if and only if
there exist a random variable V and d strictly increasing functions of the form fi : R→ R such
that Xi = fi(V) for i = 1, 2, . . . , d. In this case, the copula of X corresponds to the “minimum
copula” u 7→ min u, which is called Fréchet-Hoeffding upper bound (Nelsen, 2006, p. 11). Then
both the lower and the upper EDC of X equal 1. By contrast, if the components of X are mutually
independent, the copula of X corresponds to the “product copula” u 7→ ∏d

i=1 ui, in which case
both the lower EDC and the upper EDC of X equal 0.

Finally, if the dependence between two components Xi and Xj is perfectly negative, they are
said to be countermonotonic. More precisely, Xi and Xj are countermonotonic if and only if there

7
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exist a random variable V, a strictly increasing function f : R → R, and a strictly decreasing
function g : R→ R such that Xi = f (V) and Xj = g(V). The copula of Xi and Xj corresponds to
the Fréchet-Hoeffding lower bound (ui, uj) 7→ max

{
ui + uj − 1, 0

}
(Nelsen, 2006, p. 11). Then

both the lower EDC and the upper EDC of (Xi, Xj) equal 0. Hence, in the bivariate case, the
EDC does not distinguish between countermonotonicity and independence.

2.2. Regular Variation of Elliptical Distributions

It is well-known that the multivariate normal distribution does not allow for tail dependence.
This implies that the components of a normally distributed random vector cannot be extremal
dependent either. In the risk-management literature, the class of elliptical distributions (Camba-
nis et al., 1981, Fang et al., 1990, Kelker, 1970) is often proposed as an appropriate alternative to
the Gaussian distribution (see, e.g., Bingham and Kiesel, 2002, Eberlein and Keller, 1995, Frahm,
2004, McNeil et al., 2005, Ch. 3). Here, I will adopt this approach. Elliptical distributions cover,
very well, the first three observations made in Figure 2, which are discussed in Section 1, and
they are tractable even if the number of dimensions is high. The fourth phenomenon, namely
that the distribution of extreme asset returns is asymmetric, cannot be explained by elliptical
distributions. For this purpose, we could make use of generalized elliptical distributions (Frahm
and Jaekel, 2015, Frahm, 2004, Section 3.2), but this goes beyond the scope of this work.

A d-dimensional random vector X is said to be elliptically distributed if and only if there exist
a vector µ ∈ Rd, a matrix Λ ∈ Rd×k, a non-negative random variable R, and a k-dimensional
random vector S that is stochastically independent ofR and uniformly distributed on the unit
hypersphere

{
s ∈ Rk : ‖s‖2 = 1

}
such that X = µ+ΛRS (Cambanis et al., 1981). The parameter

µ is called the location vector, Σ := ΛΛ′ is referred to as the dispersion matrix, andR is said to
be the generating variate of X. If Λ1Λ′1 = Λ2Λ′2 for any Λ1, Λ2 ∈ Rd×k, then Λ1S and Λ2S have
the same distribution. That is, the distribution of X depends on Λ only through Σ and, without
loss of generality, I assume that rk Σ = d = k. The second moments of X are finite if and only if
E(R2) < ∞, in which case we have that Var(X) = E(R2)Σ/d. However, the dispersion matrix
Σ exists (and is finite) even if E(R2) = ∞. The distribution of X is symmetric around µ and so
the lower EDC coincides with the upper EDC of X.

In general, the components of an elliptically distributed random vector X exhibit two sorts of
dependencies, viz.

(i) linear dependence, which can be expressed by the dispersion matrix Σ and

(ii) nonlinear dependence, which is determined by the generating variateR.

For example, the (spherically distributed) random vector X = S contains no linear dependence
at all. Nonetheless, in a nonlinear manner, the components of X highly depend on each other
because the generating variateR = 1 forces them to be such that ‖X‖2 = 1. It is well-known that
the components of X are mutually independent if and only if X possesses a normal distribution,
i.e.,R2 = χ2

d, and the off-diagonal elements of Σ are zero.

