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To Franziska





Streuungsmaße

Ein Mensch der von Statistik hört,

denkt dabei nur an den Mittelwert.

Er glaubt nicht dran und ist dagegen,

ein Beispiel soll es gleich belegen:

Ein Jäger auf der Entenjagd

hat einen ersten Schuß gewagt.

Der Schuß zu hastig aus dem Rohr,

lag eine gute Handbreit vor.

Der zweite Schuß mit lautem Krach

lag eine gute Handbreit nach.

Der Jäger spricht ganz unbeschwert

voll Glauben an den Mittelwert:

„Statistisch ist die Ente tot.“

Doch wär er klug und nähme Schrot –

dies sei gesagt, Ihn zu bekehren –

würde seine Chancen mehren:

Der Schuß geht ab, die Ente stürzt,

weil Streuung ihr das Leben kürzt.

Eugen Roth (1895–1976)





Preface

After my Ph.D. thesis in 2004 it was clear to me that I would like to continue my scien-

tific work. Originally I came from capital market theory but I early decided to focus on

statistics with a strong emphasis on methods of multivariate analysis. Due to the almost

unlimited availability of financial market data it is quite reasonable to apply such tools as

copulas, extreme value theory, generalized elliptical distributions, robust covariance ma-

trix estimation, shrinkage estimation, Bayesian analysis, etc., to that kind of observations.

Therefore the present work resumes my scientific contributions on that field over the last

four years. The alert reader will observe that the topic of portfolio optimization plays a

prominent role in that hodge-podge. Indeed, this is no accident since the implementation

of modern portfolio theory is still under vivid discussion. Moreover, it is a perfect play-

ground for statisticians with an aptitude for methods of multivariate analysis and indeed

leads to surprising results both from the viewpoint of mathematics and economics.

First of all I would like to thank Dr. Guy Lonsdale who gave me the kind opportunity to

work for the NEC Laboratories Europe (NEC Europe Ltd.) as an employee and later on

as a consultant. I think that the mathematical problems which had to be solved during

that period had a substantial influence on my academic work. Many discussions with

practitioners opened my eyes and maybe helped me to overcome that kind of autistic

thinking which is often prevalent within the scientific community per se.

At the end of 2004 I convinced Professor Karl Mosler to take me as a postdoctoral fellow on

his chair of econometrics at the University of Cologne. Inexplicably that happened although

I am apparently not a mathematician (at least in a formal manner). I am deeply grateful

for his support. He gave me not only the joy of mathematics (which turns sometimes into

suffering, as with all that beautiful things in life) but also an inspiring example of how a

perfect academic advisor should be. Okay, everybody knows that he is brilliant but that’s
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not the point. Indeed, he is a wise man and maybe he understood that human ability is

better unfolded by emancipating rather than restricting.

I am also thankful to my colleagues, co-authors, and all the other contributors to my work,

i.e. Alexander Bade, Anna Brandt, Dr. Jadran Dobrić, Dr. Rainer Dyckerhoff, Professor

Christian Genest, Professor Uwe Jaekel, Dr. Markus Junker, Professor Alexander Kempf,

Carsten Körner, Christina Loley, Dr. Christoph Memmel, Dr. Dr. Gert Mittring, Dr. Julia

Nasev, Walter Orth, Yulia Polyakova, Professor Donald Rubin, Christoph Scheicher, Pro-

fessor Friedrich Schmid, Dr. Rafael Schmidt, and Professor David Tyler. Without their

valuable contributions this work would have never been accomplished. Also I would like

to thank the participants and organizers of the summer school on Risk Theory and Related

Topics 2008 in Bedlewo. It was really a pleasure to meet so many nice people on that beau-

tiful place. I will not forget to mention Tobias Wickern, a doctoral student of the Cologne

Graduate School of Risk Management. Besides his mental capabilities he impressed me

very much by his great attitude.

This work is devoted to my wonderful wife Franziska. After all that years she eventually

accepted that it is not easy for me to be always at home at five o’clock in the evening. So

it was her part to take care for our lovely children. Meanwhile they almost grew up and I

am very happy that they still remember my name. Hence, you did a great job, Franziska!

Now, after so many years lost in Platonia, it’s good for me to finish my habilitation. Come

on, let’s see what the future will be...

Gabriel Frahm

Cologne, 18th December, 2008
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Introduction

Since Bachelier’s seminal work of 1900, probabilistic methods have been widely applied to

financial data. At the beginning the primary goal was to find a mathematical description

of the dynamics of asset prices on financial markets. Even though this is still a matter

of particular interest – especially due to the recent turmoils after the subprime mortgage

crisis – it is only one side of the coin. Statistical methods indeed can help to quantify risks.

However, the other side of the coin is that statistical methods themselves are susceptible

to risk as well. Besides the fact that they are often misused or misunderstood, there are

many other factors which can lead to wrong conclusions. For example, a statistical model

which is chosen for describing the data generating process might be wrong and even if the

model is correct, a remaining problem is parameter uncertainty.

There is more to it than that. In many practical applications of statistical methods one can

observe the problem of data dredging (also known as ‘data pruning’, ‘data fishing’, ‘data

snooping’, ‘data mining’, etc.), i.e. searching for ‘statistically significant’ relationships in

large quantities of data and/or dimensions. Another problem is to distinguish between

the purpose of statistical inference and the goal of making an optimal decision based on

empirical data. One might expect that an estimation procedure which is ‘efficient’ in

statistical terms is also the best choice for the decision maker. Unfortunately, in many

cases it can be shown that this assertion is wrong.

I would like to give a more or less informal example. Suppose that ϕ is some utility function

depending on two quantities, i.e. a decision x and an unknown parameter θ . Now let θ̂

be some estimator for θ such that ϕ
(
x ; θ̂

)
is an efficient or at least unbiased estimator for

the utility ϕ
(
x ; θ

)
. Typically, the decision maker tries to maximize his utility by choosing

x̂∗ = arg maxξ ϕ
(
ξ ; θ̂

)
. Under quite general conditions concerning ϕ and θ̂ it holds that

ϕ
(
x̂∗; θ̂

)
> ϕ

(
x ; θ̂

)
(a.s.) for every fixed decision x . That means

E
{
ϕ
(
x̂∗; θ̂

)}
> E

{
ϕ
(
x∗; θ̂

)}
= ϕ

(
x∗; θ

)
> ϕ

(
x̂∗; θ

)
,
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where x∗ = arg maxξ ϕ
(
ξ ; θ

)
denotes the optimal decision. Hence, although ϕ

(
· ; θ̂
)

is an

unbiased estimator for ϕ
(
· ; θ
)
, surprisingly the same function cannot produce an unbiased

estimator for the utility of the decision maker’s actual choice x̂∗. This is dangerous because

it can mislead the decision maker into taking some highly suboptimal alternative. That

means the fundamental concepts of unbiasedness and efficiency, which are widely accepted

in statistical inference, are not appropriate in decision theory.

The first chapter (‘Estimating the tail-dependence coefficient: properties and pitfalls’) is

a joint work with M. Junker and R. Schmidt (Frahm et al., 2005). The so-called tail-

dependence coefficient can be used as a measure for describing the dependence between

extremal data in finance. This is an important topic since extremal dependencies between

financial asset returns have dramatically increased in recent years. Therefore the tail-

dependence coefficient has become a popular measure in risk management. We investigate

different methods for estimating the tail-dependence coefficient which are frequently used

in the literature. Our work is based on copula theory and multivariate extreme value

theory. Actuaries and statisticians who are not familiar with extreme value theory often

have difficulties in choosing appropriate methods for measuring or estimating the tail-

dependence. One reason for that is the limited amount of (extremal) data which makes

the estimation quite sensitive to the choice of the method. Another reason is the lack

of literature comparing the various estimators developed in (mostly theoretical) articles

related to extreme value theory. Hence, we try to partially fill this gap by surveying and

comparing various methods of tail-dependence estimation.

In the second chapter (‘Dependence of stock returns in bull and bear markets’), which is

a joint work with J. Dobrić and F. Schmid (Dobrić et al., 2008), we present an alternative

method for measuring the dependence of extreme values. Pearson’s rho, i.e. the standard

estimator for the linear correlation coefficient, is the most commonly used measure of

dependence. However, its many shortcomings have been often documented in the literature.

Pearson’s rho is strongly affected by the marginal distributions of the random variables

which are taken into consideration and it is also very sensitive to outliers. Further, it only

quantifies the amount of linear dependence. In spite of that fact, Pearson’s rho is used

as a dependence measure in most empirical investigations of extreme asset returns. This

can lead to wrong conclusions. As an appropriate alternative we introduce a conditional

version of Spearman’s rho. This is an estimator for the rank-correlation coefficient of

extreme values. Our approach is based on fundamental results of copula theory. We apply
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our estimator to asset returns which have been observed on the German stock market. In

particular, we concentrate on the question whether dependence is significantly different in

bull and bear markets.

The following chapter (‘A general approach to Bayesian portfolio optimization’) is a joint

work with A. Bade and U. Jaekel (Bade et al., 2008). Traditional portfolio optimiza-

tion strategies are susceptible to parameter uncertainty and many portfolio optimization

approaches rely on rather simple assumptions about the distribution of asset returns. How-

ever, it is well-known that short-term financial data can be heavy-tailed or at least lep-

tokurtic, tail-dependent, skewed or asymmetric in some other way. Moreover, financial

time series typically exhibit volatility clusters or even long-memory; high-frequency data

generally are non-stationary, have jumps, etc. This might be the reason why many authors

prefer to work with long-term asset returns. However, decreasing the sampling frequency

leads to a loss of statistical efficiency. Our principal goal is to present a general approach

to portfolio optimization which takes account of both estimation risks and stylized facts

of financial data. This is done within a Bayesian framework using contemporary methods

of Markov chain Monte Carlo. By contrast, the existing literature on Bayesian portfolio

optimization in general does not take stylized facts into account since many Bayesian ap-

proaches are based on a purely analytical fundament. To avoid limitations of such kind,

we suggest a Metropolis-Hastings-like algorithm for simulating the posterior distribution

of the unknown parameters. This is derived on the basis of empirical information obtained

from time series data and prior information possibly given by an expert. By choosing a

numerical rather than an analytical approach, principally we can use almost any proba-

bilistic model for the data and parameters. At the end of Chapter 3 a realistic portfolio

optimization problem is presented, which has been performed on a standard PC in reason-

able time.

In Chapter 4 (‘Linear statistical inference for global and local minimum variance portfolios’)

I provide analytic results concerning the small-sample properties of minimum variance

portfolios (Frahm, 2008). At the beginning of modern portfolio theory it was usually

supposed that the parameters of interest, i.e. the means and (co-)variances of asset returns,

can be estimated accurately such that estimation errors remain negligible. Although this

conjecture might be true for variances and covariances if the sample size is large enough

compared to the number of assets, it is not an appropriate simplification for expected asset

returns in most practical situations. Therefore the so-called global minimum variance
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portfolio has been recently advocated by many authors. Its main advantage is that no

expected asset returns have to be estimated and so the impact of estimation errors can

be substantially reduced. However, in many practical situations investors do not aim at

finding the global minimum variance portfolio but a minimum variance portfolio under some

additional constraints besides the budget constraint. For example, portfolio managers of

mutual funds often have to observe certain limits regarding their choice of portfolio weights.

Such a portfolio will be referred to as a local minimum variance portfolio. Focusing on the

small-sample rather than large-sample properties is an important issue, for I will show that

large-sample approximations fail if the sample size is large but the number of observations

relative to the number of assets is small. The statistical instruments used in that chapter

are taken from linear regression theory under stochastic regressors. After recalling some

existing hypothesis tests for the global minimum variance portfolio (Kempf and Memmel,

2006), I derive the corresponding tests for local minimum variance portfolios. Furthermore,

the joint distribution of the weights of global and local minimum variance portfolios is

calculated and I also present an empirical study where the given instruments are applied

to stock market data.

Chapter 5 (‘Dominant estimators for the global minimum variance portfolio’) is a joint

work with C. Memmel (Frahm and Memmel, 2008). Kempf and Memmel (2006) showed

that the traditional estimator for the global minimum variance portfolio is the best unbi-

ased estimator if the asset returns possess a multivariate normal distribution. However, as

already pointed out before, that does not necessarily imply that the traditional estimator

is the best choice from the investor’s point of view. Indeed, we have found two estimators

for the global minimum variance portfolio which dominate the traditional estimator with

respect to the out-of-sample variance of the portfolio return. Due to the arguments given

in Chapter 4, the same conclusion can be drawn for estimating local minimum variance

portfolios. The methods used in Chapter 5 heavily rely on Stein-type estimation theory.

In contrast to the existing shrinkage approaches which can be found in the portfolio op-

timization literature, our results are valid in small samples. We show that by using our

shrinkage estimators it is possible to reduce the out-of-sample variance of the portfolio

return substantially. We present not only the small-sample properties of the shrinkage

estimators and some related quantities, but also their large-sample properties. Moreover,

backed by the results of a recent study presented by DeMiguel et al. (2007), we derive a

small-sample test for the ‘naive diversification hypothesis’, i.e. for deciding the question of

xvi



Introduction

whether or not it is better to completely ignore time series information in favor of naive

diversification.

In the following chapter (‘A hypothesis test for the best investment strategy’) I discuss the

question whether a chosen investment strategy is significantly the best compared to some

other candidates (Frahm, 2007). Here the notion of significance is emphasized, since for

applying a statistical test it is typically assumed that the hypothesis on hand is chosen

before examining the data. Otherwise the hypothesis test would suffer from a selection bias.

Speaking more generally, given some empirical or simulated data it is often questionable

which ‘alternative’ or ‘decision’ is the best one in terms of some objective or utility function.

Hence, a favorite alternative has to be compared with some given competitors. That means

various hypothesis tests have to be conducted simultaneously, which is a typical problem

of multiple testing. In Chapter 6, I derive a large-sample test for the best alternative in a

rather general setting. The presented test accounts for conditional heteroscedasticity and

non-normality of asset returns – in contrast to the well-known Jobson-Korkie-Memmel test

– and it will be demonstrated by an application to financial data.

Chapter 7 (‘Asymptotic distributions of robust shape matrices and scales’) leaves the scope

of portfolio optimization and belongs to the general theory of robust covariance matrix es-

timation. In this work (?) I discuss the problem of shape matrix estimation. It has been

frequently observed that many multivariate statistical methods like principal components

analysis, canonical correlation analysis, linear discriminant analysis, and multivariate re-

gression require the covariance matrix only up to some scaling constant. If the topic of

interest is not the scale but only the shape of the distribution of some random vector X,

it is not meaningful to focus on the asymptotic covariance matrix of an estimator for the

covariance matrix of X, i.e. Σ or some other matrix being proportional to Σ . This problem

is much discussed in the recent literature on robust covariance matrix estimation. I derive

explicit expressions for the joint asymptotic distributions of robust shape matrix estima-

tors and the associated estimators for the scale. This is done by using a fundamental result

given by Tyler (1982) and advanced methods of multivariate analysis. This chapter also

contains a generalization of a surprising result recently obtained by Paindaveine (2008)

in the context of local asymptotic normality theory. More precisely, it is shown that the

estimators for the shape matrix and scale are asymptotically independent for one and only

one specific choice of the scale function, provided their asymptotic distribution is normal.
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The last chapter (‘Distribution-free shape matrix estimation for incomplete data’) is a

joint work with U. Jaekel (Frahm and Jaekel, 2007a). One disadvantage of most robust

covariance matrix estimators is that they do not account for missing data. However, this

is extremely important, since in my opinion almost any data set which can be found in

practice is incomplete. Therefore we derive a shape matrix estimator which works both

with complete and incomplete data. This is done by applying contemporary methods of

missing data analysis. Our estimator is distribution-free within the class of generalized

elliptical distributions (Frahm, 2004). That means it is invariant under any change of the

generating variate and thus it is not bothered by heavy tails and other kinds of financial

data anomalies. We show that in the complete-data case the presented estimator corre-

sponds to Tyler’s celebrated M-estimator (Tyler, 1983, 1987a). By contrast, our extension

of Tyler’s M-estimator turns out to be an ML-estimator if the data are incomplete. Thus

it is possible to obtain its asymptotic properties by standard results of likelihood theory,

using some arguments given in Chapter 7. We also present a fast algorithm for calculat-

ing the estimate which works well even for high-dimensional data. Further, we provide

a simulation study covering the complete-data as well as the incomplete-data case using

clean and contaminated data under the different missingness mechanisms MCAR, MAR,

and NMAR.

xviii



Chapter 1.

Estimating the Tail-Dependence

Coefficient: Properties and Pitfalls

1.1. Motivation

During the last decade, dependencies between financial asset returns have increased due

to globalization effects and relaxed market regulation. However, common dependence

measures such as Pearson’s correlation coefficient are not always suited for a proper un-

derstanding of dependencies in financial markets; see, e.g., Embrechts et al. (2002). In

particular, dependencies between extreme events such as extreme negative stock returns

or large portfolio losses cause the need for alternative dependence measures to support

beneficial asset-allocation strategies.

Several empirical surveys such as Ané and Kharoubi (2003) and Junker and May (2005)

exhibited that the concept of tail-dependence is a useful tool to describe the dependence be-

tween extremal data in finance. Moreover, they showed that especially during volatile and

bear markets, tail-dependence plays a significant role. In this context, tail-dependence is

described via the so-called tail-dependence coefficient (TDC) introduced by Sibuya (1960).

This concept is reviewed in Section 1.2.

However, actuaries and statisticians who are not familiar with extreme value theory (EVT)

often have difficulties in choosing appropriate methods for measuring or estimating tail-

dependence. One reason for that is the limited amount of (extremal) data which makes the

estimation quite sensitive to the choice of method. Another reason is the lack of literature

which compares the various estimators developed in (mostly theoretical) articles related

to EVT. This paper tries to partially fill this gap by surveying and comparing various

1



Chapter 1. Estimating the Tail-Dependence Coefficient: Properties and Pitfalls

methods of tail-dependence estimation. In other words, we will present the most common

estimators for the TDC and compare them via a simulation study.

TDC estimators are either based on the entire set of observations or on extremal data.

Regarding the latter, EVT is the natural choice for inferences on extreme values. In the

one-dimensional setting, the extreme value distributions can be expressed in parametric

form, as shown by Fisher and Tippett (1928). Thus it suffices to apply parametric esti-

mation methods only. By contrast, multidimensional extreme value distributions cannot

be characterized by a fully parametric model in general. This leads to more complicated

estimation techniques.

Parametric estimation methods are efficient if the distribution model under consideration

is true, but they suffer from biased estimates in case the underlying model is different.

Nonparametric estimation procedures avoid this type of model error but come along with a

larger estimation variance. Accordingly, we distinguish in Section 1.3 between the following

types of TDC estimations, namely, TDC estimations which are based on:

a) a specific distribution or a family of distributions;

b) a specific copula or a family of copulas; or

c) a nonparametric model.

We discuss properties of the estimators along with possible applications and give references

for further reading. Section 1.4 presents a detailed simulation study which analyzes and

compares selected estimators regarding their finite sample behavior. Statistical methods

testing for tail-dependence or tail-independence are not included in this work. An account

on that topic can be found for instance in Draisma et al. (2004).

1.2. Preliminaries

The following approach, discussed by Sibuya (1960) and Joe (1997, p. 33) among others,

represents the most common definition of tail-dependence. Let (X,Y ) be a random pair

with joint cumulative distribution function F and marginals G (for X) and H (for Y ).

The quantity

λU = lim
t→1−

IP{G (X) > t | H (Y ) > t}

2



Chapter 1. Estimating the Tail-Dependence Coefficient: Properties and Pitfalls

is called the upper tail-dependence coefficient (upper TDC), provided the limit exists. We

say that (X,Y ) is upper tail dependent if λU > 0 and upper tail independent if λU = 0.

Similarly, we define the lower tail-dependence coefficient by

λL = lim
t→0+

IP{G (X) ≤ t | H (Y ) ≤ t}.

Thus, the TDC roughly corresponds to the probability that one margin exceeds a high/low

threshold under the condition that the other margin exceeds a high/low threshold.

The TDC can also be defined via the notion of copula, introduced by Sklar (1959). A

copula C is a cumulative distribution function whose margins are uniformly distributed

on [0, 1]. As shown by Sklar (1959), the joint distribution function F of any random pair

(X,Y ) with marginals G and H can be represented as

F (x, y) = C{G(x),H(y)}. (1.1)

in terms of a copula C which is unique when G and H are continuous, as will be assumed

in the sequel. Refer to Nelsen (2006) or Joe (1997) for more information on copulas.

If C is the copula of (X,Y ), then

λL = lim
t→0+

C(t, t)

t
and λU = lim

t→1−

1 − 2t+ C(t, t)

1 − t
.

Another representation of the upper TDC is given by λU = lims→0+ C̃(s, s)/s, where

C̃ (1 − t, 1 − t) = 1 − 2t+C (t, t) denotes the survival copula of C. Thus, the upper TDC

of C equals the lower TDC of its survival copula and, vice versa, the lower TDC of C

is given by the upper TDC of C̃. Since the TDC is determined by the copula of X and

Y, many copula features transfer directly to the TDC. For instance, the TDC is invariant

under strictly increasing transformations of the margins.

Consider a random sample (X1, Y1), . . . , (Xn, Yn) of observations of (X,Y ). Let

X∗
n = max (X1, . . . ,Xn) and Y ∗

n = max (Y1, . . . , Yn)

be the corresponding componentwise maxima. In order to have a meaningful discussion

about tail-dependence in the EVT framework, we assume that F belongs to the domain

of attraction of an extreme value (EV) distribution. This means that as n→ ∞, the joint

distribution of the standardized componentwise maxima X∗
n and Y ∗

n has the following

limiting EV distribution (with non-degenerated margins):

Fn(anx+ bn, cny + dn) → FEV (x, y)

3



Chapter 1. Estimating the Tail-Dependence Coefficient: Properties and Pitfalls

for some standardizing sequences (an), (cn) > 0 and (bn), (dn) ∈ R. Suppose that FEV has

unit Fréchet margins GEV and HEV , i.e.,

GEV (x) = exp (−1/x) , x > 0 and HEV (y) = exp (−1/y) , y > 0.

This assumption, which is standard in the EVT framework, is similar to the assumption

that the margins can be transformed into uniform distributions in the theory of copulas.

Then the EV distribution possesses the following representation (Pickands, 1981):

FEV (x, y) = exp

{
−
(

1

x
+

1

y

)
A

(
y

x+ y

)}
, x, y > 0. (1.2)

Here A : [0, 1] → [1/2, 1] is a convex function such that max(t, 1 − t) ≤ A(t) ≤ 1 for every

0 ≤ t ≤ 1. The function A is known as Pickands’ dependence function. In the sequel,

the term dependence function always refers to the above representation and should not be

confused with the copula of a bivariate random vector.

The copula C∗
ℓ , ℓ ∈ N, of the componentwise maxima X∗

l and Y ∗
l is related to the copula

C as follows:

C∗
ℓ (u, v) = Cℓ

(
u1/ℓ, v1/ℓ

)
, 0 ≤ u, v ≤ 1.

If the diagonal section C (t, t) is differentiable for t ∈ (1− ε, 1) for some ε > 0, then it can

be shown that

2 − λU = lim
t→1+

1 − C (t, t)

1 − t
= lim

t→1+

1 − C∗
ℓ (t, t)

1 − t
= lim

t→1+

dC (t, t)

dt
= lim

t→1+

dC∗
ℓ (t, t)

dt
(1.3)

for all ℓ ∈ N. In particular, for ℓ→ ∞ we obtain

CEV (t, t) = FEV

{
− 1

log (t)
,− 1

log (t)

}
= t2A(1/2), 0 < t < 1,

where CEV denotes the copula of FEV . This implies the following important relationship:

λU = 2 − 2A

(
1

2

)
.

Another representation of the EV distribution is frequently encountered in the EVT lit-

erature. If FEV has unit Fréchet margins, there exists a finite spectral measure S on

B = {(x, y) : x, y > 0, ‖(x, y)‖2 = 1} , where ‖ · ‖2 denotes the Euclidean norm, such that

FEV (x, y) = exp

{
−
∫

B
max

(
u

x
,
v

y

)
dS(u, v)

}
, x, y > 0,

with
∫
B u dS(u, v) = 1 and

∫
B v dS(u, v) = 1. This yields

λU = 2 −
∫

B
max (u, v) dS(u, v)

4
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and A(1/2) =
∫
B max (u, v) dS(u, v)/2. The estimation of the spectral measure is discussed

by Joe et al. (1992), de Haan and Resnick (1993), Einmahl et al. (1993, 1997), and Capéraà

and Fougères (2000), among others.

Thus any estimator of the upper TDC λ̂U (the index n is dropped for notational conve-

nience) is equivalent to some estimator Ân (1/2) via the relationship λ̂U = 2 − 2Ân (1/2) .

By considering the dependence function related to the survival copula, this holds also for

the lower TDC. An abundant literature exists concerning the estimation of the dependence

function A. See for instance de Oliveira (1984), Tawn (1988), Smith et al. (1990), Hutchin-

son and Lai (1990) or Coles and Tawn (1991) for fitting parametric (structural) models to

A. By contrast, Pickands (1981), Deheuvels (1991), Joe et al. (1992), Abdous et al. (1999),

Capéraà and Fougères (2000) or Falk and Reiss (2003) consider nonparametric estimation

procedures.

Due to the invariance of the TDC of (X∗
ℓ , Y

∗
ℓ ) with respect to ℓ, the following estimator

arises quite naturally:

λ̂U = 2 − 2Âm

(
1

2

)
= 2 − d̂Cm

dt
(t, t)

∣∣∣∣∣
t≈1

, 1 ≤ m ≤ n.

Here ̂dCm/dt denotes the estimated derivative of the diagonal section of the copula C∗
ℓ

from m block maxima, where each block contains ℓ = n/m elements of the original data

set (we choose m such that n/m ∈ N). The special case m = n (i.e., ℓ = 1) corresponds to

n block maxima which form the original data set. Every TDC estimator has to deal with

a bias-variance trade-off arising from the following two sources. The first one is the choice

of the threshold t. That is, the larger t the smaller the bias (and the larger the variance)

and vice versa. The second source is the number of block maxima. Thus, the larger m

the smaller the variance but the larger the bias. An optimal choice of m and t, e.g., with

respect to the mean squared error (MSE) of the estimator, is usually difficult to derive. A

similar problem exists for univariate tail-index estimations of regular varying distributions.

In Figure 1.4, we illustrate the latter bias-variance problem via the following estimator

which is motivated by (1.3) and forms the nonparametric counterpart of the parametric

estimator χ̂ introduced in Coles et al. (1999):

λ̂LOG
U = 2 − log Ĉm

(
m−k

m , m−k
m

)

log
(

m−k
m

) , 0 < k < m, (1.4)

where

Ĉm (u, v) =
1

m

m∑

j=1

11 (R1j/m ≤ u,R2j/m ≤ v)

5
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is called the empirical copula. Here 11 denotes the indicator function, while R1j and R2j ,

respectively, are the ranks of the block maxima X∗
ℓj and Y ∗

ℓj, j = 1, . . . ,m, ℓ = n/m.

The threshold is denoted by k. As expected, Figure 1.4 reveals that the estimation via

block maxima has a lower bias but a larger variance. The bias-variance tradeoff for various

thresholds can be clearly seen, too.

In order to ease the presentation we do not explicitly differentiate between block maxima

and the original data set in the forthcoming sections.

1.3. TDC Estimation

The following estimation approaches are classified by the degree of prior information which

is available about the distribution of the data. We will either assume a specific distribution

or a class of distributions, a specific copula or a class of copulas, or we perform a com-

pletely nonparametric estimation. For notational convenience, λ will be written without

the subscript L or U whenever we know that λL = λU . Moreover, the subscript is dropped

whenever we neither specifically refer to the upper nor to the lower TDC.

1.3.1. Estimation Using a Specific Distribution

Suppose that the distribution F (· ; θ) is known. Further assume that λ can be represented

via a known function of θ, i.e., λ = λ(θ). Also assume that F allows for tail-dependence.

Then the parameter θ can be estimated via maximum-likelihood (ML), which suggests the

estimator λ̂ = λ(θ̂). Under the usual regularity conditions of ML-theory, as in Casella and

Berger (2002, p. 516), the functional estimator λ̂ = λ(θ̂) represents an ML-estimator which

possesses the well-known consistency and asymptotic normality properties.

Example 1. Suppose that (X,Y ) is bivariate t-distributed, i.e.,

(X,Y )
d
= µ+

Z√
χ2

α/α
, α > 0,

where Z ∼ N (0,Σ), µ ∈ R2, Σ ∈ R2×2 positive definite, and Z is stochastically independent

of χ2
α. Then Embrechts et al. (2002) show that

λ = 2 t̄α+1

(√
α+ 1

√
1 − ρ

1 + ρ

)
, (1.5)

where t̄α+1 is the survival function of a Student’s univariate t-distribution with α+1 degrees

of freedom. The parameter ρ = sin(πτ/2), expressed in terms of Kendall’s tau, denotes the

6
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correlation parameter of (X,Y ). It corresponds to Pearson’s correlation coefficient, when

it exists. 2

Obviously this estimation approach requires prior information about the joint distribution

function of the data. Consequently, the TDC estimator generates good estimates (in the

sense of MSE) if the proposed distribution is the right one, but it will be biased if the

distribution is wrong. In other words, this type of estimation is not expected to reveal

surprising results and will be, therefore, excluded from the subsequent discussion.

1.3.2. Estimation within a Class of Distributions

Instead of a specific distribution, we now suppose that F belongs to a class of distribu-

tions. Because of its popularity in theory and practice, as illustrated, e.g., by Bingham

et al. (2003) and Embrechts et al. (2003), we consider the class of elliptically contoured

distribution, viz.

(X,Y )
d
= µ+ RΛU (2), (1.6)

where U (2) is a random pair uniformly distributed on the unit circle, R is a nonnegative

random variable that is stochastically independent of U (2), µ ∈ R2 is a location parameter,

and Λ ∈ R2×2 is nonsingular. Well-known members of the latter distribution family are

the multivariate normal, multivariate t and symmetric generalized hyperbolic distributions.

Note that ρ = 0 does not correspond to independence; see, e.g., Abdous et al. (2005) for

additional discussion concerning the dependence properties of this class of copulas.

In case the tail distribution of the Euclidean norm ‖(X,Y )‖2 is regularly varying with tail

index α > 0 [see Bingham et al. (1987) for the definition of regular variation], Schmidt

(2002) and Frahm et al. (2003) show that tail-dependence is present and that relationship

(1.5) still holds. In particular, we have

A

(
1

2

)
= tα+1

(√
α+ 1

√
1 − ρ

1 + ρ

)
.

Various methods for the estimation of the tail index α are discussed, e.g., in Matthys and

Beirlant (2002) or Embrechts et al. (1997).

1.3.3. Estimation Using a Specific Copula

Suppose that the copula C(· ; θ) is known. Note that this is a much weaker assumption

than assuming a specific distribution. The estimation of the parameter θ can be performed

7
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in two steps. First, we transform the observations of X and Y (or the corresponding block

maxima) via estimates of the marginal distribution functions G and H and fit the copula

from the transformed data in a second step; the transformation is justified by (1.1). Unless

stated otherwise, the marginal distribution functions will be estimated by the empirical

distribution functions Ĝn and Ĥn.

The estimation of G and H via the empirical distribution functions avoids an incorrect

specification of the margins. Genest et al. (1995), as well as Shih and Louis (1995), discuss

consistency and asymptotic normality of the copula parameter θ if it is estimated in this

fashion. Roughly speaking, if the map between θ and λ is smooth enough, then the

estimator λ̂ = λ(θ̂) is consistent and asymptotically normal provided θ̂ is consistent and

asymptotically normal.

If G(· ; θG) and H(· ; θH) are assumed to be specific distributions, then θG and θH can be

estimated, e.g., via ML methods. In particular, the IFM method (method of inference

functions for margins) consists of estimating θG and θH via ML and, in a second step,

estimating the parameter θ of the copula C(· ; θ) via ML also. However, for this approach

it is necessary that the parameters θG and θH do not analytically depend on the copula

parameter θ. Results about the asymptotic distribution and the asymptotic covariance

matrix of this type of estimation are derived in Joe (1997, Ch. 10); see also the references

therein. A simulation study (which is not included in this paper but can be obtained from

the authors upon request) shows that there is not much difference between the two step and

the one step estimation in terms of the MSE. Also the MSE related to the pseudo-ML and

the ML-estimation via empirical margins are roughly the same in this simulation study.

Example 2. Suppose that the data stem from a bivariate t-copula

C (u, v ;α, ρ) = tα
{
t−1
α (u), t−1

α (v) ; ρ
}
,

where tα(· ; ρ) represents the bivariate t-distribution function with α degrees of freedom

and correlation parameter ρ. 2

Note that elliptical copulas (i.e., copulas of elliptical random vectors) are restricted to

transpositional symmetry, i.e., C = C̃ and thus λL = λU . Hence, if the TDC is estimated

from the entire sample via a single copula, the elliptical copulas are not appropriate if

λL 6= λU . For example it is well known that investors react differently to negative and

positive news. In particular for asset return modeling, the symmetry assumption has to be

considered with care; see, e.g., Junker (2004) for an empirical study of commodity returns

8
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and U.S. dollar yield-returns using likelihood ratio tests. In such a case, λL and λU are

better estimated by utilizing two different elliptical copulas and taking only the lower left

or the upper right observations of the copula into consideration (see the example below).

Example 3. Suppose that C is a specific Archimedean copula such as the Gumbel copula

CGU (u, v) = exp

[
−
{

(− log u)
1
θ + (− log v)

1
θ

}θ
]
,

where 0 < θ ≤ 1. It is easy to show that λU (θ) = 2 − 2θ and therefore A(1/2) = 2θ/2.

Thus, λU may be estimated via λU (θ̂) where θ̂ is obtained from a fitted Gumbel copula.

2

In general, Archimedean copulas are described by a continuous, strictly decreasing and

convex generator function φ : [0, 1] → [0, ∞] with φ(1) = 0. The copula C is then given

by

C(u, v) = φ[−1] {φ (u) + φ (v)} .

Here φ[−1] : [0, ∞] → [0, 1] denotes the pseudo-inverse of φ. The generator φ is called

strict if φ(0) = ∞ and in this case φ[−1] = φ−1; see Genest and MacKay (1986) or Nelsen

(2006, Ch. 4).

Suppose (U, V ) is distributed with Archimedean copula C with generator φ(· ; θ) involving

an unknown parameter θ. Recall that the TDC is defined along the copula’s diagonal. In

this context, we mention the following useful relationship

IP{max (U, V ) ≤ t} = C (t, t) = φ−1 {2φ (t ; θ) ; θ} .

Example 4. Consider the following conditional distribution function:

IP (U ≤ u, V ≤ v | U, V ≤ t) =
C(u, v)

C(t, t)
, 0 < t < 1, 0 ≤ u, v ≤ t.

Observe that we may only consider data which fall below the threshold t in order to estimate

the lower TDC. The conditional distribution function of the upper right quadrant of C is

similarly defined. The point is that it is useful to allow completely different conditional

distributions for lower left and upper right observations of the copula. Note that the

typical bias-variance trade-off appears again for the choice of the threshold t (as discussed

in Section 1.1). 2

9
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1.3.4. Estimation within a Class of Copulas

Let us consider the important class of Archimedean copulas. Juri and Wüthrich (2002)

have derived the following limiting result for the bivariate excess distribution of Archime-

dean copulas C. Define

Ft (x) =
C {min (x, t) , t}

C (t, t)
, 0 ≤ x ≤ 1,

where 0 < t < 1 is a low threshold. Note that Ft can be also defined via the second

argument of C since C(u, v) = C(v, u). Now consider the “copula of small values” defined

by

Ct (u, v) =
C
{
F−1

t (u), F−1
t (v)

}

C (t, t)
, (1.7)

where F−1
t is the generalized inverse of Ft. It can be shown that if C has a differentiable

and regularly varying generator φ with tail index α > 0 then

lim
t→0+

Ct (u, v) = CCl (u, v ;α) ,

for every 0 ≤ u, v ≤ 1, where

CCl (u, v ;α) =
(
u−α + v−α − 1

)−1/α

is the Clayton copula with parameter α. One may verify that λL = λL(α) = 2−1/α.

Thus, the lower TDC can be estimated by fitting the Clayton copula to small values of the

approximate copula realizations and set λ̂L = 2−1/α̂.

Remarks.

i) Archimedean copulas that belong to a domain of attraction are necessarily in the do-

main of attraction of the Gumbel copula, which is an EV copula; see, e.g., Genest and

Rivest (1989) and Capéraà and Fougères (2000). Hence, the Gumbel copula seems

to be a natural choice regarding the TDC estimation if we work in an Archimedean

framework.

ii) The marginal distributions of financial asset returns are commonly easier to model

than the corresponding dependence structure; this is often due to the limited avail-

ability of data. Consider for instance the pricing of so-called basket credit deriva-

tives. Here the marginal survival functions of the underlying credits are usually

estimated via parametric hazard-rate models by utilizing observable default spreads.

10



Chapter 1. Estimating the Tail-Dependence Coefficient: Properties and Pitfalls

The choice of an appropriate dependence structure, however, is still a debate and sev-

eral approaches are currently discussed; see, e.g., Li (1999) or Laurent and Gregory

(2005).

1.3.5. Nonparametric Estimation

In the present section, no parametric assumptions are made for the copula and the marginal

distribution functions. TDC estimates are obtained from the empirical copula Ĉn. Note

that the empirical copula implies the following relationship

F̂n(x, y) = Ĉn{Ĝn(x), Ĥn(y)},

where F̂n, Ĝn, and Ĥn denote the empirical distributions.

In (1.4), we presented the nonparametric upper TDC estimator λ̂LOG
U which is based on

the empirical copula. This estimator was motivated by equation (1.3). Note that if the

bivariate data are stochastically independent (or comonotonic), λ̂LOG
U is well behaved for

all thresholds k in terms of the bias, as in that case C(t, t) = t2 (or C(t, t) = t) and thus

λ̂LOG
U ≈ 2 − 2 = 0 (or λ̂LOG

U ≈ 2 − 1 = 1) holds independently of k.

Another estimator appears as a special case in Joe et al. (1992):

λ̂SEC
U = 2 − 1 − Ĉn

(
n−k

n , n−k
n

)

1 − n−k
n

, 0 < k ≤ n. (1.8)

This estimator can also be motivated by equation (1.3), which explains the superscript SEC

illustrating the relationship to the secant of the copula’s diagonal. Asymptotic normality

and strong consistency of λ̂SEC
U are, e.g., addressed in Schmidt and Stadtmüller (2006).

A third nonparametric estimator is proposed below which is motivated in Capéraà et al.

(1997). Let {(U1, V1), . . . , (Un, Vn)} be a random sample obtained from the copula C.

Assume that the empirical copula function approximates an EV copula CEV (take block

maxima if necessary) and define

λ̂CFG = 2 − 2 exp

[
1

n

n∑

i=1

log

{√
log

1

Ui
log

1

Vi

/
log

1

max(Ui, Vi)2

}]
.

1.3.6. Pitfalls

From finitely many observations (x1, y1), . . . , (xn, yn) of (X,Y ), it is difficult to conclude

whether (X,Y ) is tail dependent or not. As for tail-index estimation, one can always specify
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Figure 1.1.: Scatterplots of 2000 simulated data with standard normal margins and copula

CNM (upper left) and Gumbel copula CGU (upper right), respectively. The lower plots

show the corresponding TDC estimates λ̂LOG
U for different choices of k. The horizontal lines

indicate the true TDCs.

thin-tailed distributions which produce sample observations suggesting heavy tails even for

large sample sizes. For example the upper left plot of Figure 1.1 shows the scatter plot of

2000 realizations from a distribution with standard normal univariate margins and copula

CNM corresponding to a mixture distribution of different bivariate Gaussian distributions,

namely:

NM = 7
10 · N




 0

0


 ,


 0.49 0.245

0.245 0.49




+ 3

10 · N




 1

1


 ,


 0.49 0.441

0.441 0.49




 .

At first glance, the scatter plot reveals upper tail-dependence although any finite mixture

of normal distributions is tail independent. The upper right plot of Figure 1.1 shows

the scatter plot of 2000 realizations from a distribution with standard normal univariate

margins and a Gumbel copula with θ = 2.25. As expected, the sample reveals a large upper

TDC of λU = 2 − 2
1
θ ≈ 0.64. Nevertheless, the upper left plot with λU = 0 looks more

or less like the upper right plot. The lower two plots of Figure 1.1 give the corresponding

TDC estimates of λ̂LOG
U for different choices of k. It can be seen that for any choice of k

the TDC estimate for copula CNM has nearly the same value as the TDC estimate for the

12
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Figure 1.2.: Comparison of empirical copula densities obtained via empirical marginal dis-

tributions (left panel) and via fitted normal marginal distributions (right panel). The

marginal transformations in the right panel are misspecified.

Gumbel copula. Conversely one may create samples which seem to be tail independent

but they are realizations of a tail dependent distribution. Thus, the message is that one

must be careful by inferring tail-dependence from a finite random sample. The best way

to protect against misidentifications is the application of several estimators, test or plots

to the same data set.

We address another pitfall regarding the estimation of the marginal distribution functions.

The use of parametric margins instead of empirical margins bears a model risk and may

lead to wrong interpretations of the dependence structure. For instance, consider 3000

realizations of a random pair with distribution function

H (x, y) = CGU {tν (x) , tν (y) ; θ} ,

where tν denotes the univariate standard t-distribution with ν degrees of freedom and

CGU is the Gumbel copula with parameter θ. Set θ = 2 and ν = 3. In Figure 1.2, we

compare the empirical copula densities which are either obtained via empirical marginal

distributions or via fitted normal marginal distributions. Precisely, in the second case

we plot the pairs (G(xi),H(yi)), where G and H are normal distribution functions with

parameters estimated from the data. The left panel of Figure 1.2 clearly illustrates the

dependence structure of a Gumbel copula. By contrast, the data in the right panel have

nearly lost all the appearance for upper tail-dependence. Thus we have shown that not

testing or ignoring the quality of the marginal fit can cause dramatic misinterpretation of

the underlying dependence structure.
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Chapter 1. Estimating the Tail-Dependence Coefficient: Properties and Pitfalls

1.4. Simulation Study

In order to compare the finite sample properties of the discussed TDC estimators, we run an

extensive simulation study. Each simulated data set consists of 1000 independent copies

of n realizations from a random sample {(X1, Y1), . . . , (Xn, Yn)} having one particular

distribution out of four. Three different sample sizes n = 250, 1000, 5000 are considered

for each data set. The four different distributions are denoted by H, T, G and AG. For

example the data set S250
H contains realizations of 1000 samples with sample size 250 which

are generated from a bivariate symmetric generalized hyperbolic distribution H. This is

an elliptical distribution (see (1.6)), where RU (2) has density

f(s) =
K0

(√
1 + s′s

)

2π ·K0(1)

and K0 is the Bessel function of the third kind with index 0. The correlation parameter is

set to ρ = 0.5.

Further, T refers to the bivariate t-distribution with ν = 1.5 degrees of freedom and ρ = 0.5.

Distribution G is determined by the distribution function

FG(x, y) = CG {Φ (x) ,Φ (y) ;ϑ, δ} ,

where Φ denotes the univariate standard normal distribution and CG is an Archimedean

copula with generator function

φG(t ;ϑ, δ) = {φFrank(t ;ϑ)}δ =

(
− log

e−ϑt − 1

e−ϑ − 1

)δ

, ϑ 6= 0, δ ≥ 1,

considered by Junker and May (2005). Here, φFrank is the generator of the Frank copula,

and values ϑ = −0.76 and δ = 1.56 are chosen, for reasons given below.

Finally, distribution AG is an asymmetric Gumbel copula, as defined by Tawn (1988),

combined with standard normal margins, viz.

FAG(x, y) = CAG {Φ (x) ,Φ (y) ; θ, φ, δ} ,

where

CAG (u, v; θ, φ, δ) = u1−θv1−φ exp

(
−
[
{−θ ln (u)}δ + {−φ ln (v)}δ

] 1
δ

)
.

We set θ = 0.5, φ = 0.9, δ = 2.78. For additional ways of generating asymmetric models

and multi-parameter Archimedean copulas, see Genest et al. (1998).
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Figure 1.3.: Scatter plots of simulated distributions and corresponding empirical copula

realizations.

Note that distribution H has no tail-dependence; e.g., see Schmidt (2002). Thus the set

of generalized hyperbolic data is used to control the performance of the TDC estimation

methods under the absence of tail-dependence. By contrast, distribution T possesses tail-

dependence; see also (1.5). Further, copula CG is lower tail independent but upper tail

dependent, i.e., λG
L = 0 and λG

U = 2− 21/δ . The parametrization of the distributions T,G,

and AG is chosen such that λT
L = λT

U = λG
U = λAG

U = 0.4406 and Kendall’s tau τH = τT =

τG = τAG = 1/3 in order to provide comparability of the estimation results. Figure 1.3

illustrates the different tail behavior of distributions H,T,G, and AG by presenting the

scatter plots of the respective simulated data-sample with sample size n = 5000, together

with the corresponding empirical copula realizations. Regarding the copula mapping, we

use empirical marginal distribution functions.

The different estimation methods are compared via the sample means µ̂ (λ̂n) and the sample

standard deviations σ̂ (λ̂n) of the estimates λ̂n,i, i = 1, . . . , 1000, depending on the sample

size n. Furthermore, to analyze the bias-variance trade-off for different sample sizes and

estimation methods we compare the corresponding root mean squared errors:

RMSE
(
λ̂n

)
=

√√√√ 1

1000

1000∑

i=1

(
λ̂n,i − λ

)2
. (1.9)
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Moreover, we introduce another statistical quantity called MESE (mean error to standard

error):

MESE
(
λ̂n

)
=

∣∣µ̂ (λ̂n) − λ
∣∣

σ̂ (λ̂n)
. (1.10)

MESE quantifies the sample bias normalized by the sample standard error. Thus, it

measures the degree of possible misinterpretation caused by considering the standard error

as a criterion for the quality of the estimator. For instance, assume a situation where the

standard error of the estimate is small but the bias is large. In that case the true parameter

is far away from the estimate, though the approximated confidence bands suggest the

opposite. This situation is represented by a large MESE. In particular, if the bias of the

estimator decreases with a slower rate as the standard error (for n → ∞) then MESE

tends to infinity. One aim of this quantity is to investigate the danger of this sort of

misinterpretation.

In the following, the TDC is estimated via the various methods discussed in Section 1.3. It

is reasonable to discard those models which are obviously not compatible with the observed

data. Further, we do not consider TDC estimations using a specific distribution since the

results are not surprising (due to the strong distributional assumptions).

1.4.1. Estimation within a Class of Distributions

The following estimation approach is based on the expositions in Section 1.3.2. We have

to estimate the tail index α and the correlation parameter ρ. For any elliptical distri-

bution, the correlation parameter is determined by Kendall’s τ via the relationship of

Lindskog et al. (2003), viz. ρ = sin(πτ/2) . Hence, using τ̂ = (c − d)/(c + d), where c is

the number of concordant pairs and d is the number of discordant pairs of the sample,

the correlation parameter may be estimated by ρ̂ = sin(πτ̂/2). Alternatively, one can

apply Tyler’s M-estimator for the covariance matrix, which is completely robust within

the class of elliptical distributions; see Tyler (1987a) or Frahm (2004, Ch. 4). Given the

covariance matrix, the random variable R can be extracted by the Mahalanobis norm of

(X,Y ). Our pre-simulations showed that there is no essential difference regarding the finite

sample properties between these two estimation procedures. Hence we use the approach

via Kendall’s τ for the sake of simplicity.

The tail index α could be estimated via traditional methods of EVT, i.e., by taking only

extreme values or excesses of the Euclidean norm ‖(X,Y )‖2 into consideration. Different
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methods for estimating the tail index are discussed, e.g., in Matthys and Beirlant (2002)

or Embrechts et al. (1997). For our purposes, we used a Hill-type estimator with optimal

sample fraction proposed by Drees and Kaufmann (1998).

For the data sets SG and SAG, we do not assume an elliptical distribution due to the

obvious asymmetry of the data; see the scatter plots in Figure 1.3. Consequently we will

not apply the latter estimation procedure to these data sets. The estimation results for

SH and ST are summarized in Table 1.1.

1.4.2. Estimation Using a Specific Copula

As mentioned in Section 1.3.3, the marginal distribution functions are now estimated by

their empirical counterparts, whereas the copula is chosen according to our decision. For

the elliptical data sets SH and ST , we opted for a t-copula, which seems to be a realistic

choice by glancing at the scatter plots in Figure 1.3. However, we know that the t-copula

is not suitable for SH . The TDC is estimated via relation (1.5). Regarding the data set

SG, we fit a Gumbel copula since the empirical copula, which is illustrated in Figure 1.3,

shows transpositional asymmetry, i.e., the underlying copula does not seem to coincide

with its survival copula. Moreover, the symmetry of the Gumbel copula with respect to

the copula’s diagonal appears to be satisfied by SG, too. Here the upper TDC is estimated

via λ̂G
U = 2 − 21/bθ. However, the original copula of SG is not the Gumbel copula and thus

the assumed model is wrong. We disregard the data set SAG since it is not obvious which

specific copula might be appropriate in this framework. Note that the empirical copula is

even asymmetric with respect to the copula’s diagonal (see Figure 1.3). The estimation

results are summarized in Table 1.1.

1.4.3. Estimation within a Class of Copulas

We follow the approach given in Section 1.3.4, which is based on a result by Juri and

Wüthrich (2002). The upper TDC is estimated, but in the following we refer to the lower

left corner of the underlying survival copula. We choose a small threshold t for the latter

copula in order to obtain the conditional copula (1.7). In order to increase the robustness

of the copula estimates with respect to the threshold choice, we take the mean of estimates

which correspond to 10 equidistant thresholds between n−1/2 and n−1/4. Note that if the

margins of the underlying distribution are completely dependent, then n1/2 data points
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are expected in the copula’s lower left quadrant which is determined by the threshold

t = n−1/2. For the smaller threshold t = n−1/4, the same amount of data (n1/2) is expected

for an independence copula.

We assume that the data SH , ST and SG have an Archimedean dependence structure.

Since SAG is not permutational symmetric, we reject the Archimedean hypothesis for this

data set. We point out that the Frank copula (Frank, 1979) is the only transpositional

symmetric Archimedean copula and thus suitable for SH and ST but it does not comprise

tail-dependence. The statistical results for the data sets SH , ST , and SG are provided in

Table 1.1.

1.4.4. Nonparametric Estimation

No specific distributional assumptions for the upper TDC estimation are made in the

present section. Recall that for λ̂LOG
U and λ̂SEC

U , we have to choose the threshold k as

indicated in (1.4) and (1.8). By contrast, λ̂CFG
U needs no additional decision regarding the

threshold. This, however, goes along with the assumption that the underlying copula can

be approximated by an EV copula.

