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Abstract

We extend the theory of M-estimation to incomplete and dependent multivariate data. ML-

estimation can still be considered a special case of M-estimation in this context. In order to

guarantee the consistency of an M-estimator, the unobserved data must be missing completely

at random but not only missing at random, which is a typical assumption of ML-estimation.

We show that the weight functions for scatter must satisfy a critical scaling condition, which

is implicitly fulfilled by the Gaussian and Tyler’s weight function. We generalize this result

by introducing the class of power weight functions. The aforementioned weight functions

represent two extreme examples of a power weight function. A simulation study confirms our

theoretical findings. If the data are heavy tailed or contaminated, the M-estimators turn out

to be favorable compared to the ML-estimators based on the normal-distribution assumption.

Keywords: Dependent data; Incomplete data; Location; M-estimation; Missing data; Scatter;

Spatial data; Time-series data.

* Phone: +49 40 6541-2791, e-mail: Gabriel.Frahm@hsu-hh.de.
†Phone: +43 1 58801-10563, e-mail: Klaus.Nordhausen@tuwien.ac.at.
‡Phone: +358 2 333-5441, e-mail: Hannu.Oja@utu.fi.



Frahm, Nordhausen & Oja • M-Estimation with Incomplete and Dependent Multivariate Data

1. Motivation

In multivariate data analysis, practitioners often deal with high-dimensional, incomplete, serially

or spatially dependent, and heavy-tailed data that can even be contaminated by measurement

errors. For example, this is a typical situation in modern portfolio optimization (Markowitz, 1959,

1987), where it is a stylized fact that asset returns are not serially independent. However, the

aforementioned problems frequently occur in many other scientific disciplines like meteorology,

environmental sciences, life sciences, geophysics, signal and image processing, etc. The reason

for this might be attributed to modern computer networks, which lead to an enormous flood

of information. Nowadays, under the buzzword “big data,” people try to find significant and

useful patterns in large data sets. Hence, the development of appropriate statistical procedures

is highly relevant both from a practical and a theoretical point of view.

The robust-statistics literature regarding complete and independent data is overwhelming.

See, for example, the well-known textbooks of Hampel et al. (1986) and Maronna et al. (2006).

Robust estimation procedures for complete but dependent data are less widespread.1 We have

found only Gastwirth and Rubin (1975), which refers to univariate data, and Yuanxi (1994) in the

context of multivariate data. Robust procedures that are typically applied in time-series analysis,

such as HAC estimation and the stationary bootstrap (see, e.g., Hansen, 1992, Politis, 2003), aim

at computing the asymptotic covariance matrix or the standard error of some given estimator.

This is not the focus of our work. Indeed, nowadays missing-data analysis is a well-established

branch of statistics. Some very nice and exciting textbooks on that field are written by Little

and Rubin (2002) as well as Schafer (1997). However, most estimation procedures that are

presented in those textbooks are not robust, and the robust alternatives to the standard methods

of missing-data analysis that can be found in the literature typically presume that the data are

independent. In this work, we focus on multivariate data analysis. More precisely, we discuss

the estimation of location and scatter. Of course, this includes the univariate case.

Estimating location and scatter is an essential task of multivariate data analysis, but there

exist only a few contributions on robust analysis of incomplete multivariate data. For example,

Frahm and Jaekel (2010) generalize Tyler’s M-estimator for scatter (Tyler, 1987a) to the case of

incomplete data.2 Wang (1999) discusses M-estimation for censored data, whereas Danilov et al.

(2012) refer to S-estimation with incomplete data. Flossmann (2010) and Wooldridge (2007)

propose inverse probability weighting. This requires us to specify selection probabilities, which

might lead to inconsistent parameter estimates if the propensity model is misspecified. Other

authors focus on regression analysis (Boente et al., 2009, Han, 2014, Sued and Yohai, 2013) or

principal component analysis (Serneels and Verdonck, 2008). However, the general scope of

regression or principal component analysis seems to be quite different from ours.