8
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In risk management it is typically assumed that the survival function ofR is regularly varying
(Mikosch, 2003). This means that

P(R > r) = f (r) r−α, α ≥ 0,

for all r > 0, where f is a slowly varying function, i.e., f (tr)/ f (r)→ 1 as r → ∞ for all t > 0.3

Put another way, r 7→ P(R > r) tends to a power law. This is equivalent to

P(R > tr)
P(R > r)

−→ t−α, r −→ ∞,

for all t > 0. In this case, the distribution ofR is said to be heavy tailed and α represents its tail
index. The lower α the heavier the tail of the distribution ofR. To keep the terminology simple,
I will say thatR itself is heavy tailed or, equivalently, regularly varying (with tail index α).

Further, a d-dimensional random vector X is said to be regularly varying with tail index
α ≥ 0 if and only if there exists a d-dimensional random vector S that is distributed on the unit
hypersphere Sd−1 =

{
s ∈ Rd : ‖s‖ = 1

}
such that

P
(
‖X‖ > tr, X/‖X‖ ∈ B

)
P
(
‖X‖ > r

) −→ t−α P
(
S ∈ B

)
, r −→ ∞ ,

for all t > 0 and every Borel set B ⊆ Sd−1 with P(S ∈ ∂B) = 0 (Mikosch, 2003).4 Here, we can
choose any arbitrary norm ‖ · ‖, but the unit hypersphere Sd−1 depends on the choice of ‖ · ‖.
However, the norm does not affect the tail index α (Hult and Lindskog, 2002, Lemma 2.1).

Regular variation properties of elliptical distributions are investigated by Frahm (2006), Hult
and Lindskog (2002) as well as Schmidt (2002). The latter focus on the relationship between
regular variation and the TDC. By contrast, Frahm (2006) studies the EDC of regularly varying
elliptically distributed random vectors. Suppose that X is elliptically distributed with location
vector µ = 0 and let ‖ · ‖Σ be the Mahalanobis norm, i.e., ‖x‖2

Σ = x′Σ−1x for all x ∈ Rd. Then
we have that ‖X‖Σ = R and X/‖X‖Σ = ΛS, which leads to

P
(
‖X‖Σ > tr, X/‖X‖Σ ∈ B

)
P
(
‖X‖Σ > r

) =
P(R > tr)
P(R > r)

·P
(
ΛS ∈ B

)
−→ t−α P

(
ΛS ∈ B

)
,

where S ∈
{

s ∈ Rd : ‖s‖2 = 1
}

and thus ΛS ∈
{

s ∈ Rd : ‖s‖Σ = 1
}

. That is, if the generating
variateR is regularly varying, the random vector X inherits the tail index ofR. Moreover, the
regular variation property is not affected by translations of X, i.e., the previous result holds true
if µ 6= 0 (Hult and Lindskog, 2002, Lemma 2.2).

3This implies that there exists some threshold τ > 0 such that f (r) > 0 for all r ≥ τ.
4Here, “∂B” denotes the boundary of B.
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Now, suppose thatR is regularly varying with tail index α and define

Σ =:


σ2

1 σ12 · · · σ1d

σ21 σ2
2 · · · σ2d

...
...

. . .
...

σd1 σd2 · · · σ2
d

 , σ :=


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σd

 , ρ :=


1 ρ12 · · · ρ1d

ρ21 1 · · · ρ2d
...

...
. . .

...
ρd1 ρd2 · · · 1

 ,

where ρij := σij/(σiσj) for i, j = 1, 2, . . . , d with σii ≡ σ2
i for i = 1, 2, . . . , d. Thus, ρ represents

the correlation matrix of X and we have that Σ = σρσ. Since E(Rγ) < ∞ for all γ < α but
E(Rγ) = ∞ for all γ > α (Embrechts et al., 1997, Proposition A3.8), the second moment of R
is infinite if its tail index is lower than 2. Then the covariance matrix of X remains undefined.
However, ρ still exists and can be considered a “pseudo-correlation matrix” (Frahm, 2006).

The parameters µ and σ affect only the marginal distribution functions of X but not its copula.
For this reason, we may concentrate on the correlation matrix ρ and the distribution of R in
order to calculate the EDC of X. The dispersion matrix Σ is positive definite and so the same
holds true for ρ. We can choose any matrix

√
ρ ∈ Rd×d with rk

√
ρ = d such that ρ =

√
ρ
√

ρ ′

and thus Λ = σ
√

ρ . Now, define the random variables Y := min
√

ρ S and Z := max
√

ρ S.
The following theorem represents the main theoretical result of this work.