The diagonal section of the copula is supposed to be smooth in the neighborhood of 1,

and the second derivative of the diagonal section is expected to be small (i.e., the first

derivative is approximately constant). Then λ̂SEC
U (k) is homogeneous for small (thresholds)

k. However, k should be sufficiently large in order to decrease variance. We consider the

graph k 7→ λ̂SEC
U (k) in order to identify the plateau which is induced by the homogeneity.

Note that λ̂LOG
U possesses this homogeneity property even for larger thresholds k if the

diagonal section of the copula follows a power law.

The plateau is chosen according to the following heuristic plateau-finding algorithm. First,

the map k 7→ λ̂k is smoothed by a simple box kernel with bandwidth b ∈ N. That

is, the means of 2b + 1 successive points of λ̂1, . . . , λ̂n lead to the new smoothed map

λ1, . . . , λn−2b. Here we have taken b = ⌊0.005n⌋ such that each moving average consists

of 1% of the data, approximately. In a second step, a plateau of length m =
⌊√

n− 2b
⌋

is defined as a vector pk =
(
λk, . . . , λk+m−1

)
, k = 1, . . . , n − 2b −m + 1. The algorithm

stops at the first plateau pk which elements fulfill the condition
∑k+m−1

i=k+1

∣∣λi − λk

∣∣ ≤ 2σ,

where σ represents the standard deviation of λ1, . . . , λn−2b. Then the TDC estimate is set

to λ̂U (k) = 1/m
∑m

i=1 λk+i−1 . If there is no plateau fulfilling the stopping condition, the

TDC estimate is set to zero.
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As outlined above, we may choose a greater bandwidth b for the λ̂LOG in order to reduce

the variance of the estimation. However, for a better comparison we do not change b. The

statistical results related to these nonparametric estimators for the data sets SH , ST ,SG

and SAG are provided in Table 1.2 and Table 1.3.

1.4.5. Discussion of the Simulation Results

We discuss the simulation results with regard to the following statistical measures: sample

variance, sample bias, RMSE, and MESE.

Sample variance. The TDC estimations within the class of elliptically contoured dis-

tributions and for specific copulas show the lowest sample variances among all considered

methods of TDC estimation. Of course, the small variances go along with restrictive model

assumptions. Nevertheless the estimation within the class of elliptically contoured distri-

butions has a surprisingly low variance, even though the tail index α is estimated from

few extremal data. Further, a comparably small variance is obtained for the estimator

λ̂CFG which is based on the weaker assumption of an EV copula. By contrast, the sample

variances of λ̂SEC and λ̂LOG are much larger. In particular the TDC estimation within the

class of Archimedean copulas, as described in Section 1.3.4, shows an exceptionally large

variance. However, note that the latter three estimation methods utilize only sub-samples

of extremal (excess) data. Besides, there is another explanation for the large variance of

the last estimation method: Here, the TDC is estimated (in a second step) from a copula

which is fitted from extremal (excess) data.

We conclude that an effective variance reduction of the TDC estimation is possible for

those estimation methods which use the entire data sample.

Sample bias. It is not surprising that the estimation methods with distributional assump-

tion have a quite low sample bias if the underlying distribution is true. See, for example,

the bias related to ST for TDC estimations within the class of elliptical distributions or for

specific copulas; see also SG for the estimation within the class of Archimedean copulas.

By contrast, the estimation with regard to the sample bias performs badly if we assume an

inappropriate distribution, as can be seen for the data set SG under the estimation using

a specific copula; see Section 1.3.3 and the data set ST under the estimation within the

class of Archimedean copulas. It is, however, surprising that the TDC estimation from SH

(recall that H is an elliptical distribution) shows a larger sample bias for the estimation
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Method Data set µ̂(λ̂U ) BIAS(λ̂U ) σ̂(λ̂U ) RMSE(λ̂U ) MESE(λ̂U )

Estimation S250
H 0.1618 0.1618+ 0.0817 0.1812+ 1.9802

for a S1000
H 0.1698 0.1698 0.0413 0.1747+ 4.1116

specific copula S5000
H 0.1739 0.1739 0.0187 0.1749 9.3141

(t- and S250
T 0.4281 -0.0125 0.0403+ 0.0422+ 0.3078

Gumbel S1000
T 0.4374 -0.0032 0.0204+ 0.0206+ 0.1403

copula) S5000
T 0.4400 -0.0006+ 0.0092+ 0.0092+ 0.0652+

S250
G 0.3905 -0.0501− 0.0437+ 0.0664 1.1466−

S1000
G 0.3922 -0.0484− 0.0212+ 0.0529 2.2819−

S5000
G 0.3919 -0.0487− 0.0097+ 0.0497 5.0252−

Estimation S250
H 0.2031 0.2031 0.0588 0.2114 3.4541

within a class S1000
H 0.1815 0.1815 0.0377 0.1854 4.8143

of distributions S5000
H 0.1575 0.1575 0.0220 0.1590 7.1591

(elliptical S250
T 0.4379 -0.0027+ 0.0465 0.0466 0.0490 +

distributions) S1000
T 0.4432 0.0026+ 0.0242 0.0243 0.1041+

S5000
T 0.4437 0.0031 0.0109 0.0113 0.2849

Estimation S250
H 0.2278 0.2278 0.1910− 0.2972 1.1921+

within a class S1000
H 0.1671 0.1671+ 0.1357− 0.2152 1.2309+

of copulas S5000
H 0.1237 0.1237+ 0.0977− 0.1576+ 1.2657 +

(Archimedean S250
T 0.5317 0.0911 0.1864− 0.2074− 0.4880

copulas) S1000
T 0.5575 0.1169− 0.1175− 0.1657− 0.9943−

S5000
T 0.5701 0.1295− 0.0647− 0.1448− 2.0022 −

S250
G 0.4352 -0.0054+ 0.1948− 0.1948− 0.0277+

S1000
G 0.4495 0.0089+ 0.1312− 0.1314− 0.0548 +

S5000
G 0.4554 0.0148 0.0792− 0.0805− 0.1818+

Table 1.1.: Various statistical results for the TDC estimation under a specific copula as-

sumption or within a class of distributions or copulas. Best values of the different methods

(including the nonparametric methods in Table 1.2 and Table 1.3) are ticked with a plus,

worst values are ticked with a minus.
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Method Data set µ̂(λ̂U ) BIAS(λ̂U ) σ̂(λ̂U ) RMSE(λ̂U ) MESE(λ̂U )

Nonparametric S250
H 0.3553 0.3553 0.0444+ 0.3580 8.0008−

estimator S1000
H 0.3558 0.3558− 0.0229+ 0.3566− 15.5400−

λ̂CFG
U S5000

H 0.3568 0.3568− 0.0104+ 0.3570− 34.3123−

S250
T 0.4462 0.0056 0.0471 0.0474 0.1133

S1000
T 0.4509 0.0103 0.0234 0.0256 0.4437

S5000
T 0.4511 0.0105 0.0107 0.0150 0.9825

S250
G 0.3922 -0.0484 0.0450 0.0661+ 1.0759

S1000
G 0.3939 -0.0467 0.0216 0.0514+ 2.1593

S5000
G 0.3936 -0.0470 0.0099 0.0480 4.7443

S250
AG 0.4377 -0.0029 0.0480+ 0.0481+ 0.0648+

S1000
AG 0.4400 -0.0006 0.0243+ 0.0243+ 0.0247+

S5000
AG 0.4406 0.0000+ 0.0107+ 0.0107+ 0.0000+

Table 1.2.: Statistical results for the nonparametric TDC estimator λ̂CFG
U . Best values of

the different methods (including the parametric methods in Table 1.1 and nonparametric

methods in Table 1.3) are ticked with a plus, worst are ticked with a minus.

within the class of elliptical distributions than for the estimation with a specific copula

or within the class of Archimedean copulas. We point out that the largest sample bias is

observed for the nonparametric estimation methods. Further, all estimation methods, in

particular λ̂CFG, yield a large MESE value (which indicates a large-sample bias relative

to the sample variance) for the data set SH which exhibits tail-independence. In most

cases, the MESE is greater than 2, which means that the true TDC value is not included

in the 2σ confidence interval. Moreover, this illustrates that the sole consideration of the

sample variance may lead to the fallacy of an exceptionally large TDC, even in the case of

tail-independence. Thus it is absolutely necessary to test for tail-dependence in the first

instance; see Ledford and Tawn (1996), Draisma et al. (2004).

RMSE. The TDC estimation using a specific copula represents the smallest RMSE if the

underling copula is true, as applies, e.g., to the data set ST . The second best RMSE for

the latter data set comes from the estimation within the class of elliptically contoured

distributions. This estimation goes along with a larger variance, due to the estimation of

the tail index α. It is remarkable that the nonparametric estimator λ̂CFG (which assumes

an EV copula) possesses an RMSE in the same range as the two aforementioned estimation
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Method Data set µ̂(λ̂U ) BIAS(λ̂U ) σ̂(λ̂U ) RMSE(λ̂U ) MESE(λ̂U )

Nonparametric S250
H 0.3636 0.3636− 0.1016 0.3775− 3.5787−

estimator S1000
H 0.3056 0.3056 0.0717 0.3139 4.2622

λ̂SEC
U S5000

H 0.2390 0.2390 0.0932 0.2565− 2.5644

S250
T 0.4681 0.0275 0.0800 0.0845 0.3436

S1000
T 0.4587 0.0181 0.0513 0.0545 0.3534

S5000
T 0.4463 0.0057 0.0431 0.0435 0.1322

S250
G 0.4841 0.0435 0.0796 0.0907 0.5467

S1000
G 0.4650 0.0244 0.0482 0.0541 0.5062

S5000
G 0.4453 0.0047+ 0.0603 0.0605 0.0775+

S250
AG 0.5042 0.0636− 0.0810− 0.1029− 0.7835−

S1000
AG 0.4763 0.0357− 0.0523− 0.0633− 0.6818−

S5000
AG 0.4567 0.0161− 0.0340− 0.0376− 0.4722−

Nonparametric S250
H 0.3144 0.3144 0.0828 0.3251 3.7968

estimator S1000
H 0.2893 0.2893 0.0539 0.2943 5.3677

λ̂LOG
U S5000

H 0.2567 0.2567 0.0377 0.2595 6.8103

S250
T 0.3951 -0.0455− 0.0727 0.0857 0.6242−

S1000
T 0.4132 -0.0274 0.0491 0.0562 0.5569

S5000
T 0.4240 -0.0166 0.0352 0.0389 0.4704

S250
G 0.4016 -0.0390+ 0.0719 0.0818 0.5426

S1000
G 0.4098 -0.0308 0.0448 0.0544 0.6850

S5000
G 0.4229 -0.0177 0.0233 0.0293 0.7624

S250
AG 0.4424 0.0018+ 0.0696 0.0696 0.0259

S1000
AG 0.4403 -0.0003+ 0.0386 0.0386 0.0078

S5000
AG 0.4412 0.0006 0.0200 0.0200 0.0030

Table 1.3.: Statistical results for the nonparametric TDC estimators λ̂SEC
U and λ̂LOG

U . Best

values of the different methods (including the parametric methods in Table 1.1 and non-

parametric methods in Table 1.2) are ticked with a plus, worst are ticked with a minus.
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methods for the data sets ST , SG, and SAG. By contrast, the estimators λ̂SEC and λ̂LOG

have a much larger RMSE. The TDC estimation based on the class of Archimedean copulas

as described in Section 1.3.4 yields by far the largest RMSE even for the (Archimedean)

data set SG. Further, the estimation using a specific copula has a similar RMSE under the

wrong model assumption (see SG) due to its low variance. An RMSE in the same range is

found for the nonparametric estimators λ̂SEC and λ̂LOG. This also suggest a consideration

of the following statistical measure.

MESE. The MESE detects all misspecified models such as SG under the estimation using

a specific (Gumbel) copula, or ST under the estimation within the class of Archimedean

copulas. However, if the underlying model is true, then the MESE is quite low (e.g.,

estimation within a class of copulas or distributions for the data set ST ). In this case and

for all nonparametric estimations, the MESE is usually smaller than 1, which indicates

that the true TDC lies within the 1σ confidence band. Only the data set SH represents an

exception. Especially the estimator λ̂CFG shows an exceptionally bad performance, which

is due to its small variance. Thus, the sample variance has to be considered with caution

for the latter estimator.

There exists an interesting aspect regarding the estimator λ̂SEC. Due to its geometric

interpretation as the slope of the secant along the copula’s diagonal (at the point (1, 1)),

the latter estimator reacts sensitively if the extremal data are not accumulated along the

diagonal. Such is the case, e.g., for the data set SAG and might also explain the bad

performance of λ̂SEC regarding the latter data set.

1.5. Conclusion

On the basis of the results of our simulation study, we have ranked the various TDC estima-

tors according to their finite-sample performance. Table 1.4 illustrates the corresponding

rankings in terms of numbers between 1 (very good performance) and 6 (very poor perfor-

mance). Thereby we distinguish between a true and a wrong assumption of the underlying

distribution. Moreover, we rank the estimators according to their performance under the

assumption of tail-independence. The second column of Table 1.4 indicates the heaviness

of the model assumptions required for each TDC estimator.

Clearly the (semi-)parametric TDC estimators perform well if the underlying distribu-

tion/copula is the right one (except the TDC estimator within a class of copulas as de-
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TDC estimation degree of perform. under perform. under perform. under

methods assumptions true assumpt. wrong assumpt. TDC = 0

specific copula strong 1 6 1-2

distr. class strong 2–3 −⋆) 3

copula class medium 4–5 5 1–2

λ̂CFG weak 2–3 2–3 6

λ̂SEC weak 4 4 5

λ̂LOG weak 3 3 5

Table 1.4.: Overview of the performance of the TDC estimation methods. Grades rank

from 1 to 6 with 1 excellent and 6 poor. ⋆) This TDC estimation method (via elliptical

distributions) is disregarded due to the obvious asymmetry of the data arising from the

wrong distributional assumption.

scribed in Section 1.3.4). However, their performance is very poor if the assumed model

is wrong. Thus, we definitely recommend to test any distributional assumptions. For in-

stance, in the case of empirical marginal distributions and specific copula, we suggest to

test the goodness-of-fit of the copula via (non-)parametric procedures such as those devel-

oped in Fermanian (2005), Dobrić and Schmid (2005b) or Genest et al. (2006). Further, if

one makes use of an elliptically contoured distribution, then we suggest to test for elliptic-

ity; see, e.g., Manzotti et al. (2002). However, we do not recommend a TDC estimation as

presented in Section 1.3.4, since we do not know a suitable test for Archimedean copulas

and the estimator does not perform well if the assumption of an Archimedean copula is

wrong. Goodness-of-fit tests within the family of Archimedean copulas are developed, e.g.,

in Wang and Wells (2000) or Genest et al. (2006).

Among the nonparametric estimators, the TDC estimator λ̂CFG does well, although we

advise caution regarding the sometimes low variance relative to bias. Further, λ̂CFG shows

a weak performance in the case of tail-independence. This estimator is followed by λ̂LOG

and λ̂SEC whereas the last estimator is not robust for non-transpositional symmetric data.

Further, the variance of λ̂LOG could be possibly reduced by enlarging the estimation kernel

(see Section 1.4.4).

We conclude that, among the nonparametric TDC estimators, λ̂CFG shows the best per-

formance whereas for (semi-)parametric estimations we recommend a specific copula (such

as the t-copula). For the latter, we suggest to work with empirical marginal distributions.
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Further, we point out that the decision for a specific distribution or class of distributions

should be influenced by the visual appearance of the data, e.g., via the related scatter plots.

Unfortunately, if the number of data is small (such as 250 points), it is difficult to draw

sensible conclusions from the scatter plot. Moreover, the nonparametric estimators are too

sensitive in case of small sample sizes. Thus, under these circumstances, a parametric TDC

estimation might be favorable in order to increase the stability of the estimation although

the model error could be large.

The previous simulation is based on a limited number of distributions, although we tried

to incorporate a large spectrum of possible distributions. Nevertheless, according to the

pitfalls in Section 1.3.6 and the statistical results for the tail independent data set H, we

see that tests for tail-dependence are absolutely mandatory for every TDC estimation.

Unfortunately, the current literature on this kind of test is only limited; see Coles et al.

(1999), Draisma et al. (2004).
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Figure 1.4.: Sample means of upper TDC estimates for various thresholds k using estimator (1.4) for 1000 samples of a bivariate t-distribution

with 1.5 degrees of freedom and correlation parameter ρ = 0.5. The black solid line represents the case of 1000 block maxima (, original data

set) and the gray solid line corresponds to 100 block maxima. The related empirical 95% confidence intervals are indicated by the dashed lines.

The true value of the TDC is marked by the solid straight line.
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Chapter 2.

Dependence of Stock Returns in Bull and

Bear Markets

2.1. Introduction

The standard estimator for the linear correlation coefficient according to Karl Pearson still

seems to be the most commonly used measure of dependence of two random variables X

and Y though its many shortcomings have been often documented (see, e.g., Embrechts

et al., 2002). Pearson’s rho is strongly affected by the marginal distributions of X and

Y and its estimates are sensitive to outliers (Embrechts et al., 2002). Further, it only

quantifies linear dependence though monotone dependence is often much more relevant.

The random variables X and Y are said to possess a strong monotone dependence if there

exist two real-valued and strictly increasing functions f and g such that |Corr(f(X), g(Y ))|
is large.

It is easy to construct dependence structures where the linear correlation coefficient of X

and Y is close to 0 but even so one can find two monotone transformations f and g such that

Corr(f(X), g(Y )) = 1. Consider for instance the random variables X = eZ and Y = eσZ

with σ > 0 and Z ∼ N (0, 1) (McNeil et al., 2005, p. 205). Since Corr(logX, log Y ) = 1 they

possess a perfect monotone dependence structure, i.e. X and Y are comonotonic (Nelsen,

2006, p. 32). Nevertheless, Corr(X,Y ) is a function of σ and can take any value between

0 (σ → ∞) and 1 (σ = 1).

Copula theory and the dependence measures derived thereof are a convincing alternative

to the linear correlation coefficient. Due to Sklar’s theorem (Sklar, 1959) it is known that

a joint distribution function can be split up into its copula (i.e. its dependence structure)
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and its marginal distributions. A meaningful dependence measure should be invariant

under monotone transformations of the corresponding random variables. Examples of

such measures are Spearman’s rho, Kendall’s tau, Gini’s gamma, and Blomquist’s beta.

In this paper we confine ourselves to the rank-correlation coefficient or its corresponding

estimator, i.e. Spearman’s rho. For surveys on copulas and dependence measures see, e.g.,

Cherubini et al. (2004), Joe (1997), and Nelsen (2006).

We investigate the contemporaneous dependence of two stock returns X and Y . In par-

ticular, we concentrate on the question whether dependence is significantly different in

bull and bear markets, i.e. in case of a joint upswing or downswing. This question and

related problems have been already investigated in finance literature (see, e.g., Ang and

Chen, 2002, Erb et al., 1994, Fortin and Kuzmics, 2002, Junker and May, 2005, Patton,

2004, Silvapulle and Granger, 2001, Vaz de Melo Mendes, 2005). But we think that the

statistical methods, in particular the use of Pearson’s rho is unsatisfactory. Hence, there

is space for further contributions.

Bear and bull markets are characterized as follows. A bear market is present if the two

stock returns X and Y contemporaneously fall short of the 100p% quantiles of their corre-

sponding cumulative distribution functions. Analogously, a bull market is given whenever

−X and −Y fall short of the corresponding 100q% quantiles. Here p and q have to be

pre-determined. The lower p-quantile of the cumulative distribution function (c.d.f.) of

a stock return is commonly known as the value-at-risk where p is the so-called shortfall

probability . The value-at-risk is frequently used in risk management. So it seems to be a

natural choice for characterizing bull and bear markets.

Our approach is purely nonparametric. Contrary to Patton (2004) and Vaz de Melo Mendes

(2005) we do not fit specific copulas to the data. Specifying the copula by some parametric

model can lead to erroneous conclusions if the chosen model is wrong. From our point

of view it is not necessary to rely on the parametric approach if the sample size is large

enough. We are interested in financial data analysis and in that context it is easy to access

many thousands of observations. By following the nonparametric approach we avoid any

kind of model misspecification.

In this work we develop conditional versions of the rank-correlation coefficient to assess

the dependence structure of stock returns in bull and bear markets. In contrast, some

authors analyze the dependence structure of outliers in financial data by using the so-

called tail-dependence coefficient (Fortin and Kuzmics, 2002, Junker and May, 2005). After
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applying parametric methods these authors come to the conclusion that ‘the empirical joint

distribution of return pairs on stock indices displays high tail-dependence in the lower tail

and low tail-dependence in the upper tail’ (Fortin and Kuzmics, 2002). Dobrić and Schmid

(2005a) as well as Frahm et al. (2005) found that estimating the tail-dependence coefficient

by nonparametric methods can lead to very large estimation errors even if there are many

observations. Hence the tail-dependence coefficient is not an appropriate alternative.

Though we focus on computational statistics and the empirical analysis of stock returns

we have to introduce some statistical theory in order to have a formal basis for our testing

procedure. This is done in Section 2.2, where some copula theory is presented. It allows a

precise formulation of the null hypotheses to be tested. The testing procedure is described

in Section 2.3. A Monte Carlo (MC) simulation is presented in Section 2.4 which shows

that the procedure works well for sample sizes which are typically available in practice. In

particular it is demonstrated that the test keeps the prescribed error probability of the first

kind and has sufficient power to detect violations of the null hypothesis. In Section 2.5

we investigate the daily returns of stocks from the German stock index DAX 30 between

1973-01-02 and 2008-11-14 and Section 2.6 concludes.

2.2. Some Copula Theory

In this section we introduce some notions from copula theory (Joe, 1997, Nelsen, 2006)

which are required for understanding the testing procedure to be described below. Let

X and Y be two random variables with joint c.d.f. F (x, y) = IP(X ≤ x, Y ≤ y) and

marginal cumulative distribution functions G(x) = IP(X ≤ x) and H(y) = IP(Y ≤ y) for

all x, y ∈ R . The quantile functions with respect to G and H are given by G−1(p) = inf{x :

G(x) ≥ p} and H−1(p) = inf{y : H(y) ≥ p} for 0 ≤ p ≤ 1.

Throughout this paper we assume that G and H are absolutely continuous functions.

Therefore, according to Sklar’s theorem (Sklar, 1959), there exists a unique copula C :

[0, 1]2 → [0, 1] such that

F (x, y) = C(G(x),H(y)) , ∀x, y ∈ R .

The function C is the joint c.d.f. of U = G(X) and V = H(Y ). The rank-correlation

coefficient of X and Y is given by

ρ := Corr
(
U, V

)
= 12

∫

[0,1]2

uv dC(u, v) − 3 = 12

∫

[0,1]2

C(u, v) d(u, v) − 3 . (2.1)
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See Nelsen (2006, p. 167) for the latter representation of ρ .

For every fixed p with 0 < p < 1 we define

AL :=
{
(x, y) : x ≤ G−1(p), y ≤ H−1(p)

}
.

In the following we assume that IP{(X,Y ) ∈ AL} = C(p, p) > 0 . Consider the conditional

joint c.d.f.

FL(x, y) := IP(X ≤ x, Y ≤ y | (X,Y ) ∈ AL) =
F (x ∧G−1(p), y ∧H−1(p))

F (G−1(p),H−1(p))

=
C(G(x ∧G−1(p)),H(y ∧H−1(p)))

C(p, p)
, ∀x, y ∈ R .

The corresponding conditional marginal distribution functions are given by

GL(x) := IP(X ≤ x | (X,Y ) ∈ AL) = FL(x,H−1(p))

=
C(G(x ∧G−1(p)), p)

C(p, p)
, ∀x ∈ R ,

and HL(y) respectively. Since GL and HL are absolutely continuous, according to Sklar’s

theorem there exists also a unique copula CL : [0, 1]2 → [0, 1] such that

FL(x, y) = CL(GL(x),HL(y)) , ∀x, y ∈ R .

Indeed, Juri and Wüthrich (2002) call

CL(u, v) = FL(G−1
L (u),H−1

L (v)) , ∀u, v ∈ [0, 1] ,

the extreme tail-dependence copula relative to C at the level p . Instead we will call CL

lower tail-copula and the phrase ‘relative to C at the level p’ will be usually dropped for

convenience.

Using the lower tail-copula we now can define the lower conditional rank-correlation coef-

ficient, viz.

ρL = 12

∫

[0,1]2

uv dCL(u, v) − 3 .

In the empirical part of this work this measures the monotone dependence of stock returns

X and Y conditional on the bear market (X,Y ) ∈ AL.

An analogue definition can be found for the upper tail-copula CU. This is the lower tail-

copula relative to the survival copula according to C (Nelsen, 2006, Section 2.6), i.e.

C(u, v) := u+ v − 1 + C(1 − u, 1 − v) , ∀u, v ∈ [0, 1] ,
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at the level q (0 < q < 1). The survival copula simply corresponds to the copula of

(−X,−Y ) and thus CU is the copula of (−X,−Y ) under the condition that (−X,−Y ) ∈
AU. Here the area AU is calculated similarly to AL just by using the quantile functions of

−X and −Y at q rather than the quantile functions of X and Y at p . Hence, the upper

conditional rank-correlation coefficient ρU measures the monotone dependence of stock

returns in a bull market. In the following we will have to guarantee that AL ∩ AU = ∅
which is equivalent to p+ q ≤ 1.

In most cases it is not possible to derive the conditional copulas CL or CU in closed

form. Therefore ρL and ρU cannot be calculated explicitly. However, MC simulation is

a convenient tool for obtaining numerical approximations to ρL and ρU with sufficient

precision. We apply this method to calculate the conditional rank-correlation coefficients

for the Gauss-, t3-, Clayton-, and Gumbel-copula (see Table 2.1 and Table 2.2). The Gauss-

and t3-copula are given by

CGauss(u, v ; θ) = Φθ(Φ
−1(u),Φ−1(v)) , ∀u, v ∈ [0, 1] ,

where

Φθ(x, y) :=

x∫

−∞

y∫

−∞

1

2π
√

1 − θ2
· exp

(
−s

2 − 2θst+ t2

2 (1 − θ2)

)
ds dt

as well as

Ct3(u, v ; θ) = t3,θ(t
−1
3 (u), t−1

3 (v)) , ∀u, v ∈ [0, 1] ,

with

t3,θ(x, y) =

x∫

−∞

y∫

−∞

1

2π
√

1 − θ2
·
(

1 +
s2 − 2θst+ t2

3 (1 − θ2)

)− 5
2

ds dt ,

where t3 denotes Student’s univariate t-distribution function with 3 degrees of freedom and

−1 < θ < 1. Note that the linear correlation coefficient is symbolized by the parameter

θ rather than ρ . This is because to avoid possible confusions with the (unconditional)

rank-correlation coefficient of CGauss or Ct3 . The unconditional rank-correlation coefficient

of the Gauss-copula corresponds to ρ = 6/π · arcsin(θ/2) (Hult and Lindskog, 2002). To

our knowledge there exists no such closed-form expression for the t3-copula.

The Clayton-copula is given by

CClayton(u, v ; θ) =
(
u−θ + v−θ − 1

)−1/θ
, ∀u, v ∈ [0, 1] ,

with θ ≥ 0 . In the limiting case θ = 0 the Clayton-copula corresponds to the independence

or product copula Π(u, v) := uv (Nelsen, 2006, p. 11).

31



Chapter 2. Dependence of Stock Returns in Bull and Bear Markets

The Gumbel-copula can be written as

CGumbel(u, v ; θ) = exp
[
−
{
(− log u)θ + (− log v)θ

}1/θ
]
, ∀u, v ∈ [0, 1] ,

with θ ≥ 1. Note that for θ = 1 once again the independence copula evolves. The

values for θ in Table 2.2 are chosen such that the unconditional rank-correlation coefficient

corresponds to ρ = 0.3, 0.5, 0.7. The relationship between θ and ρ can be obtained by

numerical integration or MC simulation (see Joe, 1997, p. 147).

For our approximations of the conditional rank-correlation coefficients given in Table 2.1

and Table 2.2 we used NMC = 1000 MC replications. In each one a sample from C with

sample size n = 106 has been generated. Both for the simulation study and for the empirical

study following later on we set p = q . Only the Clayton-copula allows for a closed-form

representation of CL. If C is a Clayton-copula the lower tail-copula CL is equal to C for

any 0 < p < 1 (Juri and Wüthrich, 2002). That means ρL corresponds to the unconditional

rank-correlation coefficient ρ .

The null hypothesis we are going to test can be formalized as

H0 : ρL = ρU

vs. H1 : ρL 6= ρU ,

where some p and q with p+ q ≤ 1 are fixed. In the present framework H1 implies that the

monotone dependence of stock returns in bear markets is not the same as in bull markets.

Instead of a two-sided hypothesis test, a one-sided test like

H0 : ρL ≤ ρU

vs. H1 : ρL > ρU

is of general interest, since H1 implies that the monotone dependence is higher in bear

markets than in bull markets.

The null hypothesis H0 : ρL = ρU stated above might be also of interest in another context.

Both in theory and application of copulas it is sometimes questionable whether the random

vector (X,Y ) is radially symmetric or not (Nelsen, 2006, Section 2.7). Radial symmetry

is a useful property which guarantees that ρL = ρU for all 0 < p < 1 since C and the

corresponding survival copula coincide. In order to test the null hypothesis H ′
0 : ‘The

random vector (X,Y ) is radially symmetric’, one can apply the two-sided test and reject

H ′
0 if H0 is rejected.
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Gauss-copula

θ = 0.25 θ = 0.50 θ = 0.75

p = q lower upper lower upper lower upper

0.05 .0404
(.0004)

.0407
(.0004)

.1109
(.0003)

.1114
(.0003)

.2622
(.0002)

.2624
(.0002)

0.20 .0601
(.0001)

.0601
(.0001)

.1595
(.0001)

.1593
(.0001)

.3485
(.0001)

.3483
(.0001)

0.35 .0775
(.0001)

.0774
(.0001)

.1972
(.0001)

.1973
(.0001)

.4090
(.0001)

.4091
(.0001)

0.50 .0962
(.0001)

.0962
(.0001)

.2354
(.0001)

.2356
(.0001)

.4655
(.0000)

.4656
(.0000)

t3-copula

θ = 0.25 θ = 0.50 θ = 0.75

p = q lower upper lower upper lower upper

0.05 .3373
(.0003)

.3369
(.0003)

.4043
(.0002)

.4044
(.0002)

.5264
(.0002)

.5265
(.0002)

0.20 .3186
(.0001)

.3183
(.0001)

.3968
(.0001)

.3967
(.0001)

.5361
(.0001)

.5361
(.0001)

0.35 .2984
(.0001)

.2984
(.0001)

.3913
(.0001)

.3913
(.0001)

.5484
(.0001)

.5485
(.0001)

0.50 .2756
(.0001)

.2756
(.0001)

.3882
(.0001)

.3882
(.0001)

.5651
(.0000)

.5652
(.0000)

Table 2.1.: MC approximations to ρL and ρU for the Gauss- and t3-copula possessing

different values for θ. We use NMC = 1000 MC replications, each one generating a sample

from the corresponding copula with sample size n = 106. The standard errors of the

approximations are given in parentheses.

2.3. The Testing Procedure

In this section we describe the testing procedure. The first part requires independent and

identically distributed (i.i.d.) data. It is well-known that short-term asset returns typically

exhibit strong patterns of serial dependence. However, the i.i.d. assumption may serve as

an appropriate starting point and there might exist several applications beyond financial

data analysis where this assumption is adequate. Therefore it is worth to illustrate the

testing procedure in the i.i.d. case. Afterwards we will drop the assumption of serially

independent asset returns and explain how the test can be modified to account for the

purpose of time series analysis.
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Clayton-copula

θ = 0.51 θ = 1.08 θ = 2.13

p = q lower upper lower upper lower upper

0.05 .3004
(.0002)

.0025
(.0005)

.5001
(.0002)

.0018
(.0004)

.7002
(.0001)

.0035
(.0004)

0.20 .3003
(.0001)

.0040
(.0001)

.4999
(.0001)

.0113
(.0001)

.7000
(.0001)

.0318
(.0001)

0.35 .3001
(.0001)

.0130
(.0001)

.4999
(.0001)

.0356
(.0001)

.7000
(.0000)

.0906
(.0001)

0.50 .3001
(.0001)

.0298
(.0001)

.5000
(.0000)

.0764
(.0001)

.7000
(.0000)

.1783
(.0001)

Gumbel-copula

θ = 1.26 θ = 1.54 θ = 2.07

p = q lower upper lower upper lower upper

0.05 .0319
(.0004)

.3499
(.0002)

.0697
(.0003)

.4504
(.0002)

.1431
(.0003)

.5849
(.0001)

0.20 .0515
(.0001)

.3158
(.0001)

.1106
(.0001)

.4392
(.0001)

.2206
(.0001)

.5871
(.0001)

0.35 .0697
(.0001)

.2906
(.0001)

.1476
(.0001)

.4314
(.0001)

.2843
(.0001)

.5916
(.0000)

0.50 .0912
(.0001)

.2744
(.0001)

.1885
(.0001)

.4276
(.0001)

.3507
(.0000)

.5990
(.0000)

Table 2.2.: MC approximations to ρL and ρU for the Clayton- and Gumbel-copula pos-

sessing different values for θ. We use NMC = 1000 MC replications, each one generating a

sample from the corresponding copula with sample size n = 106. The standard errors of

the approximations are given in parentheses.

2.3.1. Independent and Identically Distributed Data

Let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be i.i.d. As we do not assume that the marginal cumu-

lative distribution functions G and H are known, we have to estimate them by

Ĝn(x) =
1

n
·

n∑

i=1

1{Xi≤ x} and Ĥn(y) =
1

n
·

n∑

i=1

1{Yi≤ y} .

The corresponding estimate of the quantile function G−1 is given by

Ĝ−1
n (p) = inf

{
x : Ĝn(x) ≥ p

}

and Ĥ−1
n (p) respectively. For some fixed p and q with p+ q ≤ 1 we can define

ÂL :=
{

(x, y) : x ≤ Ĝ−1
n (p), y ≤ Ĥ−1

n (p)
}
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and ÂU in the same manner. We also define the sample sizes nL := |ÂL| with respect to

the lower left and nU := |ÂU| with respect to the upper right area of the empirical copula

(here | · | denotes the cardinality of a set). The observations in ÂL and ÂU can be used for

estimating ρL and ρU. More precisely,

ρ̂L,n =
12

nL
·
∑

i∈ I bAL

rL,n(Xi)

nL
· rL,n(Yi)

nL
− 3 ,

where I bAL
denotes the set of indices i such that (Xi, Yi) ∈ ÂL . Although ρ̂L,n is calculated

on the basis of nL data points, for notational convenience the number of observations is

indicated by n rather than nL (this is adequate since nL depends on n).

Further, rL,n(·) is the rank of a marginal observation relative to all observations in ÂL .

Note that rL,n(Xi)/nL = ĜL,n(Xi) and rL,n(Yi)/nL = ĤL,n(Yi). Here ĜL,n is the empirical

counterpart of GL, i.e.

ĜL,n(x) =
Ĉn(Ĝn(x ∧ Ĝ−1

n (p)), p)

Ĉn(p, p)
, ∀x ∈ R ,

where

Ĉn(u, v) :=
1

n
·

n∑

i=1

1{rn(Xi)/n≤u}1{rn(Yi)/n≤ v} , ∀u, v ∈ [0, 1] ,

represents the empirical copula. Moreover, ĤL,n is defined respectively. The definition of

the estimator ρ̂U,n follows immediately, just by using the survival copula according to Ĉn

(which is determined by the observations in the upper right area ÂU).

Schmid and Schmidt (2006) have already shown that Spearman’s rho is consistent and

asymptotically normally distributed. The same holds for the conditional versions of Spear-

man’s rho described above, i.e.

√
nL

(
ρ̂L,n − ρL

) d−→ N
(
0, σ2

L

)
and

√
nU

(
ρ̂U,n − ρU

) d−→ N
(
0, σ2

U

)

as nL, nU → ∞ , provided the lower left and upper right tail-copulas exist.

Proposition 2.1 Let the distribution of (X,Y ) be absolutely continuous. Suppose that the

partial derivatives of the corresponding copula C exist and are continuous, too. Further,

define ∆ρ̂n := ρ̂L,n − ρ̂U,n and ∆ρ := ρL − ρU with shortfall probabilities p, q > 0 such that

p+ q ≤ 1. If C(p, p), C(q, q) > 0 then

√
n
(
∆ρ̂n − ∆ρ

) d−→ N
(

0,
σ2

L

C(p, p)
+

σ2
U

C(q, q)

)
, n −→ ∞ .
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Proof. Note that nL/n
a.s.→ C(p, p) as n→ ∞ . That means

√
n
(
ρ̂L,n − ρL

)
=

√
n

nL

√
nL

(
ρ̂L,n − ρL

) d−→ N
(

0,
σ2

L

C(p, p)

)
, n −→ ∞ ,

and the corresponding result holds also for ρ̂U,n . Since p + q ≤ 1, the considered tails of

the copula do not overlap. That means ρ̂L,n and ρ̂U,n are stochastically independent. This

leads immediately to the asymptotic variance given in the proposition.

In practical situations p and q have to be sufficiently large such that nL and nU do not

become too small. A typical rule of thumb might be given by nL, nU ≥ 40 . Suppose for

the moment that C corresponds to the product copula. In that case it is expected to meet

p2n observations in the lower left part of the empirical copula. That means the shortfall

probabilities should be such that p, q ≥
√

40/n . E.g. for the sample size n = 1000 (that

means an observation period of approximately 4 years) p and q should be not smaller than

0.2 . Admittedly, financial data cannot be appropriately described by the product copula

since in most cases there is some sort of positive dependence between stock returns. So

there are even more observations in the corresponding corners of the empirical copula.

Thus our rule of thumb guarantees that there are always enough data for large-sample

inferences.

The asymptotic variances σ2
L and σ2

U depend on the tail-copulas CL and CU. In general

they cannot be calculated explicitly (Schmid and Schmidt, 2006). The same holds for the

asymptotic variance of ∆ρ̂n , i.e. τ2 := σ2
L/C(p, p) + σ2

U/C(q, q) . However, the latter can

be approximated by a simple bootstrap. For conducting the hypothesis test one has to

choose an appropriate significance level α > 0 as well as the shortfall probabilities p > 0

and q > 0 such that p+ q ≤ 1. Now the test procedure reads as follows:

1. Compute ρ̂L,n and ρ̂U,n from the observations in ÂL and ÂU.

2. Compute NB bootstrap replications from the entire sample. For each replication

calculate ρ̂L,n and ρ̂U,n as well as the corresponding difference ∆ρ̂n .

3. Estimate the asymptotic variance τ2 of ∆ρ̂n from the bootstrap and calculate the

test statistic T = ∆ρ̂n/
√
τ̂2/n , where τ̂2 is the bootstrap estimate of τ2.

4a. Reject H0 : ρL = ρU if
∣∣T
∣∣ ≥ Φ−1

(
1 − α

2

)
,

where Φ denotes the standard normal c.d.f.
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The one-sided hypothesis tests differ only in the fourth step from the two-sided test:

4b. Reject H0 : ρL ≤ ρU or H0 : ρL ≥ ρU if T ≥ Φ−1(1 − α) or T ≤ Φ−1(α) .

2.3.2. Serially Dependent Data

Now let (X1, Y1), . . . , (Xn, Yn) be a sample from a stationary process {(Xt, Yt)}t∈Z . It is

supposed that the process exhibits a weak dependence structure, i.e. the two one-sided pro-

cesses {(Xt, Yt)}t≤ 0 and {(Xt, Yt)}t≥ l are asymptotically independent as l → ∞ (Politis,

2003). This condition is sometimes referred to as the strong mixing or α-mixing condition

and it can be shown that many time series models frequently used in theory and practice

meet that requirement.

One of the referees pointed out that it is important to account for serial dependence, since

ρ̂L,n and ρ̂U,n are no longer independent in that case. For instance, in periods of great

turbulence the lower and upper conditional Spearman’s rho might be strongly correlated.

However, it can be assumed that ∆ρ̂n remains asymptotically normally distributed under

the weak dependence assumption of time series analysis. That means

√
n
(
∆ρ̂n − ∆ρ

) d−→ N
(
0, τ2

LR

)
, n −→ ∞ , (2.2)

where τ2
LR represents the long-run variance of ∆ρ̂n . This assumption seems natural, since

the weak convergence property of Spearman’s rho is based on the weak convergence of an

empirical copula process (Schmid and Schmidt, 2006). By using a weak form of the central

limit theorem from time series analysis one can argue that the weak convergence property

is still satisfied under the strong mixing condition.

There exist many possible techniques for estimating the long-run variance τ2
LR of the statis-

tic ∆ρ̂n , such as subsampling or block-bootstrapping (Politis, 2003). It has been shown

by Politis et al. (2001) that the subsampling procedure leads to consistent estimates of the

long-run variance under very mild regularity conditions. However, subsampling is proba-

bly not the best choice in our setting. The reason is that for getting an unbiased estimate

for τ2
LR, the number of observations within each subsample must be considerably small

relative to the overall sample size. Note that in our context only a small part of each

subsample can be used for calculating ρ̂L,n and ρ̂U,n but for a proper approximation of the

long-run variance it has to be guaranteed also that each subsample contains a sufficiently

large number of usable observations.
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Thus we will concentrate on a block-bootstrap procedure suggested by Künsch (1989).

Consider a block length b with 0 < b < n and the corresponding n− b+ 1 blocks, i.e.

Bi =
{
(Xi+1, Yi+1), . . . , (Xi+b, Yi+b)

}
, i = 0, 1, . . . , n− b .

One bootstrap replication from the entire sample is given by drawing k = ⌊n/b⌋ blocks with

replacement and concatenating these blocks to form a new pseudo-series of asset returns.

Note that the series consists of l = kb ≈ n pseudo-observations. For each of the NB

bootstrap replications one can calculate ∆ρ̂l and the long-run variance can be estimated

from the given NB realizations. Finally, the test statistic is given by

T =
∆ρ̂n√
τ̂2
LR/n

,

where τ̂2
LR is the estimated long-run variance. Under the weak convergence property (2.2)

and if b → ∞ and n/b → ∞ , the estimator τ̂2
LR is consistent for τ2

LR. Hence, T can be

used in the same way as the test statistic discussed in Section 2.3.1.

2.4. Finite-Sample Properties

In this section we investigate the finite-sample properties of the testing procedure described

in Section 2.3.1. The results are obtained by MC simulations for various special cases.

These are essentially defined by the copula under study. First we are interested in the

rejection probability of the procedure if H0 : ρL = ρU is true and α is the prescribed

error probability of the first kind. We consider the Gauss- and t3-copula which belong to

the class of elliptical copulas. Elliptical copulas are radially symmetric which means that

the aforementioned null hypotheses is true. The selected values for the copula parameter

are θ = 0.25, 0.5, 0.75, the values for p are given by p = 0.2, 0.35, 0.5, and we validate

the error probabilities α = 0.01, 0.05, 0.1. The simulated sample size is n = 2500 (i.e.

approximately 10 trading years), the number of bootstrap replications amounts to NB =

1000 , and the number of MC replications is NMC = 1000 . The results of the simulations

are summarized in Panel 1 of Table 2.3. We can see that the approximated rejection

probabilities satisfactorily agree with the prescribed error probabilities.

We are also interested in the power of the testing procedure, i.e. the probability of rejection

if H0 is wrong. For that purpose we consider the Clayton- and the Gumbel-copula. It is

well-known that these copulas are not radially symmetric and thus in general ρL 6= ρU.
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Figure 2.1.: Power functions of the two-sided hypothesis test for the mixed copulas CMix1

(left hand side) and CMix2 (right hand side) as a function of λ . The results are obtained

by MC simulation for the sample size n = 2500, NB = 1000 bootstrap replications, and

NMC = 10000 MC replications using the shortfall probability p = q = 0.5.

Remember that the parameter θ of both copula families (cf. p. 31) has been selected in

such a way that the unconditional rank-correlation coefficients are equal to ρ = 0.3, 0.5, 0.7 .

The results of the MC simulations are given in Panel 2 of Table 2.3. It can be seen that for

every fixed p and α the power is an increasing function of θ. This is because the asymmetry

of the Archimedean copulas CClayton and CGumbel increases with θ (cf. Nelsen, 2006, Ch. 4).

Similar results are obtained for the two one-sided tests which can be taken from Table

2.4 and Table 2.5. The rejection probabilities become very large whenever H1 is true. In

contrast, if H0 is true our simulations produce no false rejection. For instance, consider

the right-sided test H0 : ρL ≤ ρU vs. H1 : ρL > ρU. In that case the null hypothesis is

fulfilled for the Gumbel-copula. Panel 2 of Table 2.4 shows that there is no rejection for

any given unconditional rank-correlation coefficient ρ , shortfall probability p , and error

probability α . In contrast, for the Clayton-copula the alternative hypothesis is true and

consequently the rejection probabilities are very high (e.g. roughly 90% for ρ = 0.3, p = 0.2,

and α = 0.1). Moreover, for ρ = 0.5 and ρ = 0.7, H0 is rejected for the Clayton-copula in

almost every simulated case.

Now we want to investigate the relationship between asymmetry and power. For that

purpose we consider the mixed copula

CMix1(u, v ;λ, θ0, θ1) := λCClayton(u, v ; θ1) + (1 − λ)CGauss(u, v ; θ0) ,

where 0 ≤ λ ≤ 1. Further, the copula parameters θ0, θ1 are such that the unconditional

rank-correlation coefficients of CClayton(u, v ; θ1) and CGauss(u, v ; θ0) correspond to ρ = 0.5.
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H0 : ρL = ρU vs. H1 : ρL 6= ρU

Panel 1 θ = 0.25 θ = 0.50 θ = 0.75

p = q α Gauss t3 Gauss t3 Gauss t3

0.10 .091
(.0091)

.083
(.0087)

.081
(.0086)

.085
(.0088)

.091
(.0091)

.093
(.0092)

0.20 0.05 .043
(.0064)

.047
(.0067)

.039
(.0061)

.041
(.0063)

.048
(.0068)

.048
(.0068)

0.01 .008
(.0028)

.011
(.0033)

.006
(.0024)

.007
(.0026)

.011
(.0033)

.011
(.0033)

0.10 .106
(.0097)

.081
(.0086)

.092
(.0091)

.108
(.0098)

.095
(.0093)

.087
(.0089)

0.35 0.05 .057
(.0073)

.038
(.0060)

.049
(.0068)

.053
(.0071)

.048
(.0068)

.051
(.0070)

0.01 .015
(.0038)

.009
(.0030)

.011
(.0033)

.007
(.0026)

.006
(.0024)

.013
(.0036)

0.10 .104
(.0097)

.088
(.0090)

.088
(.0090)

.113
(.0100)

.089
(.0090)

.098
(.0094)

0.50 0.05 .060
(.0075)

.043
(.0064)

.035
(.0058)

.056
(.0073)

.048
(.0068)

.049
(.0068)

0.01 .019
(.0043)

.011
(.0033)

.008
(.0028)

.008
(.0028)

.006
(.0024)

.011
(.0033)

Panel 2 ρ = 0.30 ρ = 0.50 ρ = 0.70

p = q α Clayton Gumbel Clayton Gumbel Clayton Gumbel

0.10 .815
(.0123)

.752
(.0137)

1.000
(.0000)

.965
(.0058)

1.000
(.0000)

.999
(.0010)

0.20 0.05 .715
(.0143)

.635
(.0152)

.999
(.0010)

.938
(.0076)

1.000
(.0000)

.996
(.0020)

0.01 .456
(.0158)

.371
(.0153)

.993
(.0026)

.800
(.0126)

1.000
(.0000)

.999
(.0010)

0.10 .988
(.0034)

.926
(.0083)

1.000
(.0000)

.999
(.0010)

1.000
(.0000)

1.000
(.0000)

0.35 0.05 .981
(.0043)

.876
(.0104)

1.000
(.0000)

.995
(.0022)

1.000
(.0000)

1.000
(.0000)

0.01 .928
(.0082)

.704
(.0144)

1.000
(.0000)

.980
(.0044)

1.000
(.0000)

1.000
(.0000)

0.10 .999
(.0010)

.974
(.0050)

1.000
(.0000)

1.000
(.0000)

1.000
(.0000)

1.000
(.0000)

0.50 0.05 .999
(.0010)

.945
(.0072)

1.000
(.0000)

1.000
(.0000)

1.000
(.0000)

1.000
(.0000)

0.01 .996
(.0020)

.837
(.0117)

1.000
(.0000)

.995
(.0022)

1.000
(.0000)

1.000
(.0000)

Table 2.3.: MC approximations of the rejection probabilities for the Gauss- and t3-copula

(Panel 1) and for the Clayton- and Gumbel-copula (Panel 2) given H0 : ρL = ρU. The

simulated sample size is n = 2500 , the number of bootstrap replications corresponds to

NB = 1000 , and the number of MC replications is NMC = 1000 . The standard errors for

the approximated rejection probabilities are given in parentheses.
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H0 : ρL ≤ ρU vs. H1 : ρL > ρU

Panel 1 θ = 0.25 θ = 0.50 θ = 0.75

p = q α Gauss t3 Gauss t3 Gauss t3

0.10 .091
(.0091)

.096
(.0093)

.099
(.0094)

.095
(.0093)

.096
(.0093)

.099
(.0094)

0.20 0.05 .047
(.0067)

.041
(.0063)

.040
(.0062)

.041
(.0063)

.047
(.0067)

.049
(.0068)

0.01 .009
(.0030)

.007
(.0026)

.006
(.0024)

.007
(.0026)

.013
(.0036)

.009
(.0030)

0.10 .103
(.0096)

.093
(.0092)

.086
(.0089)

.099
(.0094)

.097
(.0094)

.094
(.0092)

0.35 0.05 .053
(.0071)

.049
(.0068)

.038
(.0060)

.044
(.0065)

.047
(.0067)

.044
(.0065)

0.01 .012
(.0034)

.010
(.0031)

.008
(.0028)

.006
(.0024)

.008
(.0028)

.011
(.0033)

0.10 .109
(.0099)

.092
(.0091)

.103
(.0096)

.110
(.0099)

.086
(.0860)

.094
(.0092)

0.50 0.05 .050
(.0069)

.046
(.0066)

.046
(.0066)

.053
(.0071)

.049
(.0068)

.054
(.0071)

0.01 .015
(.0038)

.011
(.0033)

.011
(.0033)

.011
(.0033)

.010
(.0031)

.008
(.0028)

Panel 2 ρ = 0.30 ρ = 0.50 ρ = 0.70

p = q α Clayton Gumbel Clayton Gumbel Clayton Gumbel

0.10 .899
(.0095)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.20 0.05 .815
(.0123)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.01 .574
(.0156)

.000
(.0000)

.997
(.0017)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.10 .997
(.0017)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.35 0.05 .988
(.0034)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.01 .961
(.0061)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.10 1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.50 0.05 .999
(.0010)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.01 .999
(.0010)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

Table 2.4.: MC approximations of the rejection probabilities for the Gauss- and t3-copula

(Panel 1) and for the Clayton- and Gumbel-copula (Panel 2) given H0 : ρL ≤ ρU. The

simulated sample size is n = 2500 , the number of bootstrap replications corresponds to

NB = 1000 , and the number of MC replications is NMC = 1000 . The standard errors for

the approximated rejection probabilities are given in parentheses.
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H0 : ρL ≥ ρU vs. H1 : ρL < ρU

Panel 1 θ = 0.25 θ = 0.50 θ = 0.75

p = q α Gauss t3 Gauss t3 Gauss t3

0.10 .093
(.0092)

.097
(.0094)

.089
(.0090)

.090
(.0090)

.096
(.0093)

.096
(.0093)

0.20 0.05 .044
(.0065)

.042
(.0063)

.041
(.0063)

.044
(.0065)

.044
(.0065)

.044
(.0065)

0.01 .009
(.0030)

.011
(.0033)

.007
(.0026)

.012
(.0034)

.006
(.0024)

.013
(.0036)

0.10 .108
(.0098)

.083
(.0087)

.100
(.0095)

.111
(.0099)

.096
(.0093)

.087
(.0089)

0.35 0.05 .053
(.0071)

.032
(.0056)

.054
(.0071)

.064
(.0077)

.048
(.0068)

.043
(.0064)

0.01 .013
(.0036)

.007
(.0026)

.013
(.0036)

.012
(.0034)

.005
(.0022)

.013
(.0036)

0.10 .095
(.0093)

.097
(.0094)

.103
(.0096)

.094
(.0092)

.087
(.0089)

.088
(.0090)

0.50 0.05 .054
(.0071)

.042
(.0063)

.042
(.0063)

.060
(.0075)

.040
(.0062)

.044
(.0065)

0.01 .016
(.0040)

.007
(.0026)

.004
(.0020)

.009
(.0030)

.003
(.0017)

.015
(.0038)

Panel 2 ρ = 0.30 ρ = 0.50 ρ = 0.70

p = q α Clayton Gumbel Clayton Gumbel Clayton Gumbel

0.10 .000
(.0000)

.856
(.0111)

.000
(.0000)

.986
(.0037)

.000
(.0000)

1.000
(.0000)

0.20 0.05 .000
(.0000)

.752
(.0137)

.000
(.0000)

.965
(.0058)

.000
(.0000)

.999
(.0010)

0.01 .000
(.0000)

.481
(.0158)

.000
(.0000)

.870
(.0106)

.000
(.0000)

.994
(.0024)

0.10 .000
(.0000)

.964
(.0059)

.000
(.0000)

.999
(.0010)

.000
(.0000)

1.000
(.0000)

0.35 0.05 .000
(.0000)

.926
(.0083)

.000
(.0000)

.999
(.0010)

.000
(.0000)

1.000
(.0000)

0.01 .000
(.0000)

.790
(.0129)

.000
(.0000)

.987
(.0036)

.000
(.0000)

1.000
(.0000)

0.10 .000
(.0000)

.991
(.0030)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

0.50 0.05 .000
(.0000)

.974
(.0050)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

0.01 .000
(.0000)

.892
(.0098)

.000
(.0000)

.996
(.0020)

.000
(.0000)

1.000
(.0000)

Table 2.5.: MC approximations of the rejection probabilities for the Gauss- and t3-copula

(Panel 1) and for the Clayton- and Gumbel-copula (Panel 2) given H0 : ρL ≥ ρU. The

simulated sample size is n = 2500 , the number of bootstrap replications corresponds to

NB = 1000 , and the number of MC replications is NMC = 1000 . The standard errors for

the approximated rejection probabilities are given in parentheses.
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p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

ρ̂L,n 39% 34% 34% 34% 35%

ρ̂U,n 34% 27% 25% 24% 24%

∆ρ̂n 5% 7% 9% 10% 11%

|∆ρ̂n| 12% 10% 10% 11% 11%

Table 2.6.: Average conditional Spearman’s rhos, differences, and absolute differences of all

435 asset combinations for different shortfall probabilities p = q .