The traditional estimation approach for location and scatter of incomplete multivariate data is

based on multiple imputation (Little and Rubin, 2002, Schafer, 1997). This estimation approach

1Of course, this assertion holds no longer true if we drop our restriction to robust statistics.
2Their estimator requires only the angular but not the radial part of elliptically distributed data to be independent.
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typically presumes that the data are multivariate normally distributed and so the resulting

estimators are not robust. For this reason, Branden and Verboven (2009), Hron et al. (2010) and

Templ et al. (2011) develop robust imputation algorithms. By contrast, Little (1988a) assumes

that the data are contaminated or multivariate t-distributed. He estimates location and scatter

by maximum likelihood, whereas Little and Smith (1987) propose an estimation method based

on imputation. Cheng and Victoria-Feser (2002) improve the algorithm used by Little and Smith

(1987) for high-dimensional data by applying high-breakdown estimators (e.g., Rousseeuw’s

minimum-volume ellipsoid estimator) and hybrid algorithms.3 Another promising alternative is

presented by Han (2016), who combines multiple imputation with inverse probability weighting.

All aforementioned contributions presume that the data are independent. By contrast, Palma

and del Pino (1999) consider incomplete (long-range) dependent data. However, they refer to

univariate time series and their methods are not robust. Although the given list of contributions

is not exhaustive, our observation is that most authors do not take serial or spatial dependence

into account and, at least in some cases, the scope of their contributions seems to be somewhat

limited. In our opinion, the main challenge for incomplete and dependent multivariate data

is not only to guarantee the consistency of the estimators but also to obtain their asymptotic

covariance matrices. Of course, this is an essential task if one is interested in confidence regions

or wants to conduct hypothesis tests. To the best of our knowledge, a general theory of M-

estimation with incomplete and dependent multivariate data is still missing. This work tries to

fill this gap. We demonstrate our method by deriving M-estimators for location and scatter. We

also conduct a simulation study in order to confirm our theoretical findings.

2. Notation and Definitions

Let X be a sample, i.e., an m ×n real-valued random matrix. For example, X may consist of m

attributes of n individuals at a specific point in time (cross-sectional data), of m attributes of a

specific individual at n points in time (time-series data), or of a specific attribute of m individuals

at n points in time (panel data). In the following, we assume without loss of generality that

X is a sample of cross-sectional data. Let R be a response indicator, i.e., an m ×n matrix of

Bernoulli variables. It indicates which part of X is missing (0) and which one is observed (1).

As is usual in the statistics literature, random quantities are denoted by capital letters, whereas

their realizations are symbolized by small letters. For example, x and r are realizations of the

random matrices X and R, respectively. This means that x is an m ×n matrix of real numbers

and r is an m ×n matrix of zeros and ones.

The components of X and R may depend on each other. Let Xi and Ri be the i th column

of X and R, respectively.4 The joint probability distribution of Xi and Ri is symbolized by f

3See also Copt and Victoria-Feser (2004), who propose a modified algorithm and use the orthogonalized Gnanadesikan-
Kettenring estimator as a starting point for an adapted S-estimator.

4The m-tuple Xi =
(
X1i , X2i , . . . , Xmi

)
denotes an m-dimensional column vector and thus X = [

X1 X2 · · · Xn
]

is an
m ×n random matrix. For this reason, we have that X ′

i =
[

X1i X2i · · · Xmi
] 6= (

X1i , X2i , . . . , Xmi
)

for m > 1.
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with f (xi ,ri ;θ) = f (xi ;θ) f (ri |Xi = xi ;θ) (i = 1,2, . . . ,n), where θ ∈ Θ ⊆ Rp is some unknown

parameter and Θ is an open subset of Rp .5 The distribution of Xi can either be discrete or

continuous, whereas the distribution of Ri is always discrete by definition. It is assumed that the

joint distribution is identical for each individual, i.e., f (xi ,ri ;θ) = f (x j ,r j ;θ) for i , j = 1,2, . . . ,n.

Let xr be the observed and xr̄ the missing data of all individuals. This means that r̄ = 1− r ,

where 1 denotes an m ×n matrix of ones. Further, let ri be the response, xri the observed, and

xr̄i the missing data of Individual i . Actually, xri is a shorthand notation for xri i , i.e., it denotes

the observed components of the vector xi .

The joint distribution of XRi and Ri is

f (xri ,ri ;θ) =
∫

f (xri , xr̄i ,ri ;θ)d xr̄i

=
∫

f (xri , xr̄i ;θ)︸ ︷︷ ︸
= f (xi ;θ)

f (ri |Xri = xri , X r̄i = xr̄i ;θ)︸ ︷︷ ︸
= f (ri |Xi=xi ;θ)

d xr̄i . (1)

Further, we often encounter the conditional distribution f (ri |Xri = xri ;θ). This can be inter-

preted as the probability that Individual i provides the response ri given that his observed data

are xri . Here, the response of Individual i , i.e., ri , is considered fixed.