Theorem 1. Let X be a d-dimensional regularly varying elliptically distributed random vector with
positive definite correlation matrix ρ and tail index α ≥ 0. Then both the lower and the upper EDC of X
correspond to

ε =

∫ ∞
0 yα dFY(y)∫ ∞
0 zα dFZ(z)

,

where FY and FZ denote the distribution functions of Y = min
√

ρ S and Z = max
√

ρ S, respectively.

Proof. The copula of X = µ + σ
√

ρRS neither depends on µ nor on σ. Hence, we may focus
on the standardized random vector ξ :=

√
ρRS. The distribution of ξ is symmetric and so the

lower EDC coincides with the upper EDC of ξ. Moreover, the marginal distribution functions of
ξ are identical and so the EDC can be calculated by

ε = lim
r→∞

P
(
ξ > r1

)
1−P

(
ξ ≤ r1

) = lim
r→∞

P
(
RY > r

)
P
(
RZ > r

) .

By applying the Law of Total Probability we obtain

ε = lim
r→∞

∫ ∞
0 P

(
R > r/y

)
dFY(y)∫ ∞

0 P
(
R > r/z

)
dFZ(z)

= lim
r→∞

∫ ∞
0 P

(
R > y−1r

)
/P
(
R > r

)
dFY(y)∫ ∞

0 P
(
R > z−1r

)
/P
(
R > r

)
dFZ(z)

.

SinceR is regularly varying with tail index α, we have that

P
(
R > y−1r

)
P
(
R > r

) −→ yα and
P
(
R > z−1r

)
P
(
R > r

) −→ zα, r −→ ∞ .

The convergence is uniform in (0, a ] for all a > 0 (Embrechts et al., 1997, Theorem A3.2). Further,

10
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α

ρ12 0 1 2 3 4 5 10 ∞

-1 1 0 0 0 0 0 0 0
-0.75 1 0.0334 0.0099 0.0031 0.0010 0.0003 0 0
-0.5 1 0.0718 0.0297 0.0130 0.0059 0.0027 0.0001 0
-0.25 1 0.1170 0.0590 0.0316 0.0175 0.0099 0.0006 0

0 1 0.1716 0.0999 0.0616 0.0393 0.0255 0.0034 0
0.25 1 0.2404 0.1576 0.1088 0.0775 0.0563 0.0132 0
0.5 1 0.3333 0.2430 0.1852 0.1449 0.1155 0.0427 0
0.75 1 0.4776 0.3883 0.3261 0.2793 0.2424 0.1338 0

1 1 1 1 1 1 1 1 1

Table 1: EDC for different values of ρ12 and α in the case of d = 2.

the distribution of Z and thus also of Y ≤ Z has a finite right endpoint. Hence, we can choose a
sufficiently large number a and apply the Dominated Convergence Theorem, which implies that

lim
r→∞

∫ ∞

0

P
(
R > y−1r

)
P
(
R > r

) dFY(y) =
∫ ∞

0
yα dFY(y) < ∞

as well as

lim
r→∞

∫ ∞

0

P
(
R > z−1r

)
P
(
R > r

) dFZ(z) =
∫ ∞

0
zα dFZ(z) < ∞ .

This leads us to the desired result.

The result of Theorem 1 can be expressed, equivalently, by

ε =
E
(

max{min
√

ρ S, 0}α
)

E
(

max{max
√

ρ S, 0}α
) . (1)

This expression clearly reveals that the EDC of a regularly varying elliptically distributed
random vector depends only on ρ and α. In particular, the given formula is comfortable if we
want to approximate ε by numerical simulation.

Table 1 contains the EDC of a 2-dimensional regularly varying elliptically distributed random
vector for different values of ρ12 = ρ21 and α. The EDC equals 1 if ρ12 = 1 or α = 0, whereas it
equals 0 if ρ12 = −1 (but not α = 0) or α = ∞ (but not ρ12 = 1), where “ρ12 = −1,” “ρ12 = 1,”
and “α = ∞” shall be interpreted as the limiting cases ρ12 ↘ −1, ρ12 ↗ 1, and α→ ∞.