Hence, the mixed copula possesses the same unconditional rank-correlation coefficient for

every λ (see the formula for ρ on p. 29).

Note that ρL = ρU is true for the Gauss-copula but for the Clayton-copula it holds that

ρL > ρU and so the mixing parameter λ determines the degree of asymmetry given by

CMix1(u, v ;λ, θ0, θ1). If one considers the two-sided hypothesis test with H0 : ρL ≤ ρU ,

λ = 0 means that the null hypothesis is true whereas the alternative hypothesis holds for

every λ > 0 . The larger λ the more often H0 should be rejected.

A similar result is obtained for the mixed copula

CMix2(u, v ;λ, θ0, θ2) := λCGumbel(u, v ; θ2) + (1 − λ)CGauss(u, v ; θ0) ,

where θ2 is such that the rank-correlation coefficient associated with CGumbel(u, v ; θ2) once

again amounts to ρ = 0.5 . The corresponding power functions are given in Figure 2.1. Both

figures demonstrate that the hypothesis test always keeps the prescribed error probability

of the first kind and the rejection probability indeed is an increasing function of the mixing

parameter λ. Similar results can be obtained for other constellations of ρ and p .

2.5. Empirical Results for German Stock Returns

Now we consider daily observations from 1973-01-02 to 2008-11-14 of the 30 stocks which

are listed in the German stock index DAX 30. The stock prices have been adjusted for

dividends, splits, etc. Our analyze is based on the daily log-returns of the assets (zero

returns have been deleted). The maximum number of observations is given by n = 9359

trading days. Table 2.6 contains the sample means of the upper and lower conditional

Spearman’s rhos for all 435 asset combinations given the shortfall probabilities p = q =
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0.1, 0.2, 0.3, 0.4, 0.5. Here ρ̂L,n denotes the mean lower and ρ̂U,n the mean upper conditional

Spearman’s rho, whereas ∆ρ̂n is the mean difference and |∆ρ̂n| the mean absolute difference

between ρ̂L,n and ρ̂U,n. It can be seen that the lower conditional Spearman’s rhos are up to

11 points larger in average than the upper conditional Spearman’s rhos. However, without

a meaningful theoretical argument it is not possible to judge whether this gap between

bull and bear markets is rather ‘large’ or ‘small’ and we would like to avoid such kind of

statements. Instead we will discuss how much of the empirical evidence leads to significant

results in our hypothesis tests.

It is worth to point out that the outcomes of the test can depend substantially on the

shortfall probability p . The upper part of Figure 2.2 shows the lower and upper conditional

Spearman’s rho as a function of p for BASF vs. Henkel. The difference between the rhos

(see the lower part of Figure 2.2) seems to be negligible if p ≤ 0.25 but it can be very large

for p > 0.25. The lower right part of Figure 2.2 indicates that it is easy to find a suitable p

such that H0 : ρL ≤ ρU can be rejected on a significance level of α = 0.05, although in fact

there are not many statistical arguments in favor of H1 : ρL > ρU. As a counterexample

consider Figure 2.3 giving the conditional Spearman’s rhos of BASF vs. Thyssen. There is

only a small range for p where H0 cannot be rejected. That means there is a large amount

of evidence for supporting H1 but this could be easily concealed by exploiting the data.

Finally, Figure 2.4 contains the conditional Spearman’s rhos for BASF vs. Infineon. Only

in that case data mining is impossible since there is no p for which the null hypothesis

could be rejected. We conclude that the presented hypothesis tests work only if p is chosen

before examining ρ̂L,n and ρ̂U,n with different shortfall probabilities. Otherwise the tests

would seriously suffer from a selection bias.

2.5.1. Two-Sided Hypothesis Test

It is clear that the estimates ρ̂L and ρ̂U are different from each other for every combination

of assets and we want to see whether the differences are significant. That means we test

H0 : ρL = ρU against H1 : ρL 6= ρU by using the block-bootstrap procedure described

in Section 2.3.2. The block length corresponds to b = 40 (i.e. approximately 2 trading

months) and the number of bootstrap replications is NB = 1000 . After computing the

first estimate τ̂2
LR,b , a second run with block length b/2 = 20 is made. This leads to the

second estimate τ̂2
LR,b/2 for the long-run variance and the linear combination

τ̂2
LR = 2τ̂2

LR,b − τ̂2
LR,b/2
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Figure 2.2.: The upper part shows the lower (left hand side) and upper (right hand side)

conditional Spearman’s rho as a function of p = q for BASF vs. Henkel (n = 5343).

The dashed lines represent the corresponding 95%-confidence bands. In the lower left

part the lower and upper conditional Spearman’s rhos are shown together where the thick

line represents the lower conditional Spearman’s rho. The lower right part contains the

difference between the rhos and the corresponding 95%-confidence band.

is chosen as an estimate for τ2
LR . Such a linear combination typically leads to more accurate

estimates of the long-run variance than taking a single estimate (Politis, 2003).

Each rejection of a hypothesis test can be interpreted as an outcome of a Bernoulli exper-

iment with parameter value 0 < πi < 1. The considered test statistics indeed depend on

each other but nevertheless an unbiased estimate of the rejection rate π̄ := 1/435
∑435

i=1 πi

is given by the proportion of rejections. Since the considered tests are unbiased (see Figure

2.1), H1 is said to be ‘true in general’ if π̄ ≫ α . Note that mini πi ≤ π̄ , i.e. the ‘worst’

of the 435 asset combinations cannot produce a power which is larger than π̄ and so the

rejection rate may serve as an upper bound for the most optimistic view in favor of H1.

Conversely, given a one-sided hypothesis test, π̄ ≪ α implies that H0 is ‘true in general’,

since the considered hypothesis tests are not conservative but strictly decreasing in H1 (see
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Figure 2.3.: The upper part shows the lower (left hand side) and upper (right hand side)

conditional Spearman’s rho as a function of p = q for BASF vs. Thyssen (n = 7884).

The dashed lines represent the corresponding 95%-confidence bands. In the lower left

part the lower and upper conditional Spearman’s rhos are shown together where the thick

line represents the lower conditional Spearman’s rho. The lower right part contains the

difference between the rhos and the corresponding 95%-confidence band.

Table 2.4 and Table 2.5).

The first panel of Table 2.7 contains the proportions of rejections for all 435 asset com-

binations. For the shortfall probability p = 0.1 only 10% asset combinations exhibit sig-

nificantly different Spearman’s rhos on a significance level of α = 0.1. However, it can be

seen that for all p ≥ 0.2 the proportions of rejections exceed the corresponding significance

levels. Especially, if p increases the rejection rates apparently become very large and so we

conclude that the lower and upper conditional rank-correlation coefficients in general are

different from each other.
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Figure 2.4.: The upper part shows the lower (left hand side) and upper (right hand side)

conditional Spearman’s rho as a function of p = q for BASF vs. Infineon (n = 2110).

The dashed lines represent the corresponding 95%-confidence bands. In the lower left

part the lower and upper conditional Spearman’s rhos are shown together where the thick

line represents the lower conditional Spearman’s rho. The lower right part contains the

difference between the rhos and the corresponding 95%-confidence band.

2.5.2. One-Sided Hypothesis Tests

Panel 2 and 3 of Table 2.7 contain the proportions of asset combinations where the lower

conditional Spearman’s rho exceeds the upper conditional Spearman’s rho and vice versa.

For example, 67% of the asset combinations are such that ρ̂L,n > ρ̂U,n given the shortfall

probability p = 0.1 but only 17% of these combinations are significant on the significance

level α = 0.1. It is clear that not every combination with ρ̂L,n > ρ̂U,n or ρ̂L,n < ρ̂U,n can

be significant. This holds especially if the number of observations in the lower left and

upper right area of the empirical copula is small. So even if the proportion of significant

combinations might appear to be somewhat small, it neither implies that most of the

null hypotheses are true nor that the differences of the lower and upper conditional rank-

correlation coefficients are ‘small’ (see the last row of Table 2.6).
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Panel 1 H0 : ρL = ρU vs. H1 : ρL 6= ρU

α p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

0.10 .10 .27 .46 .63 .78

0.05 .05 .20 .37 .53 .69

0.01 .01 .09 .24 .36 .49

Panel 2 H0 : ρL ≤ ρU vs. H1 : ρL > ρU

α p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

0.10 .17 .37 .57 .73 .84

0.05 .09 .25 .45 .62 .78

0.01 .02 .12 .29 .42 .57

ρ̂L,n > ρ̂U,n .67 .79 .92 .95 .97

Panel 3 H0 : ρL ≥ ρU vs. H1 : ρL < ρU

α p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

0.10 .03 .03 .01 .01 .00

0.05 .01 .02 .00 .01 .00

0.01 .00 .01 .00 .00 .00

ρ̂L,n < ρ̂U,n .33 .21 .08 .05 .03

Table 2.7.: Proportions of rejections of the different hypothesis tests, shortfall probabilities,

and significance levels for the 435 asset combinations. The proportions of asset combina-

tions where ρ̂L is larger or smaller than ρ̂U are presented in the last rows of Panel 2 and

Panel 3.

The second panel of Table 2.7 clearly reveals that the rejection rates of the hypothesis

tests for various levels of p and α considerably exceed the corresponding significance levels.

This effect becomes more obvious the more p increases. Hence, we have found a strong

evidence for the hypothesis H1 : ρL > ρU . In contrast, for the opposite test the proportions

of rejections given in Table 2.7 (Panel 3) are substantially smaller than the significance

levels. Once again this clearly supports the aforementioned hypothesis.

Many empirical studies suggest that the linear correlation coefficient of stock returns is

larger in bear markets than in bull markets (see, e.g., Ang and Chen, 2002, Erb et al., 1994).

Our results of the one-sided hypothesis tests confirm these findings in the literature, where

Pearson’s rho is used as a dependence measure. That means in bear markets daily stock
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returns depend more on each other than in bull markets. This holds even if ‘dependence’

is measured by Spearman’s rho, which is neither susceptible to outliers nor affected by the

marginal distributions of the considered random variables.

2.6. Conclusion

Several authors have investigated the dependencies of stock returns in bull and bear mar-

kets. Pearson’s rho has been typically used as a canonical dependence measure. Unfor-

tunately, it essentially depends on the marginal cumulative distribution functions of the

random variables which are taken into consideration and quantifies only the degree of linear

dependence. However, one is often interested in the degree of monotone rather than linear

dependence. This holds especially if the marginal distributions are highly non-standard

which is definitely the case when concentrating on the tails of stock return distributions.

So it is crucial to find a reasonable dependence measure for the degree of monotone depen-

dence under the condition that stock returns contemporaneously go up or down. We believe

that copula theory can serve as an appropriate tool-box and suggest Spearman’s rho as a

dependence measure. This is in contrast to the previous literature, where e.g. conditional

versions of Pearson’s rho have been used for the same purpose. Moreover, our approach is

purely nonparametric. Since we do not fit specific copulas to the data or suggest specific

time series models, we are able to avoid any kind of model misspecification. The finite-

sample performance of the proposed hypothesis tests have been demonstrated by Monte

Carlo simulation. Further, an empirical study using daily returns of stocks contained in

the DAX 30 has been conducted. We think that there is sufficient evidence to support the

hypothesis of different degrees of monotone dependence in bull and bear markets.
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Chapter 3.

A General Approach to Bayesian Portfolio

Optimization

3.1. Motivation

Traditional portfolio optimization strategies are susceptible to parameter uncertainty (Jo-

rion, 1986, Kalymon, 1971, Klein and Bawa, 1976, Markowitz, 1952, Michaud, 1989). Esti-

mation risk is mainly driven by the uncertainty regarding the expected asset returns rather

than their variances and covariances (Chopra and Ziemba, 1993). However, it can be shown

that estimating the covariance matrix is also problematic if the sample size is small com-

pared to the number of assets (Frahm, 2008, Kempf and Memmel, 2006). Many portfolio

optimization approaches rely on rather simple assumptions about the distribution of as-

set returns. However, it is well-known that short-term financial data can be heavy-tailed

or at least leptokurtic, tail-dependent, skewed or possessing other kinds of asymmetries.

Financial time series typically exhibit volatility clusters or even long-memory which holds

especially if log-price changes (so-called log-returns) of stocks, stock indices, and foreign

exchange rates are considered. Moreover, high-frequency data generally are non-stationary,

have jumps, and are strongly dependent.

One might argue that the stylized facts do not matter for long investment horizons since

Gordin’s central limit theorem (Hayashi, 2000, p. 404) takes effect even for ergodic station-

ary processes. For example, many applications in finance rely on the normal distribution

assumption and so low-frequency data are used to estimate the expected values of long-

term, such as monthly or quarterly, asset returns. Indeed, Merton (1980) showed that the

estimation of expected returns generally cannot be improved by increasing the sampling
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frequency. However, decreasing the sampling frequency leads to a loss of statistical effi-

ciency since relevant information about the variances and covariances of asset returns get

lost. Today’s availability of high-frequency data offers new opportunities for statistical

analysis, since these data include much more information than samples of low-frequency

data. Nevertheless, by using high-frequency data and ignoring the stylized facts of em-

pirical finance we would also obtain inaccurate estimates of the optimal portfolio weights.

That means when working with high-frequency-data we need an appropriate model which

accounts for the specific characteristics of the data generating process. The principal goal

of this paper is to present a general approach which takes account of both estimation risks

and stylized facts. Such kind of approach nowadays is feasible due to the permanent rise

of computational power, especially the facilities of high-performance computing.

In order to incorporate estimation risk we rely on the Bayesian framework. This will be

described in detail in Section 3.2. The Bayesian framework has several advantages. First

of all we are able to make finite-sample inferences. This is important even for a large

number of observations since the effective sample size strongly depends on the number

of observations relative to the number of assets (Frahm and Jaekel, 2007b). Further,

Bayesian analysis allows us to consider not only historical data but also to incorporate

prior information such as expert knowledge. This can lead to more reasonable and well-

diversified portfolios rather than relying on pure statistical portfolio optimization methods

(Black and Litterman, 1992, Herold and Maurer, 2006, Scherer and Martin, 2007, Ch. 7).

The dynamics of high-frequency data might become very complicated so that traditional

estimation procedures such as maximum-likelihood estimation quickly hit the wall. In

contrast, by using contemporary methods of numerical integration such as Markov chain

Monte Carlo or importance sampling, calculating the Bayesian posterior distribution of

some parameter is possible even for very complicated time series models (Geweke, 1989,

1995).

For the purpose of portfolio optimization we are interested in the predictive distribution

of asset returns. The predictive distribution combines both estimation risk and market

risk. Many Bayesian approaches to portfolio optimization are based on a purely analytical

fundament (Garlappi et al., 2007, Jorion, 1986, Klein and Bawa, 1976, Polson and Tew,

2000, Meucci, 2005, Ch. 7). However, this is not suitable if we want to take stylized

facts into account and then generally it is not possible to find the predictive distribution

analytically. To avoid limitations of such kind, we suggest a Metropolis-Hastings-like
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algorithm for simulating the posterior distribution of the unknown parameters. This is

derived on the basis of empirical information obtained from time series data and prior

information possibly given by an expert. The Markov chain Monte Carlo method belongs

to the broad class of tempering algorithms which have been frequently used in natural

sciences and proven to be able to simulate high-order distributions. It is therefore natural

to apply them to high-order financial problems like portfolio optimization. By choosing a

numerical framework, principally we can use almost any probabilistic model for the data

and parameters. In Section 3.4 we will present a realistic portfolio optimization problem

which has been performed on a standard PC in reasonable time.

3.2. The General Approach

3.2.1. Portfolio Optimization Problem

In the following we consider the discrete predictive returns of several assets after some long

investment horizon. We specifically concentrate on discrete or, say, simple returns instead

of log-returns for two reasons:

(1) Traditional portfolio theory is based on and can work only with discrete returns

rather than, e.g., log-returns.

(2) Moreover, discrete returns usually differ substantially from log-returns if the invest-

ment horizon is long.

The latter is often neglected in literature. Moreover, we concentrate on long investment

horizons since in practice investors usually do not want to liquidate or re-balance a portfolio

each day or week. In contrast, we can think of, e.g., quarterly or yearly investment periods.

The meaning of ‘predictive’ asset returns is to be understood in the Bayesian sense and

will be explained later on in more detail. Roughly speaking, the distribution of predictive

asset returns do not only account for market risk but also for the parameter uncertainty

which is always present if the parameters of some model for the asset returns are unknown.

Let R = (R1, . . . , Rd) be a d-dimensional vector of discrete predictive asset returns,

µ = E(R) the d × 1 vector of predictive expected returns and Σ = Var(R) < ∞ the

corresponding d× d matrix of predictive variances and covariances. We are searching for

w = arg max
v
ϕ(v′µ, v′Σ v) , s.t. v ∈ C ⊂ Rd , (3.1)

53



Chapter 3. A General Approach to Bayesian Portfolio Optimization

where v represents a portfolio, i.e. a vector of asset weights and ϕ is an appropriate objective

function (i.e. ϕ is strongly increasing in the first and decreasing in the second argument)

such as the well-known mean-variance certainty equivalent

ϕ(v′µ, v′Σ v) = v′µ− α

2
· v′Σ v (3.2)

with α ≥ 0 . Note that v′µ represents the expectation and v′Σ v is the variance of the

predictive portfolio return of a buy-and-hold portfolio after the given investment period.

The principal goal of this work is to show how the predictive moments µ and Σ (which

incorporate both market and estimation risk) can be calculated if short-term asset log-

returns are not normally distributed, possibly serially dependent, or exhibit other kinds of

stylized facts (see below).

3.2.2. Gordin’s Central Limit Theorem

Now let (Xt | θ) (t ∈ Z) be a strongly stationary process representing the short-term log-

returns of some asset with E(Xt | θ) = η(θ). Note that here we consider a stochastic process

under some unknown parameter θ ∈ Θ ⊂ Rp. We assume also that (Xt | θ) is ergodic. Er-

godicity means that any existing and finite moment of Xt | θ can be consistently estimated

by using the corresponding sample moment of the time series X1, . . . ,Xn (n → ∞). This

is guaranteed if (Xt, . . . ,Xt+k | θ) is asymptotically independent of (Xt−n, . . . ,Xt−n+l | θ)
as n → ∞ for all k, l ∈ N (Hayashi, 2000, p. 101). Further, we suppose that the second

moments of Xt | θ exist and are finite.

However, for the central limit theorem (CLT) we need some additional assumption. More

precisely, the CLT holds for the sample mean of (Xt | θ) if the centered process (Xt−η(θ) | θ)
satisfies Gordin’s condition. Let Ht := (Xt,Xt−1, . . . | θ) be the history of (Xt | θ) at

time t ∈ Z . Roughly speaking, Gordin’s condition implies that the impact of Ht−n on

the conditional expectation of Xt | θ vanishes as n → ∞ and also that the conditional

expectations of Xt | θ do not vary too much in time (Hayashi, 2000, p. 403). In that case

it is guaranteed that the CLT holds with an asymptotic or, say, long-run variance

σ2
L(θ) :=

∞∑

k=−∞

γθ(k) ,

where γθ is the autocovariance function of (Xt | θ) (Hayashi, 2000, p. 401) given the un-

known parameter θ . This result can be easily extended to any d-dimensional stochastic
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process (Hayashi, 2000, p. 405). Hence, in the following let (Xt | θ) be an ergodic stationary

d-dimensional process satisfying Gordin’s condition.

>From Gordin’s CLT it follows that long-term asset log-returns typically tend to be nor-

mally distributed even if the short-term log-returns are serially dependent and heavy tailed.

A broad class of time series models satisfy Gordin’s condition. Hence, long-term asset log-

return vectors are approximately normally distributed, i.e.

log(1 +R) | θ =
T∑

t=1

Xt | θ =: X | θ ∼ Nd

{
Tη(θ), TΥL(θ)

}
, (3.3)

where 1 represents a column vector of ones and log(·) is understood as taking the logarithm

of each component separately. Here ΥL(θ) denotes the long-run covariance matrix of the

stochastic process (Hayashi, 2000, p. 404) and T ∈ N represents the number of aggregated

short-term log-returns or, say, the investment horizon. For example, if X1, . . . ,XT repre-

sent daily log-returns, the sum given by Eq. 3.3 denotes a quarterly log-return if T = 63

and a yearly log-return in case T = 252.

Of course, the Gaussian distribution hypothesis holds only approximately. However, in the

following the additional suffix ‘approximately’ or any corresponding symbol are suppressed

for convenience. It is worth to mention that we generally suppose that both η(θ) and ΥL(θ)

can be computed either numerically or analytically under the specific time series model

which is used for the short-term asset log-returns provided the model parameter θ is known.

Specifically, if (Xt − η(θ) | θ) is a martingale difference sequence (Hayashi, 2000, p. 104),

that means if

E(Xt |Ht−1, θ) = η(θ) , ∀ t ∈ Z ,

the components of (Xt | θ) are serially uncorrelated. In that case the long-run covariance

matrix ΥL(θ) turns out to be the stationary variance Υ(θ) of (Xt | θ). The martingale

difference property is satisfied for a broad class of time series models, such as the family

of multivariate GARCH processes (Bauwens et al., 2006).

As elucidated in the introduction, estimating the moments Tη(θ) and TΥL(θ) from long-

term asset returns is inefficient. For example, we could estimate the quantity TΥL(θ)

simply by applying the sample covariance matrix to the corresponding long-term asset log-

returns. However in that case we would ignore a large part of the data and the resulting

standard error would increase roughly by a factor of
√
T relative to the approach based on

high-frequency data. Hence, decreasing the sampling frequency leads to a loss of statistical

efficiency.
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3.2.3. Bayesian Framework

In the Bayesian framework the model parameter θ is not assumed to be fixed but it is

considered as a random quantity possessing some prior distribution p(θ). The posterior

distribution p(θ |x) corresponds to the distribution of θ given some observed data x. More

specifically, in the following we shall interpret x as historical short-term asset log-return

data. The likelihood function L(θ ;x) = p(x | θ) represents some pre-defined probabilistic

model for x. Now the posterior distribution of θ can be obtained by the Bayes formula

p(θ |x) = L(θ ;x) p(θ)/p(x) ,

so that the posterior involves both empirical and subjective information.

However, in Bayesian analysis the posterior distribution is not always the desired object.

Instead, one can be interested in the predictive distribution of the data. Let y be some

unobserved data where x and y are conditionally independent given θ. Then

p(y |x) =

∫
p(y | θ) p(θ |x) dθ

represents the predictive distribution of y. In the following discussion this can be inter-

preted as the distribution of a long-term asset log-return if we take the parameter uncer-

tainty additionally into account. Each parameter is weighted by its posterior probability,

i.e. the probability of θ given the historical observations and some expert knowledge. No-

tice that analytical solutions for the portfolio optimization problem which are based on

the predictive distribution are only available for relatively simple expressions for the prior

p(θ) and the likelihood L(θ ;x).

The prior p(θ) can be either ‘diffuse’ or ‘informative’. If the prior is diffuse the model

parameter is assumed to possess some ad-hoc distribution such as the uniform distribution

or the standard normal distribution. The prior is called informative if some subjective in-

formation is necessary to determine p(θ). The chosen terminology is somewhat misleading

since we do not mean that diffuse priors in general are non-informative in the probabilistic

sense since the posterior distribution might drastically depend on the chosen diffuse prior.

Hence, we believe that Bayesian analysis is inherently subjective and since most practition-

ers have some basic opinions about the evolution of asset prices they might want to include

that information in the optimization process (Black and Litterman, 1992). The present

work heavily relies on the idea of using subjective information whenever it is possible.
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One popular example of Bayesian portfolio optimization is the approach of Black and

Litterman (1992). They show how to distill implicit information about the distribution

of asset returns from the market by using standard results of portfolio theory. This is

combined with the investor’s own belief which typically leads to optimal portfolios being

more robust against estimation errors than solutions obtained by pure statistical methods.

However, in order to be analytically tractable, the Black-Litterman approach assumes that

asset returns are normally distributed. Other Bayesian portfolio optimization techniques

are given by the work of Frost and Savarino (1986) and Jorion (1986). They all share the

same disadvantage, namely that an analytic expression of the predictive distribution or

optimal portfolio is only available by imposing unrealistic assumptions on the underlying

data or otherwise being inefficient, since they have to be applied by using low-frequency

data.

Scherer and Martin (2007, Ch. 7) suggest to apply so-called conjugate priors in Bayesian

portfolio optimization. These are informative priors which, after multiplying with the like-

lihood, lead to a posterior distribution that is of the same type as the chosen likelihood

function. Again, this limitation can be motivated by the requirement to obtain analyti-

cally tractable expressions for the posterior distribution. However, unrealistic assumptions

about the distribution of empirical data are necessary in general and the set of possible

prior distributions is substantially restricted. In particular, conjugate priors often are not

available if the assumption of normally distributed asset returns is relaxed. Scherer and

Martin (2007, Ch. 7) refer to a Markov chain Monte Carlo method (which will be discussed

later on in Section 3.3) to simulate the posterior distribution of the mean and variance of a

single asset return. In this work we will show how this idea can be extended to incorporate

arbitrary prior information given the asset returns are not normally distributed.

For choosing some likelihood function for θ we have to consider an appropriate model for

the data, that means to take account for the stylized facts of empirical finance. These can

be subsumed by the following anomalies (see McNeil et al., 2005, p. 117):

(1) Short-term asset returns are heavy-tailed and particularly not Gaussian.

(2) Asset returns are not independent and identically distributed although they show

little serial correlation.

(3) In contrast, squared asset returns show strong serial correlation.
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(4) Asset volatility varies over time and appears in clusters.

There are several alternatives to deal with these phenomena. For instance, GARCH pro-

cesses (Bollerslev, 1986, Engle, 1982) can be used to model volatility clusters. Another

possibility is to work with stochastic volatility models (Barndorff-Nielsen et al., 2002,

Jacquier et al., 1994, 2004).

3.2.4. Predictive Moments

In the last section we mentioned that the parameter θ is considered as a random quantity

and from Section 3.2.2 we know that

X | θ ∼ Nd

{
Tη(θ), TΥL(θ)

}
,

where X | θ denotes a long-term log-return vector given the unknown parameter θ. Hence,

the vector of long-term discrete returns is given by

R | θ = exp(X | θ) − 1 ,

where exp(·) shall be interpreted as a component-wise function. Thus each component of

R | θ is log-normally distributed and it can be easily shown that

E(R | θ) = exp
[
T
{
η(θ) + diag(ΥL(θ))/2

}]
− 1

and

Var(R | θ) = exp
[
T
{
η(θ)1′ + 1η(θ)′ +D(θ)

}]
⊙
[
exp
{
TΥL(θ)

}
− 11

′
]
,

where ⊙ denotes the Hadamard (i.e. component-wise) product, and

D(θ) =
diag{ΥL(θ)}1′ + 1diag{ΥL(θ)}′

2
.

Finally, we obtain the predictive moments of the long-term log-return vector by the law of

total expectations and the variance decomposition theorem, viz.

µ = E(R) = E
{
E(R | θ)

}

and

Σ = E
{
Var(R | θ)

}
+ Var

{
E(R | θ)

}
.

Interestingly, the conditional means of the discrete returns are also determined by the

long-run variances. Moreover, predictive expectations and variances of discrete returns are

nonlinear functions of the investment horizon T . Hence, the investment horizon can have

a substantial impact on the optimal portfolio. In Section 3.3 we will see how the predictive

moments can be approximated by Monte Carlo simulation.
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3.3. Numerical Implementation

Now we will discuss several Markov chain Monte Carlo algorithms for simulating the pos-

terior distribution p(θ |x) even if this has a rather complicated analytical structure. There

is a big number of different simulation techniques like for instance importance sampling

(Gamerman and Lopes, 2006, Ch. 3.4). However, we got the best simulation results in rea-

sonable time using a Markov chain Monte Carlo algorithm, which will be presented in the

following sections. In our case we want to use Markov chains only to sample from a com-

plex posterior distribution. Hence, we have to guarantee that the stationary distribution

of the considered Markov chain corresponds to p(θ |x).

3.3.1. Gibbs Sampling

A simple approach is known as Gibbs sampling . That means for simulating θ we could

principally start with some initial parameter vector θ = (θ1, . . . , θp) and draw a new real-

ization θ′1 of the first component from the conditional distribution of θ1 given θ2, . . . , θp .

Then we can take the new parameter vector (θ′1, θ2, . . . , θp) into consideration and simulate

the second component of θ by drawing from the distribution of θ2 under the new condition

θ′1, θ3, . . . , θp , etc., until we obtain the parameter vector θ′ = (θ′1, . . . , θ
′
p). If the same

procedure is repeated with θ′ and so on we obtain a Markov chain whose stationary dis-

tribution corresponds to the posterior distribution of θ. Scherer and Martin (2007, Ch. 7)

give an example of how to use Gibbs sampling for simulating the posterior distribution of

the mean and variance of a normally distributed single asset return by using a conjugate

prior. However, in our case this is not a useful approach since drawing from the conditional

posterior distributions of θ is not substantially easier than drawing directly from p(θ |x).

3.3.2. Metropolis-Hastings Algorithm

Another MCMC scheme which is frequently used in Bayesian statistics is the Metropolis-

Hastings algorithm (Hastings, 1970, Metropolis et al., 1953). An application to the Bayes-

ian analysis of stochastic volatility models is presented by Jacquier et al. (2004). The

Metropolis-Hastings algorithm is very similar to the Gibbs sampler, but unlike that, it

does not require to sample from the conditional stationary distribution. In contrast, the

sampling part is completely reduced to sampling from an arbitrary proposal distribution

which is easy to draw from. The stationary distribution is then only needed to calculate
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the acceptance probability of each new state in the chain, which comes from the proposal

distribution. This is why we choose a Metropolis-Hastings-like algorithm to simulate the

distribution of θ|x. First, we will present the Metropolis-Hastings algorithm and after that

an extension called parallel tempering will be discussed.

Assume there exists some target distribution π(θ) which shall be simulated. The current

state of the chain will be denoted by φ . In case of the Metropolis-Hastings algorithm,

the simulation is done by introducing an ‘easy to draw from’ proposal distribution q(φ, φ′)

which denotes the distribution of a proposal to move from state φ to state φ′. However,

the actual probability to move from φ to φ′ is determined by the acceptance probability

α(φ, φ′) = min

{
1,
π(φ′) q(φ′, φ)

π(φ) q(φ, φ′)

}
. (3.4)

Note that if we have a symmetric proposal distribution, the acceptance probability is simply

given by α = min{1, π(φ′)/π(φ)}.

The probability density of a new state φ′ given an old state φ, that is the so-called transition

kernel K(φ, φ′) (Gamerman and Lopes, 2006, p. 194) of the Markov chain, is given by

K(φ, φ′) = q(φ, φ′)α(φ, φ′) + δ(φ′ − φ)

(
1 −

∫
q(φ, ξ)α(φ, ξ) dξ

)
,

where δ is the Dirac distribution. It can be shown that for the acceptance probability given

by Eq. 3.4, the detailed balance condition

π(φ)K(φ, φ′) = π(φ′)K(φ′, φ)

is satisfied for all φ and φ′. Thus we obtain a reversible Markov chain (Gamerman and

Lopes, 2006, Ch. 4.6). That means by the presented Metropolis-Hastings algorithm in fact

we are able to simulate realizations from the target distribution π.

3.3.3. Parallel Tempering

Though the Metropolis-Hastings algorithm is very powerful, one big problem can easily

occur: The Markov chain can get stuck in local optima for a very long time. Assume for

instance a univariate bi-modal distribution. If the chain is currently in a region around

one of the two modes, there is almost no incentive to move to the region around the other

mode, since the acceptance probability α(φ, φ′) approaches zero if π(φ′) is much smaller

than π(φ). To avoid this problem, the idea of heated equilibrium distributions has been
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introduced. Instead of simulating only one stationary distribution π(θ) at a time, m parallel

chains are used, each having an equilibrium distribution

πi(θ) ∝ π1(θ)
(1/Ti), ∀ i = 1, . . . ,m ,

where Ti is the temperature of the distribution πi(θ). The temperature of the desired

stationary distribution π1(θ) is T1 = 1. At each iteration of the algorithm, an exchange

between the states φi and φj of chain i and j is proposed. The acceptance probability of

this swap is

αij(φi, φj) = min

{
1,
πi(φj)πj(φi)

πi(φi)πj(φj)

}
.

One disadvantage of this method is that only the outcome of chain 1 contains samples

from the desired distribution and all the other samples are dropped. However, especially

for very complex distributions the advantage of not getting stuck in local modes overcomes

the disadvantage of high computational effort. For further details and applications of

tempering algorithms see for instance Gamerman and Lopes (2006, Ch. 6 and Ch. 7).

In our case the stationary distribution which has to be simulated is the posterior distri-

bution of the model parameters which can become very complex. In our empirical study

we will use m = 2 different chains. For the proposal distribution we choose a composite

distribution q(θ, θ′) by taking account of the specific domains of the different components

of θ. Of course we could also choose a proposal distribution which probably leads to real-

izations outside of Θ but, however, if some parameter is proposed to exceed the parameter

set, the prior probability and thus also the acceptance probability becomes zero. Hence, it

cannot happen that we get some realizations of θ such that θ /∈ Θ.

Our implementation of the parallel tempering algorithm is as follows:

1. Create the initial parameter vectors θ1 and θ2 .

2. Repeat the following steps very often:

a) Generate θ′1 and θ′2 by randomly drawing from the proposal distributions.

b) Calculate p(θ′1 |x) ∝ L(θ′1 ;x) p(θ′1) and p(θ′2 |x) ∝ L(θ′2 ;x) p(θ′2).

c) Calculate

α1 = min

{
1,
p(θ′1 |x) q(θ′1, θ1)
p(θ1 |x) q(θ1, θ′1)

}

and

α2 = min

{
1,
p(θ′2 |x)(1/T2)q(θ′2, θ2)

p(θ2 |x)(1/T2)q(θ2, θ′2)

}
.
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d) Set θ1 = θ′1 with probability α1, and θ2 = θ′2 with probability α2 , otherwise

keep the old θ1 or θ2 , respectively.

e) Swap the states θ1 and θ2 of the chains with probability

α12(θ1, θ2) = min

{
1,
p(θ2 |x) p(θ1 |x)(1/T2)

p(θ1 |x) p(θ2 |x)(1/T2)

}
.

As mentioned above we only consider the realizations of the first chain which are obtained

after some burning-in phase.

3.4. Empirical Study

In this section we will present an empirical study based on the framework developed in

the previous sections. First, we create a model for high-frequency asset log-returns by

taking account of stylized facts. It is a multivariate extension of the GARCH model devel-

oped by Bollerslev (1986). A comprehensive overview on different multivariate GARCH

(MGARCH) models is given in Bauwens et al. (2006). MGARCH processes are martingale

difference sequences and so Gordin’s condition (see Section 3.2.2) is automatically satis-

fied. Further, the predictive moments (see Section 3.2.4) can be easily calculated by the

MCMC algorithm discussed in Section 3.3. After the data generating process is developed,

we present the chosen prior information for the unknown model parameter θ. Then we will

apply our method to time series data to find optimal portfolios.

3.4.1. Modeling the Distribution of Asset Log-Returns

In this section we will describe a way for modeling the distribution of daily asset log-

returns. We will concentrate on risky assets. The risk-free asset or, say, money market

account does not possess any market risk per definition. That means we do not need any

stochastic model and so there exists no parameter uncertainty.

In order be provide a flexible framework for the asset returns, we rely on the broad class

of elliptically symmetric distributions. A d-dimensional random vector X is said to be

elliptically symmetric distributed (Cambanis et al., 1981) if and only if

X
d
= η + ΓRU

with η ∈ Rd being a location vector, Γ ∈ Rd×k is a transformation matrix, U a k-

dimensional random vector uniformly distributed on the unit hypersphere, and R is a
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non-negative random variable stochastically independent of U . The positive semi-definite

matrix Ω := ΓΓ′ is referred to as the dispersion matrix of X and R is called its generating

variate. By choosing R properly, we are able to account for stylized facts like heavy tails.

Further, it can be shown that

V := Var(X) = E(R2)/k · Ω

is the covariance matrix of X provided E(R2) <∞ .

A d-dimensional MGARCH process (Xt) is characterized by

Xt |Ht−1
d
= η + V

1
2

t ǫt ,

where η is a d× 1 vector of time-independent expected log-returns, Vt is a function only of

Ht−1 and denotes the d×d positive definite conditional covariance matrix of the log-return

vector Xt, and ǫt is an independent and identically distributed d×1 vector of perturbations

with E(ǫt) = 0 and covariance matrix Var(ǫt) = Id . If ǫt is assumed to be spherically

distributed, i.e. elliptically symmetric with location 0 and dispersion proportional to Id ,

then the MGARCH model perfectly fits into the class of elliptically symmetric distributions.

There are various specifications of the time-dependent covariance matrix Vt. For a thorough

discussion of MGARCH processes see Bauwens et al. (2006). Since MGARCH specifications

often require a huge number of parameters and are hardly applicable to practical problems,

for complexity reduction we suggest to use a principal components model for the asset log-

returns. The underlying idea of principal components is that most of the dynamics of the

observed data can be explained by a small number of uncorrelated factors. The spectral

decomposition theorem assures that the covariance matrix V of an elliptically symmetric

distributed random vector X can be decomposed into V = OΛO′, where

• Λ is the diagonal matrix of the eigenvalues λ1, . . . , λd of V and

• O is an orthogonal d× d matrix containing the associated eigenvectors.

By applying this decomposition for the vector of asset log-returns we can specify the

MGARCH model as

Xt |Ht−1
d
= η + OΛ

1
2
t ǫt

and define

Yt := Λ
1
2
t ǫt = O′(Xt − η) .
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This reduces the number of required model parameters tremendously, since the elements

of Yt are uncorrelated per definition. However, we have to presume that the eigenvectors

do not change over time. Speaking economically, the factors which drive the dynamics

of the asset log-returns do not change but the impact of each factor can vary over time.

For modeling the components of Λt we can simply assume that Yt consists of d unrelated

univariate GARCH(1,1) processes. The resulting process is sometimes called orthogonal

GARCH (Bauwens et al., 2006).

Principally, we can choose any elliptically symmetric distribution for modeling the pertur-

bation ǫt as long as the corresponding density function can be computed either numerically

or analytically. However, here we assume that ǫt is multivariate t-distributed, i.e.

ǫt ∼ td

(
0 ,
ν − 2

ν
· Id , ν

)

with ν > 2 degrees of freedom and the dispersion matrix is such that Var(ǫt) = Id . Hence,

the random vector Xt |Ht−1 possesses the density

p(xt |Ht−1) =
Γ(d+ν

2 )

Γ(ν
2 )

·
√

detΛ−1
t

(νπ)d
·
(

1 +
(xt − η)′OΛ−1

t O′(xt − η)

ν − 2

)− d+ν
2

,

where Λt is a diagonal d× d matrix with main diagonal elements

λit = γi + αiY
2
i,t−1 + βiλi,t−1 , i = 1, . . . , d , (3.5)

representing the conditional variances of the d principal components. Note that the orthog-

onal matrix O (d× d) contains
(
d
2

)
free parameters and there are 3d GARCH parameters.

Altogether, the resulting data generating process contains only d (d+7)/2+1 parameters.

3.4.2. Modeling the Prior Information

There are several ways to implement prior information. In case of a diffuse prior there is

no explicit information that is incorporated into the prior distribution. This is often done

to get an analytical expression for the posterior distribution and so to obtain an analytical

result for the optimal portfolio. However, it can be shown that the diffuse prior approach

can lead to paradox results (Berger, 2006) and the concrete choice of the diffuse prior can

have a substantial impact on the optimal decision. Therefore, as already mentioned, it is

suggested to use informative priors whenever it is possible.

Our hierarchical approach is very general. First of all note that our model parameters are

given by η, α, β, λ,O, ν. Here η (d×1) is the vector of expected asset log-returns, α (d×1)
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and β (d× 1) contain the GARCH(1,1) parameters according to (3.5) and the d× 1 vector

λ contains the unconditional variances λ1, . . . , λd , i.e.

λi =
γi

1 − αi − βi
, i = 1, . . . , d .

Note that the parameters γi = λi (1 − αi − βi) (i = 1, . . . , d) follow implicitly from α, β,

and λ . That means we use the following re-parameterization of Eq. 3.5:

λit = λi (1 − αi − βi) + αiY
2
i,t−1 + βiλi,t−1 , i = 1, . . . , d .

We will substitute O by an estimate based on the sample covariance matrix of the time

series data. That means O is fixed for the sake of simplicity. Finally, the number of degrees

of freedom ν is set to 3 to account for the typical heavy tails of daily log-returns. We did not

observe any improvements by introducing some prior distribution for ν. Hence, we obtain

the parameter vector θ = (η, α, β, λ) and suppose that they are a priori stochastically

independent, i.e.

p(θ) = p(η) p(α) p(β) p(λ) .

Since α, β ∈ (0, 1) we decided to use flat priors for α and β where the components of α and

β are assumed to be mutually independent. So the prior for θ can be simply expressed as

p(θ) = p(η) p(λ).

Also the components of λ are assumed to be mutually independent but each one follows

a gamma distribution, i.e. λi ∼ Γ(κ2 , λ0/κ2) (i = 1, . . . , d) and λ0, κ2 > 0 . Hence, we

expect a priori that each principal component has the same proportion of total variation.

Note that E(λi) = λ0 is constant but Var(λi) = λ2
0/κ2 . That means κ2 can be interpreted

as the investor’s confidence that the unconditional variances of the principal components

indeed correspond to λ0 . In our empirical study we choose λ0 = 0.22/T and κ2 = 2 .

For the expected values of the daily log-returns we use the prior proposed by Jorion (1986),

i.e.

η |V ∼ Nd(η0, V/κ1) ,

where η0 is a vector of prior expected returns. We decided to choose η0 = 0 since sample

means of daily log-returns are typically close to zero (McNeil et al., 2005, p. 117). The

scale parameter κ1 represents the confidence of the investor in their a priori assumption

concerning η and can be seen as a virtual sample size. For instance, if there are n = 1260

observations (i.e. 5 trading years) then κ1 = 1260 would mean that the investor trusts in

their own belief about η as much as the empirical evidence given by the time series.
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USA UK JPN ITA GER FRA CAN

µ̂ 5.98% 12.50% 12.78% 17.63% 14.27% 14.53% 20.97%

σ̂ 16.07% 13.70% 21.55% 14.68% 23.44% 17.90% 22.10%

Table 3.1.: Descriptive statistics of yearly discrete returns.

Note that V = OΛO′ where O is fixed and Λ is random. Hence, we can write Jorion’s

prior equivalently as

η |Λ ∼ Nd(0 ,OΛO′/κ1)

such that p(η) = p(η |Λ) p(Λ) can be easily calculated, since

p(Λ) = p(λ) ∝
d∏

i=1

λκ2−1
i exp

(
−κ2λi

λ0

)

and

p(η |Λ) ∝ exp

(
−κ1

2
· η′OΛ−1O′η

)
.

3.4.3. Data Description

In our empirical study we use daily log-returns of seven MSCI stock indices of the countries

USA, UK, Japan, Italy, Germany, France, and Canada. The indices are adjusted by

dividends, splits, etc. and are calculated on the basis of USD stock prices. We have

n = 1260 daily observations ranging from 2001-12-03 to 2006-09-29 and the whole sample

is divided chronologically into 5 subsets where each subset contains 252 observations. In

Table 3.1 we can see the sample means and standard deviations of the yearly discrete

returns of each country. In our study we assume that the investment horizon corresponds

to 1 year, i.e. T = 252 and the quantities given in Table 3.1 are based on the available 5

observations of yearly discrete returns. Of course, since the sample size is very small, these

values are strongly affected by estimation errors.

The process (Xt | θ) of daily log-returns is assumed to be an ergodic stationary martingale

difference sequence as described in Section 3.2.2. Hence, both the sample mean η̂ and the

sample covariance matrix Υ̂ of the daily log-returns are strongly consistent estimators for

η(θ) and ΥL(θ), respectively. Now we can also estimate the first and second moments of

yearly discrete returns by using the formulas given in Section 3.2.4 based on daily log-

returns, viz.

Ê(R | θ) = exp
[
252

{
η̂ + diag

(
Υ̂
)
/2
}]

− 1
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USA UK JPN ITA GER FRA CAN

µ̂ 6.29% 13.41% 13.46% 18.54% 15.23% 15.73% 20.71%

σ̂ 17.42% 19.60% 24.13% 20.42% 28.14% 24.52% 19.29%

Table 3.2.: Descriptive statistics of yearly discrete returns based on daily log-returns.

λ̂1 λ̂2 λ̂3 λ̂4 λ̂5 λ̂6 λ̂7

6.45 e-4 1.64 e-4 0.94 e-4 0.48 e-4 0.32 e-4 0.21 e-4 0.14 e-4

63.35 % 16.09 % 9.21 % 4.75 % 3.17 % 2.09 % 1.33 %

Table 3.3.: Eigenvalues of the sample covariance matrix of daily log-returns.

and

V̂ar(R | θ) = exp
[
252

{
η̂1′ + 1η̂′ + D̂

}]
⊙
[
exp
{
252 Υ̂

}
− 11

′
]
,

where

D̂ =
diag

{
Υ̂
}
1
′ + 1diag

{
Υ̂
}′

2
.

The corresponding values are given in Table 3.2. Note that there are only slight differences

between the results in Table 3.1 and Table 3.2 regarding the means but for the standard

deviations the results can differ substantially.

Table 3.3 contains the eigenvalues of Υ̂ as well as their proportions of the total variation.

As described earlier, each eigenvalue can be interpreted as the unconditional variance

of a principal component. In our case, the first component (i.e. the systematic risk of

the market) almost explains two third of the total variation and the impact of the other

components are relatively small. Similar results for financial data have been frequently

observed in literature (see, e.g., Plerou et al., 1999). Note that our prior expectation for λi

corresponds to λ0 = 0.22/252 =1.59 e-4, which reflects a relatively conservative assumption

relative to the empirical results. For the confidence in λ0 we choose the parameter κ2 = 2

which leads to an a priori standard deviation of λi roughly corresponding to 1.12 e-4 (i =

1, . . . , d).

3.4.4. Results

In this section we present the results of our simulation. Our main objective is to demon-

strate the practical applicability of our approach. We want to show how prior information
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can be used to account for estimation risk – even if the underlying model is complex –

and to obtain well-diversified portfolios. The parameter κ1 , which reflects the investor’s

confidence in their prior assumption about the expected log-returns, is varied in order to

see how expert knowledge determines the optimal portfolio. Asset return variances and

covariances can be estimated quite good by using short-term asset returns. In contrast,

it is well-known that portfolio selection is very sensitive to expected asset returns which

cannot be estimated accurately. Hence, investors preferably have a strong confidence about

expected asset returns in order to reduce estimation risk. This is the reason why we kept

κ2 = 2 fixed, which indicates that there is only little confidence in the prior information

about the eigenvalues.

