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Abstract

The union of a finite number of single null hypotheses is referred to as a \V-hypothesis, which can be
rejected if and only if we are able to reject each single null hypothesis. This simple testing procedure is
referred to as a \/-hypothesis test. If the \/-hypothesis is homogeneous, i.e., if all single null hypotheses
are either one-sided or two-sided, the \V/-hypothesis test represents a likelihood-ratio test. It ignores
the asymptotic dependence structure of the asymptotically sufficient statistic and even the number of
single null hypotheses is irrelevant for calculating the critical threshold of the log-likelihood ratio. By
contrast, if the \/-hypothesis is heterogeneous, the \/-hypothesis test is no longer a likelihood-ratio test
and it is less conservative than the latter. Nonetheless, the likelihood-ratio test can be modified after
which it becomes less conservative than the \V-hypothesis test.
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1. Motivation

The principal goal of every hypothesis test is to reject the null hypothesis, Hy, in favor of the
alternative hypothesis H;. If Hy cannot be rejected our empirical evidence in favor of Hj is not
strong enough. By contrast, if Hy can be rejected the result is significant and we may support H;.
Let {Hm, Hop, ..., HOm} be some set of null hypotheses. Throughout this work, A A B shall be
the intersection of two sets A and B, whereas a A b denotes the minimum of two real numbers a
and b. The symbol V indicates either the union or the maximum, depending on whether we
consider sets or real numbers.

Consider the joint hypotheses
[ Ho/\ = /\zm:1 HOi VS. Hl/\ = \/;n:l _‘HOi and
e Hyy, := VL Ho;i vs. Hiy := A\/L{ —~Ho;,

where — means “not.” The null hypothesis Hy, is referred to as a A-hypothesis, whereas Hyy is
said to be a V-hypothesis. Hence, Ho, represents the intersection of a finite number of single
null hypotheses, whereas Hy, is union of all single null hypotheses.

Assume that we want to test for Hp,, which means that we aim at rejecting the A-hypothesis.
Further, suppose that we have a single test for each null hypothesis Hy; on a significance level ;.
Without any further information, we could reject Hy, whenever at least one single hypothesis
test leads to a rejection. I call this procedure a A-hypothesis test. Let A; be the event in which
Hy; is rejected and note that

P (Q Ai> < ﬁﬂ’(Ai).

If the null hypothesis Hyy is true it holds that IP(A;) < «; and thus, in order to guarantee that
the A-hypothesis test works on some significance level «, we should have that } ;" ; a; < a. The
most simple choice of significance levels is the Bonferroni correction a; = a/m fori =1,2,...,m.
However, it is well-known that the Bonferroni correction is very conservative and can often be
improved by taking the dependence structure of the single test statistics into account. However,
in that case the joint hypothesis test is no longer a A-hypothesis test.

Now, consider the null hypothesis Hp, and assume that this is rejected whenever each single
hypothesis Hy; is rejected. This procedure is referred to as a \V-hypothesis test. It holds that

P @ Ai> < Z\l P(A)

and if the null hypothesis Hyy is true we have that IP(A;) < a; for some single hypothesis test.
This means that our joint test for the V-hypothesis works on the significance level « whenever
Vi, a; < a. The least conservative choice of significance levels is aq, a0y, . .., &, = a.

At first glance, similar to the Bonferroni test, the VV-hypothesis test might seem to suffer
from a lack of power. In this work, I investigate the question of whether one can improve

the test by taking the dependence structure of the single test statistics into account. In a quite
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general framework, I show that the V-hypothesis test represents a likelihood-ratio test. Hence,
rejecting Hp, whenever each single test rejects Hy; on the significance level a just means to
apply a likelihood-ratio test on the same significance level. The given result demonstrates that
the (asymptotic) correlations between the single test statistics are irrelevant when applying a
likelihood-ratio test for Hpy. In contrast to any hypothesis test for Hyx, the V-hypothesis test
does not depend on the number of single null hypotheses. The precise meaning of the latter
statement will become clear during the subsequent analysis.

Before proceeding further, I would like to mention that neither the A- nor the V-hypothesis test
represents a multiple test, where {HOl, Hop, ..., H0m} is considered a family of null hypotheses.
The principal goal of multiple testing is to reject as many null hypotheses as possible without
exceeding some family-wise error rate (Lehmann and Romano, 2005, Chapter 9). By contrast,
the hypothesis tests described above aim at rejecting a joint null hypothesis, i.e., Hyx or Hypy,
respectively, and so we need not consider any family-wise error rate.