3. Empirical Investigation

The EDC is an asymptotic risk measure. Usually, such kind of risk measures are not easy to
estimate if the sample size is small or if the estimator is nonparametric (Frahm et al., 2005).
The trick is to use a semiparametric approach, i.e., to combine parametric and nonparametric
elements. Here, we adopt this approach by restricting ourselves to elliptical distributions. Hence,
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Canada France Germany Italy Japan UK USA

Canada 1 0.5659 0.5480 0.5159 0.1644 0.5745 0.6155
France 0.5659 1 0.9205 0.8729 0.1871 0.8317 0.5014
Germany 0.5480 0.9205 1 0.8276 0.1833 0.7921 0.5152
Italy 0.5159 0.8729 0.8276 1 0.1417 0.7475 0.4492
Japan 0.1644 0.1871 0.1833 0.1417 1 0.2011 0.0288
UK 0.5745 0.8317 0.7921 0.7475 0.2011 1 0.4707
USA 0.6155 0.5014 0.5152 0.4492 0.0288 0.4707 1

Table 2: Estimate of ρ based on Tyler’s M-estimator for scatter.

we allow for a large number of well-known multivariate distributions, e.g., the Gaussian, the sub-
Gaussian α-stable distribution (Rachev and Mittnik, 2000) as well as the symmetric generalized
hyperbolic distribution (Barndorff-Nielsen et al., 1982). The latter class of distributions contains
the multivariate t- and the Cauchy distribution as special cases. Regular variation excludes the
Gaussian distribution and any other elliptical distribution with exponentially decaying tails.
However, in the light of Figure 1 and Figure 2, this restriction is not binding at all in our context.

3.1. Estimating the Correlation Matrix

The EDC can simply be estimated by using the plug-in approach. For this purpose, we have
to choose some appropriate estimators for ρ and α in order to substitute the true parameters
with the corresponding estimates. According to Theorem 1, the EDC is a function of ρ and α and
with Eq. 1 it is quite simple to compute the estimate of ε given the estimates of ρ and α.

Let X·j = µ + ΛRjSj be the (7-dimensional) vector of log-returns at Day j = 1, 2, . . . , n. Hence,
µ and Σ are constant over time and I assume that the generating variates R1,R2, . . . ,Rn are
identically distributed. The components of the d-dimensional stochastic process {X·n} need not
be serially independent. It suffices to assume that {X·n} is (strictly) stationary and ergodic.

In order to estimate ρ, I use Tyler’s M-estimator for Σ (Tyler, 1987a,b), viz.

Σ̂ =
d
n

n

∑
j=1

(Xj − µ̂)(Xj − µ̂)′

(Xj − µ̂)′Σ̂−1(Xj − µ̂)
, (2)

where µ̂ is the estimator for µ that is associated with Σ̂ in a natural way (Hettmansperger and
Randles, 2002, Tyler, 1987a). This estimator proves to be favorable whenever the data exhibit
heavy tails (Frahm, 2004, Frahm and Jaekel, 2010, 2015). Tyler’s M-estimator is the most robust
estimator for Σ if the distribution of X is elliptical (Tyler, 1987a). If the location vector µ is
considered known, the distribution of Σ̂ is not affected by the generating variate,R, at all. For
more details on that topic see the aforementioned references as well as Adrover (1998), Dümbgen
and Tyler (2005), Kent and Tyler (1988, 1991), Maronna and Yohai (1990), Tyler (1983), and Tyler
(1987b). The estimate of ρ based on Tyler’s M-estimator is given in Table 2.

12
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3.2. Estimating the Tail Index

Extreme value theory provides many possibilities in order to estimate the tail index of a regularly
varying random variable (Embrechts et al., 1997, Chapter 6). However, the aforementioned
authors clearly advocate the peaks-over-threshold (POT) method (Embrechts et al., 1997, p. 340).
First of all, we have to estimate the realizations of R, which represents a latent variable. The
dispersion matrix Σ can be identified only up to some scaling constant κ2 > 0 because X = µ +

ΛRS = µ + (κΛ)(R/κ)S for all κ > 0. Tyler’s M-estimator suffers from the same identification
problem, since Eq. 2 remains valid if we substitute the estimate Σ̂ with κ2Σ̂ for any κ > 0.

