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Abstract

The union of a finite number of single null hypotheses is referred to as a ∨-hypothesis, which can be
rejected if and only if we are able to reject each single null hypothesis. This simple testing procedure is
referred to as a ∨-hypothesis test. If the ∨-hypothesis is homogeneous, i.e., if all single null hypotheses
are either one-sided or two-sided, the ∨-hypothesis test represents a likelihood-ratio test. It ignores
the asymptotic dependence structure of the asymptotically sufficient statistic and even the number of
single null hypotheses is irrelevant for calculating the critical threshold of the log-likelihood ratio. By
contrast, if the ∨-hypothesis is heterogeneous, the ∨-hypothesis test is no longer a likelihood-ratio test
and it is less conservative than the latter. Nonetheless, the likelihood-ratio test can be modified after
which it becomes less conservative than the ∨-hypothesis test.
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1. Motivation

The principal goal of every hypothesis test is to reject the null hypothesis, H0, in favor of the
alternative hypothesis H1. If H0 cannot be rejected our empirical evidence in favor of H1 is not
strong enough. By contrast, if H0 can be rejected the result is significant and we may support H1.
Let

{
H01, H02, . . . , H0m

}
be some set of null hypotheses. Throughout this work, A ∧ B shall be

the intersection of two sets A and B, whereas a ∧ b denotes the minimum of two real numbers a
and b. The symbol ∨ indicates either the union or the maximum, depending on whether we
consider sets or real numbers.

Consider the joint hypotheses

• H0∧ :=
∧m

i=1 H0i vs. H1∧ :=
∨m

i=1 ¬H0i and

• H0∨ :=
∨m

i=1 H0i vs. H1∨ :=
∧m

i=1 ¬H0i,

where ¬means “not.” The null hypothesis H0∧ is referred to as a ∧-hypothesis, whereas H0∨ is
said to be a ∨-hypothesis. Hence, H0∧ represents the intersection of a finite number of single
null hypotheses, whereas H0∨ is union of all single null hypotheses.

Assume that we want to test for H0∧, which means that we aim at rejecting the ∧-hypothesis.
Further, suppose that we have a single test for each null hypothesis H0i on a significance level αi.
Without any further information, we could reject H0∧ whenever at least one single hypothesis
test leads to a rejection. I call this procedure a ∧-hypothesis test. Let Ai be the event in which
H0i is rejected and note that

P

(
m⋃

i=1

Ai

)
≤

m

∑
i=1

P
(

Ai
)
.

If the null hypothesis H0∧ is true it holds that P
(

Ai
)
≤ αi and thus, in order to guarantee that

the ∧-hypothesis test works on some significance level α, we should have that ∑m
i=1 αi ≤ α. The

most simple choice of significance levels is the Bonferroni correction αi = α/m for i = 1, 2, . . . , m.
However, it is well-known that the Bonferroni correction is very conservative and can often be
improved by taking the dependence structure of the single test statistics into account. However,
in that case the joint hypothesis test is no longer a ∧-hypothesis test.

Now, consider the null hypothesis H0∨ and assume that this is rejected whenever each single
hypothesis H0i is rejected. This procedure is referred to as a ∨-hypothesis test. It holds that

P

(
m⋂

i=1

Ai

)
≤

m∧
i=1

P
(

Ai
)

and if the null hypothesis H0∨ is true we have that P(Ai) ≤ αi for some single hypothesis test.
This means that our joint test for the ∨-hypothesis works on the significance level α whenever∨m

i=1 αi ≤ α. The least conservative choice of significance levels is α1, α2, . . . , αm = α.
At first glance, similar to the Bonferroni test, the ∨-hypothesis test might seem to suffer

from a lack of power. In this work, I investigate the question of whether one can improve
the test by taking the dependence structure of the single test statistics into account. In a quite
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general framework, I show that the ∨-hypothesis test represents a likelihood-ratio test. Hence,
rejecting H0∨ whenever each single test rejects H0i on the significance level α just means to
apply a likelihood-ratio test on the same significance level. The given result demonstrates that
the (asymptotic) correlations between the single test statistics are irrelevant when applying a
likelihood-ratio test for H0∨. In contrast to any hypothesis test for H0∧, the ∨-hypothesis test
does not depend on the number of single null hypotheses. The precise meaning of the latter
statement will become clear during the subsequent analysis.