The following examples shall illustrate why tests for the V-hypothesis play a fundamental

role in many practical applications.

Example 1: Consider a linear regression model Y = By + 1 X1 + ... + BuXy + u, in which
the parameter vector = (Bo, B1,-- ., Bm) is unknown. A typical question is whether the chosen
regressors X1, Xo, ..., Xy, are significant. This means that we want to test

m m

Hyy: \/‘Bl =0 vs. Hjy: /\ﬁl # 0.
i=1 i=1

Note that the classical F-test is made for the A-hypothesis Hox : AiZ; Bi = 0. If that leads to a

rejection, we may support the alternative hypothesis Hyx : \//L; i # 0. Put another way, we

may suspect that any regressor is significant. By contrast, if we are able to reject the V-hypothesis

Hp, we know that all regressors are significant.

Example 2: Suppose that the therapeutic effects of m different treatments are investigated in a
clinical study. Let 61, 65, . .., 0, be the true but unknown effects of the given treatments and 6y
the (placebo) effect of a control group. We could be interested to know whether Treatment m is

optimal among all considered treatments. The corresponding hypotheses are given by

m—1 m—1
Hyy: \/ 0, <0; and Hjy: /\ 0, > 0;.
i=0 i=0
Hence, Treatment m proves to be optimal if Hy, can be rejected. This is completely different from
testing Hop : /\17”261 0, > 0; vs. Hip: \/?1:61 0, < 8;, which enables us to prove that Treatment m is
not optimal.

Example 3: We observe m variables X, X», ..., X;; in some population with #n individuals.
Now, we want to know whether the mean of X; exceeds some threshold 7; € R for all i €
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{1,2,...,m}. Thatis, we aim at testing

m m
Hov: \/ E(X;) <7 vs. Hyv: \E(X) > T
i=1 i=1

The given examples are by far not exhaustive and the reader can find many other situations

in which a V-hypothesis occurs.

2. General Framework

Let (Q), F) be a sample space that is equipped with an indexed probability measure Py, where
0 € ® C RY represents an unknown parameter vector and @ is an open subset of R?. Further,
let X, = [X; X5 - -+ Xu] be any sample of random quantities that are measurable on (Q), F).
For a sufficiently large sample size 1, there shall exist a measurable test statistic 0, : &}, — R
such that

V11 (6, — 8) ~ N3 (0,0).

Here “~~" denotes convergence in distribution, 0 is a d-dimensional vector of zeros,! and the
asymptotic covariance matrix Q € R%*? is supposed to be positive definite.

The random quantities Xj, X», ..., X, may dependent on each other. Nonetheless, in many
applications the weak convergence property of /i (6, — ) follows from the Central Limit
Theorem, which can be guaranteed under mild regularity conditions such as ergodicity and
strong mixing (Bradley, 2005, Hayashi, 2000, Chapter 2 and 6). Alternatively, we could consider
v/ (6, — ) an asymptotically sufficient statistic in the context of local asymptotic normality
(Le Cam, 1986, van der Vaart, 2002).

Our V-hypothesis reads

l m
H()\/i <\/ wi() = 901') V ( \/ wi9 < 901')

i=1 i=l+1

with 0 <[ <mand m > 1. Here, w; := [wil Wiy - - wid} is any row vector of real numbers and
0oi € Rfori=1,2,...,m. The V-hypothesis can be understood, equivalently, as a subset of RY,
Viz. HO\/ = U1m:1 HOi with

e Hy = {OGIRdZZUZ‘GZBOZ‘} fori=1,2,...,land
e Hy={0€eR":w <6y} fori=1+11+2,...,m.

In this case, each single null hypothesis, Hy,, represents either an affine hyperplane or an affine
half-space in RY. T assume that ® N Hyy, # @ in order to avoid any triviality.
Define the quantities W := [wij] € R™ and 6y := (601,602, - --,00m) € R™, where 6

represents a column vector in R™, so that the weak convergence property of /1 (6, — 6) reduces

1Throughou’c this work, the number of dimensions of 0 shall always be clear from the context.

4
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to

Vi (i — ) ~ Niu(0,2) (1)

with p, := W6, — 60y, u := WO — 6y, and X := WQW'. I suppose that the asymptotic covariance
matrix X € R"*" is positive definite, which implies that m < d and that the row vectors of W
are linearly independent.