However, we are not affected by the identification problem. Note that

(X− µ)′(κ2Σ)−1(X− µ) = (R/κ)2,

but the tail index ofR/κ does not depend on κ at all. For this reason, we can choose any positive
constant κ or, equivalently, any appropriate shape matrix Σ (Frahm, 2009, Paindaveine, 2008).
Suppose that E(R2) < ∞. We will see later on that this assumption is not too farfetched. In this
case, we can assume without loss of generality that Σ is such that E(R2) = d, which guarantees
that Var(X) = Σ. Now, the realization rj of the generating variate at Day j = 1, 2, . . . , n, i.e.,Rj,
can be estimated by

r̂j =
√
(xj − µ̂)′Σ̂−1(xj − µ̂) ,

where xj is the realization of Xj and Σ̂ is such that 1
n ∑n

j=1 r̂2
j = 7. Figure 6 contains the kernel

density of r̂2
1, r̂2

2, . . . , r̂2
n and the χ2

d-density with d = 7 degrees of freedom. Once again, we can
see that the normal-distribution hypothesis (R2 = χ2

d) is clearly violated.

Figure 6: Kernel density of r̂2
1, r̂2

2, . . . , r̂2
n (blue line) vs. χ2

d-density with d = 7 (black line).

The mean-excess plot (Embrechts et al., 1997, Section 6.2.2) based on r̂1, r̂2, . . . , r̂n is given by
Figure 7. It clearly reveals thatR has a power tail with positive tail index. We may choose τ = 4
as a critical threshold and calculate the excess ŵj := r̂j − 4 for all r̂j > 4 (Embrechts et al., 1997,
Section 6.5.1). The POT estimator for the tail index α represents a maximum-likelihood estimator
that is based on the assumption that the excesses follow a generalized Pareto distribution. More

13
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Figure 7: Empirical mean-excess function of r̂1, r̂2, . . . , r̂n.

precisely, the density of the excess w ≥ 0 is assumed to be

f (w) =
1
β

(
1 +

w
αβ

)−α−1

,

where α > 0 is the tail index and β > 0 represents a scale parameter.
After applying the maximum-likelihood estimator to ŵ1, ŵ2, . . . , ŵn we obtain α̂ = 4.1893. The

corresponding standard error is 1.1108 under the simplifying assumption that the observations
are serially independent. Hence, the estimation risk turns out to be relatively large, which is a
typical phenomenon when using extreme value theory in order to analyze financial data. The
one-sided 95%-confidence interval for α is [2.3621, ∞), whereas the two-sided 95%-confidence
interval corresponds to [2.0121, 6.3665]. Thus, we may at least expect that α > 2, i.e., that the
second moment ofR is finite, but not much more.

3.3. Ruin Probabilities

In the following, let

• π := P
(

min U ≤ p
)

be the probability that at least one country has a p-shortfall and

• ψ := P
(

max U ≤ p
)

be the probability that all countries have a p-shortfall.

The latter is referred to as a one-day ruin probability.
If p is sufficiently small, we have that

ψ =
P
(

max U ≤ p
)

P
(

min U ≤ p
) ·P(min U ≤ p

)
≈ επ .

This simple approximation can be used in order to estimate the ruin probability ψ by ε̂π̂, where
ε̂ is the plug-in estimator for ε and π̂ is the empirical estimator for π. The basic idea is to use
an empirical estimator whenever the number of observations is large enough, but to apply a
semiparametric approach if the number of observations is small or even zero. Estimating π
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p Canada France Germany Italy Japan UK USA π

0.05 -0.0217 -0.0245 -0.0255 -0.0257 -0.0222 -0.0210 -0.0187 0.1559
0.01 -0.0394 -0.0456 -0.0468 -0.0507 -0.0379 -0.0369 -0.0346 0.0339
0.005 -0.0496 -0.0544 -0.0586 -0.0603 -0.0465 -0.0462 -0.0435 0.0160

Table 3: Empirical 20-, 100-, and 200-day quantiles of the G–7 countries.

is easy because the number of trading days on which at least one country had a shortfall is
relatively large. By contrast, the number of trading days on which all countries had a shortfall
is very small. In many practical applications it can even be zero. For this reason, we apply a
semiparametric approach in order to estimate ε.

Table 3 contains the empirical 20-day, 100-day, and 200-day quantiles of the G–7 countries and
the (estimated) probabilities that at least one country suffers from an associated shortfall. The
number of days on which at least one country had a p-shortfall is relatively large. Even for the
shortfall probability p = 0.005 we can observe 77 out of 4804 days that satisfy this condition. By
contrast, there was only one day on which all G–7 countries had an 0.005-shortfall, i.e., November
6, 2008. Of course, this makes nonparametric estimation of ψ impossible.