Before proceeding further, I would like to mention that neither the ∧- nor the ∨-hypothesis test
represents a multiple test, where

{
H01, H02, . . . , H0m

}
is considered a family of null hypotheses.

The principal goal of multiple testing is to reject as many null hypotheses as possible without
exceeding some family-wise error rate (Lehmann and Romano, 2005, Chapter 9). By contrast,
the hypothesis tests described above aim at rejecting a joint null hypothesis, i.e., H0∧ or H0∨,
respectively, and so we need not consider any family-wise error rate.

The following examples shall illustrate why tests for the ∨-hypothesis play a fundamental
role in many practical applications.

Example 1: Consider a linear regression model Y = β0 + β1X1 + . . . + βmXm + u, in which
the parameter vector β = (β0, β1, . . . , βm) is unknown. A typical question is whether the chosen
regressors X1, X2, . . . , Xm are significant. This means that we want to test

H0∨ :
m∨

i=1

βi = 0 vs. H1∨ :
m∧

i=1

βi 6= 0.

Note that the classical F-test is made for the ∧-hypothesis H0∧ :
∧m

i=1 βi = 0. If that leads to a
rejection, we may support the alternative hypothesis H1∧ :

∨m
i=1 βi 6= 0. Put another way, we

may suspect that any regressor is significant. By contrast, if we are able to reject the ∨-hypothesis
H0∨ we know that all regressors are significant.

Example 2: Suppose that the therapeutic effects of m different treatments are investigated in a
clinical study. Let θ1, θ2, . . . , θm be the true but unknown effects of the given treatments and θ0

the (placebo) effect of a control group. We could be interested to know whether Treatment m is
optimal among all considered treatments. The corresponding hypotheses are given by

H0∨ :
m−1∨
i=0

θm < θi and H1∨ :
m−1∧
i=0

θm ≥ θi.

Hence, Treatment m proves to be optimal if H0∨ can be rejected. This is completely different from
testing H0∧ :

∧m−1
i=0 θm ≥ θi vs. H1∧ :

∨m−1
i=0 θm < θi, which enables us to prove that Treatment m is

not optimal.

Example 3: We observe m variables X1, X2, . . . , Xm in some population with n individuals.
Now, we want to know whether the mean of Xi exceeds some threshold τi ∈ R for all i ∈

3
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{
1, 2, . . . , m

}
. That is, we aim at testing

H0∨ :
m∨

i=1

E(Xi) ≤ τi vs. H1∨ :
m∧

i=1

E(Xi) > τi.

The given examples are by far not exhaustive and the reader can find many other situations
in which a ∨-hypothesis occurs.

2. General Framework

Let (Ω,F ) be a sample space that is equipped with an indexed probability measure Pθ , where
θ ∈ Θ ⊆ Rd represents an unknown parameter vector and Θ is an open subset of Rd. Further,
let Xn =

[
X1 X2 · · · Xn

]
be any sample of random quantities that are measurable on (Ω,F ).

For a sufficiently large sample size n, there shall exist a measurable test statistic θn : Xn 7→ Rd

such that √
n
(
θn − θ

)
 Nd

(
0, Ω

)
.

Here “ ” denotes convergence in distribution, 0 is a d-dimensional vector of zeros,1 and the
asymptotic covariance matrix Ω ∈ Rd×d is supposed to be positive definite.

The random quantities X1, X2, . . . , Xn may dependent on each other. Nonetheless, in many
applications the weak convergence property of

√
n
(
θn − θ

)
follows from the Central Limit

Theorem, which can be guaranteed under mild regularity conditions such as ergodicity and
strong mixing (Bradley, 2005, Hayashi, 2000, Chapter 2 and 6). Alternatively, we could consider
√

n
(
θn − θ

)
an asymptotically sufficient statistic in the context of local asymptotic normality

(Le Cam, 1986, van der Vaart, 2002).
Our ∨-hypothesis reads

H0∨ :

(
l∨

i=1

wiθ = θ0i

)
∨
(

m∨
i=l+1

wiθ ≤ θ0i

)

with 0 ≤ l ≤ m and m > 1. Here, wi :=
[
wi1 wi2 · · · wid

]
is any row vector of real numbers and

θ0i ∈ R for i = 1, 2, . . . , m. The ∨-hypothesis can be understood, equivalently, as a subset of Rd,
viz. H0∨ =

⋃m
i=1 H0i with

• H0i =
{

θ ∈ Rd : wiθ = θ0i
}

for i = 1, 2, . . . , l and

• H0i =
{

θ ∈ Rd : wiθ ≤ θ0i
}

for i = l + 1, l + 2, . . . , m.