In the following, we use the typical abbreviations “ML” for maximum likelihood and “M” for

maximum-likelihood type. Suppose that we want to estimate the unknown parameter θ by ML.

The problem is that we can observe only xr and r . Thus, our (composite) likelihood is

L(θ; XR ,R) =
n∏

i=1
f (XRi ,Ri ;θ). (2)

In many practical applications the random vectors (XR1 ,R1), (XR2 ,R2), . . . , (XRn ,Rn) are serially

or spatially dependent.6 This depends on whether we work with cross-sectional, time-series, or

panel data. Treating the data as independent is a standard approach in econometrics (Hansen,

1982). In general, the resulting ML-estimator is asymptotically inefficient but not necessarily

inconsistent. Of course, if the statistician knows the sort of serial or spatial dependence he or

she should take the dependence structure into consideration when estimating θ. In this work,

we do neither presume that the dependence structure is known nor that it is unknown. Our

primary focus is on consistency and robustness rather than asymptotic efficiency.

Typically, it is not possible to use the likelihood function L(· ; XR ,R). This is not because we

are unable to specify the distribution of Xi , i.e., f (xi ;θ). The problem is that we do not know

the distribution of Ri given Xi = xi , and so we cannot calculate f (xri ,ri ;θ) (see (1)). Indeed,

the dependence structure between Xi and Ri can be quite complicated. Of course, the same

holds true for the serial or spatial dependence structure. Here, we focus on the dependence

between Xi and Ri . Thus, we ignore the dependence between (Xi ,Ri ) and (X j ,R j ) for i 6= j . The

5For notational convenience we will omit the enumeration “i = 1,2, . . . ,n” in the subsequent analysis if it is clear from
the context that the given statement refers to each individual.

6More precisely, the joint distribution f (xr1 , xr2 , . . . , xrn ,r1,r2, . . . ,rn ;θ) does not correspond to
∏n

i=1 f (xri ,ri ;θ).
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distribution of Ri given Xi = xi is said to be the missingness mechanism of our experiment.

Estimating θ would be much easier if we could ignore the missingness mechanism and use

the observed-data likelihood (Schafer, 1997, p. 12)

L(θ; XR ) =
n∏

i=1
f (XRi ;θ), (3)

where f (xri ;θ) is the distribution of the subvector of Xi that is observed for Individual i . This is

possible if the so-called ignorability condition

f (ri |Xri = xri ;θ) = f (ri |Xri = xri ) (4)

is satisfied (Schafer, 1997, Section 2.3.1). Under these circumstances we have that f (xri ,ri ;θ) =
f (xri ;θ) f (ri |Xri = xri ) ∝ f (xri ;θ) and thus L(θ; XR ,R) ∝ L(θ; XR ).

The resulting ML-estimator θ̂ is the solution of the estimating equation

ΦR
(
θ̂; XR

)= 1

n

n∑
i=1

φRi

(
θ̂; XRi

)= 0 (5)

with φRi (θ; XRi ) = ∂ log f
(
XRi ;θ

)
/∂θ.7 Note that f

(
xri ;θ

)
denotes a marginal distribution. More

precisely, it is the distribution of the observed part of the random vector Xi , i.e., Xri . Whenever

we refer to the ML-estimator, we suppose that the ignorability condition is satisfied. In Section

3.1 we discuss typical assumptions that guarantee that this important requirement is met.

Let F be the joint cumulative distribution function of Xi and ϑ= T (F ) ∈Rq some parameter

such that

E
(
ψri (ϑ; Xri )

)= 0 (6)

for every fixed response ri that is possible for Individual i . Here ψri (· ; Xri ) is a function from Rq

to Rq . An M-estimator ϑ̂ is the solution of the estimating equation

ΨR
(
ϑ̂; XR

)= 1

n

n∑
i=1

ψRi

(
ϑ̂; XRi

)= 0, (7)

whereΨR
(
ϑ̂; XR

)
represents a (composite) score. Hence, the ML-estimating equation (5) is just

a special case of the M-estimating equation (7). In the ML-case we have that ψRi (ϑ; XRi ) =
∂ log f (XRi ;ϑ)/∂ϑ with ϑ≡ θ. If integral and differential are interchangeable, it turns out that

E
(
ψri (ϑ; Xri )

) = E

(
∂ log f (Xri ;ϑ)

∂ϑ

)
=

∫
∂ log f (xri ;ϑ)

∂ϑ
f (xri ;ϑ)d xri

=
∫
∂ f (xri ;ϑ)/∂ϑ

f (xri ;ϑ)
f (xri ;ϑ)d xri =

∂

∂ϑ

∫
f (xri ;ϑ)d xri =

∂

∂ϑ
1 = 0.