We performed standard Markowitz portfolio selection (Markowitz, 1952). Our objective

function is the traditional mean-variance certainty equivalent given by Eq. 3.2 where we

choose a risk aversion of α = 1. In many practical situations constraints are included in

the optimization problem. For instance, investors might be willing to forbid short-selling.

Other constraints might be given by legal issues and so on. We do not want to provide

optimal portfolios for each imaginable investor, but instead we present a flexible framework

which can be adapted to most kinds of situations.

Each additional constraint limits the space of alternatives. Therefore, in the first part of

the study (P1) we have only one constraint, namely the budget constraint CB : w′
1 = 1 .

The short-selling constraint CS : w ≥ 0 is additionally considered in the second part of the

study (P2). In our study we are searching for the optimal portfolio given by (3.1) using

the objective function

ϕ(v) = v′µ− 1

2
· v′Σ v , s.t. v ∈ C ,

where C = C1 = CB in P1 and C = C2 = CB ∩ CS in P2.

Table 3.4 contains our results of the portfolio optimization. These can be compared with

the portfolio weights obtained by traditional Markowitz optimization, i.e. searching for the

Markowitz portfolio (MP), viz.

MP = arg max
v
v′Ê(R | θ) − 1

2
· v′V̂ar(R | θ)v , s.t. v ∈ C ,

and the so-called global minimum variance portfolio (MVP), i.e.

MVP = arg min
v
v′V̂ar(R | θ)v , s.t. v ∈ C .
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The MVP has been advocated by many authors as an alternative to the traditional mean-

variance optimal portfolio since there are no expected asset returns which have to be

estimated and thus the impact of estimation errors can be substantially reduced (Frahm,

2008).

As we can see in Table 3.4 the Markowitz portfolios tend to overrate assets with large

expected returns. In P1 the MP suggests a short-selling of 484.01% of USA and investing

487.05% in CAN - a strategy which would certainly not be pursued in practice. When

short-selling is forbidden, all the available capital is invested in CAN. Compared to that

the two minimum variance portfolios are far more diversified. However, it can be clearly

seen that these portfolios are not optimal in the sense of expected return maximization,

since the asset with the smallest estimated return, USA, possesses the highest weight in

both minimum variance portfolios.

The optimal portfolios in case κ1 = 1, which almost corresponds to a diffuse prior informa-

tion about the expected asset returns, are similar to the Markowitz portfolios. However,

using an appropriate model for high-frequency data apparently leads to slight changes of

the expected returns, variances, and covariances which alters the optimal portfolios. Nev-

ertheless, the optimal portfolio for κ1 = 1 in P2 is the same as in the empirical case, where

all the capital is invested in CAN.

The more confident the investor is about the expected asset returns, the more the optimal

portfolios tend to be diversified. In case κ1 = 1260 the investor relies on their prior

assumption about the expected returns as much as on the empirical information. The

optimal portfolio in P1 does not possess weights which are such excessive as for traditional

Markowitz optimization or in the case κ1 = 1. For instance the amount of capital invested

in CAN reduces to 404.76%. In P2 not all the capital is put into CAN anymore. Instead,

14.70% is invested in JPN now. The reason for that is that the expected predictive asset

returns are shrunk towards the prior assumption η0 = 0. So increasing the confidence in

prior information clearly reduces estimation risk. This effect even strengthens when κ1 is

further increased.

In fact, κ1 = 6300 is a configuration which can be seen as typical for practical investment

problems. Here the investor trusts their own assumption about the expected returns 5

times more than the empirical information. Recall that we use a time series of daily log-

returns lasting 5 years, which means that the estimation of yearly expected returns is

based on 5 observations. So from a practical point of view, when it comes to estimating
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empirical USA UK JPN ITA GER FRA CAN

µ̂ 6.29% 13.41% 13.46% 18.54% 15.23% 15.73% 20.71%

σ̂ 17.42% 19.60% 24.13% 20.42% 28.14% 24.52% 19.29%

MP1 −484.01% −195.93% −13.18% 373.62% −2.45% −65.10% 487.05%

MP2 0% 0% 0% 0% 0% 0% 100%

MVP1 50.37% 37.72% 20.13% 43.27% −28.86% −28.46% 5.84%

MVP2 42.49% 19.17% 23.88% 4.64% 0% 0% 9.83%

κ1 = 1 USA UK JPN ITA GER FRA CAN

µ 5.25% 12.44% 19.57% 16.29% 13.32% 14.52% 25.29%

σ 17.96% 20.66% 27.29% 21.39% 29.02% 25.80% 21.53%

w1 −553.87% −208.89% 54.80% 200.23% −25.00% 2.05% 630.68%

w2 0% 0% 0% 0% 0% 0% 100%

1260 USA UK JPN ITA GER FRA CAN

µ 4.76% 9.06% 14.02% 11.77% 11.94% 11.52% 15.26%

σ 17.57% 19.39% 24.97% 19.97% 27.98% 24.39% 18.83%

w1 −373.32% −190.63% 62.17% 98.56% 64.67% 33.79% 404.76%

w2 0% 0% 14.70% 0% 0% 0% 85.30%

2520 USA UK JPN ITA GER FRA CAN

µ 4.51% 7.73% 10.81% 9.67% 10.74% 10.01% 11.67%

σ 17.31% 18.93% 23.91% 19.33% 27.41% 23.81% 17.93%

w1 −278.63% −159.50% 52.44% 55.36% 79.64% 44.51% 306.18%

w2 0% 0% 18.69% 0% 0% 0% 81.31%

6300 USA UK JPN ITA GER FRA CAN

µ 4.06% 5.86% 7.00% 7.05% 9.05% 7.91% 7.55%

σ 17.14% 18.36% 22.48% 18.66% 26.53% 22.96% 17.11%

w1 −147.49% −108.20% 40.34% 8.29% 88.43% 49.15% 169.47%

w2 0% 0% 19.46% 0% 36.04% 0% 44.50%

12600 USA UK JPN ITA GER FRA CAN

µ 2.96% 4.15% 5.11% 4.84% 6.72% 5.70% 4.88%

σ 16.80% 18.00% 22.10% 18.15% 25.83% 23.37% 16.55%

w1 −76.83% −60.97% 43.01% −6.15% 71.30% 35.85% 93.78%

w2 0% 0% 31.10% 0% 43.28% 0% 25.62%

Table 3.4.: Empirical and predictive moments of yearly discrete returns as well as the

corresponding portfolio weights for the constraints C1 and C2 .

expected returns it makes sense to trust far more in expert knowledge than in time series

information. The optimal portfolio in P2 is more diversified than the Markowitz portfolio
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on the one hand. On the other hand, in contrast to the MVP, it also takes account for the

expected predictive returns and the investor’s will to reap the profit.

The optimal portfolios for κ1 = 12600 are even more diversified. However, here almost all

of the empirical information about the expected returns is lost, since the confidence in the

corresponding prior assumption is 10 times higher than the empirical evidence.

3.5. Conclusion

We develop an approach to incorporate the stylized facts of high-frequency financial data

and arbitrary prior information into the portfolio optimization process. Our approach is

characterized by rather weak assumptions about the underlying stochastic process. Us-

ing Gordin’s central limit theorem, we are able to approximate the distribution of asset

log-returns of long investment horizons by the normal distribution. In order to avoid esti-

mation risk, we rely on the Bayesian framework which allows us to include subjective prior

information such as expert knowledge. By using a Markov chain Monte Carlo algorithm

we simulate the posterior distribution of the unknown model parameters and after that

we calculate the first two moments of the discrete predictive asset returns after the given

investment period. In a last step, we perform a standard portfolio optimization using these

predictive moments, which incorporate both empirical information contained in the data

and subjective prior information of the investor.

We give a practical example to demonstrate the applicability of our approach to real-world

problems. For that purpose, we use 7 time series of daily log-returns. For the data gener-

ating process, we propose an orthogonal MGARCH model. The investor’s subjective prior

information about expected asset returns and eigenvalues of the covariance matrix is mod-

eled using a hierarchical approach. The suggested portfolios show that prior assumptions

have a substantial impact on the optimal decision. Our portfolios become well-diversified

compared to the outcomes of traditional portfolio optimization strategies and reflect the

investor’s assessment about the market. The computational performance of our algorithm

encourages applying our approach to higher-dimensional problems in practice, where both

empirical information contained in time series and expert knowledge are available.
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Chapter 4.

Linear Statistical Inference for Global and

Local Minimum Variance Portfolios

4.1. Motivation

During the past decades traditional portfolio optimization has often been criticized since

it does not account for estimation risk (Jorion, 1986, Kalymon, 1971, Klein and Bawa,

1976, Michaud, 1989). At the beginning of modern portfolio theory (Markowitz, 1952) it

was usually supposed that the parameters of interest, i.e. the means and (co-)variances of

asset returns can be estimated accurately such that estimation errors remain negligible.

Although this conjecture might be true for variances and covariances if the sample size

is large enough compared to the number of assets, it is not an appropriate simplification

for expected asset returns in most practical situations (Chopra and Ziemba, 1993, Kempf

and Memmel, 2002, Merton, 1980). Nowadays many portfolio optimization procedures

which take the parameter uncertainty into account can be found in the literature (Black

and Litterman, 1992, Frost and Savarino, 1986, Herold and Maurer, 2006, Kan and Zhou,

2007, Scherer, 2004).

Consider a d-dimensional random vector R = (R1, . . . , Rd) of asset excess returns at the

end of some investment horizon. The excess return of an asset corresponds to the asset

return minus the risk-free interest rate and in the following I will usually drop the prefix

‘excess’ for convenience. It is assumed that the vector of asset returns is multivariate

normally distributed, i.e. R ∼ Nd(µ,Σ), where µ (d× 1) is an unknown vector of expected

asset returns and Σ (d×d) is an unknown positive-definite matrix containing their variances

and covariances.
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The tangential portfolio (TP) is defined as the portfolio of risky assets which maximizes

the Sharpe ratio (see Figure 4.1), i.e.

wTP
(d×1)

:= arg max
v

µ′v/
√
v′Σ v

such that the budget constraint 1′v = 1 is satisfied. Here v = (v1, . . . , vd) symbolizes a

vector of portfolio weights and 1 is a vector of ones or the one scalar, respectively. In

the following ‘(x1, . . . , xd)’ indicates a d-tuple which is understood to be a d-dimensional

column vector, whereas ‘[ x1 · · · xd ]’ (without the commas) is a d-dimensional row vector,

i.e. (x1, . . . , xd) ≡ [ x1 · · · xd ]′.

An (mean-variance) efficient portfolio (EP) can be characterized in terms of the typical

mean-variance utility function (or, more precisely, certainty equivalent), i.e.

wEP
(d×1)

:= arg max
v

(
µ′v − α/2 · v′Σ v

)

for some risk-aversion parameter α > 0 . If the EP satisfies the budget constraint, it can

be found on the efficient frontier, i.e. the upper part of the hyperbola given in Figure 4.1.

Otherwise it is located on the capital market line.

A rather simple alternative to the TP or some other EP is given by the so-called global

minimum variance portfolio (GMVP). This is defined as

w
(d×1)

:= arg min
v

v′Σ v

under the budget constraint 1′v = 1. The GMVP can be viewed as an EP after setting

α = ∞ . Any portfolio which minimizes the variance of the portfolio return R′v under

some additional constraints for the portfolio weights will be called local minimum variance

portfolio (LMVP).

It is well-known that wTP = Σ−1µ/(1′Σ−1µ) and w = Σ−11/(1′Σ−11) (a closed-form

expression for the LMVP under a set of linear equality constraints for the portfolio weights

can be found in Section 4.3.1). The TP strongly depends on the vector µ of expected asset

returns and the same holds for the EP if the investor has a relatively low risk aversion

(that means if α is small). In contrast, the GMVP as well as any LMVP is not determined

by the unknown parameter µ . However, a LMVP in general will be inefficient which is

shown by Figure 4.1.

The GMVP has been advocated by many authors (Jagannathan and Ma, 2003, Kempf and

Memmel, 2006, Ledoit and Wolf, 2003). On the one hand choosing the GMVP is closely
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Figure 4.1.: Capital market line (straight), utility isoline (dashed), TP (2), EP (♦), GMVP

(◦), and LMVP (•).

related to the basic idea of Markowitz (1952), i.e. searching for an efficient portfolio by

diversification. On the other hand there are no expected asset returns which have to be

estimated and so the impact of estimation errors can be substantially reduced. However,

one might ask why it should be appropriate to search for a minimum variance portfolio

if the investor is interested in maximizing a mean-variance utility function or the Sharpe

ratio according to Tobin’s two-fund separation theorem (Tobin, 1958). Thus I would like

to explain now the main idea of the present work.

The suggested TP can differ substantially from the true one in the presence of estimation

risk. Put another way, its realized (but not the suggested) Sharpe ratio can be very

small since the expected asset returns are unknown and then it might be better to search

for some minimum variance portfolio. In particular, the constraints for a LMVP can be

chosen in such a way that large volatility assets are preferred (recall that the variances

and covariances of asset returns can be much better estimated than their expectations). If

some branch contains a larger risk premium than another (e.g. the IT sector bears more

risk than the finance sector), an investor could be simply willing to reap the profit by

choosing the corresponding LMVP. Now this is probably closer to the TP or another EP

than the GMVP, although the LMVP is inefficient (see Figure 4.1).

Since there are no expected asset returns which have to be estimated for the LMVP, its
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realized Sharpe ratio is hopefully larger than the realized Sharpe ratio of the suggested TP.

In fact some authors argue that even if portfolio restrictions are binding (which is indicated

e.g. by the small hyperbola in Figure 4.1) they can increase the out-of-sample performance

(Frost and Savarino, 1988, Jagannathan and Ma, 2003). This is because restricting port-

folio weights forces diversification and the investor’s decision becomes less vulnerable to

estimation risk. Hence, the advertising motto for minimum variance portfolios could be ‘A

bird in the hand is worth two in the bush’.

Another argument for restricting portfolio weights is that people might have prior knowl-

edge apart from empirical data. For instance, investors often believe that some industry

sector, region or stock market will ‘outperform’ another and so they might wish to take

the opportunity. Moreover, in many practical situations an investor must not choose a

mean-variance efficient portfolio. For example, portfolio managers of mutual funds often

have to observe certain limits regarding their choice of portfolio weights. This is a typ-

ical situation in top down portfolio management . That means the set of available assets

is divided into some subsets of assets, each subset is divided into some further subsets,

etc. These subsets are generally referred to as asset classes, according to some industry

sector, rating or regional classification. Now, top down portfolio management means that

the amount of capital is allocated to the top level partition at first. Given the portfolio

weights for that partition, somebody has to choose some optimal portfolio weights for the

subsequent asset classes, etc., so that each of the succeeding decisions are limited by the

preceding allocations.

As already pointed out by Black and Litterman (1992) as well as Herold and Maurer (2006),

combining historical data with ‘expert knowledge’ (which is usually done in practice) or

drawing up some guidelines which must be observed by the decision maker can lead to more

reasonable and well-diversified portfolios rather than relying on pure statistical portfolio

optimization methods. In this work I will assume that the portfolio weights are generally

restricted by a set of linear equality constraints. Thus one might be interested in testing

linear hypotheses for the corresponding LMVP rather than the GMVP. I will present

standard hypothesis tests for global and local minimum variance portfolios as well as the

small-sample distributions of the estimated portfolio weights.

The present work is focused on small-sample rather than large-sample properties but the

latter can be easily deduced from the former ones. This is an important issue for I will

show that large-sample approximations fail if the sample size is large but the number of
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observations relative to the number of assets is small. As already mentioned I will con-

centrate on linear equality constraints though it is clear that in many practical situations

inequality constraints play an important role. However, the statistical properties of port-

folio weights satisfying inequality constraints cannot be studied by standard econometric

methods (Geweke, 1986, Gouriéroux et al., 1982, Wolak, 1987). Investigating the role of

linear inequality constraints is left for future research.

In the next section I recall some standard hypothesis tests for the GMVP. The following

section deals with hypothesis tests for local minimum variance portfolios. It is shown that,

after a suitable transformation of the data, the corresponding tests follow immediately by

applying the results of Section 4.2. In Section 4.4 the joint distribution of the weights

of global and local minimum variance portfolios is derived. The first two moments of

an unbiased estimator for the expected portfolio return are also presented. Section 4.5

contains an empirical study where the following results are applied to stock market data

and Section 4.6 concludes the present work.

4.2. The Global Minimum Variance Portfolio

4.2.1. Theoretical Foundation

Note that w = Σ−11/(1′Σ−11) is a nonlinear function of Σ. However, Kempf and Memmel

(2006) noticed that minimizing the variance of the portfolio return can be viewed as a

linear regression problem. The return of the GMVP can be written as

(1 − w2 − . . .− wd)R1 + w2R2 + . . .+ wdRd = η + ε , (4.1)

where ε ∼ N (0, σ2). By defining β1 := η, βj := wj, ∆Rj := R1 − Rj for j = 2, . . . , d, and

u := ε, Eq. 4.1 becomes equivalent to

R1 = β1 + β2∆R2 + . . .+ βd∆Rd + u . (4.2)

Note that this is a linear regression equation with stochastic regressors but the joint nor-

mality assumption guarantees that the usual results of econometric theory still hold in this

context.

The following proposition is a standard result of linear regression theory. It is crucial for

understanding the basic idea of the subsequent derivations and thus it is recalled here for

convenience.
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Proposition 4.1 Let Z = (Z1, . . . , Zd) be a d-dimensional random vector with positive-

definite covariance matrix. Consider the vector

β
(d×1)

= (β1, . . . , βd) := arg min
b

E
{
(Z1 − b1 − b2Z2 − . . .− bdZd)

2
}
,

where b = (b1, . . . , bd) and define

u := Z1 − β1 − β2Z2 − . . . − βdZd .

The vector β exists and is uniquely defined. More precisely, the subvector βs := (β2, . . . , βd)

is given by

βs = Var(Zs)−1Cov(Z1, Z
s) ,

where Zs := (Z2, . . . , Zd), Var(Zs) ((d− 1) × (d− 1)) is the covariance matrix of Zs, and

Cov(Z1, Z
s) is the (d − 1) × 1 vector of covariances between Z1 and Zj (j = 2, . . . , d).

Moreover, the parameter β1 is given by

β1 = E(Z1) − E(Zs)′βs

and it holds that E(u) = 0 as well as Cov(Xj , u) = 0 for j = 2, . . . , d .

The parameters β1, . . . , βd in Eq. 4.2 are chosen in such a way that E(u) = 0 holds and

Var(u) = E(u2) is minimal, i.e. Cov(∆Rj , u) = 0 (j = 2, . . . , d). So it has been shown that

Eq. 4.2 indeed is a proper linear regression equation satisfying the standard assumptions of

linear regression theory, especially the strict exogeneity assumption (Hayashi, 2000, p. 7).

For that reason it is possible to develop several exact hypothesis tests for the GMVP by

standard methods of econometrics (cf. Kempf and Memmel, 2006).

The next corollary states that the converse of Proposition 4.1 is true.

Corollary 4.2 Let Z = (Z1, . . . , Zd) be a d-dimensional random vector with positive-

definite covariance matrix. Search for some numbers b1, . . . , bd such that E(u∗) = 0 and

Cov(Zj , u
∗) = 0 for j = 2, . . . , d , where

u∗ := Z1 − b1 − b2Z2 − . . .− bdZd .

The vector b = (b1, . . . , bd) exists and is uniquely defined by b = β where β is given by

Proposition 4.1.
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The proof of that corollary follows immediately from the proof of Proposition 4.1 (see the

appendix) and noting that the linear equation

0 = Cov(Zs, u∗) = Cov(Z1, Z
s) − Var(Zs)bs

has a unique solution (due to the positive definiteness of Var(Zs)). Corollary 4.2 implies

that the strict exogeneity assumption is satisfied only if the error u has minimum variance.

Later on it is shown that for that reason the standard test statistics for the GMVP in

general must not be applied for testing a LMVP.

4.2.2. Statistical Inference

Of course, in practice the weights of the GMVP are unknown, i.e. they have to be estimated

from historical data. Let

R
(n×d)

:=




R11 R12 · · · R1d

R21 R22 · · · R2d

...
...

...

Rn1 Rn2 · · · Rnd




be a sample of n > d independent copies of R . Now define

X
(n×d)

:=




1 X12 · · · X1d

1 X22 · · · X2d

...
...

...

1 Xn2 · · · Xnd



,

where Xij := Ri1 − Rij (i = 1, . . . , n, j = 2, . . . , d) and Y := (Y1, . . . , Yn) (n × 1) with

Yi := Ri1 (i = 1, . . . , n). Similarly, I will also write X := (1,X2, . . . ,Xd) (d × 1), Xs :=

(X2, . . . ,Xd) ((d− 1) × 1), and Y ≡ R1 (1 × 1) .

According to the standard notation of linear regression theory the linear model represented

by Eq. 4.2 is given by

Y = Xβ + u ,

where β = (β1, . . . , βd) (d × 1) contains the weights β2, . . . , βd of the GMVP – except for

the first one – as well as the expected return β1 of the GMVP. Here u := (u1, . . . , un) is

an n× 1 vector of unobservable errors. Hence, the ordinary least squares (OLS) estimator

for β can be calculated by

β̂OLS =
(
η̂, ŵ2, . . . , ŵd

)
= (X′

X)−1
X

′
Y .
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In fact the weights of the GMVP can be estimated by

ŵs :=
(
ŵ2, . . . , ŵd

)
= Ω̂−1ω̂ ,

where Ω̂ is the sample covariance matrix of Xs and ω̂ is the (d−1)×1 vector of the sample

covariances between Y and Xj (j = 2, . . . , d). The random vector

ŵ :=
(
1 − 1′ŵs, ŵs

)

is the best unbiased estimator for the GMVP in the context of normally distributed asset

returns (Kempf and Memmel, 2006). Note that if the normal distribution assumption

for the asset returns is dropped, in general it cannot be guaranteed that the standard

assumptions of linear regression theory are satisfied and thus ŵ might become inefficient.

Kempf and Memmel (2006) showed that ŵ = Σ̂−11/(1′Σ̂−11), i.e. ŵ corresponds to the

traditional GMVP estimator, where the d× d matrix

Σ̂ := R
′
R/n − r r

′

represents the sample covariance matrix and r := R
′1/n (d× 1) is the sample mean vector

of R . Further, also the OLS estimator for the expected GMVP return corresponds to its

traditional estimator, i.e. η̂ = r
′ŵ .

The relation between the OLS estimator β̂OLS and the residual vector û (n × 1) can be

represented by

R1 = η̂ + ŵ2∆R2 + . . .+ ŵd∆Rd + û

or – according to the usual notation of linear regression theory – as

Y = Xβ̂OLS + û .

Let σ̂2
OLS := û

′
û/(n− d) be the unbiased OLS estimator for σ2. It holds that

σ̂2 := ŵ′Σ̂ ŵ = 1/
(
1′Σ̂−11

)
=
n− d

n
· σ̂2

OLS ,

where σ̂2 is the traditional estimator for the variance of the GMVP return.

Now consider the fundamental least squares problem

(Y − Xb)′(Y − Xb) → min
b

! (4.3)
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under the additional constraint Hb = h , where H (q × d) is a matrix with rkH = q ≤ d

and h (q × 1) some arbitrary vector. The solution of this minimization problem is given

by the restricted least squares (RLS) estimator

β̂RLS := arg min
b

(Y − Xb)′(Y − Xb) , s.t. Hb = h . (4.4)

In the following I will write β̂RLS = (η̂∗, ŵ∗
2, . . . , ŵ

∗
d) and correspondingly

R1 = η̂∗ + ŵ∗
2∆R2 + . . .+ ŵ∗

d∆Rd + û∗ (4.5)

or more compactly

Y = Xβ̂RLS + û
∗

to indicate that û
∗ (n × 1) is the residual vector with respect to the RLS estimator and

not to the OLS estimator. The RLS estimator can be calculated explicitly by applying

the Lagrange method (Greene, 2003, p. 100) . However, in Section 4.3.2 I will present an

alternative method which is more useful in the context of portfolio optimization.

Here only inhomogeneous regressions are taken into consideration and so both û and û
∗

have zero means. That is to say (4.3) indeed leads to the local minimum variance portfolio

satisfying the given restriction Hb = h . However, in contrast to the unrestricted case,

each column of X is correlated with û
∗ in general. More precisely, X

′
û
∗ 6= 0 if the linear

restrictions are binding. This is an empirical consequence of Corollary 4.2. In the following

I will write

ŵ∗ :=
(
1 − 1′ŵ∗s, ŵ∗s

)
, (4.6)

where ŵ∗s := (ŵ∗
2, . . . , ŵ

∗
d).

An exact or, say, small-sample hypothesis test against H0 : Hβ = h is given by the next

theorem. For an alternative representation of that F -test and some applications to financial

data see Kempf and Memmel (2006).

Theorem 4.3 Let ŵ be the traditional estimator for the GMVP w = (w1, . . . , wd) and ŵ∗

the RLS estimator given by Eq. 4.6. Further, let η be the expected return of the GMVP. If

Hβ = h with β = (η,w2, . . . , wd) it holds that

n− d

q
· (ŵ − ŵ∗)′Σ̂ (ŵ − ŵ∗)

σ̂2
∼ Fq,n−d ,

where σ̂2 denotes the traditional estimator for the variance of the GMVP return.
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A similar F -test for the TP (or any other efficient portfolio which is proportional to the

TP) has been obtained by Britten-Jones (1999). The result given in Theorem 4.3 does

not follow from this F -test since Britten-Jones requires the existence of a risk-free asset

and the considered portfolios always lie on the capital market line but not on the efficient

frontier.

Another important hypothesis is given by H0 : σ2 ≥ σ2
0 (for some σ2

0 > 0) which can be

tested by the next theorem (cf. Kempf and Memmel, 2006).

Theorem 4.4 Consider the traditional estimator σ̂2 for the variance σ2 of the GMVP

return. It holds that
nσ̂2

σ2
∼ χ2

n−d .

This is a standard result from linear regression theory (Greene, 2003, p. 50) after noting

that σ̂2 = û
′
û/n and so the proof can be skipped. The parameter uncertainty concerning

the variance σ2 of the GMVP return can be quantified by σ2 | σ̂2 ∼ σ̂2n/χ2
n−d either

from a fiducial (Rao, 1965, Section 5b.5) or Bayesian perspective (by using Jeffreys’ prior

distribution for σ2), where the estimate σ̂2 is considered as fixed. Since E(n/χ2
n−d) =

n/(n − d− 2) , it follows that

E
(
σ2 | σ̂2

)
≈ σ̂2

1 − 1/Q
,

with Q := n/d > 1 , i.e. the estimation risk essentially depends on the sample size relative

to the number of assets. Hence, the capital market is said to be high-dimensional if Q –

which can be interpreted as the effective size of a multivariate sample – is small. In that

case small-sample inference must be applied even if the number of observations is large.

Usually an investor not only wants to know whether the variance of the GMVP is bounded

by some number σ2
0 but also to test against H0 : η ≤ η0 , where η represents the true

expected return of the GMVP. This can be done by applying the next theorem.

Theorem 4.5 Consider the traditional estimators η̂ for the expected GMVP return η and

σ̂2 for the variance of the GMVP return. It holds that

η̂ − η√{
σ̂2(1 + r ′Σ̂−1r) − η̂2

}
/(n − d)

∼ t (n − d) ,

where t(n− d) denotes Student’s t-distribution with n− d degrees of freedom.
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The latter theorem completes the repertoire of standard hypothesis tests for the GMVP.

In the next section it is shown that the same repertoire can be used also for local minimum

variance portfolios after a suitable transformation of the data.

4.3. Local Minimum Variance Portfolios

4.3.1. Theoretical Foundation

Consider the LMVP

w∗

(d×1)
=
(
w∗

1, . . . , w
∗
d

)
:= arg min

v
Var(R′v) , s.t. Fv = f , (4.7)

where the budget constraint 1′v = 1 is also satisfied. Here f is a q × 1 vector and F is

a q × d matrix (q < d) such that the stacked (q + 1) × d matrix (1′, F ) has rank q + 1.

Both f and F are assumed to be non-random. Using the definitions from above this can

be formulated as a least squares problem, i.e.

β∗

(d×1)
:= arg min

b
E
{
(Y −X ′b)2

}
(4.8)

under a set of linear restrictions affecting only the parameters b2, . . . , bd (i.e. the portfolio

weights without the first one). However, due to Corollary 4.2 this would not lead to a

proper linear regression equation, say

R1 = β∗1 + β∗2∆R2 + . . . + β∗d∆Rd + u∗ , (4.9)

since u∗ generally depends on the regressors ∆R2, . . . ,∆Rd . So the standard test statistics

which have been provided in Section 4.2.2 cannot be applied. However, in the following

it will be shown how to reformulate (4.8) such that the standard hypothesis tests become

applicable.

Consider a matrix T (d× (d− q)) such that

1′

F


 T =


 1′

f1′


 .

Then the condition FT v = f is satisfied for any vector v ∈ Rd−q with 1′v = 1. Moreover,

it is guaranteed that 1′T v = 1, i.e. the budget constraint holds also for T v ∈ Rd. Now the

LMVP can be simply found by searching for the GMVP with respect to the transformed

asset return vector

R∗ = (R∗
1, . . . , R

∗
d−q) := T ′R .
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Hence, the least squares problem given by (4.8) can be reformulated as

α
((d−q)×1)

:= arg min
a

E
{
(Y ∗ −X∗′a)2

}
.

Here Y ∗ := R∗
1 and X∗ := (1,X∗

2 , . . . ,X
∗
d−q) with X∗

j := R∗
1 −R∗

j for j = 2, . . . , d− q . The

corresponding modified linear model

R∗
1 = α1 + α2∆R

∗
2 + . . .+ αd−q∆R

∗
d−q + u∗ (4.10)

is quite similar to the linear regression equation 4.9. However, the vector α can be cho-

sen without any restriction from Rd−q so that Var(u∗) becomes minimal and it is always

guaranteed that the condition Fw∗ = f is satisfied after the re-parameterization

w∗ := T (1 − 1′αs, αs) ,

where αs := (α2, . . . , αd−q) . Eq. 4.10 in fact represents a proper linear regression equation,

i.e. E(u∗) = 0 and Cov(X∗
j , u

∗) = 0 for j = 2, . . . , d− q .

The LMVP is given by

w∗ =
T (T ′Σ T )−11

1′(T ′Σ T )−11

and the quantity T can be derived as follows. Assume that the (q + 1) × d matrix

F :=


1′

F


 =

[
F 1 F 2

]

is structured in such a way that F 1 is a nonsingular (q + 1) × (q + 1) matrix and F 2 is a

(q + 1) × (d − q − 1) matrix. A structure like this can be always found by a permutation

of the columns of F since this has full row rank. Similarly, consider the partition

T =


T1

T2


 ,

where T1 is a (q + 1) × (d− q) and T2 is a (d− q − 1) × (d− q) matrix.

Recall that T has to be such that F T = (1′, f1′). In the following let

T2 =
[
0 Id−q−1

]
(4.11)

so that

F T = F 1T1 +
[
0 F 2

]
=


 1′

f1′


 .
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That means

T1 = F
−1
1

(
 1′

f1′


−

[
0 F 2

])
. (4.12)

Note that for the special case F = 1′, i.e. if there is no additional restriction at all, it holds

that T = Id .

4.3.2. Statistical Inference

In Section 4.2.2 the minimization problem given by Eq. 4.4 has been considered, which

involves the expected return estimate β̂RLS,1 = η̂∗ = r̄
′ŵ∗. Note that the q × d matrix

H refers to the expected GMVP return β1 and the GMVP weights without the first one.

However, in practical situations linear constraints possibly involve the first portfolio weight

by considering the vector w+ := (η,w1, . . . , wd). That means the null hypothesis is given

by H0 : Gw+ = g where G is a q× (d+ 1) matrix with rkG = q and g is an arbitrary q× 1

vector. In fact, in that case the LMVP w∗ defined by Eq. 4.7 has to be found under the

budget constraint 1′v = 1 and

G


r̄

′

Id


 v = g .

That means (4.4) can be solved in the same manner as (4.7) if the sample mean vector r

is included in the linear constraint Fv = f . Thus any Markowitz portfolio

wM
(d×1)

= arg min
v
v′Σ v , s.t. µ′v = η0

can be represented as a GMVP after a suitable transformation of the data. However,

since in that case the linear constraint is stochastic, the presented methods of statistical

inference cannot be applied.

Due to the preceding theoretical arguments the parameter vector α can be readily estimated

by the OLS estimator

α̂OLS =
(
α̂OLS,1, . . . , α̂OLS,d−q

)
:= (X∗′

X
∗)−1

X
∗′
Y

∗, (4.13)

where

X
∗

(n×(d−q))
:=




1 X∗
12 · · · X∗

1,d−q

1 X∗
22 · · · X∗

2,d−q
...

...
...

1 X∗
n2 · · · X∗

n,d−q




(4.14)
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and Y
∗ := (Y ∗

1 , . . . , Y
∗
n ) (n× 1).

The relationship between the residual vector û
∗ (n× 1) and the OLS estimator α̂OLS can

be represented by

Y
∗ = X

∗α̂OLS + û
∗ .

After defining α̂s
OLS

:= (α̂OLS,2, . . . , α̂OLS,d−q), the OLS estimator for w∗ corresponds to

ŵ∗ := T
(
1 − 1′α̂s

OLS, α̂
s
OLS

)
(4.15)

and α̂OLS,1 = η̂∗ is the estimator for the expected return of the LMVP. Hence, ŵ∗ turns

out to be the best unbiased estimator for the corresponding LMVP.

Any null hypothesis concerning the local minimum variance portfolio can be implemented

in the same way as described at the beginning of this section. Let w∗+ := (η∗, w∗
1, . . . , w

∗
d)

be the parameter vector of the LMVP and consider the null hypothesis H∗
0 : Cw∗+ = c ,

where C is some p × (d + 1) matrix with rkC = p ≤ d − q and c is an arbitrary p × 1

vector. This is similar to the null hypothesis H0 : Gw+ = g . However, for H∗
0 there are

only d − q degrees of freedom left since the LMVP has been already characterized by q

linear restrictions. Of course it has also to be guaranteed that H∗
0 does not imply the

linear restrictions of the LMVP or the budget constraint. More precisely, consider the

linear system of equations




0
(1×1)

1′
(1×d)

0
(q×1)

F
(q×d)

C1
(p×1)

C2
(p×d)







η∗

w∗
1

...

w∗
d




=




1
(1×1)

f
(q×1)

c
(p×1)




with p+ q ≤ d . Now it has to be guaranteed that the (p+ q + 1) × (d+ 1) matrix on the

left hand side possesses full row rank.

The restricted minimum variance portfolio according to H∗
0 is denoted by ŵ∗∗ and can be

calculated as described for the null hypothesis H0 without using the Lagrange method.

Moreover, the standard hypothesis tests derived in Section 4.2.2 can be applied to local

minimum variance portfolios just by transforming the asset returns R1, . . . , Rd into the

portfolio returns R∗
1, . . . , R

∗
d−q . Then it holds that

n− d+ q

p
· (ŵ∗ − ŵ∗∗)′Σ̂ (ŵ∗ − ŵ∗∗)

σ̂∗2
∼ Fp,n−d+q , (4.16)
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provided H∗
0 is not binding, as well as

nσ̂∗2

σ∗2
∼ χ2

n−d+q

and

η̂∗ − η∗√{
σ̂∗2(1 + r ′T (T ′Σ̂T )−1T ′ r) − η̂∗2

}
/(n − d+ q)

∼ t (n− d+ q) .

That means

1. the F -distribution given in Theorem 4.3,

2. the χ2-distribution from Theorem 4.4, and

3. the t-distribution presented in Theorem 4.5

simply capture q additional degrees of freedom, where q is the number of linear equali-

ties characterizing the LMVP. Hence, imposing linear restrictions is a simple dimension

reduction technique which reduces the parameter uncertainty of portfolio optimization.

A similar effect can be also observed for linear inequality constraints like setting upper

bounds for the portfolio weights or using short-selling constraints. This is confirmed by

several simulation and out-of-sample studies (Eichhorn et al., 1998, Frost and Savarino,

1988, Grauer and Shen, 2000, Jagannathan and Ma, 2003).

It is worth to point out that the GMVP as well as any LMVP can exhibit large positive

or negative weights which are not caused by estimation errors. Asset returns in general

are dominated by a large principal component representing the market or systematic risk.

There often exist some assets – typically belonging to the finance sector – which strongly

depend on the market risk and have a relatively small amount of idiosyncratic risk. In

that case extreme negative portfolio weights occur as a matter of principle (Green and

Hollifield, 1992). Thus, placing short-selling constraints on the portfolio weights can in-

crease the out-of-sample variance of the portfolio return. Of course, this holds also if linear

equality constraints are considered. Nevertheless, Jagannathan and Ma (2003) argue that

the negative effect of restricting portfolio weights is usually outweighed by the positive

effect of reducing estimation risk. This question will be treated analytically in a different

paper.

87



Chapter 4. Linear Statistical Inference for Global and Local Minimum Variance Portfolios

4.4. Distribution of the Estimated Portfolio Weights

In the following section I will concentrate on the small-sample distribution of the estimated

weights of global and local minimum variance portfolios. This is only loosely connected

to hypothesis testing but the small-sample distribution of the estimated portfolio weights

might be of interest in its own right.

4.4.1. Preliminary Definitions

For the sake of simplicity from now on I will ignore the standard notation of linear regression

theory. Recall that ŵ denotes the estimator for the GMVP whereas ŵ∗ is the estimator for

some LMVP. Correspondingly, w symbolizes the true GMVP and w∗ is the true LMVP.

The expected return of the GMVP is denoted by η whereas the expected return of the

LMVP is given by η∗. Moreover, σ2 is the variance of the GMVP return whereas σ∗2

symbolizes the variance of the LMVP return. The corresponding traditional estimators for

these quantities are given by η̂, η̂∗, σ̂2, and σ̂∗2.

In the following tk(a,B, ν) (where t(·) ≡ t1(·)) stands for the k-variate t-distribution with

ν > 0 degrees of freedom, location vector a (k × 1), and positive-semidefinite dispersion

matrix B (k × k), i.e.

a+
ζ√
χ2

ν/ν
∼ tk(a,B, ν) ,

where ζ ∼ Nk(0, B) is stochastically independent of χ2
ν . Here ζ ∼ B1/2ξ with ξ ∼ Nk(0, Ik)

and B1/2 is some matrix such that B1/2B1/2 ′ = B.

By defining the (d − 1) × d matrix ∆ :=
[
1 − Id−1

]
it follows that ∆R = Xs and

thus Ω := ∆Σ∆′ denotes the covariance matrix of Xs. Analogously, in the context of

local minimum variance portfolios the notation R∗ = T ′R and ∆R∗ = X∗s will be used.

Further, Ω∗ := ∆Σ∗∆′ is the covariance matrix of X∗s, where Σ∗ := T ′ΣT denotes the

covariance matrix of R∗.

4.4.2. Global Minimum Variance Portfolio

The next theorem provides the small-sample distribution of the traditional estimator for

the GMVP. Another variant of this theorem can be found in Okhrin and Schmid (2006)

and so the proof is skipped.

88



Chapter 4. Linear Statistical Inference for Global and Local Minimum Variance Portfolios

Theorem 4.6 Let w = (w1, . . . , wd) be the GMVP of d assets and ŵ = (ŵ1, . . . , ŵd) the

corresponding traditional estimator given a sample of asset returns with size n ≥ d . It

holds that

(ŵ2, . . . , ŵd) ∼ td−1

(
(w2, . . . , wd),

σ2

n− d+ 1
· Ω−1, n − d+ 1

)
,

where Ω is the covariance matrix of ∆R and σ2 = w′Σw is the variance of the GMVP

return.

An unbiased estimator for the covariance matrix of ŵs = (ŵ2, . . . , ŵd) is provided by the

next corollary.

Corollary 4.7 Consider a sample of asset returns with size n ≥ d + 2 and let ŵ =

(ŵ1, . . . , ŵd) be the traditional estimator for the GMVP. Then the matrix

V̂ar
{
(ŵ2, . . . , ŵd)

}
:=

σ̂2

n− d
· Ω̂−1

is an unbiased estimator for the covariance matrix of ŵs = (ŵ2, . . . , ŵd), where Ω̂ is the

sample covariance matrix of ∆R and σ̂2 is the traditional estimator for the variance of the

GMVP return.

Note that ŵ1 = 1 − 1′ŵs and from Theorem 4.6 it follows that the GMVP estimator ŵ

is t-distributed with mean w, dispersion matrix σ2∆′Ω−1∆/(n − d + 1), and n − d + 1

degrees of freedom. From Proposition 1 of Okhrin and Schmid (2006) it follows that

σ2∆′Ω−1∆ = σ2Σ−1 − ww′ and thus

ŵ ∼ td

(
w,
(
σ2Σ−1 − ww′

)
/(n− d+ 1), n − d+ 1

)
.

Moreover, Corollary 4.7 implies that

V̂ar(ŵ) :=
(
σ̂2Σ̂−1 − ŵŵ′)

/
(n− d) (4.17)

is an unbiased estimator for the covariance matrix of ŵ.

A stochastic representation for η̂ , i.e. the traditional estimator for the expected return of

the GMVP could be found after some calculation. However, this is cumbersome and not

useful for econometric purposes. In contrast, the first two moments of the distribution of η̂

can be easily derived. First of all recall that r and Σ̂ are stochastically independent. Thus

E(η̂) = E
{
E
(
r
′ŵ | Σ̂

)}
= E(µ′ŵ) = µ′w = η .
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Further, it holds that

Var(η̂) = E
{
Var
(
r
′ŵ | Σ̂

)}
+ Var

{
E
(
r
′ŵ | Σ̂

)}

= E(ŵ′Σ ŵ/n) + µ′Var(ŵ)µ ,

and after some calculation it follows from Theorem 4.6 that

E(ŵ′Σ ŵ) =
n− 2

n− d− 1
· σ2 .

That means if n ≥ d+ 2 ,

Var(η̂) = µ′Var(ŵ)µ+
n− 2

n− d− 1
· σ

2

n
,

where

Var(ŵ) = (σ2Σ−1 − ww′)/(n − d− 1) .

Note that σ2/n is the variance of r
′w, i.e. the variance of the expected GMVP return if

w would be known but the expected asset returns µ1, . . . , µd unknown. That means the

estimation risk concerning the expected GMVP return can be decomposed into two parts,

viz.

1. one part carrying the estimation risk of the portfolio weights and

2. another part for the estimation risk concerning the expected returns.

More precisely, the variance of η̂ is an affine-linear transformation of σ2/n , where (n −
2)/(n − d− 1) ≥ 1 and µ′Var(ŵ)µ ≥ 0 .

4.4.3. Local Minimum Variance Portfolios

From the previous discussion it is clear that any LMVP can be found in the same manner

as the GMVP after transforming the asset return vector R into the portfolio return vector

R∗. Recall that the LMVP estimator ŵ∗ can be written as ŵ∗ = T (1− 1′α̂s
OLS

, α̂s
OLS

) (see

Section 4.3.2), where

α̂s
OLS ∼ td−q−1

(
αs,

σ∗2

n− d+ q + 1
· Ω∗−1, n− d+ q + 1

)
.

Thus it holds that

ŵ∗ ∼ td

(
w∗,

(
σ∗2T Σ∗−1T ′ −w∗w∗′

)
/(n − d+ q + 1), n − d+ q + 1

)
.
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Similarly, the remaining assertions follow from the theorems and corollaries already derived

for the GMVP, simply by substituting d by d − q , η (or η̂) by η∗ (or η̂∗), and σ2 (or σ̂2)

by σ∗2 (or σ̂∗2). For example, according to Eq. 4.17 it follows that

V̂ar(ŵ∗) :=
(
σ̂∗2T Σ̂∗−1T ′ − ŵ∗ŵ∗′)

/
(n − d+ q)

is an unbiased estimator for the covariance matrix of ŵ∗. Moreover, E(η̂∗) = η∗ and

Var(η̂∗) = µ′Var(ŵ∗)µ+
n− 2

n− d+ q − 1
· σ

∗2

n
,

where

Var(ŵ∗) =
(
σ∗2T Σ∗−1T ′ − w∗w∗′

)
/(n − d+ q − 1) .

4.5. Empirical Study

The following empirical study is based on daily asset prices between 1980-01-01 and 2003-

11-26 of the 500 stocks listed by the S&P 500 stock index on 26th November 2003. The

data have been kindly provided by Thomson Financial Datastream and the considered

asset prices are adjusted for dividends, splits, etc. However, only for 285 stocks the asset

prices are available over the whole sample period. The residual 215 time series exhibit

missing values caused by IPO’s or M&A’s during the sample period and are not considered

in this study. Moreover, 274 firms could be found to belong to one of 10 industry sectors

according to S&P’s Global Industry Classification Standard (GICS). The other 11 stocks

have been also removed from the study.

The risk-free interest rate is calculated by the secondary market 3-month US treasury bill

rate (p.a.). The investment period is supposed to be 21 days (i.e. one trading month)

and so the corresponding yields have been divided by 12. For example, the treasury bill

rate on 1st January, 1980, corresponds to 12.04% and so the risk-free interest rate between

1980-01-01 and 1980-01-22 is set to 1% . The interest rates are used to calculate the excess

returns of each asset.

The sample contains n = 296 monthly excess returns for each of the d = 274 firms. The

estimated expected return of the GMVP corresponds to η̂ = 0.18%, whereas σ̂ = 0.8% is

its estimated standard deviation. The latter is obtained by the biased traditional estimator

σ̂2. After adjusting for the bias the estimated standard deviation corresponds to

√
n

n− d
· σ̂ =

√
1

1 − 1/Q
· σ̂ = 2.94%
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Table 4.1.: Industry sectors and numbers of assets.

Industry sector Assets

Consumer Discretionary 54

Energy 14

Consumer Staples 31

Financial 38

Health Care 22

Industrial 40

Information Technology 20

Materials 24

Telecommunications 5

Utilities 26

Σ 274

with effective sample size Q = n/d = 1.08 . Hence, the considered capital market is

high-dimensional and the small-sample bias is tremendously large although there are 296

observations.

For the purpose of dimension reduction a pre-allocation is done by aggregating the stocks

within each industry sector. More precisely, the asset returns of the firms belonging to the

industry sector ‘Consumer Discretionary’ (see Table 4.1) are equally weighted by 1/54 ,

the asset returns belonging to ‘Energy’ by 1/14 and so on. Hence, after the pre-allocation

there remain 10 portfolios which can be interpreted as sector indices. The estimate for

the expected return of the corresponding GMVP (see Table 4.2) amounts to η̂ = 0.33%,

whereas the estimated standard deviation is σ̂ = 3.62%. Now there are only d = 10 assets

(which are the sector indices), Q = 29.6 and so the curse of dimension is lifted. Hence, the

estimate for σ based on the unbiased estimate for σ2 corresponds to 3.68%, which is quite

similar to σ̂.

By applying Theorem 4.3 one can test for example against the null hypothesis H0 : w =

1/d = 0.1 · 1 , i.e. that the GMVP corresponds to the trivial portfolio. Thus q = d− 1 = 9,

n− d = 286, ŵ∗ = 0.1 · 1, and the F -statistic corresponds to

n− d

q
· (ŵ − ŵ∗)′Σ̂ (ŵ − ŵ∗)

σ̂2
= 15.7536 > 1.9127 = F−1

F,9,286(1 − α)
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Table 4.2.: Estimated weights of the GMVP and corresponding standard errors in paren-

theses.

Sector Weight Sector Weight

Consumer Discretionary −14.67%
(10.24%)

Industrial 27.07%
(13.10%)

Energy 14.33%
(4.29%)

Information Technology −4.70%
(4.09%)

Consumer Staples 35.50%
(9.79%)

Materials −5.81%
(9.64%)

Financial −17.14%
(7.89%)

Telecommunications 18.18%
(5.34%)

Health Care 6.02%
(7.19%)

Utilities 41.22%
(5.88%)

with α = 0.05. Hence, H0 can be rejected which means that for the purpose of risk

minimization it is not sufficient to choose the trivial portfolio.

The next null hypothesis is given by H0 : σ2 ≥ σ2
0 = (0.2)2/12 = 0.33%. Due to Theorem

4.4 the test statistic is given by

nσ̂2

σ2
0

= 116.2874 < 247.8302 = F−1
χ2,286

(α) .

That means the GMVP has a sufficiently low risk of return (i.e. 12σ2 < (0.2)2). Another

null hypothesis is given by H0 : η ≤ η0 = 0.02/12 = 0.17%. For the t-test based on

Theorem 4.5 one has to calculate the t-statistic

η̂ − η0√{
σ̂2(1 + r ′Σ̂−1r) − η̂2

}
/(n− d)

= 0.7352 ≯ 1.6502 = F−1
t,286(1 − α) ,

and so the null hypothesis cannot be rejected. Although η̂ is twice the size of η0, the

estimate for the expected return of the GMVP is not significantly larger than 0.02/12 or,

equivalently, 12η > 0.02 . This is a typical problem of performance measurement (Frahm,

2007).

Now suppose that an investor wants to put 80% into the sectors ‘Energy’ and ‘Information

Technology’ and he is searching for the corresponding LMVP. The matrix F given by (4.7)

corresponds to the row vector [ 0 1 0 0 0 0 1 0 0 0 ] , f = 0.8, the matrix

F 1 =


1 1

0 1



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Table 4.3.: Estimated weights of the LMVP and corresponding standard errors in paren-

theses.

Sector Weight Sector Weight

Consumer Discretionary −19.48%
(12.66%)

Industrial −18.37%
(15.57%)

Energy 51.30%
(3.81%)

Information Technology 28.70%
(3.81%)

Consumer Staples 77.92%
(11.36%)

Materials −21.99%
(11.82%)

Financial −20.03%
(9.76%)

Telecommunications 5.84%
(6.50%)

Health Care −16.77%
(8.61%)

Utilities 32.88%
(7.23%)

possesses full rank and

F 2 =


1 1 1 1 1 1 1 1

0 0 0 0 1 0 0 0


 .

The transformation matrix T can be simply calculated by (4.11) and (4.12) and the esti-

mated weights of the LMVP are given in Table 4.3. Further, the estimate for the expected

LMVP return corresponds to η̂∗ = 0.45% and σ̂∗ = 4.49% for the standard deviation. Both

the risk and expected return are apparently higher for the LMVP than for the GMVP. This

effect has been already motivated in Section 4.1 and indicated by Figure 4.1.

Similar to the F -test conducted above, the null hypothesis is now that the industry

sectors are equally weighted (except for ‘Energy’ and ‘Information Technology’). Here

p = 7, n − d + 1 = 287, and it can be found that ŵ∗∗
2 = 64.82%, ŵ∗∗

7 = 15.18%,

ŵ∗∗
1 , ŵ

∗∗
3 , . . . , ŵ

∗∗
6 , ŵ

∗∗
8 , . . . , ŵ

∗∗
10 = 2.50%. The F -statistic given by (4.16) amounts to

n− d+ q

p
· (ŵ∗ − ŵ∗∗)′Σ̂ (ŵ∗ − ŵ∗∗)

σ̂∗2
= 18.4532 > 2.0416 = F−1

F,7,287(1 − α) .