In this case, each single null hypothesis, H0i, represents either an affine hyperplane or an affine
half-space in Rd. I assume that Θ ∩ H0∨ 6= ∅ in order to avoid any triviality.

Define the quantities W :=
[
wij
]
∈ Rm×d and θ0 := (θ01, θ02, . . . , θ0m) ∈ Rm, where θ0

represents a column vector in Rm, so that the weak convergence property of
√

n
(
θn − θ

)
reduces

1Throughout this work, the number of dimensions of 0 shall always be clear from the context.

4



Frahm, 2018 • The Likelihood-Ratio Test for ∨-Hypotheses

to √
n
(
µn − µ

)
 Nm

(
0, Σ

)
(1)

with µn := Wθn − θ0, µ := Wθ − θ0, and Σ := WΩW ′. I suppose that the asymptotic covariance
matrix Σ ∈ Rm×m is positive definite, which implies that m ≤ d and that the row vectors of W
are linearly independent.

After the re-parameterization the parameter set turns into P := WΘ− θ0, which is an open
subset of Rm. Moreover, the ∨-hypothesis can be reformulated in a more convenient way as

H0∨ :

(
l∨

i=1

µi = 0

)
∨
(

m∨
i=l+1

µi ≤ 0

)
,

where µi denotes the ith component of µ. Alternatively, we can interpret the ∨-hypothesis in
the topological sense as H0∨ =

⋃m
i=1 H0i with H0i =

{
µ ∈ Rm : µi = 0

}
for i = 1, 2, . . . , l and

H0i =
{

µ ∈ Rm : µi ≤ 0
}

for i = l + 1, l + 2, . . . , m.2 However, the reader should distinguish
between µn and µi. The former represents an m-dimensional estimator for µ, whereas the latter
is a real number. In most practical applications n is greater than m and thus no confusion arises.

The main conclusions of this work do not change if we substitute any single null hypothesis
H0i : µi ≤ 0 with H′0i : µi < 0 and so I will ignore strict inequalities without loss of generality.
I say that H0∨ is homogeneous if and only if all single null hypotheses are either one-sided or
two-sided. Put another way, H0∨ is heterogenous if and only if 0 < l < m. The ∨-hypotheses
given by the three examples in the introduction are homogeneous. It seems to me that this is the
typical case in most practical applications and, at the end of this work, the reader will see that
the heterogeneous case is a little bit more intricate than the homogeneous one.

3. Main Results

Consider the matrix decomposition Σ = σρ σ, where σ is an m×m diagonal matrix and ρ > 0 is
an m×m correlation matrix. Since Σ is positive definite both σ and ρ must be positive definite,
too. Let ‖ · ‖ be the Euclidean norm and ‖ · ‖Σ the Mahalanobis norm with respect to Σ, i.e.,
‖x‖2 = x′x and ‖x‖2

Σ = x′Σ−1x for each x ∈ Rm. The corresponding distance between some
point x ∈ Rm and any nonempty subset S of Rm is defined as

‖x− S‖ := inf
y∈S
‖x− y‖ and ‖x− S‖Σ := inf

y∈S
‖x− y‖Σ ,

respectively. It is clear that ‖x− S‖ = ‖x− S‖Σ = 0 whenever x ∈ S . A subset C ⊆ Rm is said
to be a (pointed) cone if and only if z ∈ C ⇒ γz ∈ C for all γ ≥ 0.

It holds that P0 := P ∩ H0∨ 6= ∅ and I make the modest assumption that µn ∈ P .3 The

2For notational convenience, but also because the re-parameterization does not alter the null hypotheses in the logical
sense, I refrain from choosing different symbols for H0∨, H01, H02, . . . , H0m before and after the re-parameterization.

3Any assertion about some random quantity is meant to be true Pθ-almost surely unless otherwise stated. Hence, the
statement “µn ∈ P” means that Pθ(µn ∈ P) = 1.
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log-likelihood ratio (see, e.g., van der Vaart, 1998, p. 228) of our experiment is given by

Λn := 2 log
supy∈P exp

[
− 1

2 (µn − y)′(Σ/n)−1(µn − y)
]

supy∈P0
exp

[
− 1

2 (µn − y)′(Σ/n)−1(µn − y)
]

= inf
y∈P0

n (µn − y)′Σ−1(µn − y) = n‖µn −P0‖2
Σ .