Hence, in the context of ML-estimation, the orthogonality condition (6) is always satisfied.

7We write “θ̂” instead of “θ̂n ” just to avoid an abundant use of subscripts.
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The asymptotic results presented later are based on the following regularity conditions:

A1: We have that

n
1
2

(
ΨR

(
ϑ; XR

)−E
(
ψRi (ϑ; XRi )

))−→ Nq (0,Fϑ) , n −→∞ ,

with

Fϑ = lim
n→∞

1

n

n∑
i , j=1

Cov
(
ψRi (ϑ; XRi ),ψR j (ϑ; XR j )

)
.

A2: The q ×q matrix ∂ΨR (ϑ; XR )/∂ϑ> is regular and it holds that

Hϑ = plim
n→∞

1

n

n∑
i=1

∂ψRi (ϑ; XRi )

∂ϑ> = E

(
∂ψRi (ϑ; XRi )

∂ϑ>

)

with det Hϑ 6= 0.

A3: We can apply the Taylor expansion

ΨR
(
ϑ̂; XR

)=ΨR
(
ϑ; XR

)+ ∂ΨR
(
ϑ; XR

)
∂ϑ>

(
ϑ̂−ϑ)+Op

(
n−1) .

In the ML-case, we denote Fϑ and Hϑ by Fθ and Hθ, respectively.

A1 and A2 can be motivated by ergodic theory. More precisely, in many practical applications

we observe an ergodic stationary process
{

Zt
}

with Zt ∼ Z . This means that for every measurable

function h with E
(|h(Z )|)<∞ we have that n−1 ∑n

t=1 h(Zt ) → E
(
h(Z )

)
as n →∞. The mode of

convergence may depend on the chosen framework, but at least the convergence is in probability.

We can assume also that the process
{

Zt
}

is strong mixing, which means that the one-sided

processes
{

Zt
}

t ≤0 and
{

Zt
}

t ≥ l (l ∈N) are asymptotically independent, i.e., they are independent

as the lag l between
{

Zt
}

t ≤0 and
{

Zt
}

t ≥ l grows to infinity. If the convergence rate is high enough,

n− 1
2
∑n

t=1

(
Zt −E(Zt )

)
is asymptotically normally distributed as n →∞. For more details on that

topic see, e.g., the review article by Bradley (2005).

The aforementioned properties are typically used in the context of time-series analysis, but

they have a meaningful interpretation also if we deal with cross-sectional data. In the latter

case, strong mixing says that the attributes of any individual become independent from the

attributes of another individual as the distance between the two individuals grows to infinity.

Here, the term “distance” can be understood, e.g., in a social or regional sense. Hence, the

regularity conditions A1 and A2 are satisfied if the process
{
ψRi (ϑ; XRi )

}
is strong mixing (with a

sufficiently high convergence rate) and
{
∂ψRi (ϑ; XRi )/∂ϑ>}

is ergodic stationary. We hope that

these minimal conditions are satisfied in most practical applications.

A3 is a typical regularity condition of asymptotic theory (van der Vaart, 1998, Ch. 5). There are

many possibilities to guarantee that the remainder of the Taylor expansion expressed by A3 is

bounded in probability at the rate n−1. Sufficient conditions can be found, e.g., in Huber (2003).

The same arguments can be applied to the incomplete-data case. In order to keep things as

general as possible we avoid any specific requirement on the score functionΨR (· ; XR ).

6
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3. Theory of M-Estimation for Incomplete and Dependent Data

3.1. Maximum-Likelihood Estimation

Now, we discuss typical assumptions for the ignorability condition (4). Indeed, we have that

f (ri |Xri = xri ;θ) =
∫

f (ri |Xri = xri , X r̄i = xr̄i ;θ)︸ ︷︷ ︸
= f (ri |Xi=xi ;θ)

f (xr̄i |Xri = xri ;θ)d xr̄i .

It is assumed that the missingness mechanism is not determined by the parameter θ.

DIS: f (ri |Xri = xri , X r̄i = xr̄i ;θ) = f (ri |Xri = xri , X r̄i = xr̄i ).

This is the so-called distinctness assumption. The missingness mechanism may be parametric,

too, but we are interested only in θ. Thus, we ignore the parameter in f (ri |Xi = xi ).