During m trading days we can expect

E

(
m

∑
j=1

1max U·j≤p

)
=

m

∑
j=1

P
(

max U·j ≤ p
)
= mψ

ruins, where U·j = (U1j, U2j, . . . , Udj) with Uij := Fi(Xij) for i = 1, 2, . . . , d and j = 1, 2, . . . , n.
This formula holds irrespective of whether the shortfalls are serially independent or dependent.
That is, on average, a ruin occurs after ψ−1 trading days, i.e., ψ−1/250 years, and so this is referred
as to the expected ruin time.

Let πm be the m-day ruin probability, i.e., the probability of a financial collapse during m
trading days. If we make the simplifying assumption that the ruins are serially independent, we
obtain

πm = 1− (1− ψ)m ≈ 1− (1− επ)m (3)

for all m ∈
{

1, 2, . . .
}

. However, as already mentioned in Section 1, in real life we can observe
shortfall clusters and so the serial-independence assumption is violated. We can expect that
the probability of subsequent drawdowns increases in turbulent times and decreases when
the market is calm. In the finance literature, this phenomenon is often described by so-called
Hawkes processes, i.e., self-exciting point processes (Laub et al., 2015). Nonetheless, in this work
I assume that concomitant shortfalls are serially independent for the sake of simplicity.

The POT estimate for the tail index α is roughly 4. It is worth emphasizing that this result does
not change substantially if we use another estimator for the tail index, e.g., the Hill estimator or
the Pickands estimator (Embrechts et al., 1997, Section 6.4.2). For this reason, we can conduct a
scenario analysis with α = 4 representing the normal case. By contrast, due to the confidence
interval for α reported in Section 3.2, the tail index α = 2 represents the worst case, whereas
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α = 4.1893 (estimated)
p ε π ψ ψ−1/250 π250 π5·250 π10·250

0.05 0.0041 0.1559 0.0006 6.2106 0.1477 0.5503 0.7978
0.01 0.0041 0.0339 0.0001 28.5384 0.0342 0.1595 0.2935
0.005 0.0041 0.0160 0.0001 60.4125 0.0163 0.0787 0.1513

α = 2 (worst case)
p ε π ψ ψ−1/250 π250 π5·250 π10·250

0.05 0.0192 0.1559 0.0030 1.3345 0.5274 0.9764 0.9994
0.01 0.0192 0.0339 0.0007 6.1322 0.1502 0.5569 0.8036
0.005 0.0192 0.0160 0.0003 12.9811 0.0739 0.3189 0.5361

α = 4 (normal case)
p ε π ψ ψ−1/250 π250 π5·250 π10·250

0.05 0.0046 0.1559 0.0007 5.5232 0.1642 0.5921 0.8336
0.01 0.0046 0.0339 0.0002 25.3796 0.0382 0.1771 0.3229
0.005 0.0046 0.0160 0.0001 53.7256 0.0182 0.0879 0.1681

α = 6 (best case)
p ε π ψ ψ−1/250 π250 π5·250 π10·250

0.05 0.0014 0.1559 0.0002 18.7455 0.0531 0.2388 0.4206
0.01 0.0014 0.0339 < 0.0001 86.1372 0.0118 0.0576 0.1119
0.005 0.0014 0.0160 < 0.0001 182.3423 0.0056 0.0276 0.0545

Table 4: Analytical results for different tail indices.

α = 6 is the best case. Table 4 contains the results of our analysis and Figure 8 illustrates how
ruin probabilities, based on the shortfall probability p = 0.01, depend on the tail index α.

The results are quite sensitive to the tail index. Obtaining a valid estimate of α is a challenge
because we have to cope with a general bias-variance trade-off, which is well-known in extreme
value theory. However, for a shortfall probability of p = 0.01, the given results clearly indicate
that in the normal case (a = 4) we will observe a collapse of the financial market each 20 to
30 years. In the best case (α = 6) the expected ruin time is much longer and in the worst case
(α = 2) it is much shorter. It is very unlikely that the tail index is below 2 because then the
number of collapses would have been much larger during the last decades. Hence, the tails
of sub-Gaussian α-stable distributions appear to be too heavy, which confirms a similar result
concerning the TDC reported by Frahm et al. (2003). That is, we can expect that the log-returns
have a (finite) covariance matrix. The probability of a ruin during some relatively short period
of time, e.g., 5 or 10 years, turns out to be high from a risk-manager’s perspective and we cannot
exclude the possibility that the tail index, α, increases during the coming decades. However, in
this work, I assume that {X·n} is stationary and thus α is constant. Testing for structural breaks
concerning the tail index would require us to analyze much longer time series.
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Figure 8: Ruin probabilities based on p = 0.01 for 1, 5, and 10 years.