That means the LMVP is not a trivial one.

Further, the χ2-test against the null hypothesis H0 : σ∗2 ≥ σ∗20 = 0.33% leads to

nσ̂∗2

σ∗20

= 178.8119 < 248.7615 = F−1
χ2,287

(α)

and so also the LMVP risk of return is sufficiently low. However, for the t-test against

H0 : η∗ ≤ η∗0 = 0.17% it holds that

η̂∗ − η∗0√{
σ̂∗2(1 + r ′T (T ′Σ̂T )−1T ′ r) − η̂∗2

}
/(n− d+ q)

= 1.0689 ,
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whereas F−1
t,287(1 − α) = 1.6502. Once again it is not possible to proof that the expected

excess return of the LMVP is significantly large whilst the t-value obtained for the LMVP

(1.0689) exceeds the t-value of the GMVP (0.7352).

4.6. Conclusion

Traditional portfolio optimization does not take estimation risk into account. Many em-

pirical and numerical studies show that estimation risk is a substantial drawback of pure

statistical portfolio optimization techniques. This is an important problem in practice,

particularly when the sample size compared to the number of assets is small. In the

present work it has been shown that estimation risk can be simply reduced by imposing

linear constraints on the portfolio weights. Small-sample hypothesis tests for global and

local minimum variance portfolios have been derived by linear regression theory. Further,

the joint distribution of the weights as well as the first two moments of the estimator for

the expected return of the global or some local minimum variance portfolio have been

calculated. The presented results hold in small samples, which is an important fact since

large-sample approximations fail if the sample size is large but the number of observations

relative to the number of assets is small. Hence, the estimation risk of global and local

minimum variance portfolios can be readily controlled by applying the given instruments

even in the context of high-dimensional data.

Appendix

Proof of Proposition 4.1

Since

E
{
(Z1 − b1 − Zs′bs)2

}
= Var(Z1 − b1 − Zs′bs) +

{
E(Z1 − b1 − Zs′bs)

}2

= Var(Z1 − Zs′bs) +
{
E(Z1) − b1 − E(Zs)′bs

}2
,

where bs := (b2, . . . , bd), it is clear that β1 = E(Z1) − E(Zs)′βs and thus E(u) = 0 . That

means the minimization problem can be solved equivalently by minimizing

E
{
(Z∗

1 − b2Z
∗
2 − . . .− bdZ

∗
d)2
}
, (4.18)
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where Z∗
j := Zj − E(Zj) for j = 1, . . . , d . Now define Z∗s := (Z∗

2 , . . . , Z
∗
d ) so that (4.18)

corresponds to

E
{
(Z∗

1 − Z∗s′bs)2
}

= Var(Z1) − 2Cov(Z1, Z
s)′bs + bs′Var(Zs)bs .

Due to the positive definiteness of Var(Z) also Var(Zs) is positive-definite. Hence, this is

a simple quadratic minimization problem and its unique solution is given by

βs = Var(Zs)−1Cov(Z1, Z
s) .

Now calculate the (d− 1) × 1 vector of covariances between u and Zj (j = 2, . . . , d), i.e.

Cov(Zs, u) = Cov(Zs, Z1 − β1 − Zs′βs)

= Cov(Z1, Z
s) − Var(Zs)βs = 0 .

Q.E.D.

Proof of Theorem 4.3

From linear regression theory (Greene, 2003, p. 102) it is known that

n− d

q
· û

∗′
û
∗ − û

′
û

û′û
∼ Fq,n−d .

Since Eq. 4.5 constitutes an inhomogeneous regression it holds that η̂∗ = r̄
′ŵ∗ and hence

û
∗ =

(
R− 1r̄ ′

)
ŵ∗. That means

û
∗′
û
∗/n = ŵ∗′

(
R − 1r̄ ′

)′(
R− 1r̄ ′

)
ŵ∗/n = σ̂∗2,

where σ̂∗2 := ŵ∗′Σ̂ ŵ∗. Since σ̂2 = ŵ′Σ̂ ŵ and ŵ = Σ̂−11/(1′Σ̂−11), it follows that

σ̂∗2 = σ̂2 + (ŵ − ŵ∗)′Σ̂ (ŵ − ŵ∗) .

Note also that σ̂2 = û
′
û/n and thus

û
∗′
û
∗ − û

′
û

û′û
=

(ŵ − ŵ∗)′Σ̂ (ŵ − ŵ∗)

σ̂2
,

which leads to the desired F -statistic. Q.E.D.
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Proof of Theorem 4.5

From linear regression theory (Greene, 2003, p. 51) it follows that

η̂ − η√
nσ̂2 [(X′X)−1]11 /(n − d)

∼ t (n− d) ,

where
[
(X′

X)−1
]
11

denotes the upper left component of (X′
X)−1, i.e.

[
(X′

X)−1
]
11

=
{
n− nx ′(Xs′

X
s)−1

xn
}−1

=
{1 − nx ′(Xs′

X
s)−1

x}−1

n
,

where X
s (n × (d − 1)) symbolizes the regressor matrix X without the column of ones.

Note that X
s′
X

s = n
(
Ω̂ + xx

′
)

and due to the binomial inverse theorem (Press, 2005,

p. 23) it holds that

n (Xs′
X

s)−1 =
(
Ω̂ + xx

′
)−1

= Ω̂−1 − Ω̂−1
xx

′Ω̂−1

1 + x ′Ω̂−1x
.

That is

1 − nx ′(Xs′
X

s)−1
x = 1 − x

′Ω̂−1
x +

(x ′Ω̂−1
x)2

1 + x ′Ω̂−1x
=

1

1 + x ′Ω̂−1x

and thus
[
(X′

X)−1
]
11

=
1 + r

′∆′Ω̂−1∆r

n
.

Since σ̂2∆′Ω̂−1∆ = σ̂2Σ̂−1 − ŵŵ′ and η̂ = r
′ŵ, it follows that

nσ̂2
[
(X′

X)−1
]
11

= σ̂2 + r
′(σ̂2Σ̂−1 − ŵŵ′) r = σ̂2(1 + r

′Σ̂−1
r) − η̂2 .

Q.E.D.

Proof of Corollary 4.7

Theorem 4.6 implies that the covariance matrix of (ŵ2, . . . , ŵd) is given by

Var{(ŵ2, . . . , ŵd)} =
σ2

n− d− 1
· Ω−1.

From Wishart theory it follows that Ω̂−1 ∼W−1
d−1

(
(Ω/n)−1, n+d−1

)
(Press, 2005, p. 117).

Hence, it holds that

E
(
Ω̂−1

)
=

(Ω/n)−1

(n+ d− 1) − 2 (d− 1) − 2
=

n

n− d− 1
· Ω−1

(Press, 2005, p. 119). Moreover, from linear regression theory (Greene, 2003, p. 56) it is

known that σ̂2
OLS = û

′
û/(n− d) is a conditionally unbiased estimator for σ2. That means

E

(
σ̂2

OLS

n
· Ω̂−1

)
= E

{
E

(
σ̂2

OLS

n
· Ω̂−1 | Ω̂−1

)}
= E

(
σ2

n
· Ω̂−1

)

=
σ2

n− d− 1
· Ω−1 = Var{(ŵ2, . . . , ŵd)}

and note that σ̂2
OLS = n/(n − d) · σ̂2. Q.E.D.
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Chapter 5.

Dominant Estimators for the Global

Minimum Variance Portfolio

5.1. Introduction

When implementing portfolio optimization according to Markowitz (1952), one needs to

estimate the expected asset returns as well as the corresponding variances and covariances.

If the parameter estimates are based only on time series information, the suggested portfo-

lio tends to be far removed from the optimum. For this reason, there is a broad literature

which addresses the question of how to reduce estimation risk in portfolio optimization. In

a recent study, DeMiguel et al. (2007) compare portfolio strategies which differ in the treat-

ment of estimation risk. It turns out that none of the strategies suggested in the literature

is significantly better than naive diversification, i.e. taking the equally weighted portfo-

lio. Further, the study conducted by DeMiguel et al. (2007) confirms that the considered

strategies perform better than the traditional implementation of Markowitz optimization,

which means replacing the unknown parameters by their sample counterparts.

The global minimum variance portfolio (GMVP) has been frequently advocated in the

literature (Frahm, 2008, Jagannathan and Ma, 2003, Kempf and Memmel, 2006, Ledoit

and Wolf, 2003) because it is completely independent of the expected asset returns, which

have been found to be the principal source of estimation risk (Chopra and Ziemba, 1993,

Merton, 1980). We present two estimators for the GMVP which dominate the traditional

estimator with respect to the out-of-sample variance of the portfolio return. Due to the

arguments set forth by Frahm (2008), the same conclusion can be drawn for estimating

local minimum variance portfolios, i.e. minimum variance portfolios where the portfolio

weights are subject to other linear equality constraints besides the budget constraint.
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Okhrin and Schmid (2006), Kempf and Memmel (2006) and Frahm (2008) all explore the

properties of the traditional GMVP estimator by assuming jointly normally distributed

asset returns. They derive the small-sample distribution of the estimated portfolio weights

and give a closed-form expression for the out-of-sample variance of the portfolio return. In

contrast, Bayesian and shrinkage approaches have a long tradition in the implementation

of modern portfolio optimization. Jobson and Korkie (1979) and Jorion (1986) introduce

shrinkage estimators for the expected returns. Frost and Savarino (1986) generalize these

estimators by also including the variances and covariances. Furthermore, DeMiguel et al.

(2007), Garlappi et al. (2007), Golosnoy and Okhrin (2007) as well as Kan and Zhou (2007)

present some shrinkage estimators for the weights of mean-variance optimal portfolios,

whereas Ledoit and Wolf (2003) introduce a shrinkage estimator for the covariance matrix

of stock returns and apply their results to the estimation of the GMVP.

Our work is related to these shrinkage approaches. However, it differs in two important

aspects. First, we derive feasible estimators, and our dominance results turn out to be

valid even in small samples. The shrinkage approaches presented by the aforementioned

authors can only be justified for a large number of observations. As pointed out by Frahm

(2008), large-sample results can be misleading in the context of portfolio optimization

since, even if the sample size is large, the number of observations can be small compared

to the number of assets. Second, in contrast to Ledoit and Wolf (2003) we do not seek

to obtain a better covariance matrix estimator but instead to reduce the out-of-sample

variance of the portfolio return, which seems to be the major goal when searching for a

minimum variance portfolio.

Another method of alleviating the impact of estimation risk is to impose certain restrictions

on the estimated covariance matrix or portfolio weights. Examples for restrictions on the

covariance matrix are the single index model of Sharpe (1963) and the constant correlation

model suggested by Elton and Gruber (1973). Jagannathan and Ma (2003) show that

imposing short-sales constraints on the GMVP is equivalent to assuming a special structure

of the covariance matrix. Frahm (2008) analyzes linear equality constraints on the portfolio

weights and proves that linear restrictions reduce estimation risk. All these approaches have

in common the fact that the restrictions may be binding and so the true GMVP does not

need to be attained if the length of the time series approaches infinity. Nevertheless, in

an empirical study presented by Chan et al. (1999) it has been shown that the reduction

of estimation risk typically outweighs the loss caused by applying ‘wrong’ restrictions.
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Shrinkage estimators reduce the estimation risk as well. However, in addition they have

the appealing property of converging towards the optimal portfolio weights as the sample

size grows to infinity.

Our contribution to the literature is threefold. First, we derive two shrinkage estimators

for the GMVP that dominate the traditional estimator with respect to the out-of-sample

variance of the portfolio return. Second, we present not only the small-sample properties of

the shrinkage estimators and some related quantities, but also their large-sample properties

for fixed d and n → ∞ as well as n, d → ∞ and n/d → q ≤ ∞ . The latter kind

of asymptotic behavior becomes relevant when analyzing the estimators in large asset

universes. Third, backed by the results of DeMiguel et al. (2007), we derive a small-sample

test for the naive diversification hypothesis, i.e. for deciding the question of whether or not

it is better to completely ignore time series information in favor of naive diversification.

5.2. Preliminaries

5.2.1. Notation and Assumptions

Suppose that the investment universe consists of d assets and the investor is searching

for a buy-and-hold portfolio which will be liquidated after one period. We will consider

the asset excess returns Rt = (R1t, . . . , Rdt) for t = 1, . . . , n ,1 i.e. the asset returns minus

the corresponding risk-free interest rates. Nevertheless we will drop the prefix ‘excess’ for

convenience and make the following assumptions:

A1. The asset returns are jointly normally distributed, i.e. Rt ∼ Nd(µ,Σ) for t = 1, . . . , n

with µ ∈ Rd and positive-definite matrix Σ ∈ Rd×d.

A2. The mean vector µ and the covariance matrix Σ are unknown.

A3. The asset returns are serially independent.

A4. The sample size exceeds the number of assets, more precisely n ≥ d+ 2 .

A5. There exist at least four assets, i.e. d ≥ 4 .

1In the following ‘(x1, . . . , xd)’ indicates a d-tuple, i.e. a d-dimensional column vector.
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The GMVP w is defined as the solution of the minimization problem

min
v∈Rd

v′Σ v , s.t. v ′
1 = 1 . (5.1)

Here 1 denotes a vector of ones. Since Σ is positive-definite, the GMVP is unique and the

solution of this minimization problem corresponds to w = Σ−1
1/(1′Σ−1

1) . The traditional

estimator ŵT for the GMVP consists in replacing the unknown covariance matrix Σ with

the sample covariance matrix Σ̂ , i.e.

Σ̂ =
1

n

n∑

t=1

(
Rt − R̄

)(
Rt − R̄

)′
, (5.2)

where R̄ = 1/n
∑n

t=1Rt represents the sample mean vector of R1, . . . , Rn . The variance of

the GMVP return corresponds to σ2 = w′Σw = 1/(1′Σ−1
1) and its traditional estimator

is given by σ̂2
T = ŵ′

TΣ̂ ŵT = 1/(1′Σ̂−1
1) .

Since the portfolio weights always add up to 1, it is possible to omit one element of the

portfolio weights vector without losing information. We choose to omit the first element

and define wex := (w2, . . . , wd) . For convenience we introduce the (d − 1) × d matrix

∆ := [1 −Id−1 ] . By using the operator ∆, we can easily switch between the two notations.

For instance, note that (v1−v2) = −∆′(vex
1 −vex

2 ) for all vectors v1, v2 ∈ Rd whose elements

add up to 1. Moreover, the following relationship will be useful in the subsequent discussion:

(v1 − v2)
′A (v1 − v2) = (vex

1 − vex
2 )′B (vex

1 − vex
2 ) (5.3)

with B := ∆A∆′ for any d× d matrix A . A key note of the present work is that

v′Σ v = σ2 + (v − w)′Σ (v − w) = σ2 + (vex − wex)′Ω (vex − wex) (5.4)

for every vector v ∈ Rd with v ′
1 = 1, where Ω is defined as Ω := ∆Σ∆′. The first equality

in (5.4) can be obtained by noting that Σw = 1/(1′Σ−1
1) and thus v′Σw = 1/(1′Σ−1

1) =

σ2. The second equality follows from the arguments given above.

In the following χ2
k(λ) denotes a noncentral χ2-distributed random variable with k ∈ N

degrees of freedom and noncentrality parameter λ ≥ 0 . This means χ2
k(λ) ∼ X ′X with

X ∼ Nk(θ, Ik) and θ ∈ Rk, where the noncentrality parameter is defined as λ := θ′θ/2 . By

contrast, χ2
k stands for a central χ2-distributed random variable (i.e. λ = 0) and we also

define χr
k(λ) :=

{
χ2

k(λ)
}r/2

for any r ∈ Z . Moreover, let χ2
k1

(λ) and χ2
k2

with k1, k2 ∈ N

be stochastically independent. Then Fk1,k2(λ) ∼ (k2/k1)
(
χ2

k1
(λ)/χ2

k2

)
has a noncentral F -

distribution with k1 and k2 degrees of freedom as well as noncentrality parameter λ ≥ 0 .
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Now suppose that X1, . . . ,Xm are m independent copies of X ∼ Nq(0 ,Σ), where 0 denotes

a vector of zeros and Σ is a positive-definite q × q matrix. Then the q × q random matrix

Wq(Σ,m) ∼ ∑m
i=1XiX

′
i possesses a q-dimensional Wishart distribution with covariance

matrix Σ and m degrees of freedom. Furthermore, x+ := max{x, 0} denotes the positive

part and x− := −min{x, 0} the negative part of x ∈ R . Let A be some positive-definite

q×q matrix. Then A
1
2 represents the unique symmetrical q×q matrix such that A = A

1
2A

1
2 .

Finally, x ∝ y means ‘x is proportional to y’ and ‖ · ‖ denotes the Euclidean norm.

5.2.2. Important Theorems

Let us now provide some important theorems which will come in handy in the following

sections. First, we present some elementary small-sample properties of the traditional

estimator for the GMVP and its related quantities. A proof can be found in Kempf and

Memmel (2006).

Lemma 5.1 (Kempf and Memmel (2006)) Under assumptions A1 to A3 and n > d ,

the sample covariance matrix Ω̂ of ∆R , the traditional estimator ŵex
T for the GMVP (except

for the first portfolio weight), and the traditional estimator σ̂2
T for the minimum variance

σ2 satisfy the following properties:

P1. n Ω̂ ∼Wd−1(Ω, n− 1), where Ω̂ := 1
n

∑n
t=1

(
∆R− ∆R̄

)(
∆R− ∆R̄

)′
.

P2. ŵex
T | Ω̂ ∼ Nd−1

(
wex, σ2Ω̂−1/n

)
.

P3. nσ̂2
T/σ

2 ∼ χ2
n−d .

P4. σ̂2
T is stochastically independent of Ω̂ and ŵex

T .

The following theorem will play the central role in the development of the shrinkage esti-

mator and its dominance property.

Theorem 5.2 Consider a q × q random matrix W ∼ Wq

(
Ω,m

)
, where Ω is a positive-

definite q × q matrix, q ≥ 3 and m ≥ q + 2 , a q-dimensional random vector X with

X |W ∼ Nq

(
ω,W−1

)
, where ω ∈ Rq is an unknown parameter, and a random variable

χ2 ∼ χ2
k with k ≥ 2 , which is stochastically independent of W and X. Furthermore,
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consider a non-stochastic vector x ∈ Rq. For all 0 < c < 2 (q − 2)/(k + 2), the shrinkage

estimator

XS = x+

(
1 − c χ2

(X − x)′W (X − x)

)
(X − x)

dominates the estimator X with respect to the loss function

Lω,Ω

(
ω̂
)

=
(
ω̂ − ω

)′
Ω
(
ω̂ − ω

)
, (5.5)

i.e. E
{
(XS − ω)′Ω (XS − ω)

}
< E

{
(X − ω)′Ω (X − ω)

}
. In case x = ω the expected loss

of the shrinkage estimator becomes minimal if and only if c = (q − 2)/(k + 2) .

Proof: See the appendix.

Note that Theorem 5.2 coincides with the well-known result developed by Stein (1956) if

W is substituted by the identity matrix Iq . Other extensions of Stein’s theorem, which can

be found in the literature, require that W correspond to a non-stochastic but observable

matrix Ω , or at least that W be stochastically independent of X where Ω is unobservable

(Judge and Bock (1978, p. 177), Srivastava and Bilodeau (1989), and Press (2005, p. 189)).

By contrast, we allow X to depend on a Wishart-distributed random matrix W , but the

matrix Ω given in Theorem 5.2 remains unobservable.

Theorem 5.2 also clarifies why the shrinkage constant c = (q−2)/(k+2) is a natural choice.

Although any constant within the interval given in Theorem 5.2 would lead to a dominant

estimator, only c = (q − 2)/(k + 2) turns out to be the best choice if the reference vector

x corresponds to the unknown parameter ω. The same value for c remains optimal in the

variants of Stein’s theorem where W is non-stochastic or stochastically independent of X.

5.2.3. Out-of-Sample Variance

The out-of-sample variance of the return of a stochastic portfolio v̂ is defined as

Var
(
v̂ ′R

)
= E

{
Var(v̂ ′R | v̂)

}
+ Var

{
E(v̂ ′R | v̂)

}
= E

(
v̂′Σ v̂

)
+ µ′Var

(
v̂
)
µ .

This means the total variance of the portfolio v̂ can be split into a within variance E
(
v̂′Σ v̂

)

and a between variance µ′Var
(
v̂
)
µ . Due to (5.4), it holds that

Var
(
v̂ ′R

)
= σ2 + E

{
(v̂ − w)′Σ (v̂ − w)

}
+ µ′Var

(
v̂
)
µ . (5.6)
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Hence, the minimum variance σ2 is a lower bound for the out-of-sample variance of any

given portfolio v̂ . Interestingly, the between variance µ′Var
(
v̂
)
µ vanishes whenever the

expected asset returns are equal to each other, i.e. µ = η 1 for any η ∈ R . This can be

seen by noting that Var(v̂) = ∆′Var(v̂ex)∆ and ∆µ = 0 if µ = η 1 .

Kempf and Memmel (2006) showed that – concerning the traditional estimator ŵ for the

GMVP – the second part of (5.6) corresponds to

E
{
(ŵT −w)′Σ (ŵT − w)

}
=

d− 1

n− d− 1
· σ2 .

The factor (d − 1)/(n − d − 1) is large whenever the sample size n is small compared to

the number of assets d . For n, d → ∞ but n/d → q with 1 < q ≤ ∞, this factor tends to

1/(q−1) . Hence even in large samples the contribution of the estimation risk to the out-of-

sample variance is not negligible if the ‘effective sample size’ q is small. For instance, given

an investment universe with d = 50 assets and a history of n = 100 monthly observations,

the additional variance caused by the estimation risk is 1/(100/50 − 1) = 100% .

From the small-sample distribution of ŵ presented by Frahm (2008), it follows that the

third part of (5.6) corresponds to

µ′Var
(
ŵT

)
µ =

r2max − r2GMVP

n− d− 1
· σ2 ,

where rmax denotes the Sharpe ratio of the tangential portfolio Σ−1µ /(1′Σ−1µ) and rGMVP

the Sharpe ratio of the GMVP.2 This means it holds that

Var
(
ŵ′

TR
)

=

(
1 +

d− 1

n− d− 1
+
r2max − r2GMVP

n− d− 1

)
· σ2 .

In most practical situations the difference of r2max and r2GMVP turns out to be much smaller

than the numerator d− 1 (and even vanishes if µ = η 1).

Generally, in real-world asset markets the expected returns presumably do not differ so

greatly in the cross-section; the between variance is therefore very small compared to the

within variance. Hence we believe that the between variance µ′Var
(
v̂
)
µ for any portfolio v̂

is negligible in most practical situations and will concentrate in the following on reducing

the within variance E
(
v̂′Σ v̂

)
. Note that each realization of v̂′Σ v̂ represents the actual

variance of the return belonging to the portfolio v̂, which has been chosen on the basis of

historical observations, for instance. Then due to (5.4), each realization of (v̂−w)′Σ (v̂−w)

can be interpreted as that part of the actual variance which is caused by estimation risk.

In the subsequent analysis this quantity will be referred to as the loss of v̂.

2The Sharpe ratio of a portfolio is the expected excess return divided by the standard deviation.
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5.3. The Dominant Estimators

5.3.1. Small-Sample Properties

We now present the shrinkage estimator for the GMVP that dominates the traditional

estimator. Kempf and Memmel (2006) show that the traditional estimator is the best

unbiased estimator in the case of jointly normally distributed asset returns.3 However, as

already discussed earlier, this estimator can lead to a huge out-of-sample variance of the

portfolio return compared to σ2, i.e. the smallest of all possible portfolio return variances.

In this section we will use the following notation. Let ŵA be an arbitrary portfolio. Then

σ2
A = ŵ′

AΣ ŵA is the actual variance of the portfolio return, whereas σ̂2
A = ŵ′

AΣ̂ ŵA denotes

the corresponding estimator. This notation will be used both for stochastic and non-

stochastic portfolios, i.e. if wA is a non-stochastic portfolio, it holds that σ2
A = w′

AΣwA

and σ̂2
A = w′

AΣ̂wA .

Theorem 5.3 Suppose that the assumptions A1 to A5 are satisfied. Let ŵT be the tradi-

tional estimator for the GMVP w, whereas wR ∈ Rd with w′
R1 = 1 denotes an arbitrary

reference portfolio. Consider the shrinkage estimator

ŵS = κSwR +
(
1 − κS

)
ŵT (5.7)

with

κS =
d− 3

n− d+ 2
· 1

τ̂R
,

where τ̂R =
(
σ̂2

R − σ̂2
T

)
/σ̂2

T is the estimated relative loss of the reference portfolio wR .

The shrinkage estimator ŵS dominates ŵT with respect to the loss function Lw,Σ(v̂) =

(v̂ − w)′Σ (v̂ − w), i.e.

E
{
(ŵS − w)′Σ (ŵS − w)

}
< E

{
(ŵT − w)′Σ (ŵT − w)

}
.

Proof: See the appendix.

The estimator suggested in Theorem 5.3 exhibits the typical structure of James-Stein-

type shrinkage estimators. It is a weighted average of a given reference portfolio and

the traditional estimator for the GMVP. The better the reference portfolio fits the actual

3An estimator is called best if its covariance matrix attains the Rao-Cramér lower bound.
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GMVP, the smaller the out-of-sample variance of the shrinkage estimator will be. When

it comes to portfolio diversification without any subjective or empirical information as

well as restrictions on the portfolio weights, the naive portfolio wN := 1/d can be viewed

as a natural choice for the reference portfolio. Due to the arguments given by DeMiguel

et al. (2007), there are even doubts as to whether time series information can add useful

information at all, and so wR = wN might serve as a rule. We will come back to this point

in Section 5.4.

Theorem 5.4 Under the assumptions of Theorem 5.3, the distribution of the relative loss

τ S =
σ2

S − σ2

σ2

of the shrinkage estimator for the GMVP given by (5.7) depends only on the number of

observations n , the number of assets d , and the relative loss τR = (σ2
R − σ2)/σ2 of the

reference portfolio. More precisely, τ S can be represented stochastically by

τ S =
∥∥κSθ −

(
1 − κS

)
V − 1

2 ξ
∥∥2
, (5.8)

with any θ ∈ Rd−1 such that θ′θ = τR , ξ ∼ Nd−1(0, Id−1) , V ∼Wd−1(Id−1, n− 1) , and

κS =
d− 3

n− d+ 2
· χ2

n−d(
θ + V − 1

2 ξ
)′
V
(
θ + V − 1

2 ξ
) .

Here ξ , V , and χ2
n−d are supposed to be mutually independent.

Proof: See the appendix.

Due to Theorem 5.3, the shrinkage estimator is dominant in the sense that E
(
τ S

)
< E

(
τT

)
,

where τT = (σ2
T − σ2)/σ2 represents the relative loss of the traditional estimator for the

GMVP. It can be shown that the expected relative loss of the shrinkage estimator is a

strictly increasing function of τR and its infimum is attained if and only if τR = 0 . Note

that τR = 0 or, equivalently, θ = 0 holds if and only if wR = w , since Σ is positive-definite.

In that case it turns out that

E
(
τ S

)
=

(
1 − d− 3

d− 1
· n− d

n− d+ 2

)
d− 1

n− d− 1
.

By contrast, E
(
τ S

)
→ E(τT) for τR → ∞ .

Following the arguments given by Judge and Bock (1978, p. 182), we can try to reduce

the out-of-sample variance of the suggested estimator by restricting κS to values smaller
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than or equal to 1, i.e. by taking κM := min{κS, 1} instead of κS . Then the corresponding

shrinkage estimator is given by

ŵM := κMwR +
(
1 − κM

)
ŵT . (5.9)

The shrinkage constant κM can only attain values between 0 and 1, which prevents ŵM

from having the opposite sign of ŵT whenever τ̂R is small, i.e. whenever the traditional

estimate of the GMVP is close to the reference portfolio. The next theorem states that the

modified shrinkage estimator does, in fact, lead to a better out-of-sample performance.

Theorem 5.5 Under the assumptions of Theorem 5.3 and given the notation of Theorem

5.4, the distribution of the relative loss

τM =
σ2

M − σ2

σ2

of the modified shrinkage estimator for the GMVP given by (5.9) depends only on the

number of observations n , the number of assets d , and the relative loss τR of the reference

portfolio. More precisely, τM can be represented stochastically by

τM =
∥∥κMθ −

(
1 − κM

)
V − 1

2 ξ
∥∥2
, (5.10)

with κM = min{κS, 1}, and it holds that

E
(
τM

)
< E

(
τ S

)
< E

(
τT

)
.

Proof: See the appendix.

The stochastic representations (5.8) and (5.10) can be used, for instance, for evaluating

the out-of-sample performances of the presented shrinkage estimators by Monte Carlo

simulation. Theorem 5.5 asserts that the modified shrinkage estimator dominates not only

the traditional estimator but also the simple shrinkage estimator given by (5.7). Moreover,

it can be shown that the expected relative loss of ŵM corresponds to

E
(
τM

)
= E

[{(
1 − d− 3

n− d+ 2
· χ

2
n−d

χ2
d+1

)+}2
]

d− 1

n− d− 1

in the event that τR = 0 .

Our results about the superiority of the presented shrinkage estimators require the asset

universe to consist of at least four assets. By contrast, if there are only two or three assets,
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one should draw on the traditional estimator. It is worth pointing out that the methodology

presented here can be easily applied to the estimation of local minimum variance portfolios.

As has been shown by Frahm (2008), any d-dimensional asset universe can be transformed

into a (d−q)-dimensional asset universe such that q linear equality constraints (besides the

budget constraint) are implicitly satisfied for each portfolio of the d − q available assets.

In that case assumptions A4 and A5 have to be changed to n ≥ d− q + 2 and d ≥ q + 4 .

Furthermore, the chosen reference portfolio must satisfy the given linear restrictions.

5.3.2. Large-Sample Properties

In the previous section, we investigated the small-sample properties of the relative losses

of the shrinkage estimators ŵS and ŵM . Due to Theorem 5.4 and Theorem 5.5, it can be

seen that the expected relative losses of the shrinkage estimators as well as the traditional

estimator tend to zero if the number of assets d is fixed but n → ∞ . However, that does

not mean that the presented shrinkage estimators are always asymptotically equivalent to

the traditional estimator. This is confirmed by the next theorem.

Theorem 5.6 Under assumptions A1 to A3 it holds that

√
n




ŵT −w

ŵS − w

ŵM − w




d−→




1

11{τR=0}

(
1 − d−3

ξ′ξ

)
+ 11{τR> 0}

11{τR= 0}

(
1 − d−3

ξ′ξ

)+
+ 11{τR> 0}




Λξ , n −→ ∞ ,

where Λ is a d× (d− 1) matrix such that ΛΛ′ = σ2Σ−1 −ww′ and ξ ∼ Nd−1

(
0, Id−1

)
.

Proof: See the appendix.

For instance, from the last theorem it follows that

√
n
(
ŵT − w

) d−→ Nd

(
0, σ2Σ−1 −ww′

)
, n −→ ∞ ,

and the shrinkage estimators are asymptotically equivalent to the traditional estimator,

i.e.

√
n
(
ŵT − ŵS

) p−→ 0 and
√
n
(
ŵT − ŵM

) p−→ 0 , n −→ ∞ , (5.11)

109



Chapter 5. Dominant Estimators for the Global Minimum Variance Portfolio

only if wR 6= w .4 The last theorem also implies that if wR = w and the sample size is large

(compared to the number of assets), the modified shrinkage estimate corresponds to the

true GMVP roughly with probability Fχ2
d−1

(
d− 3

)
. Admittedly, this might be regarded as

purely theoretical, since it has to be assumed that wR 6= w in most practical situations,

with ŵM then being asymptotically equivalent to ŵT in the sense given above.

So far we have focused on the expected relative losses of the estimators for the GMVP but,

as already mentioned, these quantities vanish if the sample size tends to infinity. However,

due to the next theorem it is possible to make statements about the relative loss itself if d

is fixed but n tends to infinity.

Theorem 5.7 Under assumptions A1 to A3 it holds that

n




τT

τ S

τM




d−→




1

11{τR= 0}

(
1 − d−3

χ2
d−1

)2
+ 11{τR> 0}

11{τR= 0}

{(
1 − d−3

χ2
d−1

)+}2
+ 11{τR> 0}



χ2

d−1 , n −→ ∞ .

Proof: See the appendix.

This theorem asserts that the relative losses are super-consistent. It is worth pointing

out that, even if the expected relative losses of the shrinkage estimators presented here

are always smaller than the expected loss of the traditional estimator (which follows from

Theorem 5.4 and Theorem 5.5), a given realization of τ S may turn out to be greater than

τT . Surprisingly, Theorem 5.7 implies that, only if wR = w, the probability of this event

does not vanish (even asymptotically) but tends to Fχ2
d−1

{
(d− 3)/2

}
> 0 . For example, if

there exist d = 5 assets, this adverse effect occurs with a probability of approximately 9%.

However, the same theorem confirms that τM > τT is asymptotically impossible. This is

another advantage of the modified shrinkage estimator over the simple one.

As already discussed earlier, it might be criticized that in many practical applications of

portfolio theory the number of assets is large compared to the number of observations. In

the following we will investigate the asymptotic distribution of the relative loss assuming

that n, d → ∞ but n/d → q with 1 < q ≤ ∞ . Here the relative loss of the reference

portfolio is assumed to be constant; recall that the number q can be interpreted as the

4The proof of Theorem 5.6 reveals that (5.11) can be even strengthened to almost sure convergence.
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Relative loss of the reference portfolio
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Figure 5.1.: Expected relative losses of the traditional (blue), simple (red) and modified

(dashed green) shrinkage estimator for n = 300 and d = 100 as well as the relative loss of

the reference portfolio (black) and the asymptotic loss function L(τR , 3) (yellow).

effective sample size. The following theorem asserts that if the asset universe is large, the

relative losses of all GMVP estimators are no longer super-consistent.

Theorem 5.8 Under assumptions A1 to A3 it holds that

τT
a.s.−→ 1

q − 1

as n, d→ ∞ but n/d→ q with 1 < q ≤ ∞ . Moreover, concerning the shrinkage estimators

for the GMVP it holds that

κS , κM
a.s.−→ 1

1 + qτR

as well as

τ S , τM
a.s.−→ L

(
τR, q

)
:=

τR

(1 + qτR)2
+

(
1 − 1

1 + qτR

)2 1

q − 1

as n, d→ ∞ but n/d→ q with 1 < q ≤ ∞ .

Proof: See the appendix.

It can be shown that the asymptotic loss function L is increasing in τR, and it holds that

L
(
τR, q

)
< 1/(q − 1) whenever q < ∞ , i.e. the shrinkage estimators dominate the tradi-

tional estimator with respect to the asymptotic loss if not only the number of observations

111



Chapter 5. Dominant Estimators for the Global Minimum Variance Portfolio

n→ ∞ , d <∞ n→ ∞ , d→ ∞ , n/d→ q

q = ∞ q <∞ q = ∞
τR = 0 τR > 0 τR = 0 τR > 0 τR ≥ 0

τT 0 0 1
q−1 > 0 1

q−1 > 0 0

τ S 0 0 0 0 < L(τR, q) <
1

q−1 0

τM 0 0 0 0 < L(τR, q) <
1

q−1 0

nτT χ2
d−1 χ2

d−1 ∞ ∞ ∞

nτ S

(
1 − d−3

χ2
d−1

)2
χ2

d−1 χ2
d−1 0 ∞ ∞

nτM

{(
1 − d−3

χ2
d−1

)+}2
χ2

d−1 χ2
d−1 0 ∞ ∞

Table 5.1.: Large-sample properties of the relative losses of ŵT, ŵS, and ŵM .

but also the number of assets tend to infinity and the effective sample size remains finite.

Moreover, it turns out that L
(
τR, q

)
> τR if and only if

τR <
1

q
· 2 − q

q − 1
. (5.12)

Therefore, the shrinkage estimators dominate the reference portfolio uniformly if q ≥ 2 (see

Figure 5.1). Conversely, in terms of the asymptotic loss they become uniformly worse than

wR as q tends to 1 from above, since the right-hand side of (5.12) then tends to infinity.

The large-sample properties of the relative losses of the GMVP estimators ŵT , ŵS , and

ŵM are summarized in Table 5.1.

5.3.3. The Link to Covariance Matrix Estimation

Jagannathan and Ma (2003) analyze short-sales constraints as a means of lessening the

impact of estimation errors on the sample covariance matrix. They show that using short-

sales constraints is equivalent to transforming the sample covariance matrix and taking this

quantity for calculating the GMVP on the basis of the unconstrained traditional estimator

for the GMVP. The following theorem states that a similar argument holds for the shrinkage

estimators presented earlier.

Theorem 5.9 For any reference portfolio wR there exists a positive-definite d× d matrix

Σ−1
R such that wR ∝ Σ−1

R 1 as well as 1
′Σ−1

R 1 = 1
′Σ̂−1

1 , where Σ̂ is the sample covariance
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matrix given by Eq. 5.2 and it is assumed that n > d . The shrinkage estimators for the

GMVP can be calculated by using

Σ̂−1
S := κSΣ−1

R +
(
1 − κS

)
Σ̂−1 and Σ̂−1

M := κMΣ−1
R +

(
1 − κM

)
Σ̂−1

for the traditional GMVP estimator, i.e.

ŵS =
Σ̂−1

S 1

1′Σ̂−1
S 1

and ŵM =
Σ̂−1

M 1

1′Σ̂−1
M 1

.

Proof: See the appendix.

The random matrices Σ̂S and Σ̂M can be interpreted as shrinkage estimators for the un-

known covariance matrix Σ . However, Σ̂M is positive-definite, a trait that does not hold

for Σ̂S in general. Any other matrix which is proportional to Σ̂S or Σ̂M would lead to the

same shrinkage estimators for the GMVP, but the expressions given in Theorem 5.9 satisfy

a convenient scaling condition, i.e. 1
′Σ̂−1

S 1 = 1
′Σ̂−1

M 1 = 1
′Σ−1

R 1 = 1
′Σ̂−1

1 = 1/σ̂2
T .

Similar shrinkage estimators for the covariance matrix have been already suggested by

Ledoit and Wolf (2001, 2003). However, the estimators given in Theorem 5.9 differ from

the estimators introduced by Ledoit and Wolf in two aspects:

1. Their shrinkage constants depend on unobservable quantities which have to be es-

timated from empirical data. Even if the suggested covariance matrix estimators

dominate the sample covariance matrix asymptotically, it is not clear why the dom-

inance result should be valid in small samples. By contrast, our shrinkage approach

focuses on the small-sample properties of the resulting portfolio weights.

2. Ledoit and Wolf shrink the covariance matrix itself, whereas our approach is based

on shrinking its inverse. By shrinking the covariance matrix, it is possible to allow

for n ≤ d , i.e. the aforementioned authors are able to apply their approach to asset

universes where the number of assets exceed the number of observations.

So far our methodology consists of shrinking the traditional GMVP estimator towards

some non-stochastic reference portfolio wR . However, all the presented results remain

valid if wR is a stochastic portfolio satisfying the budget constraint and being stochastically

independent of the historical observations which are used for calculating ŵT .5 Nevertheless,

in the following we will concentrate on the special case wR = wN = 1/d .

5For example, wR could be interpreted as a portfolio which has been suggested by a layman.
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Relative loss of the naive portfolio
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Figure 5.2.: Expected relative losses of the traditional (blue), simple (red) and modified

shrinkage (dashed green) estimator for n = 20 and d = 10 as well as the relative loss of

the naive portfolio (black) and the asymptotic loss function L(τR , q) with q = 2 (yellow).

5.4. Naive Diversification vs. Portfolio Optimization

5.4.1. A Small-Sample Simulation Study

DeMiguel et al. (2007) raise the question of whether optimizing a portfolio using time

series information is worthwhile to begin with. They do not even refer to the fact that

asset returns typically exhibit structural breaks, serial correlations in the higher moments,

and heavy tails. According to these authors, the estimation error outweighs the potential

gain of portfolio optimization, even if the asset returns are normally distributed and serially

independent. In this section we address a similar question: Does it pay to strive for the

GMVP by using time series information or is it better to renounce parameter estimation

altogether and put the money straight away into the naive portfolio?

In order to revisit this question, we may focus on the expected relative loss which is caused

by a given GMVP estimator. Due to Theorem 5.5 and the arguments given in Section

5.3.2, we will concentrate on the modified shrinkage estimator ŵM and choose the naive

portfolio wN as a reference portfolio. Although closed-form expressions for τM in large

samples and asset universes have been already presented in Section 5.3.2, the relative loss

can only be simulated, e.g. by using Equations 5.8 and 5.10, if the sample is small. Figure
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5.2 contains the expected relative losses of the four different portfolio strategies, i.e. naive

diversification, traditional estimation, as well as simple and modified shrinkage estimation

for n = 20 observations and d = 10 assets. The x-axis denotes the relative loss τN of the

naive portfolio, whereas the y-axis accounts for the expected relative losses of the different

portfolio strategies depending on τN . Note that (according to Theorem 5.4) the expected

relative loss of the traditional estimator does not depend on τN but only on the number n

of observations and the number d of assets.

It can be seen that the expected relative loss of the traditional estimator corresponds to

100%. Due to Theorem 5.4 and Theorem 5.5 it is clear that the expected relative losses

of the shrinkage estimators are always below the expected relative loss of the traditional

estimator. This is also confirmed by Figure 5.2. Particularly if τN is small, i.e. the true

GMVP does not differ too greatly from the naive portfolio (which serves as an anchor

point for ŵS and ŵM), the shrinkage estimators are more favorable than the traditional

estimator.

Figure 5.2 also indicates the critical relative loss τ∗N of the naive portfolio with respect to

the modified shrinkage estimator ŵM . This is that point on the x-axis where the modified

shrinkage estimator leads to the same expected relative loss as naive diversification. As

indicated by Figure 5.2, this critical value is about 63%. For example if there are 5

years of quarterly asset returns and 10 stocks on the market, naive diversification would

be better as long as τN < 63% . Suppose that the standard deviation of the GMVP

return corresponds to σ = 10% , whereas its counterpart related to the naive portfolio

amounts to 11% (per quarter). In that case, the relative loss of naive diversification is

τN = (0.11/0.10)2 − 1 = 21% , whereas the expected relative loss caused by the modified

shrinkage estimator roughly amounts to E
(
τM

)
= 43% . Therefore, it would not pay to

use the modified shrinkage estimator in that case. In contrast, if the naive portfolio leads

to a standard deviation of 13% , it holds that τN = (0.13/0.10)2 − 1 = 69% > τ∗N and

so the modified shrinkage estimator is slightly better than the naive portfolio. Note that

traditional estimation is always worse than naive diversification in all such cases.

Table 5.2 lists some critical relative losses of naive diversification for different combinations

of n and d . For example, if 10 years of monthly asset return observations are available

(i.e. n = 120) and the stock market consists of d = 50 assets, one should use the modified

shrinkage estimator if and only if the variance of the naive portfolio return is at least 21%

greater than the variance of the GMVP return. Depending on the length of the time series
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n \ d 5 10 25 50 100

12 52%
(550%)

847%
(99261%)

— — —

24 16%
(111%)

40%
(334%)

— — —

36 9%
(59%)

19%
(132%)

152%
(1809%)

— —

60 5%
(30%)

9%
(58%)

28%
(209%)

420%
(7806%)

—

120 2%
(13%)

4%
(24%)

8%
(57%)

21%
(161%)

377%
(5202%)

Table 5.2.: Critical relative losses of the naive portfolio with respect to the modified shrink-

age estimator for different combinations of n and d . The parentheses under the critical

relative losses contain the critical thresholds of τ̂N for testing the naive diversification

hypothesis at a significance level of α = 5% .

and the number of assets, the modified shrinkage estimator is able to reduce the relative

loss of naive diversification. However, the table also indicates that, if the number of assets

is large compared to the number of observations, naive diversification is apparently the best

strategy, which reconfirms the naive diversification hypothesis of DeMiguel et al. (2007).

5.4.2. Testing the Naive Diversification Hypothesis

For applying the decision rule discussed above, one needs two numbers, i.e.

1. the critical relative loss of the naive portfolio with respect to the modified shrinkage

estimator and

2. the relative loss of the naive portfolio.

The critical relative loss can be calculated by Monte Carlo simulation (as it was done to

obtain Table 5.2), whereas the actual relative loss of the naive portfolio is not observable

and needs to be estimated from the history. The next theorem provides the distribution

of its empirical counterpart τ̂N or, more generally, τ̂R (see also Theorem 5.3).

Theorem 5.10 Under assumptions A1 to A3 and n > d , the estimator τ̂R =
(
σ̂2

R −
σ̂2

T

)
/σ̂2

T for the relative loss of the reference portfolio is conditionally noncentrally F -

distributed, more precisely

τ̂R ∼ d− 1

n− d
· Fd−1,n−d

(
τRχ

2
n−1/2

)
.
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Proof: See the appendix.

With Theorem 5.10, it is possible to test whether one should invest in the naive portfolio

or to apply a GMVP estimator, i.e.

H0 : τN ≤ τ∗N vs.

H1 : τN > τ∗N .

The test statistic is given by τ̂N =
(
σ̂2

N − σ̂2
T

)
/σ̂2

T and according to Theorem 5.10, H0 can

be rejected whenever the realization of τ̂N exceeds the upper α-quantile (0 < α < 1
2 ) of

the cumulative distribution function of

d− 1

n− d
· Fd−1,n−d

(
τ∗Nχ

2
n−1/2

)
,

which can be also calculated by Monte Carlo simulation.6

Critical thresholds for this hypothesis test at a significance level of α = 5% are presented

in Table 5.2. For instance, suppose that the asset universe consists of 50 assets and the

investor can observe 10 years of monthly asset returns. Then the naive diversification

hypothesis can be only rejected if τ̂N > 161% . Note that this is by far greater than the

theoretical value of the critical relative loss τ∗N = 21% , since the distribution of τ̂N is

considerably skewed to the right.

We consciously formulate the hypothesis test in such a way that the naive portfolio has to

be rejected but not the portfolio based on some GMVP estimator. Therefore, for typical

significance levels like α = 1%, 5%, 10% , our decision rule favors naive diversification. More

precisely, if H0 can be rejected, the considered GMVP estimator significantly leads to a

better out-of-sample performance but if H0 is not rejected, from a statistical point of view

it cannot be assumed that naive diversification is better. However, in that case the naive

portfolio can be justified either empirically, e.g. because of the well-known stylized facts of

financial data, or due to the arguments given by DeMiguel et al. (2007). In other words:

if it is not possible to guarantee that a statistical method will lead to a better result but

it is likely that the outcome will become worse, the naive portfolio can be justified by the

principle of insufficient reason (against naive diversification).

6This hypothesis test can be adapted to any GMVP estimator if its expected relative loss E(τ ) < ∞

depends only on n, d, and τN and provided τN 7→ E(τ ) has only one intersection point with τN 7→ τN .
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5.5. Conclusion

We present two shrinkage estimators for the GMVP that dominate the traditional estimator

under the assumption of serially independent and identically normally distributed asset

returns. Their small-sample and their large-sample properties alike have been investigated.

The presented shrinkage estimators considerably reduce the out-of-sample variance of the

portfolio return compared to the traditional estimator, especially if the asset universe is

large. In addition, we provide a hypothesis test to decide whether one should invest in

a portfolio based on estimators for the GMVP or in the naive portfolio. This decision

depends only on three quantities: the number of observations, the number of assets, and

the relative loss (compared to the GMVP) caused by naive diversification. Further research

could include, for instance, an empirical investigation of the presented shrinkage estimators.

Appendix

Lemma 5.11 For any λ ≥ 0 it holds that

E
{
χ−2

q

(
λ
)}

= qE
{
χ−4

q+2

(
λ
)}

+ 2λE
{
χ−4

q+4

(
λ
)}
, (5.13)

and if q ≥ 3 ,

(q − 2)E
{
χ−2

q

(
λ
)}

= (q − 2λ) E
{
χ−2

q+2

(
λ
)}

+ 2λE
{
χ−2

q+4

(
λ
)}
. (5.14)

Proof: Eq. 5.13 follows immediately from Theorem 2 in Judge and Bock (1978, p. 322) by

setting φ(x) = x−2, A = Iq , and θ ∈ Rq such that λ = θ′θ/2 . Similarly, with φ(x) = x−1,

1 = qE
{
χ−2

q+2

(
λ
)}

+ 2λE
{
χ−2

q+4

(
λ
)}

= (q − 2)E
{
χ−2

q

(
λ
)}

+ 2λE
{
χ−2

q+2

(
λ
)}

for any q ≥ 3 , which leads to (5.14). Q.E.D.

Lemma 5.12 Consider a q× q random matrix V ∼Wq

(
Iq,m

)
with q ≥ 3 and m ≥ q+2 .

Further, define λ := θ′θ/2 and λ̂ := θ′V θ/2 for some θ ∈ Rq. Then it holds that

E

[(
trV −1 − λ

λ̂
· q
)

E
{
χ−2

q+2

(
λ̂
)
|V
}]

=
q − 1

m− q − 1
· E
[
(q − 2) · λ

λ̂
· E
{
χ−2

q

(
λ̂
)
|V
}]

and

E

[(
trV −1 − λ

λ̂
· q
)

E
{
χ−4

q+2

(
λ̂
)
|V
}]

=
q − 1

m− q − 1
· E
[
λ

λ̂
· E
{
χ−2

q

(
λ̂
)
|V
}]

−

q − 1

m− q − 1
· E
[
2λE

{
χ−4

q+2

(
λ̂
)
|V
}]

.
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Proof: Consider the function h
(
2λ̂
)

= E
{
χ−2

q+2(λ̂) |V
}

and note that, after rotating θ, it

holds that 2λ̂ = θ′θχ2 for some random variable χ2 ∼ χ2
m . Then, due to Theorem 6 in

Judge and Bock (1978, p. 324),

E
{(

trV −1
)
h
(
2λ̂
)}

=
q (m− 2)

m− q − 1
· E
{
h
(
2λ̂
)

χ2

}
+

2 (q − 1)

m− q − 1
· E
{
θ′θ h′

(
2λ̂
)}
,

where h′ denotes the first derivative of h with respect to 2λ̂ . Since λ/λ̂ = 1/χ2,

E

{(
trV −1 − λ

λ̂
· q
)
h
(
2λ̂
)}

=
q − 1

m− q − 1
·
[
qE

{
h
(
2λ̂
)

χ2

}
+ 2 θ′θE

{
h′
(
2λ̂
)}
]
, (5.15)

where

h′
(
2λ̂
)

=
1

2
·
dE
{
χ−2

q+2(λ̂) |V
}

dλ̂
=

1

2
·
[
E
{
χ−2

q+4(λ̂) |V
}
− E

{
χ−2

q+2(λ̂) |V
}]
,

which follows from the derivative rule on page 327 in Judge and Bock (1978). After

substituting h′(2λ̂) in (5.15) and some re-arrangement, we obtain

E

[(
trV −1 − λ

λ̂
· q
)

E
{
χ−2

q+2

(
λ̂
)
|V
}]

=

q − 1

m− q − 1
· E
[
λ

λ̂

[
(q − 2λ̂) E

{
χ−2

q+2

(
λ̂
)
|V
}

+ 2λ̂E
{
χ−2

q+4

(
λ̂
)
|V
}]]

.