Additionally, it is typically assumed that, conditional on his observed data, the response of

Individual i does not depend on his missing data.

MAR: f (ri |Xri = xri , X r̄i = xr̄i ;θ) = f (ri |Xri = xri ;θ).

In this case, we say that xr̄ is missing at random. MAR only requires that the response of each

individual is conditionally independent of his own missing data. If MAR is violated, we say that

the unobserved data are not missing at random (NMAR).

From DIS and MAR it follows that f (ri |Xi = xi ;θ) = f (ri |Xi = xi ) = f (ri |Xri = xri ) and thus

f (ri |Xri = xri ;θ) =
∫

f (ri |Xri = xri ) f (xr̄i |Xri = xri ;θ)d xr̄i

= f (ri |Xri = xri )
∫

f (xr̄i |Xri = xri ;θ)d xr̄i = f (ri |Xri = xri ) .

This means that the ignorability condition is satisfied and so we can substitute (2) with (3).

The following interchangeability assumption is familiar in ML-theory.

INT: The integrals and differentials are twice interchangeable, i.e.,∫ ∫
∂ f (ri , xri ;θ)

∂θ
d xri dri = ∂

∂θ

∫ ∫
f (ri , xri ;θ)d xri dri

and ∫ ∫
∂2 f (ri , xri ;θ)

∂θ∂θ>
d xri dri = ∂

∂θ>

∫ ∫
∂ f (ri , xri ;θ)

∂θ
d xri dri .

The following proposition guarantees that the observed-data likelihood function given by (3)

leads to a consistent ML-estimator, provided DIS, MAR, and INT are satisfied.8

Proposition 1. Under the assumptions DIS, MAR, and INT the score functionΦR (· ; XR ) is Fisher

consistent for θ, i.e., E
(
φRi (θ; XRi )

)= 0.

We usually wish to guarantee also that θ̂ is asymptotically normally distributed after its usual

standardization. Asymptotic normality and efficiency are established by the following theorem.

8All proofs can be found in the appendix.
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Theorem 1. Under the assumptions A1–A3, DIS, MAR, and INT we have that

n
1
2
(
θ̂−θ)−→ Np

(
0, H−1

θ FθH−1
θ

)
, n −→∞ .

Moreover, if f (XR1 ;θ), f (XR2 ;θ), . . . , f (XRn ;θ) are mutually independent, it holds that

n
1
2
(
θ̂−θ)−→ Np

(
0,F−1

θ

)
, n −→∞ ,

and θ̂ is an asymptotically efficient estimator for θ.

3.2. Maximum-Likelihood-Type Estimation

Now, we aim at estimating the parameter ϑ= T (F ) by solving (7). Although E
(
ψri (ϑ; Xri )

) = 0

is satisfied by definition, it can happen that E
(
ψRi (ϑ; XRi )

) 6= 0. In this case, ΨR (· ; XR ) is not

Fisher consistent for ϑ. Hence, we need an appropriate regularity condition in the context of

M-estimation.

MCAR: f (ri |Xi = xi ;θ) = f (ri ;θ) .

This means that the response of Individual i must not depend both on his observed and on

his missing data.9 In this case, we say that xr̄ is missing completely at random. It is only required

that the response of each individual is independent of his own data.

Proposition 2. Under the assumption MCAR the score functionΨR (· ; XR ) is Fisher consistent for

ϑ, i.e., E
(
ψRi (ϑ; XRi )

)= 0 .

MCAR guarantees that the M-estimator ϑ̂ is consistent. Since the ML-estimator θ̂ is an M-

estimator, DIS is no longer required for the consistency of θ̂ if MCAR is satisfied.

MCAR implies MAR. However, MCAR alone does not guarantee the asymptotic efficiency of θ̂:

Besides A1–A3, Theorem 1 requires the additional assumptions DIS and INT.

DIS together with MAR implies that we can ignore the missingness mechanism when we

calculate the likelihood (2). However, this is not sufficient for the consistency of an M-estimator,

which can be seen as follows: Under the ignorability condition it turns out that

E
(
ψRi (ϑ; XRi )

)= ∫ ∫
f (ri |Xri = xri )ψri (ϑ; xri ) f (xri ;θ)d xri dri ,

but the term f (ri |Xri = xri ) is still determined by xri , unless the unobserved data are MCAR.