Note that Λn and Λ0n := n‖µn − H0∨‖2
Σ are asymptotically equivalent, i.e., |Λn −Λ0n|

p→ 0,
whenever µ ∈ P0. In fact, since P is an open subset of Rm and µn

p→ µ, we always can find
an open ball in P around µ with radius ε > 0 such that the event ‖µn − µ‖ < ε occurs with
any arbitrarily high probability if the number of observations, n, is sufficiently large. Moreover,
if the ∨-hypothesis is true we even can make ε small enough such that Λ0n = Λn whenever
‖µn − µ‖ < ε. Put another way, the restriction imposed by P is asymptotically negligible and so
we may focus on Λ0n in order to derive the asymptotic distribution of Λn.

A subset S ⊂ Rm that is obtained by setting precisely k ∈
{

1, 2, . . . , m
}

dimensions of Rm to
zero is said to be an (m− k)-dimensional canonical subspace of Rm. In the case of k = 1, i.e., if
we eliminate only one dimension of Rm, the canonical subspace represents a (linear) hyperplane
in Rm. This will be referred to as a canonical hyperplane in Rm. Consider the decompositions
x = (x1, x2) and

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

where x1 ∈ Rk and Σ11 ∈ Rk×k belong to the zero dimensions of S . If S is a canonical hyperplane
we have that Σ11 ≡ σ2

1 .
The following proposition will serve as a basic result in the subsequent analysis. It implies

that the Mahalanobis distance of any point x ∈ Rm with respect to a canonical hyperplane does
not depend on the correlation matrix ρ that is implied by Σ.

Proposition 1. If S is an (m− k)-dimensional canonical subspace of Rm then

‖x− S‖Σ = ‖x1‖Σ11

for all x ∈ Rm, where x1 ∈ Rk and Σ11 ∈ Rk×k belong to the zero dimensions of S . In particular, if S is
a canonical hyperplane in Rm it holds that ‖x− S‖Σ = |x1|/σ1.

Proof. Note that
‖x− S‖2

Σ = inf
y∈S

(x− y)′Σ−1(x− y).

Finding the infimum represents a convex minimization problem and, since Σ is positive definite,
the solution is unique. The Lagrangian reads

L(x, λ) = (x− y)′Σ−1(x− y) +
k

∑
i=1

λie′iy

6
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𝑥 − 𝑆 𝜌

𝑥

𝑆

𝑥1

𝑥2

Figure 1: Mahalanobis distance of a point x ∈ R2 to the vertical line S .

with λ = (λ1, λ2, . . . , λk) and its partial derivative with respect to x is

−2 Σ−1(x− y) +
k

∑
i=1

λiei = −2 Σ−1(x− y) +

[
I
0

]
λ,

where I denotes the k× k identity matrix and 0 is an (m− k)× k matrix of zeros. It follows that

y = x− 1
2

Σ

[
I
0

]
λ = x− 1

2

[
Σ11

Σ21

]
λ

and from x1 − 1
2 Σ11λ = 0 we conclude that λ = 2Σ−1

11 x1. Hence, we obtain y2 = x2 − Σ21Σ−1
11 x1

and thus

x− y =

[
I

Σ21Σ−1
11

]
x1 .

Moreover, it is well-known that

Σ−1 =

[
B11 B12

B21 B22

]

with B11 = Σ−1
11 + Σ−1

11 Σ12B22Σ21Σ−1
11 , B12 = −Σ−1

11 Σ12B22, and B21 = −B22Σ21Σ−1
11 . This means

that

Σ−1(x− y) =

[
Σ−1

11

0

]
x1

and thus (x− y)′Σ−1(x− y) = x′1Σ−1
11 x1. We conclude that

‖x− S‖Σ =
√
(x− y)′Σ−1(x− y) =

√
x′1Σ−1

11 x1 = ‖x1‖Σ11 .

The rest of the proof is trivial.

Proposition 1 is illustrated in Figure 1, where we can see that the Mahalanobis distance of
x ∈ R2 to the vertical line equals |x1|. Here, without loss of generality, the Mahalanobis norm
refers to the correlation matrix ρ rather than the covariance matrix Σ.