Now the first statement of the lemma appears immediately after applying (5.14). Simi-

larly, by allowing for the function h
(
2λ̂
)

= E
{
χ−4

q+2(λ̂) |V
}

and using (5.13), the second

statement of the lemma becomes valid. Q.E.D.

Proof of Theorem 5.2

The loss function Lω,Ω can be re-formulated as

Lω,Ω

(
ω̂
)

=
(
ω̂ − ω

)′
Ω
(
ω̂ − ω

)
=
(
θ̂ − θ

)′(
θ̂ − θ

)
= Lθ

(
θ̂
)
,

where θ̂ := Ω
1
2 (ω̂−x) and θ := Ω

1
2 (ω−x) . Accordingly, the random vectorX is transformed

into Y := Ω
1
2 (X − x) |V ∼ Nq

(
θ, V −1

)
with V := Ω− 1

2WΩ− 1
2 ∼Wq

(
Iq,m

)
and similarly

YS := Ω
1
2 (XS − x) =

(
1 − c χ2

Y ′V Y

)
Y .

After some elementary transformations, it turns out that

Lθ(YS) = Lθ(Y ) −
{

2cχ2 · Y
′(Y − θ)

Y ′V Y
− c2χ4 · Y ′Y

(Y ′V Y )2

}
.
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This means the random variable YS dominates Y if and only if

E
{
Lθ(Y ) − Lθ(YS)

}
= 2ckE1 − c2k (k + 2) E2 > 0 , (5.16)

where

E1 := E

{
Y ′(Y − θ)

Y ′V Y

}
and E2 := E

{
Y ′Y

(Y ′V Y )2

}
.

Hence, the dominance result is satisfied for all c with 0 < c < 2/(k + 2) · E1/E2 and, to

prove the theorem, it has to be shown that E1/E2 ≥ (q − 2) . Now we define Z := V
1
2Y

and ζ := V
1
2 θ so that Z |V ∼ Nq(ζ, Iq) . Then it holds that

Y ′(Y − θ)

Y ′V Y
|V ∼ Z ′V −1(Z − ζ)

Z ′Z
|V and

Y ′Y

(Y ′V Y )2
|V ∼ Z ′V −1Z

(Z ′Z)2
|V .

By setting φ(x) = x−1 in Theorem 1 and Theorem 2 of Judge and Bock (1978, pp. 321–322)

and allowing for λ = θ′θ/2 and λ̂ = θ′V θ/2 it follows that

E

{
Y ′(Y − θ)

Y ′V Y
|V
}

=
(
trV −1

)
E
{
χ−2

q+2

(
λ̂
)
|V
}

+2λE
{
χ−2

q+4

(
λ̂
)
|V
}
−2λE

{
χ−2

q+2

(
λ̂
)
|V
}
.

Similarly, by setting φ(x) = x−2 in Theorem 2 given by Judge and Bock (1978, p. 322),

we find that

E

{
Y ′Y

(Y ′V Y )2
|V
}

=
(
trV −1

)
E
{
χ−4

q+2

(
λ̂
)
|V
}

+ 2λE
{
χ−4

q+4

(
λ̂
)
|V
}
.

After some re-arrangement and an application of (5.14) we obtain

E

(
Y ′(Y − θ)

Y ′V Y
|V
)

= (q − 2) · λ
λ̂
· E
{
χ−2

q

(
λ̂
)
|V
}

+

(
tr V −1 − λ

λ̂
· q
)

E
{
χ−2

q+2

(
λ̂
)
|V
}
.

Moreover, with an application of (5.13) it also turns out that

E

(
Y ′Y

(Y ′V Y )2
|V
)

=
λ

λ̂
· E
{
χ−2

q

(
λ̂
)
|V
}

+

(
trV −1 − λ

λ̂
· q
)

E
{
χ−4

q+2

(
λ̂
)
|V
}
.

Now, from Lemma 5.12 it follows that E1 = (q − 2) E2 + ε with

ε :=
(q − 1)(q − 2)

m− q − 1
· 2λE

[
E
{
χ−4

q+2

(
λ̂
)
|V
}]

≥ 0 .

Since E1 ≥ (q − 2) E2 with E2 > 0 it follows that E1/E2 ≥ (q − 2) . For x = ω it holds

that λ = 0 and thus E1 = (q − 2) E2 . This means the optimal constant c of the quadratic

function given by (5.16) does not depend on E1 or E2 . Further, it is unique and corresponds

to c = (q − 2)/(k + 2) . Q.E.D.
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Proof of Theorem 5.3

Lemma 5.1 and Theorem 5.2 can be brought together by the following substitutions: m =

n − 1 , q = d− 1 , W = n Ω̂/σ2 , X = ŵex
T , χ2 = n σ̂2

T/σ
2, k = n − d , and x = wex

R . Then

the constant

c =
q − 2

k + 2
=

d− 3

n− d+ 2

leads to a dominant shrinkage estimator ŵex
S for wex, viz.

ŵex
S = wex

R +

(
1 − d− 3

n− d+ 2
· σ̂2

T

(ŵex
T − wex

R )′Ω̂ (ŵex
T − wex

R )

)
(
ŵex

T − wex
R

)
.

Note that

(ŵex
T − wex

R )′Ω̂ (ŵex
T − wex

R ) = (ŵT − wR)′Σ̂ (ŵT − wR)

and thus

σ̂2
T

(ŵex
T −wex

R )′Ω̂ (ŵex
T − wex

R )
=

σ̂2
T

(ŵT − wR)′Σ̂ (ŵT − wR)
=

σ̂2
T

σ̂2
R − σ̂2

T

=
1

τ̂R
.

Due to ŵS = e1 − ∆′ŵex
S it follows that

ŵS = wR +

(
1 − d− 3

n− d+ 2
· 1

τ̂R

)(
ŵT − wR

)
= κS wR +

(
1 − κS

)
ŵT .

Q.E.D.

Proof of Theorem 5.4

After some calculations we find that

τ S = τR − 2
(
1 − κS

)
a+

(
1 − κS

)2
b ,

where

κS =
d− 3

n− d+ 2
· nσ̂2

T/σ
2

(ŵex
T − wex

R )′(nΩ̂/σ2)(ŵex
T − wex

R )
,

a =
(ŵex

T − wex
R )′Ω (wex − wex

R )

σ2
and b =

(ŵex
T − wex

R )′Ω (ŵex
T −wex

R )

σ2
.

With θ = Ω
1
2 /σ (wex−wex

R ) , ξ ∼ Nd−1(0, Id−1) , and V ∼Wd−1(Id−1, n−1) , the shrinkage

constant κS can be represented by

κS =
d− 3

n− d+ 2
· χ2

n−d(
θ + V − 1

2 ξ
)′
V
(
θ + V − 1

2 ξ
)
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as well as a = θ′
(
θ + V − 1

2 ξ
)

and b =
(
θ + V − 1

2 ξ
)′(
θ + V − 1

2 ξ
)
, where ξ , V , and χ2

n−d are

mutually independent. Hence, τ S is equal to the expression given on the right hand side

of (5.8). Moreover, it holds that

τ S =
∥∥O
{
κSθ −

(
1 − κS

)
V − 1

2 ξ
}∥∥2

=
∥∥κSη −

(
1 − κS

)
OV − 1

2 ξ
∥∥2

with η := Oθ for any orthogonal (d− 1)× (d− 1) matrix O; note also that κS is a function

of V − 1
2 ξ only through the quadratic form

(
θ + V − 1

2 ξ
)′
V
(
θ + V − 1

2 ξ
)

=
(
η + OV − 1

2 ξ
)′(OVO′

)(
η + OV − 1

2 ξ
)
.

The random matrix V has a radial distribution, i.e. OVO′ ∼ V as well as OV −1O′ ∼ V −1.

Similarly, ξ has a spherical distribution, i.e. Oξ ∼ ξ . It follows that OV − 1
2O′ ∼ V − 1

2 and

thus OV − 1
2 ξ ∼ V − 1

2 ξ . This means for any rotation η of θ it holds that

τ S ∼
∥∥κSη −

(
1 − κS

)
V − 1

2 ξ
∥∥2
.

Ergo, the distribution of τ S depends only on n, d, and τR = θ′θ. Q.E.D.

Proof of Theorem 5.5

From the proof of Theorem 5.4 it follows that the distribution of τM, too, is only a function

of n, d, and τR . To prove that E(τM) < E(τ S), the relative loss of the simple shrinkage

estimator can be written as

τ S = τR − 2 θ′V − 1
2
(
1 − κS

)(
V

1
2 θ + ξ

)
+
(
1 − κS

)2 ‖V 1
2 θ + ξ‖2

V .

Since
(
1−κS

)
=
(
1−κS

)+−
(
1−κS

)−
, the relative loss of the modified shrinkage estimator

becomes

τM = τ S − 2 θ′V − 1
2
(
1 − κS

)−(
V

1
2 θ + ξ

)
−
{(

1 − κS

)−}2 ‖V 1
2 θ + ξ‖2

V .

Here it holds that

E
[{(

1 − κS

)−}2 ‖V 1
2 θ + ξ‖2

V

]
> 0

and from Theorem 1 given by Judge and Bock (1978, pp. 321) it follows that

E
{
θ′V − 1

2
(
1 − κS

)−(
V

1
2 θ + ξ

)}
= τRE

[{
1 − d− 3

n− d+ 2
· χ2

n−d

χ2
d+1(τRχ2

n−1/2)

}−
]
≥ 0 .

That means E
(
τM

)
< E

(
τ S

)
. The second inequality E

(
τ S

)
< E

(
τT

)
is a direct conse-

quence of Theorem 5.3. Q.E.D.

122



Chapter 5. Dominant Estimators for the Global Minimum Variance Portfolio

Proof of Theorem 5.6

The traditional estimator for the GMVP without the first portfolio weight can be rep-

resented by ŵex
T = wex + σΩ− 1

2V − 1
2 ξ , where V ∼ Wd−1(Id−1, n − 1) is stochastically

independent of ξ ∼ Nd−1(0, Id−1) . Since
√
nV − 1

2 =
(
V/n

)− 1
2

a.s.→ Id−1 as n→ ∞ , it holds

that
√
n
(
ŵex

T − wex
) a.s.−→ σΩ− 1

2 ξ , n −→ ∞ .

The presented expression for the asymptotic normality of ŵT = e1−∆′ŵex
T follows from the

relationship σ2∆′Ω−1∆ = σ2Σ−1 − ww′ (Frahm, 2008). Further, the shrinkage estimator

can be represented by

ŵex
S = wex

R +

{
1 − d− 3

n− d+ 2
· χ2

n−d(
θ + V − 1

2 ξ
)′
V
(
θ + V − 1

2 ξ
)
}{(

wex − wex
R

)
+ σΩ− 1

2V − 1
2 ξ
}
,

where θ = Ω
1
2 /σ (wex − wex

R ) and θ′θ = τR . Following the proof of Theorem 5.4 it can be

assumed that θ =
(√
τR ,0

)
without loss of generality. Since

θ′V θ

n
= τR · χ

2
n−1

n

a.s.−→ τR ,
2θ′V

1
2 ξ

n
= 2θ′(V/n)

1
2 ξ/

√
n

a.s.−→ 0 ,
ξ′ξ

n

a.s.−→ 0 , n −→ ∞ ,

it follows that
(
θ + V − 1

2 ξ
)′
V
(
θ + V − 1

2 ξ
)
/n

a.s.→ τR as well as χ2
n−d/n

a.s.→ 1 as n → ∞ .

Hence, in the event that τR > 0 it holds that

√
n · d− 3

n− d+ 2
· χ2

n−d/n(
θ + V − 1

2 ξ
)′
V
(
θ + V − 1

2 ξ
)
/n

·
(
wex

R − wex
) a.s.−→ 0 , n −→ ∞ .

Further, as already mentioned above,
√
nσΩ− 1

2V − 1
2 ξ

d→ σΩ− 1
2 ξ and so

{
1 − d− 3

n− d+ 2
· χ2

n−d/n(
θ + V − 1

2 ξ
)′
V
(
θ + V − 1

2 ξ
)
/n

}
√
nσΩ− 1

2V − 1
2 ξ

a.s.−→ σΩ− 1
2 ξ

as n→ ∞ . By contrast, if τR = 0 and thus θ = 0 as well as wex = wex
R ,

d− 3

n− d+ 2
· χ2

n−d(
θ + V − 1

2 ξ
)′
V
(
θ + V − 1

2 ξ
) =

d− 3

n− d+ 2
· χ

2
n−d

ξ′ξ

and since χ2
n−d/(n− d+ 2)

a.s.→ 1 as n→ ∞ ,

√
n
(
ŵex

S − wex
) a.s.−→

(
1 − d− 3

ξ′ξ

)
σΩ− 1

2 ξ , n −→ ∞ .

Similar arguments hold for the modified shrinkage estimator, since

min

{
√
n · d− 3

n− d+ 2
· χ2

n−d/n(
θ + V − 1

2 ξ
)′
V
(
θ + V − 1

2 ξ
)
/n

,
√
n

}
a.s.−→ 0 , n −→ ∞ ,
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if τR > 0 and otherwise

min

{
d− 3

n− d+ 2
· χ

2
n−d

ξ′ξ
, 1

}
a.s.−→ min

{
d− 3

ξ′ξ
, 1

}
, n −→ ∞ .

Q.E.D.

Proof of Theorem 5.7

Due to Eq. 5.3 it will suffice to concentrate on the GMVP estimators without the first

portfolio weight for calculating the relative losses, e.g.

nτT =

√
n (ŵex

T − wex)′Ω
√
n (ŵex

T − wex)

σ2
.

Now the theorem follows immediately by applying the Continuous Mapping Theorem to

the results which are given in the proof of Theorem 5.6 and noting that

[
11{τR=0}X + 11{τR> 0}

]2
= 11{τR=0}X

2 + 11{τR> 0}

for any random variable X. Q.E.D.

Proof of Theorem 5.8

Due to the proof of Theorem 5.6 it holds that

τT =
(ŵex

T − wex)′Ω (ŵex
T − wex)

σ2
= ξ′V −1ξ =

χ2
d−1

χ2
n−d+1

with χ2
d−1 := ξ′ξ and χ2

n−d+1 := χ2
d−1/ξ

′V −1ξ . Note that (n − d) → ∞ as n, d → ∞ and

n/d→ q . That means

τT =
d

n− d
· χ2

d−1/d

χ2
n−d+1/(n− d)

a.s.−→ 1

q − 1
, n, d −→ ∞ , n/d −→ q .

For proving the almost sure convergence of the shrinkage constants κS and κM , consider

θ =
(√
τR ,0

)
and suppose that V

1
2 is the Cholesky root of V , i.e.

θ′V
1
2 ξ =

√
τR χn−1ξ1 .

Furthermore, note that (d− 3)/(n − d+ 2) → 1/(q − 1) , χ2
n−d/(n − d)

a.s.→ 1 ,

θ′V θ

n− d
= τR · χ

2
n−1

n
· n

n− d

a.s.−→ qτR

q − 1
,

2θ′V
1
2 ξ

n− d
= 2

√
τR · χn−1ξ1

n− d

a.s.−→ 0
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as well as
ξ′ξ

n− d
=
ξ′ξ

d
· d

n− d

a.s.−→ 1

q − 1
, n, d −→ ∞ , n/d −→ q .

Now, by applying the Continuous Mapping Theorem, we obtain κS , κM
a.s.→ 1/(1 + qτR) as

n, d→ ∞ and n/d→ q . Similarly, note that

2θ′V − 1
2 ξ = 2

√
τR · ξ1

χn−d+1
= 2

√
τR · n− d

χn−d+1
· ξ1
n

· n

n− d

a.s.−→ 0

and ξ′V −1ξ
a.s.→ 1/(q − 1) as n, d → ∞ and n/d → q . By relying on (5.8) and (5.10) it

turns out that

τ S , τM
a.s.−→ τR

1 + qτR
−
(

1 − 1

1 + qτR

)
τR +

(
1 − 1

1 + qτR

)2(
τR +

1

q − 1

)
.

After a little calculation it can be found that the limit corresponds to the asymptotic loss

function L
(
τR, q

)
which is given in the theorem. Q.E.D.

Proof of Theorem 5.9

Since w′
R1 = 1 > 0, the angle between wR and 1 is acute. Therefore, there exists an

orthogonal d× d matrix O such that both OwR and O1 belong to the set {x ∈ Rd : x >

0} . That means there also exists a positive-definite diagonal d × d matrix Λ such that

O1 = ΛOwR , i.e. wR = A1 with A := O′Λ−1O being positive-definite. The matrix Σ−1
R

can be obtained by re-scaling A such that the condition 1
′Σ−1

R 1 = 1
′Σ̂−1

1 > 0 is satisfied.

Now the rest of the theorem can be verified by substituting Σ̂−1 by the given expressions

for Σ̂−1
S and Σ̂−1

M within the traditional GMVP estimator. Q.E.D.

Proof of Theorem 5.10

Due to the proof of Theorem 5.4 it can be seen that

τ̂R =

(
V

1
2 θ + ξ

)′(
V

1
2 θ + ξ

)

χ2
n−d

;

note that θ′V θ = τRχ
2
n−1 . Q.E.D.
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Chapter 6.

A Hypothesis Test for the Best

Investment Strategy

Motivation

In many practical situations we cannot calculate some number analytically. Then it is often

possible to use Monte Carlo simulation for approximating the desired quantity. Standard

large-sample theory can be applied for controlling such kind of approximations. Now sup-

pose that we are searching for the maximum of some unknown and analytically untractable

quantities. Thus we could choose the largest outcome given by Monte Carlo simulation.

However, since we take the best result from a set of given outcomes there is some sort of

selection bias and it is not evident if our choice is significantly better or at least not worse

than any other. The same problem frequently occurs in statistical inference or decisions

under uncertainty when searching for the ‘best alternative’ such as portfolio optimization.

In the following I will derive a large-sample test for the best alternative in a rather gen-

eral setting. The presented test is demonstrated by an application to financial data. It is

shown that the Jobson-Korkie-Memmel test for the Sharpe ratios of two asset portfolios

can be generalized to ergodic stationary stochastic processes satisfying Gordin’s condition.

The resulting test for the best alternative accounts for conditional heteroscedasticity and

non-normality of asset returns in contrast to the Jobson-Korkie-Memmel test.
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6.1. Testing for the Best Alternative

6.1.1. Basic Assumptions and Notation

Let µ = (µ1, . . . , µd) ∈ Rd be an unknown vector of quantities and we are searching for the

best alternative

i∗ := arg max
j

{
µj : j = 1, . . . , d

}
.

It is worth to mention that i∗ does not need to be unique. That means there can be

several equivalent and optimal alternatives. In contrast, let i ∈ {1, . . . , d} be our specific

choice, i.e. we believe that there is no other alternative better than µi . We will set i = 1

for notational convenience and without loss of generality. Hence, we want to support the

alternative hypothesis

H1 : µ1 ≥ µ2, . . . , µd

vs. the null hypothesisH0 : ¬H1 . If we can rejectH0, our choice turns out to be significantly

optimal among all given alternatives.

Let (Xn) be a sequence of d-dimensional random vectors such that

an

(
Xn − µ

) d−→ ξ , n −→ ∞ ,

where (an) is some sequence of real numbers growing to infinity and ξ is a d-dimensional

random vector. It is supposed that the cumulative distribution function (c.d.f.) of ξ does

not depend on µ . By Cramér’s theorem (Davidson, 1994, p. 355) it follows that Xn →p µ

as n → ∞ . Hence, we can think of Xn as a convenient approximation of µ if n is large.

Due to the Central limit theorem (CLT) we will typically encounter an =
√
n and ξ has a

multivariate normal distribution with zero mean and covariance matrix Σ .

6.1.2. Test Procedure

A crucial point of the following test is that i must be fixed without examining Xn or say,

more precisely, the choice must not depend on the data which are used for testing the

aforementioned hypothesis. Otherwise the presented method would suffer from a selection

bias. Indeed, this is not a serious drawback of the procedure. For instance, consider a

Monte Carlo simulation. In that case we can simply run the process (Xn) a first time so

as to choose the largest component of Xn, that is

i = arg max
j

{
Xjn : j = 1, . . . , d

}
.
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After that we start a new run of (Xn) and apply the following test with respect to the

choice made by the first run. In case of historical data we can simply divide the overall

sample into two sub-samples, i.e. a calibration and a validation sample. Then the choice

can be made by using the calibration sample, whereas the test has to be applied to the

validation sample.

Define the (d− 1) × d matrix

∆ :=




1 −1 0 · · · 0

1 0 −1 0
...

...
. . .

...

1 0 0 · · · −1




and note that due to the Continuous mapping theorem (Davidson, 1994, p. 355) we obtain

an

(
∆Xn − ∆µ

) d−→ ∆ξ , n −→ ∞ .

Now the alternative hypothesis can be compactly written as H1 : ∆µ ≥ 0 . In case d = 2 we

will obtain a simple Gauss-type test for the null hypothesis H02 : µ1 < µ2 . In the general

multivariate case the global hypothesis H1 can be supported whenever H1j : µ1 ≥ µj

survives after each comparison with j = 2, . . . , d . This is an important implication of the

following theorem.

Theorem 6.1 Let ζ = (ζ1, . . . , ζk) be a random vector and consider Z = η + ζ where

η ∈ Rk but not η ≥ 0 . Let λj be the β-quantile of ζj for j = 1, . . . , k and 0 < β < 1 . Then

IP
(
Z > λ

)
≤ 1 − β with λ = (λ1, . . . , λk) ∈ Rk.

Proof. At least one component of η must be negative, say ηj < 0 . Now the assertion

follows immediately by noting that IP(Z > λ) ≤ IP(Zj > λj) ≤ 1 − β .

In our case η represents ∆µ , k = d − 1, β = 1 − α with 0 < α < 1, ζ = ∆ξ/an, and

Z = ∆Xn . Hence, we can reject H0 if ∆Xn > λ or, following the usual notation of

large-sample theory, T := an∆Xn > τ , where τ = (τ1, . . . , τd−1) := anλ . The (d − 1) × 1

vector τ contains the (1 − α)-quantiles of ∆ξ . Theorem 6.1 guarantees that our choice

is significantly optimal among all given alternatives whenever it is significantly better or

not worse than every other candidate on the same level α . That means if each pairwise

test H0 : µ1 < µj vs. H1 : µ1 ≥ µj possesses a significance level of α then the overall test

H1 : µ1 ≥ µ2, . . . , µd vs. H0 : ¬H1 works on the same level.
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In many practical situations we do not know the exact c.d.f. of ∆ξ . However, we can often

calculate or simulate the c.d.f. of ξn, where (ξn) is some sequence of d-dimensional random

vectors such that ξn →d ξ as n→ ∞ . This can be used for a large-sample approximation

of the critical thresholds τ1, . . . , τd−1 . For instance, suppose that X1, . . . ,Xn is a sample

of independent copies of a random vector X with mean vector µ and positive definite

covariance matrix Σ . We assume that µ and Σ are unknown. From the CLT we know that

√
n ·
(

1

n
·

n∑

i=1

Xi − µ

)
d−→ N

(
0,Σ

)
, n −→ ∞ .

For brevity we may denote the sample mean vector by Xn =
(
X1n, . . . ,Xdn

)
. Now we try

to reject H0j : µ1 < µj by applying the one-sided Gauss test

Tj−1 :=
√
n ·
(
X1n −Xjn

)
> τj−1 ,

for j = 2, . . . , d , where

τj−1 :=
√
σ2

1 + σ2
j − 2σ1j · Φ−1(1 − α) .

Here σ2
j represents the variance of the jth component of X (j = 1, . . . , d), σ1j is the

covariance between its first and jth component (j = 2, . . . , d), and Φ−1 denotes the quantile

function of the standard normal distribution. Note that the parameters of Σ are unknown

but we can substitute Σ by the sample covariance matrix

Σ̂n =
1

n
·

n∑

i=1

(
Xi −Xn

)(
Xi −Xn

)′

because – due to the i.i.d. assumption – the sample covariance matrix is strongly consistent

for Σ . Hence, by the Cramér-Wold device (Davidson, 1994, p. 405) it follows that

Σ̂
1
2
nY

d−→ Σ
1
2Y ∼ N (0,Σ) , n −→ ∞ ,

where Y ∼ N (0, Id) and Σ
1
2 denotes a d×d matrix such that Σ

1
2 Σ

1
2
′ = Σ . That means the

critical thresholds τ1, . . . , τd−1 can be readily approximated by using the sample variances

and covariances and we obtain the usual one-sided Gauss test for a joint sample, viz.

X1n −Xjn√(
σ̂2

1 + σ̂2
j − 2σ̂1j

)
/n

> Φ−1(1 − α) .

If this inequality is satisfied for every j = 2, . . . , d , the first alternative is significantly

optimal among all given alternatives.
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6.2. Application to Financial Data

6.2.1. General Conditions

Let Pt
a.s.
> 0 be the price of an asset at time t ∈ Z so that Rt := Pt/Pt−1 − 1 represents the

corresponding asset return from t− 1 to t . It is assumed that (Rt) is strongly stationary

and ergodic with E(Rt) = η and Var(Rt) = σ2 < ∞ . Ergodicity means that any exist-

ing and finite moment of Rt can be consistently estimated by the corresponding sample

moment of (Rt). This is guaranteed if (Rt, . . . , Rt+k) is asymptotically independent of

(Rt−n, . . . , Rt−n+l) as n → ∞ for all k, l ∈ N, whilst the components of the considered

random vectors generally depend on each other (Hayashi, 2000, p. 101). For the CLT we

need some additional restrictions. More precisely, the CLT holds for the sample mean of

(Rt) if the centered process (Rt − η) satisfies Gordin’s condition. Let Ht := (Rt, Rt−1, . . .)

be the history of (Rt) at time t ∈ Z . Roughly speaking, Gordin’s condition implies that

the impact of Ht−n on the conditional expectation of Rt vanishes as n→ ∞ and also that

the conditional expectations of Rt do not vary too much in time (Hayashi, 2000, p. 403).

In that case it is guaranteed that the CLT holds with an asymptotic or, say, long-run vari-

ance σ2
L :=

∑∞
k=−∞ γ(k) (Hayashi, 2000, p. 401), where γ is the autocovariance function

of (Rt). This can be easily extended to any d-dimensional stochastic process (Hayashi,

2000, p. 405) and applied to a broad class of standard time series models. There exist

several alternative criteria for the CLT in the context of time series analysis which can be

found, e.g., in Brockwell and Davis (1991, p. 213) and Hamilton (1994, p. 195). However,

to my knowledge Gordin’s condition represents the most unrestrictive set of assumptions

concerning the serial dependence structure of a stochastic process (Eagleson, 1975).

It is worth to note that the number of dimensions d is supposed to be fixed or at least

n, d → ∞ such that n/d → ∞ . If n/d tends to a finite number, the CLT may become

invalid and other interesting issues arise from Random matrix theory (Bai, 1999). However,

if the number of observations relative to the number of assets is large enough, the sample

mean is approximately normally distributed under the aforementioned conditions. We

additionally assume that the asset return Rt possesses a finite fourth moment and that

Gordin’s condition is satisfied not only for (Rt −η) but also for {(Rt −η)2 −σ2}. Consider

the random variable X := R/σ and suppose that the risk-free interest rate is constant

and zero without loss of generality. The Sharpe ratio µ := η/σ (see, e.g., Campbell et al.,

1997, p. 188) is frequently used as a performance measure in the finance literature. Now
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I will derive a hypothesis test for judging whether a certain portfolio possesses the largest

Sharpe ratio among a set of given portfolios. As mentioned before, this will be done under

quite general assumptions about the serial dependence structure of the asset returns. This

problem has been also addressed by Ledoit and Wolf (2008) as well as Schmid and Schmidt

(2007) in a bivariate setting. However, note that the following test is motivated by the

multivariate point of view and the primary goal is to avoid a selection bias.

6.2.2. Asymptotic Distributions

Concerning the sample mean η̂ we obtain

√
n ·
(
η̂ − η

) d−→ N
(
0, σ2

L

)
, n −→ ∞ .

The sample variance σ̂2 represents a consistent estimator for the stationary variance σ2 but

for estimating the long-run variance σ2
L we need to estimate the autocovariance function γ

of (Rt). Actually, there exist many ways for estimating long-run variances and covariances

(Andrews, 1991, Ledoit and Wolf, 2008). This is not the primary concern of the present

work and for the sake of simplicity we can choose a simple box-kernel type estimator, viz.

σ̂2
L := σ̂2 + 2

l∑

k=1

γ̂(k) ,

where γ̂ is the sample autocovariance function of (Rt) (Hayashi, 2000, p. 142) and l < n .

However, many empirical studies confirm that γ(k) ≈ γ̂(k) ≈ 0 for k 6= 0 and so we can

expect that σ̂2
L ≈ σ̂2. The standard error of η̂ is given by ǫ(η̂) = σL/

√
n and this can be

estimated by ǫ̂(η̂) = σ̂L/
√
n .

Since {(Rt − η)2 − σ2} satisfies Gordin’s condition, the sample variance σ̂2 is also asymp-

totically normally distributed, viz.

√
n ·
(
σ̂2 − σ2

) d−→ N
(
0, υL

)
, n −→ ∞ .

The long-run variance υL of the squared centered asset returns can be estimated by

υ̂L := κ̂(0) + 2

l∑

k=1

κ̂(k) ,

where κ̂ denotes the sample autocovariance function of {(Rt−η)2}. Typically, asset returns

are conditionally heteroscedastic and thus υL can become relatively large. This is also

confirmed by the following empirical study. We consider monthly excess returns of the
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Canada France Germany Italy Japan UK USA

σ̂2
L/σ̂

2 1.1334 1.3834 1.2356 1.9596 2.1995 0.9883 1.0505

υ̂L/κ̂(0) 2.1004 1.8611 2.3553 1.8195 2.0844 2.5268 2.0429

Table 6.1.: Estimated long-run variances divided by sample variances.

MSCI stock indices for the G7 countries Canada, France, Germany, Italy, Japan, UK and

USA from January 1970 to September 2006. The sample size corresponds to n = 456

and the risk-free interest rate is calculated by the secondary market 3-month US treasury

bill rate. Further, the considered indices are adjusted by dividends, splits, etc. and are

calculated on the basis of USD stock prices.

For estimating the long-run variances we have to choose an appropriate lag length l ∈ N.

Figure 6.1 shows the empirical autocorrelations for the squared centered excess returns of

the MSCI indices and the equally weighted portfolio (EWP) up to l = 12. The Ljung-

Box test leads to a rejection of the null hypothesis H0 : ρ(1) = . . . = ρ(12) = 0 in every

case except for the EWP, France, and Italy. That means there is a strong evidence of

conditional heteroscedasticity for monthly asset returns and we may choose l = 12 as an

appropriate lag length. Now, Table 6.1 contains the estimated long-run variances divided

by the corresponding sample variances. In most cases the long-run variances of the asset

returns roughly correspond to the stationary variances, whereas the long-run variances

of the squared asset returns are quite twice as large as the stationary ones. Hence, it is

not appropriate to ignore the effect of heteroscedasticity when analyzing the volatility of

monthly asset returns.

By applying the well-known ‘delta method’ we obtain

√
n ·
(
σ̂ − σ

) d−→ N
(

0,
υL

4σ2

)
, n −→ ∞ .

The standard error of σ̂ is given by ǫ(σ̂) :=
√
υL /(2

√
nσ) and its estimator can be de-

noted by
√
υ̂L /(2

√
n σ̂) . The Sharpe ratio can be estimated by µ̂ := η̂/σ̂ which is also

asymptotically normally distributed since

√
n ·
(
 η̂
σ̂2


−


 η
σ2



)

d−→ N
(

0,


σ

2
L ̺L

̺L υL



)
, n −→ ∞ ,

where ̺L represents the long-run covariance between Rt and (Rt − η)2. After applying
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EWP Canada France Germany Italy Japan UK USA

η̂ .0051
(.0026)

.0048
(.0027)

.0062
(.0035)

.0053
(.0031)

.0036
(.0047)

.0058
(.0044)

.0061
(.0030)

.0042
(.0021)

σ̂ .0437
(.0025)

.0545
(.0038)

.0640
(.0040)

.0603
(.0042)

.0718
(.0039)

.0633
(.0035)

.0638
(.0091)

.0436
(.0029)

µ̂ .1177
(.0620)

.0886
(.0509)

.0967
(.0550)

.0880
(.0523)

.0507
(.0646)

.0909
(.0696)

.0955
(.0479)

.0959
(.0503)

Table 6.2.: Means, standard deviations, and Sharpe ratios for the monthly excess returns

of the G7 MSCI indices and the EWP.

once again the delta method we obtain

√
n ·
(
µ̂− µ

) d−→ N
(

0,
σ2

L

σ2
− µ̺L

σ3
+
µ2υL

4σ4

)
, n −→ ∞ ,

and the standard error of µ̂ can be estimated in the same manner as ǫ(η̂) or ǫ(σ̂). Schmid

and Schmidt (2007) obtain the same asymptotic variance under the assumption of a so-

called ‘α-mixing process’. As already mentioned this assumption is somewhat more re-

strictive than Gordin’s condition. Schmid and Schmidt (2007) also provide closed-form

expressions for the asymptotic variance of the Sharpe ratio in case of a stochastic volatility

and a GARCH model.

Table 6.2 contains the estimated means, standard deviations, and Sharpe ratios for the

monthly excess returns of the G7 MSCI indices and the EWP. The corresponding stan-

dard error estimates ǫ̂(η̂), ǫ̂(σ̂), and ǫ̂(µ̂) are given in the parentheses. Obviously, the

standard errors for the Sharpe ratios are big despite of the large number of observations.

This is a common problem in performance measurement. Now we want to derive an ap-

propriate hypothesis test for the best alternative, i.e. the best performing asset. Without

any previous look at the data we may expect that the EWP possesses the largest Sharpe

ratio due to the effect of international diversification (see, e.g., Jorion, 1985). That means

the variance of the EWP return should be relatively small. Indeed, this can be verified in

Table 6.2. Hence, the EWP may serve as the benchmark portfolio and we want to know if

its estimated Sharpe ratio µ̂1 = 0.1177 is significantly larger (or at least not smaller) than

any other Sharpe ratio.

Also the 2-dimensional random vector (µ̂1, µ̂j) (j = 2, . . . , d) is asymptotically normally

distributed, i.e.

√
n ·




µ̂1

µ̂j


−


µ1

µj




 d−→ N


0,


 ϑ

2
1 ϑ1j

ϑj1 ϑ2
j




 , n −→ ∞ .
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After some calculation we obtain

ϑ1j =
ωL1j

σ1σj
− µjσ1ωL2j + µ1σjωL3j

2σ2
1σ

2
j

+
µ1µjωL4j

4σ2
1σ

2
j

for j = 2, . . . , d . Here ωL1j represents the long-run covariance between R1t and Rjt, ωL2j

is the long-run covariance between R1t and (Rjt − ηj)
2, ωL3j is the long-run covariance

between (R1t − η1)
2 and Rjt, whereas ωL4j is the long-run covariance between (R1t − η1)

2

and (Rjt − ηj)
2. Now it follows that

√
n ·
{
(µ̂1 − µ̂j) − (µ1 − µj)

} d−→ N
(
0, ϑ2

1 + ϑ2
j − 2ϑ1j

)
, n −→ ∞ .

Table 6.3 contains the values of the test statistic, i.e. Tj−1 =
√
n · (µ̂1− µ̂j) for j = 2, . . . , 8,

the standard errors calculated on the basis of the long-run variances and covariances,

and the corresponding ‘p -values’. There exists no country with a Sharpe ratio being

significantly smaller than the Sharpe ratio of the EWP.

The Jobson-Korkie-Memmel test (Jobson and Korkie, 1981, Memmel, 2003) is frequently

used in the finance literature for comparing the Sharpe ratios of two asset portfolios. For

applying this test we have to assume that the asset returns are serially independent and

multivariate normally distributed. In that case there is no need to distinguish between

long-run, stationary, and conditional variances and covariances of asset returns since these

quantities simply coincide. That means σ2
L1 = σ2

1 , σ
2
Lj = σ2

j , and ωL1j = σ1j (j = 2, . . . , d).

Further, by applying some standard results of multivariate analysis (see, e.g., Muirhead,

1982, p. 43) we obtain ̺L1 = ̺Lj = 0, υL1 = 2σ4
1 , υLj = 2σ4

j , ωL2j = ωL3j = 0, and

ωL4j = 2σ2
1j (j = 2, . . . , d) so that

√
n ·
(
(µ̂1 − µ̂j) − (µ1 − µj)

) d−→ N
(

0, 2 (1 − ρ1j) +
µ2

1 + µ2
j − 2µ1µjρ

2
1j

2

)

as n → ∞ , where ρ1j := σ1j/(σ1σj) for j = 2, . . . , d . The latter expression for the

asymptotic variance can be found also in Memmel (2003).

Table 6.4 once again contains the values of the test statistic Tj−1 and the correspond-

ing standard errors, but now calculated on the basis of sample variances and covariances

according to the Jobson-Korkie-Memmel test. The star indicates that the corresponding

Sharpe ratio difference is significantly nonnegative on a 5% level. We conclude that the

MSCI index ‘Italy’ appears to be significantly worse than the EWP of all MSCI indices.

However, this result is based on the wrong assumption of normality and serial indepen-

dence of monthly asset returns. All in all it seems to be very difficult to validate portfolio
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Canada France Germany Italy Japan UK USA

T .6214
(.9305)

.4478
(.5473)

.6355
(.7453)

1.4320
(.9452)

0.5729
(1.0180)

.4739
(.7208)

.4661
(.8499)

p .2521 .2066 .1969 .0649 .2868 .2554 .2917

Table 6.3.: Performance test based on long-run variances and covariances.

Canada France Germany Italy Japan UK USA

T .6214
(.7413)

.4478
(.6058)

.6355
(.6972)

1.4320∗
(.7915)

0.5729
(.8599)

.4739
(.7066)

.4661
(.7614)

p .2009 .2299 .1810 .0352 .2526 .2512 .2702

Table 6.4.: Jobson-Korkie-Memmel performance test.

strategies only by historical data. Instead, the strategies should be extensively validated

by the application of Monte Carlo methods (see, e.g., Memmel, 2004, Section 5.2) rather

than historical simulation. We can use the presented hypothesis test to judge whether

a suggested portfolio strategy dominates some other strategies significantly, as already

mentioned in Section 6.1.2.

6.3. Conclusion

In many practical situations we are searching for the best alternative among several candi-

dates. If our decision is based on historical or simulated data there is some sort of selection

bias and it is not evident if our choice is significantly optimal over all given alternatives.

This problem frequently occurs in statistical inference or decisions under uncertainty such

as portfolio optimization. Of course, such kind of decisions have to be reliable and thus

we need a strong statistical fundament to justify our choice. In the present work a large-

sample test for the best alternative has been derived in a rather general setting and it has

been demonstrated by an application to financial data. It was shown that the traditional

Jobson-Korkie-Memmel test can be generalized to ergodic stationary stochastic processes

satisfying Gordin’s condition. The presented hypothesis test accounts for conditional het-

eroscedasticity and non-normality of asset returns. We find that ignoring these kinds of

stylized facts of empirical finance can lead to false rejections of the null hypothesis and

misleading decisions.
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Figure 6.1.: Correlograms for the squared centered excess returns of the G7 MSCI indices

and the EWP. The critical thresholds for the null hypothesis H0 : ρ(k) = 0 (k 6= 0) on the

5% level are indicated by the horizontal lines.
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Chapter 7.

Asymptotic Distributions of Robust

Shape Matrices and Scales

7.1. Motivation

Since the seminal paper by Maronna (1976), covariance matrix estimation has become a

popular branch of robust statistics. Several techniques have been developed for calculating

the asymptotic distributions of robust covariance matrix estimators such as the radial dis-

tribution approach of Tyler (1982) and the approach based on influence functions (Hampel

et al., 1986). Moreover, in recent years deep insights have been gained from the viewpoint

of local asymptotic normality (LAN) theory (Hallin et al., 2006, Hallin and Paindaveine,

2006a,b).

Let X be a d-dimensional random vector possessing an elliptically symmetric distribution,

i.e. it can be represented by X = µ + ΛRU , where U is a k-dimensional random vector,

uniformly distributed on the unit hypersphere, R is a nonnegative random variable that

is stochastically independent of U , µ ∈ Rd, and Λ ∈ Rd×k (Cambanis et al., 1981, Fang

et al., 1990, p. 42). It is assumed that R and U are unobservable quantities. The positive-

semidefinite matrix Σ := ΛΛ′ is called the dispersion matrix and R is the generating variate

ofX. If E(R2) <∞ , the covariance matrix ofX is given by Var(X) = E(R2)/k·Σ , whereas

if E(R2) = ∞ , the linear dependence structure of X can be further described using the

dispersion matrix Σ although Var(X) is not defined.

In general I will assume that Σ is positive-definite, i.e. r(Λ) = d ≤ k . In the robust

statistics literature (Tyler, 1982, Bilodeau and Brenner, 1999, Ch. 13) and in the context

of LAN theory (Hallin and Paindaveine, 2006a, Paindaveine, 2008) it is often supposed that
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the distribution of R is absolutely continuous. Then the density of X can be written as

p(x) =
√

detΣ−1 g{(x−µ)′Σ−1(x−µ)}, where the so-called density generator g : R+ → R+
0

depends on x only through the quadratic form (x−µ)′Σ−1(x−µ). It can be shown (Frahm,

2004, p. 9) that the density function of R is given by f(r) ∝ rd−1g(r2) .

Tatsuoka and Tyler (2000) wrote that ‘The assumption of an elliptically symmetric dis-

tribution is often made simply because of its mathematical tractability’. Nevertheless,

the class of elliptically symmetric distributions is a natural extension of the multivariate

normal distribution. Moreover, the elliptical distribution assumption is fundamental in

multivariate analysis and the results presented in this work generally require that the data

are elliptically symmetrically distributed. However, there is one exception where the data

are only assumed to have a generalized elliptical distribution (Frahm, 2004, Ch. 3). This

will be treated in more detail below.

Note that X = µ + ΛRU = µ+ V SU with S := R/τ , V := τΛ , and τ > 0 . This means

that if X possesses the dispersion matrix Σ , there always exists an equivalent represen-

tation of X with dispersion matrix τ2Σ , so this can be only identified if the distribution

of R is somehow restricted. However, many multivariate statistical methods like princi-

pal components analysis, canonical correlation analysis, linear discriminant analysis, and

multivariate regression require the covariance or dispersion matrix only up to some scal-

ing constant. This has been frequently observed in the literature (Croux and Haesbroeck,

1999, Hallin and Paindaveine, 2006a, Oja, 2003, Paindaveine, 2008, Taskinen et al., 2006).

If the topic of interest is not the scale but only the shape of the distribution of X, it is

not meaningful to focus on the asymptotic covariance matrix (ACM) of an estimator for

Σ , Var(X) or another matrix Γ ∝ Σ (i.e. Γ = τ2Σ , where τ is a constant and thus not

determined by Σ).

Therefore I will concentrate on robust estimators for the shape matrix of X (Oja, 2003,

Paindaveine, 2008). The associated estimators for the scale are investigated concomitantly.

I will derive explicit expressions for their joint asymptotic distributions. The paper is orga-

nized as follows. Section 7.2 introduces the notation and provides some helpful prerequisites

concerning homogeneous functions. The question of how to choose an appropriate scale

is investigated in Section 7.3. This section also contains the main results concerning the

joint asymptotic distributions of estimators for the shape matrix and scale. In Section 7.4

it is shown how to calculate the asymptotic distributions of such estimators on the basis of

some well-known robust covariance matrix estimators, namely M-, R-, and S-estimators.
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7.2. Prerequisites

7.2.1. Notation

The following notation will be used in the sequel. The d2×d2 identity matrix is symbolized

by Id2 . Let eij be the d × d matrix with 1 in the ijth position and zeros elsewhere. The

d2 × d2 matrix Jd2 is defined as Jd2 :=
∑d

i=1 eii ⊗ eii , where ‘⊗’ denotes the Kronecker

product (Schott, 1997, p. 253). The n ×m matrix A′ denotes the transpose of an m × n

matrix A . In contrast, if f is an R-valued function on an open subset of R , then f ′(x)

stands for the derivative of f at x ∈ R . Further, the commutation matrix Kd2 is the d2×d2

matrix given by Kd2 :=
∑d

i, j=1 eij ⊗ eji (Schott, 1997, p. 277).

For any symmetric d×d matrix A , the d2-dimensional vector vecA is obtained by stacking

the columns of A on top of each other, whereas vechA denotes the d (d+1)/2-dimensional

vector obtained by stacking only the elements of the lower triangular part of A . Further,

the duplication matrix is the d2 × d (d + 1)/2 matrix Dd such that DdvechA = vecA

(Schott, 1997, p. 283). Then it holds that D+
d vecA = vechA , where the d (d + 1)/2 × d2

matrix D+
d is the Moore-Penrose inverse of Dd (Schott, 1997, p. 284). Let I0 be defined

as the {d (d + 1)/2 − 1} × d (d + 1)/2 matrix I0 := [ 0 Id (d+1)/2−1 ] and Nd := I0D
+
d , so

that vech0A := NdvecA is the vech of A deprived of its first component A11 (Hallin and

Paindaveine, 2006a).

I will frequently calculate the differential of an Rm-valued function f , i.e. df = Jf∂x ,

where Jf := ∂f(x)/∂x′ ∈ Rm×n denotes the Jacobi matrix of f at x ∈ Rn. Suppose

that x represents the vec of a symmetric matrix. Then each off-diagonal element in the

lower triangular part of that matrix represents an implicit function of the corresponding

off-diagonal element in the upper triangular part and vice versa. However, I will not take

the symmetry into consideration when calculating the partial derivatives of f . Otherwise,

to adjust for the redundancies caused by the symmetry it would be necessary to apply the

operator (Id2 +Jd2)/2 on the partial differentials ∂x when calculating the total differential

df . Hence, to avoid additional notation and tedious calculations of implicit derivatives,

the Jacobi matrix Jf is understood to be the matrix of partial derivatives of f which are

obtained by ignoring the symmetry condition. In the present context this poses no problem

since Jf is always used only in combination with ∂x.
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7.2.2. Homogeneous Functions

Consider a differentiable Rm-valued function h of x ∈ Rn. The function h is said to be

homogeneous of degree ν ∈ R if h(αx) = ανh(x) for all x ∈ Rn and α > 0 . Due to

the Euler relation it holds that Jhx = νh(x) . A function f is said to be scale-invariant

if it is homogeneous of degree 0, i.e. f(αx) = f(x) for all α > 0 . This means that

Jfx = 0 and if h is homogeneous of degree 1, it holds that Jhx = h(x) . In the following

a homogeneous function is always understood to be homogeneous of degree 1. Note that

the partial derivatives of any homogeneous function are scale-invariant.

Let Pd be the set of all symmetric positive-definite d×d matrices and ϕ : Pd → Rk a scale-

invariant function, i.e. ϕ(αΓ) = ϕ(Γ) for all α > 0 and Γ ∈ Pd. In particular, consider

a scale-invariant function Ω(Γ) = Γ/σ2(Γ), where σ2 : Pd → R+ is an homogeneous

function, i.e. σ2(αΓ) = ασ2(Γ) > 0 . It is supposed that the so-called scale function σ2 is

differentiable at any point Γ ∈ Pd and also that σ2(Id) = 1. Then σ2(Γ) is called the scale

of Γ. The matrix Ω(Γ) will be called the shape matrix (with respect to the scale function

σ2) belonging to Γ. I will write σ2 ≡ σ2(Γ) and Ω ≡ Ω(Γ) whenever these quantities

cannot be confused with the corresponding functions.

Note that σ2(Ω) = 1 and ϕ ◦ Ω = ϕ , since ϕ{Ω(Γ)} = ϕ{Γ/σ2(Γ)} = ϕ(Γ). For instance,

the correlation matrix produced by Γ is scale-invariant and thus it can be derived from

any shape matrix Ω . Hence, whenever Ωn is an estimator for Ω , an estimator for ϕ(Γ) is

simply given by ϕ(Ωn). This is a formal justification of directing one’s attention to shape

matrices (Frahm and Jaekel, 2007a, Hallin and Paindaveine, 2006a, Oja, 2003, Paindaveine,

2008, Taskinen et al., 2006). General robustness and efficiency properties of scale-invariant

functions have been investigated by Tyler (1983).

7.3. Asymptotic Distributions

7.3.1. The Choice of the Scale Function

In most cases asymptotic normality of robust estimators µn and Γn for the mean vector

and covariance matrix can be guaranteed by the usual regularity conditions given in the

robust statistics literature. Typically µn and Γn are also asymptotically independent. In

the present work it is shown that the asymptotic independence of an estimator Ωn for the

shape matrix and an associated estimator σ2
n for the scale can only be guaranteed for one
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and only one scale function σ2. A similar result in the context of LAN theory has been

obtained by Paindaveine (2008) (see below).

Let Γn be some estimator for Γ ∝ Σ where n represents the sample size. The corresponding

shape matrix estimator is given by Ωn := Γn/σ
2(Γn). At first glance the choice of the

scale function σ2 might be considered as arbitrary and the following variants can often be

observed in the literature (Paindaveine, 2008):

(S1) Frahm (2004, p. 64), Hallin et al. (2006), Hallin and Paindaveine (2006b), Hettmans-

perger and Randles (2002) as well as Randles (2000) simply choose σ2(Γ) = Γ11 so

that Ω11 = 1.

(S2) Dümbgen (1998), Frahm and Jaekel (2007b) as well as Tyler (1987a) take the scale

function σ2(Γ) = (tr Γ)/d so that tr Ω = d .

(S3) Dümbgen and Tyler (2005), Hallin and Paindaveine (2008, 2009), Paindaveine (2008),

Salibian-Barrera et al. (2006), Taskinen et al. (2006) as well as Tatsuoka and Tyler

(2000) postulate σ2(Γ) = (det Γ)1/d so that det Ω = 1.

Paindaveine (2008) considers the latter normalization as canonical since this is the only

one where the Fisher information matrix with respect to the mean vector, shape matrix

and scale is block diagonal if the distribution of X or, more precisely, the corresponding

experiment is LAN (van der Vaart, 1998, Ch. 7).

The scale functions defined by S2 and S3 correspond to the arithmetic and geometric

means of the eigenvalues of Γ, respectively. Hence, another possible scale function is given

by the harmonic mean of the eigenvalues of Γ, i.e.

(S4) σ2(Γ) = d/(tr Γ−1) so that tr Ω−1 = d .