That is, it cannot be extracted from the inner integral in order to make use of the fact that∫
ψri (ϑ; xri ) f (xri ;θ)d xri = E

(
ψri (ϑ; Xri )

)= 0.

This means that we do not make the assumption MCAR just because it is a sufficient condition

for the consistency of an M-estimator. An M-estimator, in general, fails to be consistent if the

9Note that MCAR does not require DIS.

8



Frahm, Nordhausen & Oja • M-Estimation with Incomplete and Dependent Multivariate Data

missing data are MAR (but not MCAR). Hence, MCAR is a requirement that must not be ignored

in practical applications of missing-data analysis. This is because in many real-life situations the

parametric family of Xi is unknown to us and then applying an ML-estimator can be misleading.

The following theorem completes our general results on M-estimation with incomplete and

dependent data.

Theorem 2. Under the assumptions A1–A3 and MCAR we have that

n
1
2
(
ϑ̂−ϑ)−→ Nq

(
0, H−1

ϑ FϑH−1
ϑ

)
, n −→∞ .

Whether or not MCAR might be violated in a real-life situation often follows from practical

considerations. For example, if some respondents in a questionnaire refuse to answer a question

because the value of their answer would exceed a critical threshold, we can expect that MCAR

is violated. Before using an M-estimator for incomplete data, one can apply some test for the

null hypothesis that the missing data are MCAR. A well-known test for MCAR is presented by

Little (1988b). However, this requires the data to be multivariate normally distributed and thus

it is not robust. Jamshidian and Jalal (2010) propose two hypothesis tests for MCAR. One is

based on the normal-distribution assumption and the other is distribution-free.10 Listing and

Schlittgen (2003) present a nonparametric test for MCAR that combines several Wilcoxon rank

sum tests. Since MCAR is a relatively simple independence assumption, we can imagine several

other parametric and nonparametric testing procedures (see, e.g., Allison, 2001, p. 3).

Now, one might ask why not to use an ML-estimator right from the start. Indeed, M-estimation

requires MCAR, whereas ML-estimation needs only MAR. The problem is that Theorem 1 is valid

only if we know the parametric family of Xi . Unfortunately, if this is unknown to us, in general

we cannot guarantee that the ML-estimator θ̂ is consistent if the missing data are MAR. Hence,

it does not help much to conclude that MAR is weaker than MCAR if we use an ML-estimator

but our distributional assumption is wrong. Nonetheless, if the prerequisites of Theorem 2 are

satisfied, the ML-estimator θ̂ turns into an M-estimator ϑ̂. The technical details are elaborated

in the subsequent analysis, where we concentrate on the estimation of location and scatter.

4. Estimation of Location and Scatter

Let U be a d-dimensional random vector that is uniformly distributed on the unit hypersphere

Sd−1 = {
u ∈Rd : u>u = 1

}
. A random vector X is said to be elliptically distributed if and only if

there exist a vector µ ∈Rm , a matrixΛ ∈Rm×d , a non-negative random variable V , and a random

vector U ∼ Sd−1 being independent of V such that

X =µ+ΛV U .

10Jamshidian et al. (2014) provide an R package based on Jamshidian and Jalal (2010).

9
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The parameter µ is called the location vector, whereasΣ=ΛΛ> is referred to as the scatter matrix

of X . Further, V is the generating variate of X . This general approach allows us to consider factor

or seemingly unrelated regression models, etc. In our context, we have to guarantee only that

X −µ is not concentrated on a linear subspace of Rm . Hence, we assume that rankΛ= m ≤ d

and thus Σ> 0. The distribution of an elliptically distributed random vector depends onΛ only

through Σ=ΛΛ> and so we may choose d = m. Further, we assume that V has no atom at 0, i.e.,

P(V = 0) = 0. Now, let X1, X2, . . . , Xn be identically elliptically distributed.

4.1. Maximum-Likelihood Estimation

In the context of ML-estimation, we assume that X has an absolutely continuous distribution.

The density of X is f (x;µ,Σ) = detΣ− 1
2 g

(
(x −µ)>Σ−1(x −µ)

)
, where

g : ξ 7−→ Γ( m
2 )

π
m
2

fV 2 (ξ)ξ−
(

m
2 −1

)
, ξ> 0,

represents its density generator and fV 2 is the density function of V 2 (Tyler, 1982). For example,

V = (mFm,ν)
1
2 is the generating variate of the multivariate t-distribution with ν> 0 degrees of

freedom, where Fm,ν is an F -distributed random variable with m numerator and ν denominator

degrees of freedom. Correspondingly, its density generator reads

g : ξ 7−→ Γ( m+ν
2 )

Γ(ν2 )

1

(νπ)
m
2

(
1+ ξ

ν

)−m+ν
2

.