The next proposition represents the key observation of this work. It will be used later on in

7
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𝑥1

𝑥2

𝑥

𝑥1

𝑥2

𝑥

𝑥1

𝑥2

𝑥

Figure 2: Cones in R2 satisfying the condition of Proposition 2.

order to derive the asymptotic distribution of Λn.

Proposition 2. If C ⊂ Rm is a cone such that ‖z−C‖ = ∧m
i=1 |zi| for all z = (z1, z2, . . . , zm) ∈ Rm \ C

then we have that

‖x− C‖Σ =
m∧

i=1

|xi|
σi

for all x = (x1, x2, . . . , xm) ∈ Rm \ C but ‖x− C‖Σ = 0 for all x ∈ C.

Proof. Note that
‖x− C‖2

Σ = inf
y∈C

(x− y)′Σ−1(x− y)

and so we obtain ‖x− C‖Σ = 0 in the case of x ∈ C. Recall that Σ is positive definite. Hence, if x
does not belong to C the infimum must be attained on the boundary of C. Due to the property of
C that is expressed by the proposition, this can be found on a canonical hyperplane of Rm. Thus,
it can be determined by setting, successively, each component of y to zero and minimizing the
quadratic form with respect to the other components of y. The desired infimum corresponds to
the smallest value of the quadratic forms that have been obtained for every canonical hyperplane.
Consider, without loss of generality, the partitions

x =

[
x1

x2

]
, y =

[
y1

y2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

where x1 denotes the first component of x, y1 is the first component of y, and Σ11 ≡ σ2
1 symbolizes

the upper left element of Σ. From Proposition 1 we know that ‖x− S‖Σ = |x1|/σ1 and so we
conclude that

‖x− C‖Σ =
m∧

i=1

|xi|
σi

for all x ∈ Rm \ C.

Figure 2 illustrates some cones in R2 that satisfy the condition of Proposition 2.4 In particular,

4A typical counterexample is any canonical hyperplane or half-space in Rm with m > 1.
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the set H0∨ represents a cone in Rm that satisfies the given condition. Thus, we have that

Λ0n = n‖µn − H0∨‖2
Σ = 1µn 6∈H0∨

(
m∧

i=1

|µin|
σi/
√

n

)2

.5

The quintessence is that we may ignore the asymptotic correlation matrix of
√

n (µn − µ), i.e.,
ρ, when calculating Λ0n. The likelihood-ratio test rejects H0∨ if Λn exceeds a critical threshold
τ2 > 0. We already know that Λn and Λ0n are asymptotically equivalent. Hence, in our context,
this (essentially) means that Λ0n > τ2, i.e., that each

√
n |µin|/σi exceeds τ provided µn 6∈ H0∨.

Although we need not take ρ into account when calculating Λ0n, its asymptotic distribution
may well depend on the asymptotic correlation matrix of

√
n (µn − µ). The set H0∨ is Chernoff

regular and so we have that
√

n (H0∨ − µ)→ T0(µ), where the convergence takes place in the
Painlevé-Kuratowski sense (Geyer, 1994). The limit of

√
n (H0∨ − µ), i.e., T0(µ), represents the

tangent cone of H0∨ at µ and, since P is open, it holds that
√

n (P0 − µ) → T0(µ). I make the
following implicit assumption, which is hopefully satisfied in most practical applications:∥∥∥√n (µn − µ)−

√
n (H0∨ − µ)

∥∥∥2

Σ
=
∥∥∥√n (µn − µ)− T0(µ)

∥∥∥2

Σ
+ op(1).

The following theorem provides the asymptotic distribution of Λ0n and thus of Λn.

Theorem 1. Λ0n, Λn  
∥∥Nm(0, ρ)− T0(µ)

∥∥2
ρ

Proof. Note that

Λ0n = inf
y∈H0∨

n (µn − y)′Σ−1(µn − y)

= inf
y∈H0∨

[√
n (µn − µ)−

√
n (y− µ)

]′
Σ−1

[√
n (µn − µ)−

√
n (y− µ)

]
= ‖

√
n (µn − µ)−

√
n (H0∨ − µ)‖2

Σ = ‖
√

n (µn − µ)− T0(µ)‖2
Σ + op(1)

= ‖
√

n σ−1(µn − µ)− σ−1T0(µ)‖2
ρ + op(1)

with
√

n σ−1(µn − µ) Nm(0, ρ) and σ−1T0(µ) = T0(µ). Moreover, the distance ‖x− T0(µ)‖ρ

is continuous in x and so, from the Continuous Mapping Theorem and Slutsky’s Theorem, we
conclude that

Λ0n = ‖
√

n σ−1(µn − µ)− T0(µ)‖2
ρ + op(1) ‖Nm(0, ρ)− T0(µ)‖2

ρ .