It is worth pointing out that shape matrices are not affine equivariant, since

Ω(V ΓV ′) =
V ΓV ′

σ2(V ΓV ′)
=

σ2(Γ)

σ2(V ΓV ′)
· V Ω(Γ)V ′

for any nonsingular d× d matrix V and generally σ2(Γ) does not correspond to σ2(V ΓV ′).

This is not surprising because even after an affine-linear transformation of the data, the

shape matrix has to satisfy the scaling condition σ2(Ω) = 1 and so the equality Ω(V ΓV ′) =

V Ω(Γ)V ′ cannot be guaranteed in general. However, a natural requirement is that the
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equivariance property holds at least for all transformations V with σ2(V V ′) = 1. This

means that if not the scale but only the shape of the distribution of X is affected by V ,

the shape matrix should remain equivariant.

More generally, it can be required (Tyler, 2002) that

Ω(V ΓV ′) =
V Ω(Γ)V ′

σ2(V V ′)
,

i.e. σ2(V ΓV ′) = σ2(V V ′)σ2(Γ). Interestingly, from the scale functions considered in S1–

S4 only the canonical one (S3) satisfies this kind of affine equivariance property. This is

another argument in favor of the determinant-based normalization proposed by Paindaveine

(2008).

The previous arguments as well as a thorough discussion in Hallin and Paindaveine (2006a)

show that the choice of the scale function must be driven by statistical considerations and

should be handled carefully.

Lemma 7.1 Let Ω(Γ) = Γ/σ2(Γ) be a d× d shape matrix and σ2 a scale function. Then

JΩ :=
∂ vec Ω(Γ)

∂(vec Γ)′
=

1

σ2

{
Id2 − vec ΩJσ2

}
,

where

Jσ2 :=
∂σ2(Γ)

∂(vec Γ)′
=

∂σ2(Ω)

∂(vec Ω)′
.

Proof. By the product rule it follows that

JΩ =
1

σ2
· ∂ vec Γ

∂(vec Γ)′
− vec Γ

σ4
· Jσ2 =

1

σ2

{
Id2 − vec ΩJσ2

}
.

Since the partial derivatives of a homogeneous function are scale-invariant, it holds that

Jσ2 = ∂σ2(Ω)/∂(vec Ω)′.

In the following I will write Ψ := Id2 − vec ΩJσ2 for notational convenience.

7.3.2. Main Results

Let Q be a symmetric random d× d matrix. A symmetric random d× d matrix M is said

to possess a radial distribution if OMO′ ∼ M for any orthogonal d× d matrix O (Tyler,

1982). In the following let N be a symmetric random d × d matrix with finite second

moments. It is supposed that N is of the radial type with respect to a symmetric positive-

definite d×d matrix Γ. This means that TNT ′ has a radial distribution whenever the d×d
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matrix T is such that T ′T = Γ−1. Further, let (Γn) be a sequence of symmetric positive-

definite random d× d matrices and (σ2
n) an associated sequence with σ2

n := σ2(Γn), where

σ2 is a scale function. Moreover, consider the sequence (Ωn) of symmetric positive-definite

random d× d matrices with Ωn := Γn/σ
2
n .

Theorem 7.2 Let σ2 be a scale function and Ω ≡ Ω(Γ) = Γ/σ2(Γ) the shape matrix

belonging to Γ. Further, let (an) be a sequence of real numbers increasing to infinity such

that an(vec Γn − vec Γ) →d vecQ as n→ ∞ with E(vecQ) = 0 and

Var(vecQ) = γ1(Id2 +Kd2)(Γ ⊗ Γ) + γ2(vec Γ)(vec Γ)′ , (7.1)

where γ1 ≥ 0 and γ2 ≥ −2γ1/d . Then it follows that

an

([
σ2

n

vec Ωn

]
−
[
σ2

vec Ω

])
d−→ ξ , n −→ ∞ ,

where σ2 ≡ σ2(Γ) , ξ is a (d2 + 1)-dimensional random vector with E(ξ) = 0 , and

Var(ξ) =


 V(σ2

n) V(σ2
n,Ωn)

V(σ2
n,Ωn)′ V(Ωn)


 .

More specifically,

V(σ2
n) = σ4

{
2γ1Jσ2(Ω ⊗ Ω)J ′

σ2 + γ2

}

with Jσ2 = ∂σ2(Ω)/∂(vec Ω)′ and σ4 = {σ2(Γ)}2,

V(σ2
n,Ωn)′ = 2γ1σ

2 Ψ(Ω ⊗ Ω)J ′
σ2 ,

with Ψ = Id2 − vec ΩJσ2 , and

V(Ωn) = γ1Ψ(Id2 +Kd2)(Ω ⊗ Ω)Ψ′ .

Proof. The vector {σ2(Γ), vec Ω(Γ)} is differentiable at vec Γ and thus

an

([
σ2

n

vec Ωn

]
−
[
σ2

vec Ω

])
d−→ ξ := Jσ2,Ω vecQ , n −→ ∞ ,

where Jσ2, Ω is defined as ∂{σ2(Γ), vec Ω(Γ)}/∂(vec Γ)′. From E(vecQ) = 0 it follows that

E(ξ) = 0 and the variance of the first element of ξ is given by V(σ2
n) = Jσ2Var(vecQ)J ′

σ2 .

Since σ2 is a homogeneous function it holds that Jσ2vec Γ = σ2. Note also that Jσ2(Id2 +

Kd2) = 2Jσ2 and thus

V(σ2
n) = 2γ1Jσ2(Γ ⊗ Γ)J ′

σ2 + γ2σ
4 = σ4

{
2γ1Jσ2(Ω ⊗ Ω)J ′

σ2 + γ2

}
.
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Similarly, the covariances between the first element of ξ and its residual elements are given

by V(σ2
n,Ωn) = Jσ2Var(vecQ)Ψ′/σ2. Since Ω is a scale-invariant function of Γ, due to

Euler’s relation it holds that (vec Γ)′Ψ′ = 0 and thus

V(σ2
n,Ωn) = γ1Jσ2(Id2 +Kd2)(Γ ⊗ Γ)Ψ′/σ2 = 2γ1σ

2Jσ2(Ω ⊗ Ω)Ψ′ . (7.2)

The expression for the variances and covariances of the residual elements of ξ , i.e. V(Ωn)

follows by a straightforward application of the arguments given above.

The next proposition ensures that the preceding theorem is applicable to any case where

Γn represents an affine equivariant covariance matrix estimator and the data stem from an

elliptically symmetric distribution.

Proposition 7.3 Let σ2 be a scale function and Ω ≡ Ω(Γ) = Γ/σ2(Γ) the shape matrix

belonging to Γ. Further, let (an) be a sequence of real numbers increasing to infinity such

that an(vec Γn − vec Γ) →d vecN as n → ∞ . Here E(vecN ) = 0 and N is of the radial

type with respect to the matrix Γ. Then the conditions of Theorem 7.2 are satisfied.

Proof. It is only necessary to show that the second-moment condition (7.1) is satisfied.

Since N is of the radial type, this follows immediately from Corollary 1 of Tyler (1982).

In the following Γn can be interpreted as a covariance matrix estimator. Due to the central

limit theorem, in most practical situations it can be found that an =
√
n and the random

vector vecN is multivariate normally distributed. A well-known exception is the minimum

volume ellipsoid (MVE-)estimator (Rousseeuw, 1985). This is only 3
√
n -consistent and its

asymptotic distribution is non-normal (Davies, 1992). Nonetheless, whenever Γn is affine

equivariant and the data stem from an elliptically symmetric distribution, the limiting

random matrix N is of the radial type (Tyler, 1982). Hence, Proposition 7.3 is applicable

to a wide range of covariance matrix estimators.

An important consequence of Theorem 7.2 is that the asymptotic distribution of Ωn is only

driven by the number γ1 . This means that γ2 has no impact on the asymptotic distribution

of Ωn . Hence, the asymptotic relative efficiency of some shape matrix estimator Ω1n

compared to another shape matrix estimator Ω2n (i.e. the two estimators are based on the

same scale function σ2 but different covariance matrix estimators) can be simply calculated

as the ratio γ12/γ11, where γ11 is the γ1 of Ω1n and γ12 is the γ1 of Ω2n (Tyler, 1983).
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Corollary 7.4 Suppose that the conditions of Theorem 7.2 are satisfied and σ2 corresponds

to the scale function given by S3. Then it holds that

V(σ2
n) = σ4

(
2γ1

d
+ γ2

)
, V(σ2

n,Ωn)′ = 0 ,

and

V(Ωn) = γ1 (Id2 +Kd2)(Ω ⊗ Ω) − 2γ1

d
· (vec Ω)(vec Ω)′ . (7.3)

In particular, if vecQ is multivariate normally distributed, the quantities σ2
n and Ωn are

asymptotically independent.

Proof. Note that

Jσ2 =
σ2

ddet Γ
· ∂ det Γ

∂(vec Γ)′
=
σ2

d
· (vec Γ−1)′ = (vec Ω−1)′/d .

Due to Theorem 7.2 the asymptotic variance V(σ2
n) is given by

V(σ2
n) = σ4

{
2γ1Jσ2(Ω ⊗ Ω)J ′

σ2 + γ2

}

and note that (Ω⊗Ω)J ′
σ2 = vec Ω/d . Moreover, Jσ2vec Ω = 1, which means that V(σ2

n) =

σ4(2γ1/d+ γ2). Further,

V(σ2
n,Ωn)′ = 2γ1σ

2Ψ(Ω ⊗ Ω)J ′
σ2 = 2γ1σ

2 Ψvec Ω/d .

Due to Euler’s relation it holds that Ψvec Ω = 0 and thus V(σ2
n,Ωn)′ = 0 . This means

that σ2
n and Ωn are asymptotically uncorrelated or even independent if vecQ is multivari-

ate normally distributed. Finally, the expression for V(Ωn) follows by a straightforward

calculation after noting that Jσ2(Ω ⊗ Ω)J ′
σ2 = 1/d .

Theorem 7.5 Suppose that the conditions of Theorem 7.2 are satisfied with γ1 > 0 . Then

the scale function given by S3 is the only one where σ2
n and Ωn are asymptotically uncor-

related.

Proof. Paindaveine (2008) shows that the determinant-based scale function given by S3

is the only one where the Fisher information is a block diagonal matrix if the family of

elliptically symmetric distributions considered is LAN. Suppose that the data are multi-

variate normally distributed. Then Theorem 7.2 applies to the sample covariance matrix

and it is clear that the family of multivariate normal distributions is LAN. The Fisher in-

formation is the inverse of the ACM of σ2
n and Ωn (which can be obtained after re-shaping
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Ωn to avoid singularity (Hallin and Paindaveine, 2006a,b)). Hence, there is no other scale

function such that (7.2) vanishes. Since the latter is only an algebraic statement, the same

must hold for any other distribution under the conditions of Theorem 7.5.

Theorem 7.5 extends the main result of Paindaveine (2008) which has been obtained in the

context of LAN theory. Similarly, it can be shown that the canonical scale function is the

only one which admits the simple representation of the ACM of a shape matrix estimator

given by Eq. 7.3. In fact, this ACM exhibits the same desirable form as the ACM of any

affine equivariant covariance matrix estimator according to Theorem 7.5 and Eq. 7.1. The

operators Ψ and Jσ2 corresponding to the remaining scale functions defined by S1, S2,

and S4 are now given for convenience without an explicit derivation.

ad S1. Jσ2 = e
′
1 , where e1 is the d2 × 1 vector with 1 in the first position and zeros

elsewhere, so that Ψ = Id2 − vec Ω e
′
1 .

ad S2. Jσ2 = (vec Id)
′/d and thus Ψ = Id2 − (vec Ω)(vec Id)

′/d (see also Theorem 5 in

Sirkiä et al., 2007).

ad S4. It can be shown that Jσ2 = d/(tr Γ−1)2 · (vec Γ−2)′ = (vec Ω−2)′/d , where Γ−2 :=

Γ−1Γ−1 and Ω−2 := Ω−1Ω−1, i.e. Ψ = Id2 − (vec Ω)(vec Ω−2)′/d .

If a shape matrix estimator Ω1n defined via a scale function σ2
1 is renormalized by applying

some other scale function σ2
2 to Ω1n, its ACM simply corresponds to

V(Ω2n) = γ1Ψ2(Id2 +Kd2)(Ω2 ⊗ Ω2)Ψ
′
2 , (7.4)

where Ψ2 = Id2 −vec Ω2 Jσ2
2

and Ω2 is the shape matrix belonging to Γ with respect to the

scale function σ2
2 . This means that the first normalization has no impact on the asymptotic

distribution of Ω2n .

7.4. Robust Covariance Matrix Estimation

In the following I will present some well-known robust covariance matrix estimators (i.e.

M-, R-, and S-estimators) which satisfy the aforementioned conditions and calculate the

joint asymptotic distributions of the corresponding estimators for the shape matrix and

scale. It is neither possible nor reasonable to study here all existing robust covariance
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matrix estimators (for some contemporary overviews see, e.g., Zuo, 2006, Maronna et al.,

2006, Ch. 6), but the essential concept might become clear from the subsequent discussion.

Let Γn be an affine equivariant estimator which is consistent for Γ. Due to the general result

of Tyler (1982), in most practical situations Γn is asymptotically normally distributed with

ACM V(Γn) = γ1(Id2 +Kd2)(Γ⊗Γ)+γ2(vec Γ)(vec Γ)′, where γ1 ≥ 0 and γ2 ≥ −2γ1/d usu-

ally depend on the generating variate R . In the following I will only present the numbers

γ1 and γ2 . The
√
n -convergence to the normal law is implicitly assumed. Hence, Theorem

7.5 implies that the canonical scale function is the only one where the estimators for the

shape matrix and scale are asymptotically independent. As a counterexample consider

the MVE-estimator. This is not
√
n -consistent and asymptotically normally distributed

(Davies, 1992). However, since the MVE-estimator is affine equivariant and the rate of

convergence does not matter, the corresponding MVE-estimators for the shape matrix and

scale remain asymptotically uncorrelated (under the elliptical distribution assumption).

Throughout this section it is supposed that the unknown location vector µ ∈ Rd can be

substituted by some
√
n -consistent estimate (here, too, it has already been demonstrated

by Rousseeuw (1985) that the MVE-estimator for the location is only 3
√
n -consistent and

its asymptotic distribution is non-normal). In most cases – under mild regularity conditions

concerning the distribution of X (see, e.g., Hallin and Paindaveine, 2006b, Tyler, 1987a,

Bilodeau and Brenner, 1999, Ch. 13) – it can be shown that the resulting covariance matrix

estimator is asymptotically normally distributed, possessing an ACM of the form which is

required in Theorem 7.2. Hence, in the following X1, . . . ,Xn will represent centered i.i.d.

random vectors for simplicity and without loss of generality.

7.4.1. M-Estimation

An M-estimator for Γ (Maronna, 1976) is defined as a solution of

Γn =
1

n

n∑

t=1

w
(
X ′

tΓ
−1
n Xt

)
XtX

′
t ,

where w : R+ → R+
0 satisfies a set of general conditions (Maronna, 1976, Bilodeau and

Brenner, 1999, Section 13.4.1). The estimator Γn is strongly consistent for the matrix

Γ = E{w(X ′Γ−1X)XX ′} which is related to the dispersion matrix of X by Γ = τ2Σ ,

where τ > 0 is such that E{ψ(R2/τ2)} = d with ψ(t) := tw(t). The numbers γ1 and γ2

can be calculated using γ1 = (d+ 2)2ψ1/(d+ 2ψ2)
2 and

γ2 =
(ψ1 − 1) − 2 (ψ2 − 1)ψ1{d+ (d+ 4)ψ2}/(d + 2ψ2)

2

ψ2
2

,
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where ψ1 := E{ψ2(R2/τ2)}/{d (d + 2)} and ψ2 := E{ψ′(R2/τ2)R2}/(dτ2) (Tyler, 1982,

Bilodeau and Brenner, 1999, p. 223).

IfX possesses a continuous elliptical distribution and Σn is the corresponding ML-estimator

for the dispersion matrix Σ , it holds that γ1 = {d (d + 2)/4}/E{h2(R2)} and γ2 =

−2γ1 (1 − γ1)/{2 + d (1 − γ1)}, where h(t) := t ∂ log g(t)/∂t . If X ∼ Nd(0,Σ) and

Σn represents the sample covariance matrix, it holds that γ1 = 1 and γ2 = 0 . Other-

wise the sample covariance matrix is an M-estimator where ψ(t) = t . This means that

E(R2/τ2) = E{ψ(R2/τ2)} = d , ψ1 = d/(d + 2) · E(R4)/E2(R2), and ψ2 = 1, so γ1 = ψ1

and γ2 = γ1 − 1 if R has a finite fourth moment.

Now special attention is devoted to Tyler’s M-estimator (Tyler, 1983, 1987a)

Tn =
d

n

n∑

t=1

XtX
′
t

X ′
tT

−1
n Xt

=
d

n

n∑

t=1

StS
′
t

S′
tT

−1
n St

, (7.5)

where St := Xt/‖Xt‖, ‖ · ‖ denotes the Euclidean norm, and it is only supposed that

IP(R > 0) = 1. Note that Tn is not affected by the realizations of the generating variate

R , since S = X/‖X‖ = RΛU/‖RΛU‖ = ΛU/‖ΛU‖ (a.s.).

This means that Tyler’s M-estimator is distribution-free in the context of elliptically sym-

metric distributions. This has been already observed by Tyler (1987b). Frahm and Jaekel

(2007a,b) pointed out that the distribution-free property even holds within the class of

generalized elliptical distributions. A random vector is said to have a generalized elliptical

distribution if its generating variate R can be negative and might depend on U (Frahm,

2004, p. 46). This feature allows for the modeling of various kinds of asymmetries (?Frahm,

2004, Section 3.4). For instance it can be shown that any skew-elliptical distribution (Liu

and Dey, 2004) belongs to the class of generalized elliptical distributions (Frahm, 2004,

p. 47).

Tyler’s M-estimator (7.5) is unique up to a scaling constant. Hence, in fact Tn is a genuine

shape matrix estimator since it can only be calculated with some suitable scale function σ2

such that σ2(Tn) = 1. Originally, Tyler (1987a,b) applied the trace-based scale function

given by S2, whereas in Tatsuoka and Tyler (2000) the authors prefer to use the canon-

ical normalization S3. For the purpose of calculating the asymptotic distribution, Tyler

(1987a,b) focuses on T n := d/(tr Σ−1Tn) · Tn , which means that he defines the scale of Tn

via Σ by σ2(Tn) = tr Σ−1Tn/d . This leads to σ2(T n) = σ2(Σ) = 1 for any positive-definite

d× d matrix Σ .
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Note that in contrast to some normalization according to S1–S4, the shape matrix esti-

mator Tn is indeed affine equivariant and consequently its ACM (Tyler, 1987b) exhibits

the simple structure suggested by Eq. 7.1, namely

V(T n) =
d+ 2

d
· (Id2 +Kd2)(Σ ⊗ Σ) − 2 (d + 2)

d2
· (vec Σ)(vec Σ)′ . (7.6)

Since Σ represents a shape matrix with respect to Tyler’s scale function, this ACM in fact

corresponds to the ACM given by Eq. 7.3 with γ1 = (d+2)/d . Furthermore, the Jacobian

of Tyler’s scale function is given by Jσ2 = (vec Σ−1)′/d and this actually corresponds

to the Jacobian of the canonical scale function (see the proof of Corollary 7.4). This

means that by using Tyler’s scale function in association with some other affine equivariant

covariance matrix estimator, the corresponding estimators for the shape matrix and scale

become asymptotically uncorrelated. This seems to contradict Theorem 7.5. However,

note that Tyler’s σ2 in general does not meet the natural requirement σ2(Id) = 1 and

unfortunately Tn cannot be applied in practical situations, since σ2 is determined by the

unknown parameter Σ .

An alternative way of obtaining the desired ACM of Tyler’s M-estimator is as follows.

Note that Tn is simply an M-estimator with ψ(t) = d . This means that ψ1 = d/(d + 2)

and ψ2 = 0, so γ1 = (d + 2)/d and γ2 is not defined (since σ2 cannot be estimated

by Tn). Hence, due to Theorem 7.2, the ACM of Tn generally corresponds to V(Tn) =

(d + 2)/d · Ψ(Id2 + Kd2)(Ω ⊗ Ω)Ψ′. Moreover, due to Corollary 7.4 the ACM of Tyler’s

M-estimator, based on the canonical scale function, corresponds to (7.6) where Σ has to

be substituted by Ω .

7.4.2. R-Estimation

The R-estimator for the shape matrix has been introduced by Hallin et al. (2006). Consider

Tyler’s M-estimator Tn which is normalized according to S1, i.e. the upper left element

corresponds to 1. The R-estimator is based on a discretized version of Tn . Suppose

that x is a component of Tn . Then it can be discretized by x# := sgnx/
√
n ⌈√n |x|⌉

(Hallin et al., 2006), where ⌈y⌉ denotes the smallest integer not smaller than y ∈ R .

The corresponding discretized version of Tyler’s M-estimator is denoted by T#
n . Hallin

and Paindaveine (2006b) also define Ut := (T#
n )−1/2Xt/‖(T#

n )−1/2Xt‖. Here A−1/2 de-

notes a positive-definite d × d matrix such that A−1/2A−1/2 ′ = A−1, where A−1 is the

151



Chapter 7. Asymptotic Distributions of Robust Shape Matrices and Scales

inverse of a symmetric positive-definite d × d matrix A . Further, Rt represents the rank

of ‖(T#
n )−1/2Xt‖ with respect to the sample X1, . . . ,Xn .

Let fS : R+ → R+
0 be the density function of some imaginary generating variate S, whereas

fR refers to the true generating variate R . Consider the cumulative distribution functions

FS(x) =
∫ x
0 fS(r) dr and FR respectively. Here both R and S are absolutely continuous

and satisfy some weak regularity conditions which guarantee local asymptotic normality

(Hallin and Paindaveine, 2006b). As already mentioned before, the density function of S
is given by fS(r) ∝ rd−1gS(r2) , where gS is the density generator of S. However, in the

following consider the function f∗S(r) := r−(d−1)fS(r) = gS(r2) and for 0 < p < 1 define

KS(p) := ψS{F−1
S (p)}F−1

S (p), where F−1
S is the quantile function of S and ψS(x) :=

−f∗′S (x)/f∗S(x) . Now, the so-called cross-information coefficient (Hallin et al., 2006) is

given by

IR,S :=

∫ 1

0
KR(p)KS(p) dp . (7.7)

Also define

∆n := Md

(
T#

n ⊗ T#
n

)−1/2
n∑

t=1

{
KS

( Rt

n+ 1

)
vec
(
UtU

′
t

)
− KS

d
· vec Id

}

with KS := 1/n
∑n

t=1KS(t/(n + 1)) . The {d (d + 1)/2 − 1} × d2 matrix Md symbolizes

the Moore-Penrose inverse of N ′
d (where Nd is such that NdvecA = vech0A). Further, let

Ψn := Id2 −vecT#
n e

′
1 and Qn := NdΨn(Id2 +Kd2)(T#

n ⊗T#
n )Ψ′

nN
′
d . Now the R-estimator

Ωn is defined in terms of the vech0 operator, namely

vech0Ωn = vech0T
#
n +

d (d + 2)

2n
· Î−1

R,S,nQn∆n ,

where ÎR,S,n represents some consistent estimator for the cross-information coefficient (7.7)

(Hallin et al., 2006). The upper left element of Ωn is set to 1.

Thereafter, following the arguments of Hallin and Paindaveine (2006a) and Paindaveine

(2008), one can apply a renormalization by using the canonical scale function and the

ACM of the resulting R-estimator readily follows by applying Eq. 7.4 with γ1 = d (d +

2)IS,S/I2
S,R . In particular, if S ∼ R , it holds that γ1 = d (d + 2)/IR,R with IR,R =

∫ 1
0 K

2
R(p) dp = E(ψ2

R(R)R2) . From ψR(r) r = −2r2g′(r2)/g(r2) it follows that ψ2
R(r) r2 =

4h2(r2), where h has already been defined in Section 7.4.1. Recall that the function h is

used for calculating the ACM of an ML-estimator. This means that if S ∼ R , the R-

estimator has the same limiting distribution as the corresponding ML-estimator and thus

it becomes asymptotically efficient.
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7.4.3. S-Estimation

The S-estimator for the dispersion matrix (Davies, 1987) can be defined as

Γn = arg min
Υ∈Pd

det Υ

subject to
1

n

n∑

t=1

ρ
(√

X ′
tΥ

−1Xt

)
= αρ(∞) ,

where 0 < α < 1 and ρ : R+ → R+
0 has to be bounded, increasing, and sufficiently smooth

(Croux and Haesbroeck, 1999, Tyler, 2002, Bilodeau and Brenner, 1999, Section 13.4.2).

The chosen constraint guarantees that Γn is consistent for Γ = τ2Σ , where τ > 0 is such

that E{ρ(R/τ)} = αρ(∞) .

Let ψ be the first and ψ′ the second derivative of ρ . It is assumed that

E{ψ′(R/τ)} > 0 and E{ψ′(R/τ)R2/τ + (d+ 1)ψ(R/τ)R} > 0 .

Then the numbers γ1 and γ2 are given by

γ1 =
d (d+ 2)E{ψ2(R/τ)R2}

E2{ψ′(R/τ)R2/τ + (d+ 1)ψ(R/τ)R}

and

γ2 =
4τ2Var{ρ(R/τ)}
E2{ψ(R/τ)R} − 2γ1

d

(Davies, 1987, Lopuhaä, 1989, Bilodeau and Brenner, 1999, p. 225).

7.5. Conclusion

In most practical situations the matter of interest is only the covariance matrix up to some

unknown scaling constant. In that case covariance matrix estimation can be reduced to

shape matrix estimation and so it is adequate to focus on the asymptotic distribution of a

given shape matrix estimator. In the present work robust estimators for the shape matrix

and its associated scale have been investigated. I derived explicit expressions for their

joint asymptotic distributions and generalized a result which has been recently obtained in

the context of local asymptotic normality theory. The given instruments are applicable to

a wide range of problems in multivariate analysis such as principal components analysis,

canonical correlation analysis, linear discriminant analysis, and multivariate regression.
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Chapter 8.

Distribution-Free Shape Matrix

Estimation for Incomplete Data

8.1. Introduction

During the last decades robust covariance matrix estimation has become a popular branch

of robust statistics. Many different estimation approaches have been established until

today. For a broad overview on robust statistics see Hampel et al. (1986), Huber (2003),

and Maronna et al. (2006). In the literature there exist many robust techniques to insulate

from the ‘bad influence’ of outliers. For the subsequent discussion it is important to

distinguish between the robust, the nonparametric, and the distribution-free estimation

approach which are often mixed-up.

1. The robust approach produces an estimator which is less sensitive to contaminated

data such as outliers or clusters.

2. The nonparametric approach is based on the empirical distribution of a random

quantity without specifying some parametrical model.

3. The distribution-free approach leads to an estimator whose finite-sample distribution

is invariant against some part of the data-generating process.

Robust approaches (a) can be inherently parametric. For example, M-estimators are al-

ways constructed on the basis of some parametric (pseudo-)model (Hampel et al., 1986,

p. 230). However, M-theory specifically allows for discrepancies between the pseudo-model

and the true model. If the pseudo-model appropriately accounts for outliers or clusters
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then typically the resulting estimator will become robust. Further, the nonparametric ap-

proach (b) can be justified by the Glivenko-Cantelli theorem or, more generally, by the

fundamental properties of empirical processes (van der Vaart, 1998, Ch. 19). However, if

the data are not normally distributed this approach can lead to highly non-robust esti-

mators. For instance, the sample covariance matrix can be derived as a nonparametric

estimator and it is well-known that this is not robust against outliers.

For understanding the distribution-free approach (c) consider a linear regression model

Yt = β1 + β2Xt2 + . . .+ βmXtm + ut , t = 1, . . . , n ,

where

X =




1 X12 X13 · · · X1m

1 X22 · · · · · · X2m

...
...

...

1 Xn2 Xn3 · · · Xnm




represents an n × m matrix (n > m) of stochastic regressors and u = (u1, . . . , un) is a

spherically distributed random vector being stochastically independent of X. The OLS-

estimator

σ̂2 =
ûTû

n−m
,

for the residual variance σ2 is independent of X since û is the complement of the orthogonal

projection X(XTX)−1XTu , i.e. û = (In −X(XTX)−1XT)u . That means ûTû and so σ̂2

is only determined by u and so it represents a distribution-free estimator with respect to

X. Thus distribution freeness primarily has nothing to do with robustness and especially

such estimators might result from parametric models.

Of course, nonparametric methods can be called ‘distribution-free’ since they do not re-

quire any or only some weak assumptions about the sampling distribution. Here the notion

‘distribution-free’ shall indicate that the requirements concerning the underlying distribu-

tion are minimal and therefore Rao (1965, p. 422) suggested to use the terms ‘nonpara-

metric’ and ‘distribution-free’ synonymously. However, following the arguments of Kendall

and Sundrum (1953), we think that it is more convenient if the attribute ‘distribution-free’

refers to the finite-sample distribution of the resulting estimator which of course has direct

consequences for the associated confidence intervals and hypothesis tests. If a distribution-

free estimator is invariant against the ‘contaminating part’ of the data-generating process,

i.e. the underlying mechanism which is responsible for outliers or clusters, it is a completely
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robust estimator. The main purpose of the present work is to derive a completely robust

estimator for the shape matrix of a generalized elliptically distributed random vector if the

data are incomplete.

The notion of robust ‘covariance matrix’ estimation is somewhat ambiguous since many

robust statistical procedures actually do not estimate the covariance matrix but some

other matrix being proportional to the covariance matrix. Indeed, a large number of

multivariate statistical methods like principal component analysis, canonical correlation

analysis, linear discriminant analysis, and multivariate regression require the covariance

matrix only up to a scaling constant (Oja, 2003, Paindaveine, 2008, ?). Let Pd be the set

of all symmetric positive-definite d×d matrices and ϕ : Pd → Rk a scale-invariant function,

i.e. ϕ(αΣ) = ϕ(Σ) for all α > 0 and Σ ∈ Pd. Now consider a scale-invariant function

Ω(Σ) = Σ/σ2(Σ) where σ2 is a positive homogeneous function, i.e. σ2(αΣ) = ασ2(Σ) > 0 .

The matrix Ω(Σ) will be called a shape matrix associated with Σ . Note ϕ ◦ Ω = ϕ since

ϕ
{
Ω(Σ)

}
= ϕ

{
Σ

σ2(Σ)

}
= ϕ(Σ) .

For instance the correlation matrix associated with some positive-definite matrix Σ is scale-

invariant and thus it can be derived from any shape matrix Ω . Since the most problems of

multivariate statistics are scale-invariant, in the following discussion we will concentrate on

shape matrix rather than covariance matrix estimation. The reader should keep in mind

that whenever Ω̂ is a distribution-free estimator for the shape matrix Ω , a distribution-free

estimator for ϕ(Σ) (e.g. the parameters of a linear regression) is given by ϕ(Ω̂).

We will present a shape matrix estimator which is distribution-free within the class of

generalized elliptical distributions (Frahm, 2004). In the complete-data case the presented

estimator corresponds to Tyler’s M-estimator (Tyler, 1983, 1987a). However, in the context

of missing data there is still not much work on robust covariance matrix estimation. One

of the few available approaches is to maximize the observed-data likelihood function of

heavy-tailed or contaminated data (Little, 1988). This is a parametrical approach and

the aim of the present work is to formulate an alternative distribution-free estimation

approach for missing data. It turns out that the resulting estimator is a completely robust

ML-estimator which can be viewed as a non-trivial generalization of Tyler’s M-estimator.

Thus it is possible to obtain its asymptotic properties by standard results of likelihood

theory. We present a fast algorithm for calculating the estimate which works well even for

high-dimensional data. Further, we provide a simulation study covering the complete-data
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as well as the incomplete-data case using clean and contaminated data under the different

missingness mechanisms MCAR, MAR, and NMAR.

8.2. Elliptical Distributions

8.2.1. Elliptically Symmetric Distributions

Consider a d-dimensional elliptically symmetric distributed random vector X. That is X

can be represented by

X = µ+ ΛRU , (8.1)

where U is a k-dimensional random vector, uniformly distributed on the unit hypersphere,

R is a nonnegative random variable being stochastically independent of U , µ ∈ Rd, and

Λ ∈ Rd×k (Cambanis et al., 1981, Fang et al., 1990, p. 42). The random variable R is

called the generating variate of X and in the special case µ = 0 and Λ = σId with σ > 0 ,

the random vector X is spherically distributed on Rd.

Note that the number k principally can be larger than d . For instance, consider some

latent factor model for a d-dimensional random vector X, i.e.

X = µ+ LF + ε ,

where L ∈ Rd×f with f < d is a matrix of factor loadings, F is an f -dimensional random

vector of common factors, and ε is a d-dimensional random vector of idiosyncratic risks

such that (F, ε) is spherically distributed on Rf+d.

In case k > d there always exists a reduced form representation of X. The distribution

of X is determined by Λ only through the dispersion matrix Σ := ΛΛT (Cambanis et al.,

1981). Let the d× r matrix Γ with r ≤ d be a root of Σ , i.e. ΓΓT = Σ . Then

X = µ+ ΓSU ,

where U is now an r-dimensional random vector on the unit hypersphere. Further, S :=

R√
β with β ∼ Beta(r/2, (k − r)/2) is stochastically independent of R and U (Cambanis

et al., 1981). In contrast, if k < d the dispersion matrix cannot be positive-definite which

might also happen in case k ≥ d . However, in the following we will generally assume that

Σ is positive-definite, which means that r Λ = d and refer to a full-rank representation of
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X (Cambanis et al., 1981) whenever this is elliptically symmetric distributed. Hence, it is

assumed without loss of generality that Λ is a nonsingular square matrix.

The random vector X possesses a density function if and only if R is absolutely continuous

and then the density of X is given by

p(x) =
√

det Σ−1 g
{
(x− µ)TΣ−1(x− µ)

}
. (8.2)

The so-called density generator g is a nonnegative function on the set of all positive

real numbers which depends on x only through the quadratic form (x − µ)TΣ−1(x − µ).

Conversely, if some random vector X has an elliptically contoured density of the form

(8.2) it is elliptically symmetric distributed. Consider for instance the density generator

g(z) = (2π)−d/2 exp(−z/2) of the multivariate normal distribution. Moreover, the density

generator g can be calculated from the density of R by the relation

g(z) =
Γ(d/2)

2πd/2
· z− d−1

2 f
(√
z
)
, z > 0 ,

where f represents the density function of R (Frahm, 2004, p. 9).

Depending on the chosen density function of R , elliptically symmetric distributions allow

for the modeling of exponentially decaying density functions (e.g. the multivariate normal

distribution), heavy tails either with finite variance (e.g. the multivariate t-distribution

with ν > 2 degrees of freedom) or infinite variance (e.g. multivariate symmetric α-stable

or, say, sub-Gaussian distributions), and semi-heavy tails (e.g. multivariate symmetric

generalized hyperbolic distributions). Note that if the generating variate R is heavy-tailed

possessing some tail index α (Mikosch, 2003), the corresponding random vector is also

regularly varying with the same tail index (Hult and Lindskog, 2002, Frahm, 2006).

8.2.2. Skew-Elliptical Distributions

Elliptically symmetric distributions suffer from the lack of skewness or, more generally,

different kinds of asymmetries which can be often observed from empirical data. Thus

a popular generalization of elliptically symmetric distributions is provided by the class of

skew-elliptical distributions (Liu and Dey, 2004). Consider a (d+1)-dimensional elliptically

distributed random vector X∗ = (Z, Y ) with location vector µ∗ = (0, µ) and dispersion

matrix

Σ∗ :=


1 βT

β Σ


 ,
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where Y is a d-dimensional random vector associated with the location vector µ and dis-

persion matrix Σ. Now the random vector X := (Y |Z > 0) is said to be skew-elliptically

distributed (Branco and Dey, 2001). Here β is a skewness parameter whereas anymore µ

and Σ are the location vector and the dispersion matrix of X. Thus any skew-elliptical

distribution can be obtained by hidden truncation (Arnold and Beaver, 2004), since only

that part of the distribution of X∗ is recognized where the hidden variable Z is positive.

If X∗ is multivariate normally distributed, X is said to be skew-normally distributed (Az-

zalini and Dalla Valle, 1996). For a broad exposition on skew-elliptical distributions see

Genton (2004).

8.2.3. Generalized Elliptical Distributions

Finally, a d-dimensional random vector X is said to be generalized elliptically distributed

if it can be represented by Eq. 8.1 where U is a k-dimensional random vector, uniformly

distributed on the unit hypersphere, R is a random variable, µ ∈ Rd, and Λ ∈ Rd×k

(Frahm, 2004, p. 46). In contrast to the former representation of elliptically symmetric

distributions, now the generating variate R may depend on the unit random vector U

and it can be negative, too. By using that property it is easy to show that the class

of skew-elliptical distributions belongs to the class of generalized elliptical distributions.

More precisely, any skew-elliptical random vector with parameters µ and Σ is generalized

elliptically distributed possessing the same location vector and dispersion matrix (Frahm,

2004, p. 47).

It is worth to point out that for generalized elliptical distributions in general there exists no

full-rank representation unless the distribution is elliptically symmetric. This is due to the

fact that R might depend on U . Further results on generalized elliptical distributions can

be found in Frahm (2004, Ch. 3) and a discussion in the context of high-dimensional data

is given by Frahm and Jaekel (2007b). Figure 8.1 documents that generalized elliptical

distributions provide a fairly nice fit to financial data.

Now we will present a generalized elliptical distribution which will play a major role in the

following discussion.

Theorem 8.1 Let Λ be a d × k matrix with r Λ = d and U a k-dimensional random

vector, uniformly distributed on the unit hypersphere. The density of the unit random
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vector V = ΛU/‖ΛU‖ corresponds to

ψ(v) =
Γ(d/2)

2πd/2
·
√

detΣ−1
√
vTΣ−1v

−d
,

where ‖ · ‖ denotes the Euclidean norm, Σ = ΛΛT, and v is such that ‖v‖ = 1.

Proof. Frahm (2004, pp. 59–60).

Note that the random vector V is generalized elliptically distributed with generating vari-

ate ‖ΛU‖−1. Its distribution is sometimes referred to as the angular central Gaussian

distribution on the sphere (Tyler, 1987b, Kent and Tyler, 1988, Mardia and Jupp, 2000,

p. 182) or the offset normal distribution (Mardia and Jupp, 2000, p. 178) but we will call

it simply spectral density function. This is justified by the following corollary.

Corollary 8.2 The extremal positions of ψ in Theorem 8.1 are given by the space of

normalized eigenvectors of Σ , i.e. for any point v on the unit hypersphere such that Σv =

λv, the value ψ(v) is a local extremum of ψ and vice versa.

Proof. Frahm and Jaekel (2007b).

As a direct consequence of Corollary 8.2, the local extrema of ψ can be calculated by

ψ(v) =
Γ(d/2)

2πd/2
·
√

det(λΣ−1) ,

where λ is an eigenvalue of Σ and v is the corresponding normalized eigenvector.

8.3. Distribution-Free Shape Matrix Estimation

Consider a d-dimensional random vector X around a center µ ∈ Rd. Now define a matrix

Ω such that

Ω = d · E
{

(X − µ)(X − µ)T

(X − µ)TΩ−1(X − µ)

}
(8.3)

with detΩ = 1 . If Ω exists and is unique we will call that matrix the shape matrix of X.

The following theorem asserts that Ω indeed is well-defined if X is generalized elliptically

distributed.
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Figure 8.1.: Observed GARCH(1,1)-residuals of NASDAQ and S&P 500 daily log-returns

from 1993-01-01 to 2000-06-30 (left hand) and simulated generalized elliptically distributed

residuals (n = 1892) (right hand). The density contours of the chosen model (Frahm and

Jaekel, 2007b) are given by the green curves.

Theorem 8.3 Let X be a d-dimensional generalized elliptically distributed random vector

with location vector µ ∈ Rd, positive-definite dispersion matrix Σ ∈ Rd×d, and generating

variate R with IP(R = 0) = 0 . Then the shape matrix Ω exists and corresponds to

Ω =
Σ

(det Σ)1/d
.

Proof. By the definition of generalized elliptical distributions it follows that

(X − µ)(X − µ)T

(X − µ)TΩ−1(X − µ)

a.s.
=

ΛUUTΛT

UTΛTΩ−1ΛU
. (8.4)

Since ΛU is elliptically symmetric distributed it can be assumed that Λ ∈ Rd×d without

loss of generality (cf. Section 8.2.1). By setting Ω to ΛΛT = Σ , the right hand side of

Eq. 8.4 becomes ΛUUTΛT. Note that E(UUT) = Id/d (Fang et al., 1990, p. 34), so that

d · E
{

(X − µ)(X − µ)T

(X − µ)TΩ−1(X − µ)

}
= ΛΛT = Ω .

Re-scaling Ω by the constant (det Σ)−1/d leads to the desired result.

Note that the shape matrix Ω is a scale-invariant function of Σ . Further, the shape matrix

exists and is unique for any random vector X which is continuously distributed on Rd

(Tyler, 1987a). Since

(X − µ)(X − µ)T

(X − µ)TΩ−1(X − µ)
=

SST

STΩ−1S
, S :=

X − µ

‖X − µ‖ ,
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it becomes clear that for the existence and uniqueness of Ω , the projection S has only to

be continuously distributed on the unit hypersphere
{
x ∈ Rd : ‖x‖ = 1

}
. Here it must be

presumed that the distribution of X has no atom at µ ∈ Rd, i.e. IP(X = µ) = 0 . Within

the class of generalized elliptical distributions S is continuously distributed by definition.

In the following we will concentrate on shape matrix estimation. It is supposed that the

location vector µ is known or that it can be properly estimated. That issue will be discussed

later on in more detail. For the time being we will restrict on centered random vectors

X1, . . . ,Xn and their corresponding realizations x1, . . . , xn without loss of generality.

8.3.1. The Complete-Data Case

Tyler’s M-Estimator

If X is generalized elliptically distributed, outliers are produced by extreme realizations of

the generating variate R . Note that by definition such values can be clustered in arbitrary

directions in Rd since R may depend on U . The discussion in Section 8.2 shows that

the class of generalized elliptical distributions is huge. While this gives us the flexibility to

adapt to specific characteristics of the data, it can be a problem in many practical situations

where neither the distribution family of R nor the dependence structure between R and

U are known. In the following we will focus on estimating the shape matrix Ω without

specifying the joint distribution function of R and U . This allows us to separate the

linear dependence structure from non-linear dependencies such as tail-dependence possibly

caused by R . As already mentioned the location vector µ is supposed to be known and

µ is set to zero without loss of generality. Any other parameters like the linear operator

Λ , the parameters concerning the distribution of the generating variate R and even the

functional form of the joint distribution of R and U are supposed to be unknown.

In the following let Σ be positive-definite and IP(R = 0) = 0 . Due to the definition of X

it holds that

S =
X

‖X‖ =
RΛU

‖RΛU‖
a.s.
= ± ΛU

‖ΛU‖ = ±V , (8.5)

where ± := sgn(R) and V = ΛU/‖ΛU‖. The key observation is that the random vector V

does not depend on the absolute value of R . In particular, it is completely robust against

extreme outcomes of the generating variate. However, the sign of R still remains in Eq. 8.5

and indeed this might moreover depend on U . The unit random vector S represents the
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direction of X on the unit hypersphere. It contains all necessary information for estimating

the shape matrix. Note that in the univariate case S = sgn(X) . However, since the shape

matrix quantifies only the linear dependence structure of X but not its scale, multivariate

data are necessary for estimating Ω . That means it is always required that d > 1 in the

following discussion.

Tyler’s M-estimator (Tyler, 1983, 1987a) is defined via the fixed point equation

T =
d

n

n∑

t=1

XtX
T
t

XT
t T

−1Xt
(8.6)

and can be regarded as a ‘sample version’ of the shape matrix defined by (8.3). Since

T is defined only up to a scaling constant, this fixed-point equation has to be solved by

the additional constraint detT = 1 and in that case T becomes an appropriate estimator

for the shape matrix Ω. Of course, any other constraint like, e.g., Σ11 = 1 or tr Σ = d

would also work but the determinant-based normalization has several statistical advantages

which are discussed by ? and Paindaveine (2008). Note that for estimating Ω it is not

necessary to know the sign of R since ±2 = + . From Eq. 8.5 it can be seen that Tyler’s

M-estimator is invariant under any change of the generating variate R, i.e. it is distribution-

free within the class of generalized elliptically distributed random vectors. Moreover, it is

strongly consistent and asymptotically normally distributed provided that X possesses a

continuous distribution on Rd (Tyler, 1987a).

Important results concerning the existence of Tyler’s M-estimator for any kind of distri-

butions were established by Tyler (1987a) as well as Kent and Tyler (1988, 1991). For

instance, if the data are contaminated at some point in Rd, the rate of contamination must

not exceed 1/d (Kent and Tyler, 1988). Further, Kent and Tyler (1988) proved that for

any given sample x1, . . . , xn 6= 0 the fixed-point solution T exists and the sequence (Ti)

defined by the fixed-point iteration scheme

Ti+1 =
d

n

n∑

t=1

xtx
T
t

xT
t T

−1
i xt

, i = 0, 1, . . . , (8.7)

converges to σ2T provided the data stem from a continuous distribution on Rd and n > d .

The initial value T0 can be any positive-definite d×dmatrix and σ2 > 0 is a scaling constant

depending on the initial value T0 . For estimating the shape matrix Ω the normalization

(detTN )−1/dTN can be applied just after performing a sufficiently large number N of

iterations (Kent and Tyler, 1991). If the data are contaminated at some point in Rd the
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convergence of this algorithm is guaranteed if the rate of contamination is smaller than

1/d (Kent and Tyler, 1988).

Tyler’s M-estimator is a robust estimator and its robustness properties (i.e. breakdown

point, maximum bias and variance) were already investigated by Adrover (1998), Dümbgen

and Tyler (2005), Maronna and Yohai (1990), as well as Tyler (1983, 1987a). In particular,

it has been shown that the Dirac contamination breakdown point of T corresponds to 1/d

(Maronna and Yohai, 1990) whereas for any kind of contamination it is between 1/(d+ 1)

and 1/d (Adrover, 1998) if the data are elliptically symmetric distributed. Due to the

arguments given above the same holds for generalized elliptical distributions, too.

The Spectral Density Approach

Tyler originally derived his estimator as an M-estimator by using a Huber-type weight

function (Tyler, 1983, 1987a) but T is also an ML-estimator if the spectral density given

by Eq. 8.1 is taken into consideration. This important fact has been already noticed

by Tyler (1987b) and, in a somewhat different context related to generalized elliptical

distributions, by Frahm (2004).

Theorem 8.4 Let X1, . . . ,Xn be a sample of independent copies of a d-dimensional gener-

alized elliptically distributed and centered random vector X with positive-definite dispersion

matrix Σ ∈ Rd×d and generating variate R such that IP(R = 0) = 0 . Consider the unit

random vector S = X/‖X‖ and the corresponding sample S1, . . . , Sn with n > d . Then

Tyler’s M-estimator T exists almost surely and it is an ML-estimator with respect to the

likelihood function

L
(
Σ ;V1, . . . , Vn

)
=

n∏

t=1

ψ
(
Vt ; Σ

)
,

where V1, . . . , Vn are defined according to Eq. 8.5 and ψ is the spectral density function

given by Theorem 8.1. Furthermore, T satisfies the log-likelihood equation

∂ logL(T ;V1, . . . , Vn)

∂Σ
=

n∑

t=1

∂ logψ(Vt ;T )

∂Σ
= 0 .

Proof. The arguments for the existence and thus positive definiteness of Tyler’s M-

estimator can be found in Kent and Tyler (1988). Consider the log-likelihood function

logL(Σ ;V1, . . . , Vn) =

n∑

t=1

logψ(Vt ; Σ) = c+
n

2
· log det Σ−1 − d

2

n∑

t=1

log
(
ST

t Σ−1St

)
,
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where c is a constant and note that ψ(Vt) = ψ(St), since ψ is an even function. The partial

derivative of logL(Σ ;V1, . . . , Vn) with respect to the inverse Σ−1 is given by

∂ logL
∂Σ−1

=
n

2
·
(
2Σ − diag Σ

)
− d

2

n∑

t=1

(
2StS

T
t − diag(StS

T
t )

ST
t Σ−1St

)
= M − diagM/2 ,

where

M := nΣ − d ·
n∑

t=1

StS
T
t

ST
t Σ−1St

.

Since the set of all positive-definite matrices with unit determinant is open, T is a stationary

point of the log-likelihood function so that

nT − d ·
n∑

t=1

StS
T
t

ST
t T

−1St
= 0 ,

which is equivalent to Eq. 8.6.

Recall that ψ is an even function, i.e. ψ(−s) = ψ(s) for every s with ‖s‖ = 1. That

means Tyler’s M-estimator indeed maximizes the likelihood function for a sample V1, . . . , Vn

of independent copies of the unit random vector V given by Eq. 8.5 even though the

corresponding realizations of V are given only up to the corresponding signs.

Now, many statistical properties of Tyler’s M-estimator can be derived on the basis of

likelihood theory. For instance it can be shown that T is asymptotically efficient among

all distribution-free estimators for the shape matrix of a generalized elliptical distribution

(Frahm, 2004, Ch. 5). Due to Theorem 8.1 and Theorem 8.4, T is said to be a spectral

estimator . It is asymptotically normally distributed and its asymptotic covariance matrix

is given by ? under the specific constraint detT = 1.

The problem of estimating the location vector µ has been already investigated by Tyler

(1987a) under quite general conditions. Suppose that X has a continuous distribution

on Rd and µ is estimated by a consistent estimator µ̂n which is used for centralizing the

data. If µ̂n converges to µ at an appropriate rate and X is not too much concentrated

around µ then T is still consistent and asymptotically normally distributed (Tyler, 1987a).

Otherwise even small perturbations of µ̂ would lead to wrong projections of X to the unit

hypersphere, i.e. (X − µ̂)/‖X − µ̂‖. If the regularity conditions hold, Tyler’s M-estimator

possesses the same asymptotic covariance matrix as if µ was known. However, we admit

that it is not easy to find a consistent estimator for µ if the distribution of X is asymmetric.

In particular some of Tyler’s conditions for the asymptotic normality are violated when X

has an asymmetric distribution. Hence, if µ is unknown the spectral density approach can
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be clearly defended if the data are elliptically symmetric distributed whereas there is no

formal justification in case of generalized elliptical distributions.

8.3.2. The Incomplete-Data Case

Now Tyler’s M-estimator will be generalized to the case of incomplete data by using the

well-developed likelihood theory for missing data. This is not a trivial generalization

since Tyler originally argued on the basis of M-estimation theory (Tyler, 1983). The key

observation is that Tyler’s M-estimator in fact is an ML-estimator (Frahm, 2004, Tyler,

1987b) and then methods of missing-data analysis have to be applied carefully. The difficult

part is to derive the score function under incomplete data and to formulate an appropriate

algorithm for finding its root. First of all we will recapitulate the fundamental background

of missing-data analysis which is necessary for understanding the subsequent derivations.