After the re-parameterization the parameter set turns into P := W® — 6, which is an open
subset of R". Moreover, the V-hypothesis can be reformulated in a more convenient way as

l m
Hoy : (\/Viz()) V( \/ Vi§0>,
i=1 i=1+1

where y; denotes the ith component of u. Alternatively, we can interpret the VV-hypothesis in
the topological sense as Hyy = U/, Hy; with Hy; = {# € R": y; = 0} fori =1,2,...,] and
Hy = { ueR": y < O} fori =141,1+2,...,m2 However, the reader should distinguish
between y,, and y;. The former represents an m-dimensional estimator for y, whereas the latter
is a real number. In most practical applications 7 is greater than m and thus no confusion arises.

The main conclusions of this work do not change if we substitute any single null hypothesis
Ho;: p; < 0with H;: p; < 0and so I will ignore strict inequalities without loss of generality.
I say that Hpy is homogeneous if and only if all single null hypotheses are either one-sided or
two-sided. Put another way, Hyy is heterogenous if and only if 0 < I < m. The V-hypotheses
given by the three examples in the introduction are homogeneous. It seems to me that this is the
typical case in most practical applications and, at the end of this work, the reader will see that
the heterogeneous case is a little bit more intricate than the homogeneous one.

3. Main Results

Consider the matrix decomposition X = op ¢, where ¢ is an m x m diagonal matrix and p > 0 is
an m X m correlation matrix. Since X is positive definite both ¢ and p must be positive definite,
too. Let || - || be the Euclidean norm and || - ||z the Mahalanobis norm with respect to %, i.e.,
|x]|> = x’x and ||x||2 = ¥’ 1x for each x € R™. The corresponding distance between some
point x € R™ and any nonempty subset S of R is defined as

— =1 - - = inf - ’
lx = S]:= inf flx —yll and lx = Sliz:= inf [lx —ylz

respectively. It is clear that || x — S|| = ||x — S||z = 0 whenever x € S. A subset C C R" is said
to be a (pointed) cone if and only if z € C = yz € C for all y > 0.
It holds that Py := P N Hpy # @ and I make the modest assumption that y, € P.3 The

ZFor notational convenience, but also because the re-parameterization does not alter the null hypotheses in the logical
sense, I refrain from choosing different symbols for Hy, Hy1, Hop, - - . , Hpy, before and after the re-parameterization.

3Any assertion about some random quantity is meant to be true Py-almost surely unless otherwise stated. Hence, the
statement “y,, € P” means that Py(y, € P) = 1.
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log-likelihood ratio (see, e.g., van der Vaart, 1998, p. 228) of our experiment is given by

sup,cp exp[—3(pn —y) (/1) (1n — )]
sup, cp, exp [~ (pn —y)'(E/1) 7 (jn — )]

Ay = 2log

= Jof 7 (e —y)E" (i =) = nlln = Poll.-

Note that A, and Aoy, := nl|p, — Hoy H% are asymptotically equivalent, i.e., |A,;, — Agy| 20,
whenever y € Pp. In fact, since P is an open subset of R" and u, — u, we always can find
an open ball in P around y with radius ¢ > 0 such that the event ||y, — y|| < € occurs with
any arbitrarily high probability if the number of observations, , is sufficiently large. Moreover,
if the V-hypothesis is true we even can make & small enough such that Ao, = A, whenever
|ln — || < €. Put another way, the restriction imposed by P is asymptotically negligible and so
we may focus on Ay, in order to derive the asymptotic distribution of A,,.

A subset S C R™ that is obtained by setting precisely k € {1,2,...,m} dimensions of R" to
zero is said to be an (m — k)-dimensional canonical subspace of R™. In the case of k = 1, i.e., if
we eliminate only one dimension of R, the canonical subspace represents a (linear) hyperplane
in R™. This will be referred to as a canonical hyperplane in R™. Consider the decompositions
x = (x1,x2) and
X1 X
o1 X

7

where x; € RFand j; € R¥*¥ belong to the zero dimensions of S. If S is a canonical hyperplane
we have that X1 = 012.

The following proposition will serve as a basic result in the subsequent analysis. It implies
that the Mahalanobis distance of any point x € IR with respect to a canonical hyperplane does
not depend on the correlation matrix p that is implied by X.

Proposition 1. If S is an (m — k)-dimensional canonical subspace of R™ then

[l = Sllz = llxllz,

forall x € R™, where x; € R* and 1 € R™* belong to the zero dimensions of S. In particular, if S is
a canonical hyperplane in R™ it holds that ||x — S|z = |x1]/01.