Since Λn and Λ0n are asymptotically equivalent, we obtain the same result for Λn.

It is worth emphasizing that the asymptotic results presented in this work do not change if
we substitute σ with some estimator σn such that

√
n σ−1

n (µn − µ) Nm
(
0, ρ
)

and

∥∥∥√n σ−1
n (µn − µ)−

√
n σ−1

n (H0∨ − µ)
∥∥∥2

ρ
=
∥∥∥√n σ−1

n (µn − µ)− T0(µ)
∥∥∥2

ρ
+ op(1).

5The symbol 1{·} denotes the indicator function, i.e., 1A = 1 if the assertion A is true and 1A = 0 otherwise.
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The correlation matrix ρ need not be known at all.
Theorem 1 can be used in order to derive the critical threshold τ2 for the likelihood-ratio test.

For this purpose, I distinguish between the homogeneous and the heterogeneous case.

3.1. The Homogeneous Case

Now, let us come back to the ∨-hypothesis test, which is described in the introduction, and
suppose that H0∨ is homogeneous. Then the critical thresholds are identical, i.e., in the one-sided
case (l = 0) we reject H0i if and only if

tin :=
µin

σi/
√

n
> zα,

where zα denotes the (1− α)-quantile of the standard normal distribution, whereas in the two-
sided case (l = m) we reject H0i if and only if |tin| > zα/2. In any case, the ∨-hypothesis test
rejects H0∨ if and only if (the absolute value of) each single t-statistic exceeds the same critical
threshold. Put another way, H0∨ is rejected whenever

√
Λn ≈

√
Λ0n = 1µn 6∈H0∨

m∧
i=1

|tin| >
{

zα, l = 0
zα/2, l = m

.

We conclude that the ∨-hypothesis test represents a likelihood-ratio test with critical threshold
τ2 = z2

α or τ2 = z2
α/2, respectively.

We already know that the hypothesis test obeys the significance level α. Nonetheless, the
reader might ask whether it is possible to choose a smaller threshold in order to increase the
power of the likelihood-ratio test without destroying the given significance level. This question
can be answered by Theorem 1, which reveals the asymptotic distribution of Λ0n. We can see
that the worst case under the null hypothesis H0∨ is any situation in which one and only one
component of µ equals zero, i.e., if T0(µ) represents either a canonical hyperplane (l = m) or a
canonical half-space (l = 0) in Rm. One can imagine that this is precisely the case in which the
(1− α)-quantile of

∥∥Nm(0, ρ)− T0(µ)
∥∥2

ρ
becomes maximal.

First of all assume that l = m and suppose, without loss of generality, that

T0(µ) =
{

x = (x1, x2, . . . , xm) ∈ Rm : x1 = 0
}

.

This means that only the first component of µ is zero. Hence, the first single null hypothesis H01

is satisfied, but each other single null hypothesis is violated. From Proposition 1 we know that
‖x− T0(µ)‖ρ = |x1|. Hence, since H01 is two-sided, we obtain

‖X− T0(µ)‖2
ρ ∼ χ2

1

with X ∼ Nm
(
0, ρ
)
. Since we have that l = m the same conclusion can be made after setting any

other component of µ to zero and assuming that all other components are distinct from zero.
By contrast, if H01 is one-sided it follows that ‖X−T0(µ)‖2

ρ is distributed like max{ζ, 0}2 with
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ζ ∼ N (0, 1). This is a standard result of likelihood theory. To the best of my knowledge it goes
back to Chernoff (1954).6 Note that Fχ2

1

(
z2

α/2

)
= 1− α and thus

Fmax{ζ,0}2

(
z2

α

)
= 0.5 + 0.5 Fχ2

1

(
z2

α

)︸ ︷︷ ︸
= 1−2α

= 1− α.