Another example is the multivariate power-exponential distribution, whose generating variate is

V =G
1

2γ

α,β with parameter γ> 0, where Gα,β is a Gamma-distributed random variable with shape

α= m
2γ and rate β= mΓ( m

2γ )/Γ((m +2)/(2γ)). Its density generator is

g : ξ 7−→ Γ( m
2 )

Γ( m
2γ )

γ

β
m
2γπ

m
2

exp

(
−ξ

γ

β

)
.

4.1.1. Complete-Data Case

First of all, we consider the complete-data case. As is shown in Section 4.1 of a 2004 Cologne

University PhD thesis by G. Frahm (http://kups.ub.uni-koeln.de/1319/), we have that

φµ(µ,Σ; Xi ) = ∂ log f (Xi ;µ,Σ)

∂µ
= w

(
(Xi −µ)>Σ−1(Xi −µ)

)
Σ−1(x −µ)

and

φΣ(µ,Σ; Xi ) = ∂ log f (Xi ;µ,Σ)

∂Σ
= Ai − 1

2
diag Ai

with

Ai = w
(
(Xi −µ)>Σ−1(Xi −µ)

)
Σ−1(Xi −µ)(Xi −µ)>Σ−1 −Σ−1,

10
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where w(ξ) =−2∂ log g (ξ)/∂ξ. In order to obtain the corresponding ML-estimators for µ and Σ

we have to solve the equation

Φ
(
µ̂, Σ̂; X

)= 1

n

n∑
i=1

φµ(µ̂, Σ̂; Xi
)

φΣ
(
µ̂, Σ̂; Xi

)
= 0.

This leads to the usual ML-estimating equations

0 = 1

n

n∑
i=1

w(ξi ) (Xi − µ̂)

Σ̂= 1

n

n∑
i=1

w(ξi ) (Xi − µ̂)(Xi − µ̂)>
(8)

with ξi = (Xi − µ̂)>Σ̂−1(Xi − µ̂).

4.1.2. Incomplete-Data Case

In the incomplete-data case, we can observe only xri for Individual i . We denote the number of

attributes that are observable for Individual i by mi . Actually, mi represents a realization of a

random variable Mi ∈
{

1,2, . . . ,m
}

. Since the number of observations, mi , may change with each

individual, it is not appropriate to choose the same weight function for i = 1,2, . . . ,n. Otherwise,

the resulting ML-estimators for µ and Σmight be inconsistent. Thus, we have

φµ,Ri (µ,Σ; XRi ) = ∂ log f (XRi ;µ,Σ)

∂µ

= wi
(
(XRi −µRi )>Σ−1

Ri
(XRi −µRi )

)〈
Σ−1

Ri
(XRi −µRi )

〉
and

φΣ,Ri (µ,Σ; XRi ) = ∂ log f (XRi ;µ,Σ)

∂Σ
=

〈
ARi −

1

2
diag ARi

〉
with

ARi = wi
(
(XRi −µRi )>Σ−1

Ri
(XRi −µRi )

)
Σ−1

Ri
(XRi −µRi )(XRi −µRi )>Σ−1

Ri
−Σ−1

Ri
.

Here, f (xri ;µ,Σ) is the density of Xri , i.e., of the observed part of Xi , which we express in terms

of the parameters µ and Σ. The symbols µri and Σri denote those parts of µ and Σ that are

relevant for calculating f (xri ;µ,Σ), i.e., that are associated with the response of Individual i .

For example, if we observe only the first component of Xi , i.e., X1i , we have that µri =µ1 and

Σri =Σ11. Since Xri is a subvector of Xi , the entries in µ and Σ that are not associated with any

response of Individual i are redundant for f (xri ;µ,Σ). Because we express the density of Xri in

terms of µ and Σ, we have to use the inflation operator 〈·〉. It inflates an array (“·”) by inserting

zeros at those parts of the array that are associated with the non-response of the correspond-

ing individual. In the previous example, ∂ log f (Xri ;µ,Σ)/∂µ is an m ×1 vector that contains

∂ log f (X1i ;µ,Σ)/∂µ1 at first place and zeros elsewhere (because ∂ log f (X1i ;µ,Σ)/∂µi = 0 for