Proof. Note that
lx = S% = inf (x —y)E7" (x —y).
yeS

Finding the infimum represents a convex minimization problem and, since X is positive definite,

the solution is unique. The Lagrangian reads

k
Lix,A) = (x—y)S N x—y)+ ) Aiely
i=1
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X2

llx = Sll, 1

Figure 1: Mahalanobis distance of a point x € R? to the vertical line S.
with A = (A1, Ay, ..., Ag) and its partial derivative with respect to x is

k
I
—22_1(x—y)+§ Aiej = 2% Yx—y) + 0 A,
i=1

where I denotes the k x k identity matrix and 0 is an (m — k) X k matrix of zeros. It follows that

X
/\:x—l 11
2 |y

1|1
=x—Z-X
Y 0

A
2

and from x; — % >11A = 0 we conclude that A = ZZﬁlxl. Hence, we obtain 1o = xp — 22121_11361
and thus

I
X —Yy = X1 .
y [2212111] 1

s-1_ [311 312]

Moreover, it is well-known that

By1 By

with By = Zﬂl + Zﬂ12123222212ﬁ1, B, = —ZﬂlzlzBQZ, and By; = —3222212;11. This means
that

and thus (x —y)'Z 71 (x — y) = ¥} Z;;'x1. We conclude that

lx=8llz = /(x — /= —y) = /¥ = s,

The rest of the proof is trivial. O

Proposition 1 is illustrated in Figure 1, where we can see that the Mahalanobis distance of
x € R? to the vertical line equals |x;|. Here, without loss of generality, the Mahalanobis norm
refers to the correlation matrix p rather than the covariance matrix X.

The next proposition represents the key observation of this work. It will be used later on in
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X2 X2 X2

ey

Figure 2: Cones in R? satisfying the condition of Proposition 2.

/

order to derive the asymptotic distribution of A,,.

Proposition 2. IfC C R™ isa cone such that |z — C|| = AjLq |zi| forallz = (z1,22,...,2m) € R™"\C
then we have that

x
el = A B
forall x = (x1,x2,...,%,) € R"\ Cbut ||x —Cl||lg =0forall x € C.

Proof. Note that
lx = €3 = inf (x —y)'Z 7 (x —y)
yeC

and so we obtain ||x — C||z = 0 in the case of x € C. Recall that X is positive definite. Hence, if x
does not belong to C the infimum must be attained on the boundary of C. Due to the property of
C that is expressed by the proposition, this can be found on a canonical hyperplane of R™. Thus,
it can be determined by setting, successively, each component of y to zero and minimizing the
quadratic form with respect to the other components of y. The desired infimum corresponds to
the smallest value of the quadratic forms that have been obtained for every canonical hyperplane.

Consider, without loss of generality, the partitions

X2 2

where x; denotes the first component of x, y; is the first component of y, and 211 = 012 symbolizes

21 X2
Yor Iyl

the upper left element of X. From Proposition 1 we know that ||x — S|z = |x1|/01 and so we

conclude that

x‘
ez = A X
forall x € R™\ C. O

Figure 2 illustrates some cones in IR? that satisfy the condition of Proposition 2.# In particular,

4 A typical counterexample is any canonical hyperplane or half-space in R™ with m > 1.

8
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the set Hpy represents a cone in R” that satisfies the given condition. Thus, we have that

m 2
| pin|
Aon = n|lpn — Hov |3, = 1,,,¢8, S
n n 122 ¢ oV i/:\l O'i/\/ﬁ

The quintessence is that we may ignore the asymptotic correlation matrix of /n (p, — pt), i.e.,
p, when calculating Ag,. The likelihood-ratio test rejects Hyy if A, exceeds a critical threshold
72 > 0. We already know that A, and Ao, are asymptotically equivalent. Hence, in our context,
this (essentially) means that Ay, > 72, i.e., that each /| Uin|/ 0 exceeds T provided p, ¢ Hoy.
Although we need not take p into account when calculating Aoy, its asymptotic distribution
may well depend on the asymptotic correlation matrix of \/n (4, — u). The set Hyy is Chernoff
regular and so we have that \/n (Hpy — 1) — To(t), where the convergence takes place in the
Painlevé-Kuratowski sense (Geyer, 1994). The limit of \/n (Hoy — 1), i.e., To(jt), represents the
tangent cone of Hyy at # and, since P is open, it holds that v/n (Py — i) — To(p). I make the
following implicit assumption, which is hopefully satisfied in most practical applications:

[Vt =) = v oy = o[- = ||V en = 1) = To )| 40,0

The following theorem provides the asymptotic distribution of Ag, and thus of A,,.
2
Theorem 1. Ay, Ay ~ || Niu(0,p) — %(V)HP

Proof. Note that

Now = inf 1 (i —y)'=" (n —)
= inf [\/ﬁ(#n — 1) —ﬁ(y—ﬂ)}/z_l[\/ﬁ(ﬂn —H) - x/ﬁ(y—ﬂ)}
YyE€Hoy

= IVn (un = 1) =V (Hov = 12 = IV (pn = 1) = To(w)[IZ + 0,(1)
= Vo™ (un — ) = o To(w)ll + 0p(1)

with \/no (py — p) ~ Nu(0,0) and o~ T5(p) = To(pt). Moreover, the distance ||x — To(u) ||,
is continuous in x and so, from the Continuous Mapping Theorem and Slutsky’s Theorem, we
conclude that

Now = Vo™ (pn = 1) = To(u)ll7 + 05 (1) ~ [N(0,0) = To(p) 13-

Since A, and Ay, are asymptotically equivalent, we obtain the same result for A,,. O

It is worth emphasizing that the asymptotic results presented in this work do not change if
we substitute ¢ with some estimator 0y, such that /n oy, ! (, — ) ~ N3 (0,p) and

2 2
[Vie o =) = v (Hoy = )| = [V (= 1) = To()|| +0,(1)

5The symbol 1 I denotes the indicator function, i.e., 14 = 1 if the assertion A is true and 14 = 0 otherwise.

9
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The correlation matrix p need not be known at all.
Theorem 1 can be used in order to derive the critical threshold 72 for the likelihood-ratio test.

For this purpose, I distinguish between the homogeneous and the heterogeneous case.

3.1. The Homogeneous Case

Now, let us come back to the V-hypothesis test, which is described in the introduction, and
suppose that Hyy is homogeneous. Then the critical thresholds are identical, i.e., in the one-sided
case (I = 0) we reject Hy; if and only if

- Hin

m - O_Z / \/ﬁ

where z, denotes the (1 — a)-quantile of the standard normal distribution, whereas in the two-

> Za,

sided case (I = m) we reject Hy; if and only if |t;,| > z,/,. In any case, the V-hypothesis test
rejects Hyy if and only if (the absolute value of) each single t-statistic exceeds the same critical
threshold. Put another way, Hyy is rejected whenever

Zysa, L=m

e , [=0
VA, ANy = 1yn¢H0v /\ |tin| > { Za .
i=1

We conclude that the \V-hypothesis test represents a likelihood-ratio test with critical threshold

2 =22 or7?

T = 72 /o, Tespectively.

We already know that the hypothesis test obeys the significance level «. Nonetheless, the
reader might ask whether it is possible to choose a smaller threshold in order to increase the
power of the likelihood-ratio test without destroying the given significance level. This question
can be answered by Theorem 1, which reveals the asymptotic distribution of A¢,. We can see
that the worst case under the null hypothesis Hyy is any situation in which one and only one
component of y equals zero, i.e., if To(pt) represents either a canonical hyperplane (I = m) or a
canonical half-space (I = 0) in R™. One can imagine that this is precisely the case in which the
(1 — a)-quantile of | N, (0,p) — To(p) Hi becomes maximal.

First of all assume that | = m and suppose, without loss of generality, that
76(]1) = {x = (xlerI' . '/xm) € R™: X1 = 0}

This means that only the first component of i is zero. Hence, the first single null hypothesis Hy;
is satisfied, but each other single null hypothesis is violated. From Proposition 1 we know that

lx = To(u)|lp = |x1|. Hence, since Hy; is two-sided, we obtain
I1X = To(m) 17 ~ x3

with X ~ N, (0,p). Since we have that [ = m the same conclusion can be made after setting any
other component of u to zero and assuming that all other components are distinct from zero.
By contrast, if Ho; is one-sided it follows that || X — 7o(u)]|7 is distributed like max{{, 0} with

10
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¢ ~ N(0,1). This is a standard result of likelihood theory. To the best of my knowledge it goes
back to Chernoff (1954).° Note that Fy2 (22 /2) =1 — « and thus