A comprehensive introduction to that topic is given by Little and Rubin (2002) as well as

Schafer (1997).

Ignorable Missingness Patterns

Let x be some realized data and m an ensemble of zeros and ones indicating which part

of x is observed and which is missing. According to the missingness pattern m let xo be

the observed and xm the unobserved data. The observed part O of the complete data X

is a random index whereas o denotes some realization of O according to the missingness

pattern m which is a realization of M . Sometimes it is helpful to interpret m as a function

m: x 7→ xo . Further, M and X are random quantities possessing the joint distribution

p(m,x ; θ). Here θ ∈ Θ ⊂ Rk is some unknown parameter. The marginal distribution of m

and xo corresponds to

p(m,xo ; θ) =

∫
p(m,xo, xm ; θ) dxm .

Suppose that the parameter θ has to be estimated. All available information are given

by m and xo though p(m,x ; θ) is the underlying sampling distribution of the experiment.

However, under the standard assumptions of likelihood theory, the likelihood function
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L(θ ;m,xo) = p(m,xo ; θ) turns out to be Fisher consistent for θ, since

E

{
∂ logL(θ ;m,xo)

∂θ

}
=

∫ ∫ ∫
∂ log p(m,xo ; θ)

∂θ
· p(m,xo, xm ; θ) dxm dxo dm

=

∫ ∫
∂ log p(m,xo ; θ)

∂θ
· p(m,xo ; θ) dxo dm

=

∫ ∫
∂p(m,xo ; θ)

∂θ
dxo dm

=
∂

∂θ

∫ ∫
p(m,xo ; θ) dxo dm =

∂1

∂θ
= 0 .

Note that

L(θ ;m,xo) = p(m ; θ) p(xo |m ; θ) = p(xo ; θ) p(m |xo ; θ) ,

where p(xo ; θ) denotes the marginal distribution of the observed data Xo and o is the

realized index of observations.

Now suppose that the missingness pattern is not determined by the model parameter

under the observed data. That means p(m |xo ; θ) is invariant under a change of θ. In that

case the missingness pattern is not relevant and it can be ignored for maximum likelihood

estimation, since

L(θ ;m,xo) ∝ p(xo ; θ) = Lo(θ ;xo) .

Hence, for estimating θ it is sufficient to concentrate on the marginal distribution of Xo .

This is the ignorability assumption of missing-data analysis and Lo(θ ;xo) is called the

observed-data likelihood function (Schafer, 1997, Section 2.3.1).

For justifying the ignorability assumption, the conditional distribution

p(m |xo ; θ) =

∫
p(m |xo, xm ; θ) p(xm |xo ; θ) dxm

has to be examined. In many circumstances it can be assumed that the distribution of M

depends on the complete data X but not on the specific parameter θ. For example, non-

responses in questionnaires might be determined by the individual outcomes xo and xm but

it is unlikely that the missingness pattern depends on the model parameter θ per se. The

so-called distinctness assumption of missing-data analysis conveys that p(m |xo, xm ; θ) is

not determined by θ. If the distinctness assumption can be accepted it follows that

p(m |xo ; θ) =

∫
p(m |xo, xm) p(xm |xo ; θ) dxm .

Now there are two non-excluding cases where the ignorability assumption is satisfied, viz.

1. either p(xm |xo ; θ) is not determined by θ
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2. or p(m |xo, xm) is not determined by xm .

ad a. The distribution of the complete data X is determined by θ. However, if p(xo, xm ;

θ) = p(xo ; θ) p(xm), then p(xm |xo ; θ) is not driven by θ and the ignorability assumption

is satisfied. That means if the unobserved data are independent of the observed data and

do not contain any information about the unknown parameter, the missing data can be

ignored.

ad b. If p(m |xo, xm) is not determined by the unobserved data xm, it holds that

p(m |xo ; θ) =

∫
p(m |xo) p(xm |xo ; θ) dxm = p(m |xo) .

This condition is clearly satisfied if M is stochastically independent of XM . In that case

xm is said to be missing at random (MAR) (Little and Rubin, 2002, p. 12). However, it is

worth to point out that the ignorability assumption holds true if the invariance property

is satisfied only for the realized missingness pattern m (Schafer and Graham, 2002). That

means for estimating the parameter θ by the marginal distribution of the observed data it is

not relevant whether some of the observed data xo would be MAR or not MAR (NMAR) in

case that they were missing. Nevertheless, for likelihood inference in the context of missing

data, the MAR assumption must be satisfied (Kenward and Molenberghs, 1998). If M is

not only independent of the unobserved data XM but also of the observed data XO, the

missing data are missing completely at random (MCAR) (Little and Rubin, 2002, p. 12).

In the next section the spectral density approach will be adapted to incomplete data,

but before that we have to discuss an important drawback of missing-data analysis. Let

y = g(xo) be some measurable function of the observed data and q(y ; θ) the corresponding

density. A naive application of missing-data analysis would suggest to estimate θ by using

the observed-data likelihood function related to q(y ; θ), i.e. Ly(θ ; y) = q(y ; θ), instead of

Lo(θ ;xo) if xm is MAR. For example, this approach is suitable if Ly leads to a robust

or even distribution-free estimator for θ (see Section 8.3.2). In that case it has to be

guaranteed that

Ly(θ ;m, y) = q(y ; θ) p(m | y ; θ) ∝ q(y ; θ) = Ly(θ ; y)

with p(m | y ; θ) = p(m | g(xo) ; θ).

Note that in most practical situations it is unlikely that the missingness is ‘triggered’ by the

transformed data y rather than the original data x, in particular since y is usually calculated
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after observing the data. Suppose that the function g is not injective. The distribution of

Xo under the condition g(Xo) = y in general is a function of θ and thus if the distribution

of m given xo and xm is only determined by the observed data, p(m | g(xo) ; θ) might be

essentially determined by the parameter θ. Hence, the distinctness assumption usually

cannot be accepted when working with transformed data if the transformation is not one-

to-one. For instance consider a projection of a d-dimensional random vector onto some

subspace or manifold in Rd. In that case the missingness pattern is no more ignorable.

Only if the missing data are MCAR the distinctness assumption remains plausible since it

is simply assumed that p(m | g(xo) ; θ) = p(m ; θ) = p(m).

The Spectral Density Approach

Lemma 8.5 Let X be a d-dimensional generalized elliptically distributed and centered ran-

dom vector with dispersion matrix Σ ∈ Rd×d. Consider the partitions

X =


X1

X2


 and Σ =


Σ11 Σ12

Σ21 Σ22


 ,

where X1 is an r-dimensional sub-vector of X. It holds that X1 is a generalized elliptically

distributed and centered random vector with dispersion matrix Σ11 ∈ Rr×r .

Proof. Write X1 = IX with I := [ Ir 0 ] (r× d) . That means X1 = IΛRU and note that

IΛΛTIT = IΣIT = Σ11 .

More generally, let X = (Xo,Xm) be a generalized elliptically distributed random vector

which is divided into an observed and an unobserved part according to some fixed miss-

ingness pattern m . Correspondingly, the vector x = (xo, xm) denotes a realization of the

complete data, where xo is an r-dimensional sub-vector of x . Further, let s = xo/‖xo‖ be

the observed data projected to the unit hypersphere in Rr and S = Xo/‖Xo‖ the corre-

sponding random vector. From the preceding lemma it is known that the distribution of

V =a.s. ±S is given by

ψ(v) =
Γ(r/2)

2πr/2
·
√

det Σ−1
o

√
sTΣ−1

o s
−r

,

where Σo denotes that part of Σ which is related to the observation xo . Once again the

generating variate of Xo does not play any role for estimating Σ since it is canceled out by

the projection onto the unit hypersphere (see Eq. 8.5).
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Now consider a sample of possibly dependent and not identically generalized elliptically

distributed random vectors X1 . . . ,Xn, where only the realizations xo1, . . . , xon of the sub-

vectors Xo1, . . . ,Xon can be observed. More precisely, it is assumed that Xt (t = 1, . . . , n)

can be represented as described in Section 8.2.3, where µ = 0 without loss of generality,

Σ = ΛΛT is positive-definite, and the distribution of Xt has no atom at zero. Hence, the

observed data can be written as

Xot = ItXt = ItΛRtUt = ΛtRtUt , t = 1, . . . , n ,

where It is a matrix which converts Xt into Xot and Λt := ItΛ . Now it is only assumed that

the angular parts U1, . . . , Un are mutually independent, whereas the joint distribution of

the radial parts R1, . . . ,Rn is irrelevant. That means the generating variates might depend

on each other and do not need to be identically distributed. This feature especially allows

for several kinds of multivariate autoregressive conditional heteroscedasticity imposed by

the variation of R in time (Bade et al., 2008). Moreover, in the following it is supposed

that the missing data xm1, . . . , xmn are MCAR.

Let Σt be the sub-matrix of Σ associated with the observation xot and st := xot/‖xot‖
(t = 1, . . . , n) the corresponding projection on the unit hypersphere. Moreover, let dt be

the number of components of that observation. Then the observed-data likelihood function

is given by

Ls(Σ ; v1, . . . , vn) =

n∏

t=1

ψ
(
vt ; Σt

)
∝

n∏

t=1

√
det Σ−1

t

√
sTt Σ−1

t st

−dt

. (8.8)

Note that vt = ±st is not a one-to-one function of xot and due to the arguments given

at the end of Section 8.3.2 it has to be supposed that the missing data xm1, . . . , xmn are

MCAR. Then a proper ML-estimate of Σ can be obtained by maximizing Ls(Σ ; v1, . . . , vn),

provided the number of observations is large enough. The observed-data log-likelihood

function

logLs(Σ ; v1, . . . , vn) = c+
1

2

n∑

t=1

log det Σ−1
t − 1

2

n∑

t=1

dt log
(
sTt Σ−1

t st

)
(8.9)

can be used alternatively, where c is some constant.

Since Ls is a scale-invariant function, i.e. Ls(αΣ) = Ls(Σ) for every α > 0 , the scale of Σ

has to be fixed by the additional constraint detΣ = 1 . This leads to the spectral estimator

for the shape matrix Ω , i.e. Ω̂ = (det Σ̂ )−1/dΣ̂ , where Σ̂ denotes the ML-estimator for Σ .

Figure 8.2 shows a spectral estimate for a sample of multivariate t-distributed data with

2 degrees of freedom possessing a monotone missingness pattern (Little and Rubin, 2002,
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Figure 8.2.: Missingness pattern (upper left) of a simulated sample of 5000 independent

copies of a 100-dimensional t-distributed random vector with 2 degrees of freedom, location

vector µ = 0 , and dispersion matrix Σ proportional to the shape matrix given on the upper

right (violet cells indicate small numbers and red cells large numbers). There are 215184

missing values (43% of the sample). The corresponding spectral estimate is given on the

lower right, whereas the ML-estimate based on the normal distribution assumption can be

found on the lower left. The computational time for the spectral estimate on a standard

PC (3 GHz CPU) amounts to 1 minute and 58 seconds.

p. 5). This can be compared with the corresponding ML-estimate based on the normal

distribution assumption. Obviously, the Gaussian estimator is not robust against extreme

realizations of the multivariate t-distribution. In Figure 8.3 the same experiment is done

with multivariate normally distributed data. The spectral estimate looks pretty much the

same as the Gaussian one in agreement with the simulation study discussed in Section 8.5,

showing that the loss of efficiency is small even for normally distributed data.

The unknown location vector µ can be replaced by some appropriate estimate µ̂n for

centralizing the data. We suggest to use the factored likelihood method described by Little

and Rubin (2002, Ch. 7) as well as Schafer (1997, Section 6.5). This leads to the maximum

of an observed-data likelihood function where the data are assumed to follow a multivariate

normal distribution. It is guaranteed that µ̂n is asymptotically unbiased and normally
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Figure 8.3.: Missingness pattern (upper left) of a simulated sample of 5000 independent

copies of a 100-dimensional normally distributed random vector with location vector µ = 0

and dispersion matrix Σ proportional to the shape matrix given on the upper right (see

also Figure 8.2). The corresponding spectral estimate is given on the lower right, whereas

the ML-estimate based on the normal distribution assumption can be found on the lower

left. The computational time for the spectral estimate on a standard PC (3 GHz CPU)

amounts to 2 minutes and 19 seconds.

distributed for n → ∞ under the typical regularity conditions of ML-theory. Thus it

is not recommended to use an ‘older method’ (Schafer and Graham, 2002) of missing-

data analysis since these procedures generally produce asymptotically biased estimates if

the missing data are not MCAR. Of course, for applying our ML-approach it has to be

presumed that the centered data are asymptotically independent of each other. This is true

if µ̂n converges to µ at an appropriate rate. As mentioned earlier, for the complete-data

case this has been already investigated by Tyler (1987a). Presumably the same arguments

hold also in the incomplete-data case but at present we cannot provide a formal proof for

this conjecture. However, in our numerical simulations we did not encounter any problems

concerning the spectral estimator caused by the estimation of µ provided the missing data

are MCAR and the data stem from an elliptically symmetric distribution.

We would like to clarify the main purpose of our method. Of course, modern estimation
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procedures of missing-data analysis (Little and Rubin, 2002, Schafer and Graham, 2002)

could be efficiently applied for estimating the shape matrix if the true data-generating

process was known. Traditional ML-theory works only if the proposed model is correct. In

contrast, by M-theory the asymptotic distribution of covariance or shape matrix estimators

can be calculated if the suggested model does not correspond to the true one (?Maronna,

1976, Tyler, 1982). However, there are some remaining difficulties regarding traditional

robust covariance matrix estimation. For evaluating the asymptotic distribution of an M-

estimator, generally some nuisance parameters have to be estimated (Tyler, 1982). Other

robust estimation procedures are based on geometrical approaches (Visuri, 2001, Ch. 3)

and cannot be generalized to the missing-data problem. To the best of our knowledge,

M-estimators for incomplete data have been only discussed by Little (1988).

Little (1988) suggests to maximize the observed-data likelihood functions of heavy-tailed

or contaminated data. Usually this leads to robust estimates of the shape matrix and

obviously the method is similar to the spectral density approach. However, Little’s esti-

mators are based on a multivariate t-distribution or a contaminated normal-distribution

assumption and so his approach is parametrical rather than distribution-free. With a para-

metrical approach one has only limited information about the asymptotic distribution of

the estimators if the model is misspecified. This can be avoided for the most part by using

the spectral estimator due to its invariance property discussed above. The only conditions

which have to be guaranteed are that

(1) the sample consists of data which are generalized elliptically distributed (even serial

dependence is allowed in the weak sense described above),

(2) the missing part of the sample is MCAR, and

(3) µ either is known or can be properly estimated by missing-data analysis.

Asymptotic Distribution of the Spectral Estimator

In the complete-data case it can be shown (?) that

√
n
(
Ω̂ − Ω

) d−→ Nd×d

{
0, V (Ω)

}
, n −→ ∞ ,

where

V (Ω) =
d+ 2

d
·
{
(Id2 +Kd2)(Ω ⊗ Ω) − 2/d · (vec Ω)(vec Ω)T

}
,
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and Kd2 denotes the d2 × d2 commutation matrix (Schott, 1997, p. 277). Further, the

d2-dimensional vector vec Ω is obtained by stacking the columns of Ω on top of each other.

In the incomplete-data case logLs is a proper log-likelihood function under the conditions

given in Section 8.3.2 and so the spectral estimator turns out to be asymptotically unbiased,

normally distributed, and consistent. For calculating its asymptotic covariance matrix, the

Fisher information has to be calculated either by the score function or the Hessian of logLs.

The following proposition can be used for calculating the score function.

Proposition 8.6 Let v be a d-dimensional vector with unit length and Σ ∈ Rd×d positive-

definite. The partial derivative of logψ(v ; Σ) with respect to Σ is given by

∂ logψ(v ; Σ)

∂Σ
=

(
d · Σ−1vvTΣ−1

vTΣ−1v
− Σ−1

)
− 1

2
· diag

(
d · Σ−1vvTΣ−1

vTΣ−1v
− Σ−1

)
.

Proof. Frahm (2004, p. 70).

The Fisher information of an observed data point St = Xot/‖Xot‖ (t = 1, . . . , n) is given

by the
(
d+1
2

)
×
(
d+1
2

)
matrix

Ft(Σ) = E

{
vech

(
∂ logψ(Vt ; Σt)

∂Σ

)
vech

(
∂ logψ(Vt ; Σt)

∂Σ

)T
}
, (8.10)

where the vech-operator converts the lower triangular part of a symmetric matrix to a

column vector. Note that St refers only to the observed part of the d-dimensional random

vector Xt realized for t ∈ {1, . . . , n} and thus logψ(Vt ; Σt) is invariant against that part

of Σ which is not related to the available observation. That means there exists a dt × dt

matrix

∂ logψ(Vt ; Σt)

∂Σt
=

(
dt ·

Σ−1
t StS

T
t Σ−1

t

ST
t Σ−1

t St

− Σ−1
t

)
− 1

2
· diag

(
dt ·

Σ−1
t StS

T
t Σ−1

t

ST
t Σ−1

t St

− Σ−1
t

)
,

but here the d × d matrix ∂ logψ(Vt ; Σt)/∂Σ has to be considered. The latter contains

zeros according to each element of Σ which does not belong to the sub-matrix Σt .

Now
√
n
(
vech Σ̂ − vech Σ

) d−→ N(d+1
2 )

{
0,F(Σ)−1

}
, n −→ ∞ ,

where

F(Σ) := lim
n→∞

1

n

n∑

t=1

Ft(Σ)

denotes the asymptotic average Fisher information. However, in the following we will

use the vec-operator which converts the whole matrix to a column vector. This can be
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obtained after a preceding vech-operation by vec Σ = Dd vech Σ , where Dd represents

the d2 × d (d + 1)/2 duplication matrix (Schott, 1997, p. 283). Hence, the asymptotic

distribution can be written as

√
n
(
Σ̂ − Σ

) d−→ Nd×d

{
0,DdF(Σ)−1DT

d

}
, n −→ ∞ .

However, up to here we considered some artificial derivations since we missed to account

for the normalization Σ → Ω . Interestingly, such a normalization has a substantial impact

on the asymptotic distribution of Σ̂ (?Paindaveine, 2008). Following the arguments of ?

it can be concluded that

√
n
(
Ω̂ − Ω

) d−→ Nd×d

{
0,ΨDdF(Ω)−1DT

d ΨT
}
, n −→ ∞ ,

with Ψ := Id2 − (vec Ω)(vec Ω−1)T/d .

Note that in contrast to other M-estimators the asymptotic distribution of the spectral

estimator is only determined by the dimensions d1, . . . , dn of the observed data xo1, . . . , xon

and the true shape matrix Ω . More precisely, it is possible to assess the asymptotic

distribution of the spectral estimator without any parametrical assumption concerning the

generating distribution, i.e. the distribution of R and so there are no nuisance parameters

which have to be estimated for statistical inference. This is also confirmed by the results

presented in Section 8.5. That means the asymptotic covariance matrix of the spectral

estimator solely follows from the spectral estimate itself which is an important advantage

compared to other M-estimators.

From Section 8.3.2 it becomes clear that under the MCAR assumption both the score func-

tions and the Hessians belonging to Ls(Σ ;m, v1, . . . , vn) and Ls(Σ ; v1, . . . , vn) correspond

to each other. For the application of large-sample theory in the context of missing data

we follow the arguments given by Kenward and Molenberghs (1998) as well as Schafer and

Graham (2002). That is we suggest to estimate the Fisher information in a nonparamet-

ric way by the observed data rather than calculating the expectations given by Eq. 8.10

analytically or numerically. Hence, an appropriate estimate for Ft(Ω) is

F̂t

(
Ω̂
)

= vech

(
∂ logψ(vt ; Ω̂t)

∂Ω

)
vech

(
∂ logψ(vt ; Ω̂t)

∂Ω

)
T

,

where vt can be replaced by the observed data point st = xot/‖xot‖ and Ω̂t is the part of

Ω̂ which is related to that observation. The asymptotic average Fisher information can be

consistently estimated by

F̂
(
Ω̂
)

:=
1

n

n∑

t=1

F̂t

(
Ω̂
)
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and so a large-sample approximation is given by

√
n
(
Ω̂ − Ω

)
∼̇ Nd×d

{
0, Ψ̂Dd F̂

(
Ω̂
)−1

DT

d Ψ̂T
}
,

where Ψ̂ := Id2 −
(
vec Ω̂

)(
vec Ω̂−1

)T
/d .

8.4. Numerical Implementation

In the following it is assumed that there exists a positive-definite matrix Ω̂ which maximizes

the observed-data likelihood function given by (8.8). A necessary condition for the existence

under a monotone missingness pattern can be found later on in Theorem 8.8. Note that

the dispersion matrix Σ is symmetric. This is the reason why the main diagonal has to

be subtracted in Proposition 8.6. Since the set of all symmetric positive-definite matrices

with unit determinant is open, Ω̂ is a stationary point of the observed-data log-likelihood

function (8.9) and the main diagonal part from Proposition 8.6 can be omitted. It follows

that the log-likelihood equation can be written as

n∑

t=1

[
dt ·

Ω̂−1
t sts

T
t Ω̂−1

t

sTt Ω̂−1
t st

]
−

n∑

t=1

[
Ω̂−1

t

]
= 0 . (8.11)

As already mentioned in Section 8.3.2, since ∂ logLs/∂Σ is a d × d matrix, each dt × dt

matrix

dt ·
Ω̂−1

t sts
T
t Ω̂−1

t

sTt Ω̂−1
t st

and Ω̂−1
t

in Eq. 8.11 has to be inflated by zeros according to the positions of Ω̂ which do not belong

to Ω̂t such that the aforementioned dt × dt matrices become the d× d matrices
[
dt ·

Ω̂−1
t sts

T
t Ω̂−1

t

sTt Ω̂−1
t st

]
and

[
Ω̂−1

t

]
.

Now define a function F : Pd → Rd×d, where Pd denotes the set of all symmetric and

positive-definite d× d matrices, by

F (Σ) := Σf(Σ)Σ ,

where

f(Σ) :=
n∑

t=1

[
dt ·

Σ−1
t sts

T
t Σ−1

t

sTt Σ−1
t st

]
−

n∑

t=1

[
Σ−1

t

]
(8.12)

for all Σ ∈ Pd. The spectral estimator Ω̂ corresponds to a fixed-point solution of

G(Σ) := Σ + αF (Σ) = Σ , (8.13)
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where 0 < α ≤ 1/n . The next proposition guarantees that not only Σ but also G(Σ) is

positive-definite if the random vector X is continuously distributed.

Proposition 8.7 Let x1, . . . , xn be a realized sample of independent copies of a d-dimen-

sional centered random vector X possessing a continuous distribution on Rd. Further, let

xo1, . . . , xon be the corresponding sample of observations following an arbitrary missingness

pattern. Denote the number of complete observations by m ≤ n and consider the map

G(Σ) = Σ + αF (Σ),

where Σ is a symmetric and positive-definite d×d matrix and 0 < α ≤ 1/n . If n ≥ m ≥ d ,

the d× d matrix G(Σ) is symmetric and positive-definite, too.

Proof. Since the data are continuously distributed and m ≥ d , the d× d matrix

αΣ

(
n∑

t=1

[
dt ·

Σ−1
t sts

T
t Σ−1

t

sTt Σ−1
t st

])
Σ

is positive-definite almost surely. Hence, it suffices to prove that

Σ − 1

n
· Σ
(

n∑

t=1

[
Σ−1

t

]
)

Σ =
1

n

n∑

t=1

(
Σ − Σ

[
Σ−1

t

]
Σ
)

(8.14)

is positive-semidefinite. Note that without loss of generality

Σ − Σ
[
Σ−1

11

]
Σ =


Σ11 Σ12

Σ21 Σ22


−


Σ11 Σ12

Σ21 Σ21Σ
−1
11 Σ12


 =


0 0

0 Σ22 − Σ21Σ
−1
11 Σ12


 .

Since Σ is positive-definite the remaining Schur complement is positive-definite, too, i.e.

the matrix given by Eq. 8.14 is positive-semidefinite.

Note that in the complete-data case it follows that

G(Σ) =
d

n

n∑

t=1

sts
T
t

sTt Σ−1st

by setting α = 1/n and so the fixed-point problem given by (8.13) is equivalent to (8.6), i.e.

finding Tyler’s M-estimator. According to Tyler’s fixed-point algorithm already discussed

in Section 8.3.1, some initial value Σ(0) has to be chosen. In the next step calculate

Σ(1) = Σ(0) + αF (Σ(0))

and substitute Σ(0) by Σ(1), etc. Hence, our fixed-point algorithm is given by the sequence

Σ(i+1) = Σ(i) + αF (Σ(i)) , i = 0, 1, . . . . (8.15)

178



Chapter 8. Distribution-Free Shape Matrix Estimation for Incomplete Data

After performing a sufficiently large number N of iterations, the spectral estimate can be

approximated by

Ω̂ ≈
Σ(N)

(det Σ(N))1/d
.

The initial value can be chosen as Σ(0) = Id and for minimizing the number of iterations it

is recommended to take the upper bound α = 1/n . In the following we will concentrate on

the numerical evaluation of f(Σ(i)) and for notational convenience we write fi ≡ f(Σ(i)).

Beforehand it is worth to point out that any observation xt = 0 ∈ Rd or xt ∈ R should

be discarded. The former argument is clear from the preceding discussion and the latter

argument follows immediately by noting that
[
dt ·

Σ−1
t sts

T
t Σ−1

t

sTt Σ−1
t st

]
=
[
Σ−1

t

]

in case st = ±1 . That means univariate data do not contain any valuable information

for solving the log-likelihood equation and in the following n shall quantify the number of

useful observations.

If there are many observations sharing the same missing components, these observations

should be put together. This holds especially if the missingness pattern is monotone. Then

the matrix Σ−1
t in Eq. 8.12 has to be calculated only once for all observations possessing

the same missingness. However, from a numerical perspective it is rather inefficient to

compute the inverse Σ−1
t if dt is large, particularly if there are many observations with

only a few missing values. If there are, e.g., 1000 realizations of a 100-dimensional random

vector with 10% of its components missing at random, the inverse of a 90×90 sub-matrix of

Σ has to be computed for each realization. Suppose that each inverse could not be re-used,

since if the missingness pattern is irregular it is unlikely that two realizations share the

same missingness. However, once the full inverse of Σ has been computed, it can be used

for evaluating the inverses of the sub-matrices Σt (t = 1, . . . , n) more efficiently. Consider

the partition

Σ−1 =


A BT

B C


 ,

where the dt × dt matrix A occupies the same range in Σ−1 as Σt in Σ . Then the inverse

of Σt can be calculated by the Schur complement

Σ−1
t = A−BTC−1B .

That means instead of calculating the inverse of the dt × dt matrix Σt, only the inverse

of the (d − dt) × (d − dt) matrix C has to be calculated. In the case discussed above,
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this corresponds to the solutions of 10 × 10 rather than 90 × 90 linear systems for 1000

observations. Of course, this is only recommended for each observation where d − dt , i.e.

the number of missing values is small, since otherwise it could be more efficient to calculate

the inverse of Σt by another method (see below).

If the missingness pattern is monotone, we suggest to use the sweep operator (Beaton,

1964, Goodnight, 1979) for calculating the inverses of the sub-matrices. A sweep operation

on a symmetric and positive-definite d× d matrix Σ is a simple manipulation of Σ (Little

and Rubin, 2002, p. 221) which produces another symmetric and positive-definite matrix.

There also exists an inverse function which can be used for reversing a previous sweep

operation. By applying the sweep and the reverse sweep operator iteratively, the inverse of

a sub-matrix Σt can be efficiently calculated from the inverse of another similar sub-matrix

of Σ which is already given by a preceding step.

The fixed-point iteration scheme given by (8.15) always produces symmetric matrices,

analytically, but our own experience shows that the numerical computation of inverses (or,

in a more efficient implementation, solutions of linear systems) leads to roundoff errors

that make the iterations slightly asymmetric. The asymmetric component is tiny in the

beginning, but can blow up especially in higher dimensions after 50 or 100 iterations. This

can be easily avoided by symmetrizing fi → (fi + fT

i )/2 in every iteration.

Of course, the fixed-point algorithm given by (8.15) can only work if the missingness is not

too strong. In the following we give a necessary condition for the existence of the spectral

estimate provided the missingness pattern is monotone.

Theorem 8.8 Let x1, . . . , xn be a realized sample of independent copies of a d-dimensional

centered random vector X possessing an arbitrary distribution on Rd. Further, let xo1, . . . ,

xon be the corresponding sample of observations following a monotone missingness pattern.

Denote the number of complete observations by m ≤ n . Then the spectral estimate exists

only if n ≥ m ≥ d .

Proof. Suppose that the spectral estimate Ω̂ exists. Then Eq. 8.11 can be written as
n∑

t=1

[
Ω̂−1

t yty
T

t Ω̂−1
t

]
−

n∑

t=1

[
Ω̂−1

t

]
= 0 ,

where yt := (dt/x
T
otΩ̂

−1
t xot)

1/2 xot . Note that this corresponds to the log-likelihood equa-

tion for centered and weighted observations y1, . . . , yn under the normal distribution as-

sumption. That means the spectral estimator can only exist for xo1, . . . , xon if the Gaussian
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estimate exists for y1, . . . , yn . The latter can be obtained by factorizing the observed-data

likelihood function (Schafer, 1997, Ch. 6.5.1) and following the method described by Schafer

(1997, Ch. 6.5.2) where µ has to be set to zero. Due to elementary properties of the sweep

operator it becomes clear that the first sweep operation leads to a singular Schur com-

plement in case m < d . Hence, after finishing all necessary sweep operations the final

reverse sweep operation cannot produce a nonsingular covariance matrix estimate. That

is Ω̂ cannot exist which contradicts the assertion at the beginning of the proof.

In a separate work the authors will discuss necessary and sufficient conditions for the exis-

tence of the spectral estimator given more general missingness patterns. The mathematical

details are rather complicated and would go beyond the scope of the present work. How-

ever, for convenience we would like to mention that for the existence of a spectral estimate

it is sufficient to have a continuous distribution on Rd possessing an arbitrary missingness

pattern with m > d complete observations.

8.5. Simulation Study

In the following simulation study the spectral estimator is compared with the shape matrix

estimator based on the normal distribution assumption. More precisely, if X1, . . . ,Xn is a

sample of a d-dimensional centered random vector X then

Σ̂ :=
1

n

n∑

t=1

XtX
T

t

represents the sample covariance matrix and Ω̂G := (det Σ̂)−1/dΣ̂ denotes the corresponding

Gaussian shape matrix estimator for the complete-data case. In the incomplete-data case

we will use the same symbol for the observed-data ML-estimator based on the normal

distribution assumption presented by Little and Rubin (2002, Ch. 7.4) as well as Schafer

(1997, Ch. 6.5). As already mentioned, we prefer to calculate the observed-data ML-

estimator by the factored likelihood method since this leads to a fast and reliable algorithm.

From now on the spectral estimator will be denoted by Ω̂sp, whereas Ω̂ represents an

arbitrary shape matrix estimator. We distinguish between situations where the location

vector µ is known and where it is unknown. In the complete-data case µ is estimated

by the sample mean vector and in the incomplete-data case the corresponding estimate is

provided by the factored likelihood method. These estimates are used both for calculating

the Gaussian as well as the spectral estimate.
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The bias of a shape matrix estimator is defined as the d× d matrix

B
(
Ω̂
)

:= E
(
Ω̂ − Ω

)
.

The estimator Ω̂ is called unbiased if each element of B
(
Ω̂
)

corresponds to zero. However,

the following tables contain only the number

b(Ω̂) :=
1

d2

d∑

i,j=1

∣∣B
(
Ω̂
)
ij

∣∣

for the shape matrix estimators which have been taken into consideration.

Further, the mean squared error (MSE) of the corresponding estimator is given by the

scalar

MSE
(
Ω̂
)

:= E

[
tr
{
(Ω̂ − Ω)(Ω̂ − Ω)T

}

d2

]
.

This can be interpreted as the average mean squared error of all components of Ω̂ .

The shape matrix estimators Ω̂G and T or Ω̂sp are compared by the relative efficiencies

reT/G :=
MSE(Ω̂G)

MSE(T )
and re sp/G :=

MSE(Ω̂G)

MSE(Ω̂sp)
.

The simulation study is used to test against the null hypothesis H0 : B(Ω̂) = 0 (that means

the considered shape matrix estimator is unbiased) by Hotelling’s T 2 as well as

H0 : reT/G ≤ 1 or H0 : re sp/G ≤ 1

(that is T or Ω̂sp are not more efficient than Ω̂G) by applying the delta method.

8.5.1. Complete-Data Case

For investigating the large-sample properties of the shape matrix estimators we simulate

1000 samples containing 10000 independent copies of a 3-dimensional t-distributed random

vector with location vector µ = 0 , dispersion matrix Σ = I3 , and ν = 2, 3, 5, 10,∞ degrees

of freedom. Note that for ν = ∞ the data follow a joint normal distribution. Moreover,

we consider 3 additional scenarios where the normal distributions are contaminated at

(10, 10, 10) ∈ R3. We add an amount of ⌊nα/(1 − α)⌋ contaminating data to the sample.

The number α will be referred to as the rate of contamination and in the simulation study

we consider α = 0.01, 0.05, 0.1. That means there are 8 scenarios t2, t3, t5, t10, t∞, c1%, c5%

and c10% for each situation where µ is either known or unknown.
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Table 8.1.: Simulation study for the complete-data case where tν indicates a 3-dimensional

t-distribution with ν degrees of freedom and t∞ stands for a 3-dimensional normal distri-

bution. Further, cα indicates a contaminated 3-dimensional normal distribution where α is

the rate of contamination. The standard errors are given in parentheses and bold numbers

are significant on a 95%-level.

µ unknown t2 t3 t5 t10 t∞ c1% c5% c10%

b
�bΩG

�
.0642 .0037 .0006 .0003 .0002 .1409 .2061 .2287

b
�
T
�

.0004 .0003 .0003 .0001 .0002 .0033 .0082 .0142

MSE
�bΩG

�
.5867
(.1690)

.0091
(.0029)

.0003
(.0000)

.0001
(.0000)

.0001
(.0000)

.0351
(.0016)

.1085
(.0100)

.1646
(.0206)

MSE
�
T
�

.0002
(.0000)

.0002
(.0000)

.0002
(.0000)

.0002
(.0000)

.0002
(.0000)

.0001
(.0000)

.0008
(.0002)

.0055
(.0019)

re T/G 3075.6
(844.33)

48.315
(15.422)

1.6756
(.0700)

.8439
(.0174)

.6301
(.0115)

488.04
(13.597)

136.67
(19.655)

29.8451
(7.6420)

µ known t2 t3 t5 t10 t∞ c1% c5% c10%

b
�bΩG

�
.0607 .0030 .0006 .0003 .0004 .1413 .2079 .2317

b
�
T
�

.0003 .0006 .0003 .0004 .0003 .0027 .0045 .0054

MSE
�bΩG

�
.7080
(.3054)

.0075
(.0015)

.0003
(.0000)

.0001
(.0000)

.0001
(.0000)

.0354
(.0016)

.1123
(.0106)

.1746
(.0229)

MSE
�
T
�

.0002
(.0000)

.0002
(.0000)

.0002
(.0000)

.0002
(.0000)

.0002
(.0000)

.0001
(.0000)

.0001
(.0000)

.0003
(.0001)

re T/G 3784.9
(1635.6)

40.889
(8.1236)

1.7053
(.0937)

.7975
(.0166)

.5952
(.0113)

580.11
(16.709)

928.82
(46.853)

669.80
(65.748)

The results are given in Table 8.1. If the data are uncontaminated only the Gaussian

estimator turns out to be significantly biased for small values of ν, whereas Tyler’s M-

estimator seems to be unbiased (except for the case where µ is known and the t-distribution

has 3 degrees of freedom). In contrast, for contaminated data a significant bias is present

in every scenario. However, due to its robustness property, Tyler’s M-estimator is much

more efficient than the Gaussian estimator if the data are contaminated but its relative

efficiency generally decreases if the rate of contamination increases.

Tyler’s M-estimator is more efficient than the Gaussian one as long as ν < 10 or the

data are contaminated. Note that estimating the unknown location vector has no essential

impact on the large-sample properties of T and Ω̂G if the data are uncontaminated. In

contrast, for contaminated data the relative efficiency of Tyler’s M-estimator can increase

substantially if µ is known. Further, the MSE of T does not depend on the parameter ν of

the t-distribution since T is distribution-free if the data are uncontaminated. In that case
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Table 8.2.: Simulation study for the incomplete-data case where the missing data are

MCAR. The symbols and numbers can be interpreted as in Table 8.1.

µ unknown t2 t3 t5 t10 t∞ c1% c5% c10%

b
�bΩG

�
.0704 .0088 .0006 .0003 .0006 .6228 1.9553 3.3099

b
�bΩsp

�
.0006 .0008 .0004 .0005 .0009 .0435 .4356 1.8112

MSE
�bΩG

�
.5538
(.1760)

.0167
(.0046)

.0008
(.0000)

.0004
(.0000)

.0003
(.0000)

.4387
(.0003)

3.9139
(.0030)

11.067
(.0082)

MSE
�bΩsp

�
.0006
(.0000)

.0005
(.0000)

.0005
(.0000)

.0005
(.0000)

.0005
(.0000)

.0035
(.0000)

.2189
(.0004)

3.3623
(.0046)

re sp/G 1006.8
(309.27)

30.743
(8.4188)

1.5640
(.0644)

.7552
(.0191)

.5518
(.0110)

125.95
(1.4111)

17.883
(.0313)

3.2916
(.0036)

µ known t2 t3 t5 t10 t∞ c1% c5% c10%

b
�bΩG

�
.0717 .0056 .0010 .0007 .0007 .6291 2.0295 3.5667

b
�bΩsp

�
.0006 .0008 .0007 .0011 .0012 .0348 .1956 .4735

MSE
�bΩG

�
.7958
(.2877)

.0099
(.0015)

.0008
(.0000)

.0004
(.0000)

.0003
(.0000)

.4472
(.0004)

4.2120
(.0032)

12.8365
(.0091)

MSE
�bΩsp

�
.0005
(.0000)

.0005
(.0000)

.0005
(.0000)

.0005
(.0000)

.0005
(.0000)

.0025
(.0000)

.0522
(.0002)

.2602
(.0005)

re sp/G 1523.2
(548.31)

19.278
(2.8462)

1.5158
(.0574)

.7379
(.0180)

.5476
(.0115)

181.20
(2.5016)

80.685
(.2573)

49.3280
(.0897)

its asymptotic relative efficiency can be calculated analytically (?) by

lim
n→∞

reT/G =
d

d+ 2
· ν − 2

ν − 4
, ν > 4 . (8.16)

This is fairly reflected by the relative efficiencies in t5, t10, and t∞ which are presented

in Table 8.1. Eq. 8.16 states that the relative efficiency of T depends on the number of

dimensions and whenever d > ν−4 , Tyler’s M-estimator is more efficient than the Gaussian

estimator. Thus if the number of dimensions is large enough, T should be preferred even

if the data apparently follow a multivariate normal distribution.

8.5.2. Incomplete-Data Case

Again we simulate 1000 samples containing 10000 independent copies of a 3-dimensional

t-distributed random vector using the same parameters as in Section 8.5.1 and we also add

some contaminating data as described in the previous section. For the simulation study

we consider the three different missingness mechanisms MCAR, MAR, and NMAR. Let x

(3 × n) be a realized sample. Some of the data in the first row of x are missing. This is

denoted by mt = 1 if x1t is missing and mt = 0 if it is observed (t = 1, . . . , n). The missing
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data are MCAR if the missingness pattern M = (m1, . . . ,mn) is stochastically independent

of the sample. In contrast, if the distribution of M depends only on the observed part of

x , the missing data are MAR and if the missingness is determined by the unobserved part

of the sample, the missing data are NMAR.

For the MCAR case we simulate a 1×n vector Y which is stochastically independent of the

sample. Each component of Y is Student t-distributed with ν degrees of freedom (denoted

by Yt ∼ tν) and Y1, . . . , Yn are mutually independent. The element x1t is considered as

missing whenever yt < t−1
ν (0.75). Further, for the MAR case x1t is missing if x2t <

t−1
ν (0.75) and for the NMAR case this element is unobserved whenever x1t < t−1

ν (0.75). So

approximately 75% of the uncontaminated data in the first row of x are missing for each

missingness mechanism. Table 8.2 contains the results of the MCAR case and, accordingly,

Table 8.3 and Table 8.4 report the outcomes of the MAR and NMAR case.

In the MCAR case the spectral estimator is not significantly biased (except for the case

where µ is known and the t-distribution has 10 degrees of freedom) provided the data are

uncontaminated. Once again the Gaussian estimator is significantly biased if ν is small.

For contaminated data the mean squared errors as well as the biases given in Table 8.1

and 8.2 are very different which indicates that the missing data effect has a substantial

impact on the shape matrix estimators. Note that for uncontaminated data the MSE of

the spectral estimator turns out to be constant for any ν > 0 (cf. Section 8.3.2). Although

the relative efficiencies of the spectral estimator are smaller in Table 8.2, in the MCAR

case the overall picture is not substantially different from the complete-data case which is

illustrated in Table 8.1.

If the missing data are MAR (see Table 8.3) the spectral estimator becomes biased in every

scenario. This is not surprising since in Section 8.3.2 it has been already mentioned that

the MCAR assumption is required when working with projected data. Also the Gaussian

estimator turns out to be biased whenever ν < ∞ (except for ν = 2 where the hypothesis

test probably has not enough power). Indeed, from missing-data analysis it is known that

the latter should be asymptotically unbiased if the missing data are MAR but here it is

presumed that the data follow a joint normal distribution. Otherwise the observed-data

ML-estimator may become biased and in fact this is indicated throughout our simulations

as long as the normal distribution assumption is not satisfied. However, if the missing

data are purely MAR, Table 8.3 shows that the spectral estimator generally is dominated

by the Gaussian one if the data are uncontaminated but it dominates the Gaussian one
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Table 8.3.: Simulation study for the incomplete-data case where the missing data are MAR.

The symbols and numbers can be interpreted as in Table 8.1.

µ unknown t2 t3 t5 t10 t∞ c1% c5% c10%

b
�bΩG

�
.0809 .0585 .0311 .0142 .0010 .7780 2.2971 3.8509

b
�bΩsp

�
.0605 .0862 .0945 .0985 .1025 .3214 .5996 2.1882

MSE
�bΩG

�
1.2978
(.9681)

.0311
(.0062)

.0049
(.0002)

.0013
(.0000)

.0006
(.0000)

.7060
(.0007)

5.4421
(.0044)

15.069
(.0114)

MSE
�bΩsp

�
.0788
(.0098)

.0379
(.0060)

.0292
(.0001)

.0308
(.0001)

.0328
(.0001)

.2191
(.0006)

.4388
(.0009)

4.9420
(.0090)

re sp/G 16.471
(12.4244)

.8193
(.0884)

.1673
(.0061)

.0437
(.0009)

.0175
(.0005)

3.2218
(.0063)

12.401
(.0205)

3.0492
(.0047)

µ known t2 t3 t5 t10 t∞ c1% c5% c10%

b
�bΩG

�
.1301 .0564 .0310 .0145 .0004 .5977 1.9569 3.4417

b
�bΩsp

�
.0847 .0903 .0949 .0983 .1019 .1335 .2884 .5976

MSE
�bΩG

�
6.7343
(5.8811)

.0189
(.0008)

.0039
(.0001)

.0010
(.0000)

.0002
(.0000)

.4086
(.0004)

3.9213
(.0028)

11.959
(.0085)

MSE
�bΩsp

�
.0227
(.0001)

.0257
(.0001)

.0283
(.0001)

.0301
(.0001)

.0323
(.0001)

.0314
(.0001)

.1017
(.0003)

.4206
(.0009)

re sp/G 296.72
(259.12)

.7374
(.0333)

.1391
(.0026)

.0338
(.0007)

.0076
(.0002)

13.016
(.0383)

38.555
(.0950)

28.434
(.0518)

if they are contaminated. Hence, the Gaussian estimator generally is to be preferred if

the data are uncontaminated and the missing part is MAR but not MCAR. In the NMAR

case (see Table 8.4) the Gaussian estimator is biased even if the data are jointly normally

distributed. Like in the MAR case, the Gaussian estimator should be preferred whenever

the data are uncontaminated (except for very heavy tails) but the spectral estimator is

more efficient if they are contaminated.

8.6. Conclusion

We presented a distribution-free approach for estimating the shape matrix of incomplete

multivariate data leading to the spectral estimator. This is particularly appropriate if the

data stem from the class of generalized elliptical distributions including both the class of el-

liptically symmetric and skew-elliptical distributions. We showed that in the complete-data

case the spectral estimator corresponds to Tyler’s M-estimator whereas in the incomplete-

data case it can be represented as an observed-data ML-estimator. In both cases the

estimator is invariant under arbitrary changes of the generating variate of the generalized
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Table 8.4.: Simulation study for the incomplete-data case where the missing data are

NMAR. The symbols and numbers can be interpreted as in Table 8.1.

µ unknown t2 t3 t5 t10 t∞ c1% c5% c10%

b
�bΩG

�
.0635 .0476 .1139 .1614 .2029 .7969 2.4495 4.1247

b
�bΩsp

�
.0056 .0922 .1456 .1781 .2063 .2184 .6145 2.3627

MSE
�bΩG

�
.6388
(.3768)

.1617
(.1395)

.0404
(.0003)

.0789
(.0002)

.1236
(.0002)

.6890
(.0006)

6.1380
(.0047)

17.268
(.0131)

MSE
�bΩsp

�
.0015
(.0001)

.0269
(.0002)

.0645
(.0002)

.0956
(.0003)

.1279
(.0003)

.0901
(.0002)

.4203
(.0008)

5.7230
(.0078)

re sp/G 412.69
(221.09)

6.0198
(5.1941)

.6260
(.0035)

.8255
(.0021)

.9663
(.0016)

7.6431
(.0169)

14.602
(.0222)

3.0173
(.0033)

µ known t2 t3 t5 t10 t∞ c1% c5% c10%

b
�bΩG

�
.0827 .1051 .1027 .1008 .0985 .5399 1.7264 3.0425

b
�bΩsp

�
.1617 .1718 .1799 .1860 .1924 .2147 .2910 .3997

MSE
�bΩG

�
1.0266
(.4442)

.0504
(.0013)

.0409
(.0002)

.0390
(.0001)

.0371
(.0001)

.3635
(.0002)

3.0745
(.0019)

9.3694
(.0056)

MSE
�bΩsp

�
.1080
(.0003)

.1231
(.0003)

.1367
(.0003)

.1475
(.0004)

.1576
(.0004)

.1429
(.0003)

.1251
(.0002)

.2149
(.0004)

re sp/G 9.5069
(4.1142)

.4094
(.0109)

.2992
(.0014)

.2641
(.0008)

.2351
(.0005)

2.5436
(.0060)

24.567
(.0433)

43.609
(.0686)

elliptical distribution. That means the underlying mechanism which is responsible for out-

liers or clusters can be eliminated and our estimator becomes completely robust. We also

derived its asymptotic distribution under the MCAR assumption. An important argument

in favor of the spectral estimator is that if the data stem from a generalized elliptical

distribution, no nuisance parameters need to be estimated for assessing its asymptotic dis-

tribution and its asymptotic covariance matrix solely follows from the spectral estimate

itself. Moreover, we developed a fast algorithm for calculating the spectral estimate and

gave some practical advice for its numerical implementation. A simulation study for the

complete-data and the incomplete-data case reveals that for contaminated data the spec-

tral estimator should be always preferred. The same holds if the data are uncontaminated

but heavy-tailed and the missing part of the sample is MCAR. In contrast, if the uncon-

taminated data possess a moderate tail index and the number of dimensions is small, the

Gaussian approach seems to serve its purpose.
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In Chapter 1 I discussed the potential drawbacks of TDC estimation. It turned out that the

(semi-)parametric TDC estimators perform well if the underlying distribution or copula is

the right one. By contrast, their performance is very poor if the assumed model is wrong.

Hence, model risk is an inherent problem of TDC estimation. Further, the nonparametric

estimators exhibit a large bias in case of tail-independence.

In Chapter 2 I presented an alternative measure for the extremal dependence of financial

data, namely a conditional version of Spearman’s rho. This is based on a purely non-

parametric approach and so it is possible to avoid any kind of model misspecification. An

empirical study using daily returns of stocks contained in the DAX 30 revealed that there is

sufficient evidence to support the hypothesis of different degrees of monotone dependence

in bull and bear markets.

A numerical approach to incorporate the stylized facts of high-frequency financial data and

arbitrary prior information into portfolio optimization has been developed in Chapter 3.

It is characterized by rather weak assumptions about the underlying stochastic process. I

gave a practical example to demonstrate its applicability to real-world problems. The re-

sulting portfolios became well-diversified compared to the outcomes of traditional portfolio

optimization strategies.

Exact hypothesis tests for global and local minimum variance portfolios as well as their

small-sample distributions have been derived in Chapter 4. It has been shown that estima-

tion risk can be simply reduced by imposing linear constraints on the portfolio weights. All

the presented results hold in small samples, which is an important fact since large-sample

approximations fail if the sample size is large but the number of observations relative to

the number of assets is small.

In Chapter 5 I presented two shrinkage estimators for the GMVP that dominate the tra-

ditional estimator. Their small-sample and their large-sample properties alike have been

189



Summary

investigated. The estimators considerably reduce the out-of-sample variance of the port-

folio return compared to the traditional estimator, especially if the asset universe is large.

In addition, I provided a hypothesis test to decide whether one should invest in a portfolio

based on estimators for the GMVP or in the naive portfolio.

I presented a hypothesis test for the best investment strategy in Chapter 6 and demon-

strated the test by an application to financial data. For this purpose I generalized the

Jobson-Korkie-Memmel test considering ergodic stationary stochastic processes satisfying

Gordin’s condition. It turned out that ignoring the stylized facts of empirical finance can

lead to wrong decisions.

In Chapter 7 I derived the joint asymptotic distributions of robust estimators for shape

matrices and their associated scales. I also generalized an important result from local

asymptotic normality theory. The given instruments are applicable to a wide range of

problems in multivariate analysis such as principal components analysis, canonical corre-

lation analysis, linear discriminant analysis, and multivariate regression.

Finally, in Chapter 8 I presented a distribution-free approach for estimating the shape

matrix if the data are incomplete. I showed that in the complete-data case the resulting

estimator corresponds to Tyler’s M-estimator, whereas in the incomplete-data case it is

an ML-estimator. In both cases the estimator is invariant under arbitrary changes of the

generating variate of a generalized elliptical distribution. I also derived its asymptotic

distribution and developed a fast algorithm for calculating the desired estimate.
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