4. Conclusion

Daily asset returns are heavy tailed and extremal dependent, which can be described by the
assumption that they are regularly varying and elliptically distributed. Copula theory proves
suitable for analyzing extremal dependence in a general framework, whereas extreme value
theory provides the necessary tools in order to quantify the dependence structure of extreme
asset returns that stem from a regularly varying elliptical distribution. The EDC is a natural
measure of systemic risk and it turns out that the EDC of regularly varying elliptically distributed
asset returns depends only on their correlation matrix and the tail index. Extreme value theory
allows us to estimate the EDC in a semiparametric way. This point is essential because, by their
very definition, extreme values do not appear often in real life and so it is virtually impossible
to apply a purely nonparametric estimator in order to estimate the EDC.

The presented theory has been applied in order to analyze the risk that the financial market
collapses. The indicated ruin probabilities appear to be high, but the given results are quite
sensitive to the tail index. For this reason, we conducted a scenario analysis. In the worst case,
the probability that the financial market collapses during the next 10 years exceeds 50%. Hence,
at least from a risk-manager’s perspective, we should remain cautious and must not neglect
the risk that international diversification dramatically fails from time to time. Nonetheless, at
least we can reject the hypothesis that daily asset returns have no finite second moments, which
precludes the sub-Gaussian α-stable distribution. This confirms a similar result obtained by
Frahm et al. (2003) regarding the TDC.

References

Adrover, J. (1998): “Minimax bias-robust estimation of the dispersion matrix of a multivariate
distribution,” Annals of Statistics 26, pp. 2301–2320.

Artzner, P., Delbaen, F., Eber, J.M., Heath, D. (1999): “Coherent measures of risk,” Mathematical
Finance 9, pp. 203–228.

17



Frahm, 2018 • How Often Is the Financial Market Going to Collapse?

Barndorff-Nielsen, O., Kent, J., Sørensen, M. (1982): “Normal variance-mean mixtures and z
distributions,” International Statistical Review 50, pp. 145–159.

Bingham, N., Kiesel, R. (2002): “Semi-parametric modelling in finance: theoretical foundation,”
Quantitative Finance 2, pp. 241–250.

Bouchaud, J.P., Cont, R., Potters, M. (1997): “Scaling in stock market data: stable laws and
beyond,” in B. Dubrulle, F. Graner, D. Sornette (editors), “Scale Invariance and Beyond.
Proceedings of the CNRS Workshop on Scale Invariance, Les Houches, March 1997,” EDP-
Springer.

Bradley, R. (2005): “Basic properties of strong mixing conditions. A survey and some open
questions,” Probability Surveys 2, pp. 107–144.

Breymann, W., Dias, A., Embrechts, P. (2003): “Dependence structures for multivariate high-
frequency data in finance,” Quantitative Finance 3, pp. 1–14.

Cambanis, S., Huang, S., Simons, G. (1981): “On the theory of elliptically contoured distributions,”
Journal of Multivariate Analysis 11, pp. 368–385.

Cont, R. (2001): “Empirical properties of asset returns: stylized facts and statistical issues,”
Quantitative Finance 1, pp. 223–236.

De Luca, G., Rivieccio, G. (2012): “Multivariate tail dependence coefficients for Archimedean
copulae,” in A. Di Ciaccio, M. Coli, J. Ibanez (editors), “Advanced Statistical Methods for
the Analysis of Large Data-Sets,” Studies in Theoretical and Applied Statistics, Springer, pp.
287–296.

Ding, Z., Granger, C., Engle, R. (1993): “A long memory property of stock market returns and a
new model,” Journal of Empirical Finance 1, pp. 83–106.

Dümbgen, L., Tyler, D. (2005): “On the breakdown properties of some multivariate M-
functionals,” Scandinavian Journal of Statistics 32, pp. 247–264.
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