Frax{z012(22) =05+ 05F(z;) =1 - a

N—_——
=1-2«a

Thus, in the case of I = 0, the best choice for 72 is zi, whereas for | = m we should choose

2

= zi /2 This means that the V-hypothesis test, in fact, represents a likelihood-ratio test that
has a Type-I error probability of @ in the worst case. That is, given the significance level a, we
cannot increase the power of the likelihood-ratio test by choosing a smaller threshold. Moreover,
the V-hypothesis test inherits the asymptotic optimality properties of likelihood-ratio tests that
are known from likelihood theory (see, e.g., van der Vaart, 1998, Chapter 15 and 16). In particular,
if To(u) represents a canonical hyperplane or half-space in R” then the likelihood-ratio test

proves to be uniformly most powerful (van der Vaart, 1998, Proposition 15.2 and p. 236).

3.2. The Heterogeneous Case

The V-hypothesis test represents a proper likelihood-ratio test if Hp, is homogeneous, but this
no longer holds true if Hyy is heterogenous. The problem is that the likelihood-ratio test does
not distinguish between the one-sided and the two-sided single null hypotheses. If we want to
conduct the (ordinary) likelihood-ratio test in the heterogenous case we must choose the larger
threshold 72 = 2 ,. This threshold applies to each single t-statistic—irrespective of whether it
refers to a one-sided or two-sided single null hypothesis.

By contrast, the V-hypothesis test provides a lower threshold to the one-sided single null
hypotheses and so the likelihood-ratio test is more conservative. However, it can be improved

by choosing a critical threshold that depends on arg min,_ (1,2,..m} |tin| whenever u, ¢ Hyy.”

o 1

The resulting test is said to be a modified likelihood-ratio test. The principal idea goes like this:

e If 79(u) is a canonical hyperplane we have that t;, — oo for all i > [ and so it cannot
happen that arg min |¢;,| > I provided the sample size, 1, is large enough.

e By contrast, if 7p(p) is a canonical half-space we have that |t;,| — co for all i < I and thus

it cannot happen that arg min |¢;,,| < I, given that we have enough observations.

It is clear that the likelihood-ratio test makes sense only if the sample size is sufficiently large but
in this case arg min |t;,| provides us with important information: If arg min |t;,| > I we know
that 7o(p) cannot be a canonical hyperplane and if arg min |t;,,| < [ it cannot be a canonical
half-space. Hence, the modified likelihood-ratio test rejects Hy, whenever

" Zy, argmin |t;,| > 1
VAo = Ly, ¢Hy, /\ \tin| > { ' & il

e Zy/2, argmin |t | <1 '

®For similar results concerning the asymptotic distributions of log-likelihood ratios see, e.g., Self and Liang (1987).
7If uy € Hp, we have that A, = 0 and then it is clear that Hp, cannot be rejected at all. Moreover, in the following I
write “arg min |¢;,|” instead of arg min;_ (12,..m} |t;n| for notational convenience.

11
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The modified likelihood-ratio test is less conservative than the V-hypothesis test. This is because
in case arg min |¢;,| > I the critical threshold for each two-sided single null hypothesis is lower
than that of the V-hypothesis test. The modified likelihood-ratio test reduces the ordinary one
in the case of | = 0 or | = m, i.e,, if the VV-hypothesis is homogeneous.

4. Conclusion

The seemingly naive approach of rejecting a homogeneous V-hypothesis if we are able to
reject each single null hypothesis in Hy, represents a likelihood-ratio test. Hence, this simple
procedure can be justified either by likelihood theory or by local asymptotic normality theory.
The likelihood-ratio test ignores the asymptotic dependence structure of /1 (6, — 6), i.e., of the
asymptotically sufficient statistic of the given experiment. For this reason why we may focus on
rejecting each single null hypothesis in order to reject the joint null hypothesis. We even need
not take the number of single null hypotheses into account because this has no impact on the
worst-case asymptotic distribution of the log-likelihood ratio. In particular, we need not apply a
Bonferroni correction, or any similar technique from multiple testing, to control the Type-I error
probability. If Hyy is heterogeneous the V-hypothesis test is no longer a likelihood-ratio test and
the former is less conservative than the latter. Nonetheless, the likelihood-ratio test can simply
be modified after which it becomes less conservative than the V-hypothesis test. The modified
likelihood-ratio test corresponds to the ordinary likelihood-ratio test if Hpy is homogeneous.
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