Thus, in the case of l = 0, the best choice for τ2 is z2
α, whereas for l = m we should choose

τ2 = z2
α/2. This means that the ∨-hypothesis test, in fact, represents a likelihood-ratio test that

has a Type-I error probability of α in the worst case. That is, given the significance level α, we
cannot increase the power of the likelihood-ratio test by choosing a smaller threshold. Moreover,
the ∨-hypothesis test inherits the asymptotic optimality properties of likelihood-ratio tests that
are known from likelihood theory (see, e.g., van der Vaart, 1998, Chapter 15 and 16). In particular,
if T0(µ) represents a canonical hyperplane or half-space in Rm then the likelihood-ratio test
proves to be uniformly most powerful (van der Vaart, 1998, Proposition 15.2 and p. 236).

3.2. The Heterogeneous Case

The ∨-hypothesis test represents a proper likelihood-ratio test if H0∨ is homogeneous, but this
no longer holds true if H0∨ is heterogenous. The problem is that the likelihood-ratio test does
not distinguish between the one-sided and the two-sided single null hypotheses. If we want to
conduct the (ordinary) likelihood-ratio test in the heterogenous case we must choose the larger
threshold τ2 = z2

α/2. This threshold applies to each single t-statistic—irrespective of whether it
refers to a one-sided or two-sided single null hypothesis.

By contrast, the ∨-hypothesis test provides a lower threshold to the one-sided single null
hypotheses and so the likelihood-ratio test is more conservative. However, it can be improved
by choosing a critical threshold that depends on arg mini∈{1,2,...,m} |tin| whenever µn 6∈ H0∨.7

The resulting test is said to be a modified likelihood-ratio test. The principal idea goes like this:

• If T0(µ) is a canonical hyperplane we have that tin → ∞ for all i > l and so it cannot
happen that arg min |tin| > l provided the sample size, n, is large enough.

• By contrast, if T0(µ) is a canonical half-space we have that |tin| → ∞ for all i ≤ l and thus
it cannot happen that arg min |tin| ≤ l, given that we have enough observations.

It is clear that the likelihood-ratio test makes sense only if the sample size is sufficiently large but
in this case arg min |tin| provides us with important information: If arg min |tin| > l we know
that T0(µ) cannot be a canonical hyperplane and if arg min |tin| ≤ l it cannot be a canonical
half-space. Hence, the modified likelihood-ratio test rejects H0∨ whenever

√
Λ0n = 1µn 6∈H0∨

m∧
i=1

|tin| >
{

zα, arg min |tin| > l
zα/2, arg min |tin| ≤ l

.

6For similar results concerning the asymptotic distributions of log-likelihood ratios see, e.g., Self and Liang (1987).
7If µn ∈ H0∨ we have that Λ0n = 0 and then it is clear that H0∨ cannot be rejected at all. Moreover, in the following I
write “arg min |tin|” instead of arg mini∈{1,2,...,m} |tin| for notational convenience.
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The modified likelihood-ratio test is less conservative than the ∨-hypothesis test. This is because
in case arg min |tin| > l the critical threshold for each two-sided single null hypothesis is lower
than that of the ∨-hypothesis test. The modified likelihood-ratio test reduces the ordinary one
in the case of l = 0 or l = m, i.e., if the ∨-hypothesis is homogeneous.

4. Conclusion

The seemingly naive approach of rejecting a homogeneous ∨-hypothesis if we are able to
reject each single null hypothesis in H0∨ represents a likelihood-ratio test. Hence, this simple
procedure can be justified either by likelihood theory or by local asymptotic normality theory.
The likelihood-ratio test ignores the asymptotic dependence structure of

√
n
(
θn − θ

)
, i.e., of the

asymptotically sufficient statistic of the given experiment. For this reason why we may focus on
rejecting each single null hypothesis in order to reject the joint null hypothesis. We even need
not take the number of single null hypotheses into account because this has no impact on the
worst-case asymptotic distribution of the log-likelihood ratio. In particular, we need not apply a
Bonferroni correction, or any similar technique from multiple testing, to control the Type-I error
probability. If H0∨ is heterogeneous the ∨-hypothesis test is no longer a likelihood-ratio test and
the former is less conservative than the latter. Nonetheless, the likelihood-ratio test can simply
be modified after which it becomes less conservative than the ∨-hypothesis test. The modified
likelihood-ratio test corresponds to the ordinary likelihood-ratio test if H0∨ is homogeneous.
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