11
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i = 2,3, . . . ,m), which can be written as 〈∂ log f (X1i ;µ,Σ)/∂µ1〉. Similarly, ∂ log f (Xri ;µ,Σ)/∂Σ is

an m ×m matrix that contains ∂ log f (X1i ;Σ)/∂Σ11 on the upper left and zeros elsewhere (be-

cause ∂ log f (X1i ;Σ)/∂Σi j = 0 for i = 2,3, . . . ,m or j = 2,3, . . . ,m), i.e., 〈∂ log f (X1i ;Σ)/∂Σ11〉. The

inflation operator 〈·〉 guarantees that the M-estimating equations are properly specified and

thus it is an essential instrument of our estimation approach.

Suppose that Xi = (Xri , X r̄i ) for the sake of simplicity but without loss of generality. Further,

we can assume thatΛ is a lower triangular matrix, so that

Λ=
[
Λ11 0

Λ21 Λ22

]

withΛ11 ∈Rmi×mi and Σri =Λ11Λ
>
11. According to Cambanis et al. (1981), we have the stochastic

representation Xri = µri +Λ11V β
1
2 U , where β∼ Beta

(
mi /2,(m −mi )/2

)
and U ∼ Smi−1. More-

over, V , β, and U are mutually independent. This means that Xri has not the same generating

variate as Xi . Hence, the corresponding weight function is wi : ξ 7→ −2∂ log gi (ξ)/∂ξ with

gi (ξ) = Γ( mi
2 )

π
mi

2

fV 2β(ξ)ξ−
(

mi
2 −1

)
, ξ> 0.

Now, the ML-estimators µ̂ and Σ̂ represent the solution of

Φ
(
µ̂, Σ̂; XR

)= 1

n

n∑
i=1

φµ,Ri

(
µ̂, Σ̂; XRi

)
φΣ,Ri

(
µ̂, Σ̂; XRi

)
= 0,

which leads to the ML-estimating equations

0 = 1

n

n∑
i=1

wi (ξi )
〈
Σ̂−1

Ri
(XRi − µ̂Ri )

〉
1

n

n∑
i=1

〈
Σ̂−1

Ri

〉
= 1

n

n∑
i=1

wi (ξi )
〈
Σ̂−1

Ri
(XRi − µ̂Ri )(XRi − µ̂Ri )>Σ̂−1

Ri

〉 (9)

with ξi = (XRi − µ̂Ri )>Σ̂−1
Ri

(XRi − µ̂Ri ), where µ̂Ri and Σ̂Ri are those parts of µ̂ and Σ̂ that are

associated with the observations of Individual i . Moreover, we have that wi (ξ) =−2∂ log gi (ξ)/∂ξ.

If the data are complete, (9) simplifies to (8).11

This completes the ML-estimation of location and scatter with incomplete and dependent

data. The next section proceeds further with M-estimation. We maintain our assumption that

Xi is elliptically distributed and still focus on µ and Σ.

11Actually, the weight function for Individual i depends on his number of observations, i.e., mi . However, we write
“wi ” instead of “wmi ” for notational convenience.

12
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4.2. Maximum-Likelihood-Type Estimation

4.2.1. Complete-Data Case

Now, we can drop the assumption that X has an absolutely continuous distribution. If the data

are complete, we have that

ψµ

(
µ,Σ; Xi

)= v
({

(Xi −µ)>Σ−1(Xi −µ)
} 1

2

)
Σ−1(x −µ)

and ψΣ
(
µ,Σ; Xi

)= Ai − 1
2 diag Ai with

Ai = w
(
(Xi −µ)>Σ−1(Xi −µ)

)
Σ−1(Xi −µ)(Xi −µ)>Σ−1 −Σ−1.

The corresponding score functionΨ is

Ψ
(
µ̂, Σ̂; X

)= 1

n

n∑
i=1

ψµ

(
µ̂, Σ̂; Xi

)
ψΣ

(
µ̂, Σ̂; Xi

)


and thus we obtain the M-estimating equations

0 = 1

n

n∑
i=1

v
(
ξ

1
2
i

)
(Xi − µ̂)

Σ̂= 1

n

n∑
i=1

w
(
ξi

)
(Xi − µ̂)(Xi − µ̂)>,

(10)

where v and w must satisfy a set of regularity conditions (see, e.g., Maronna, 1976).

The following weight functions for Σ can frequently be found in the literature (see, e.g., Tyler,

1987a, Kent and Tyler, 1991): The Gaussian weight function w : ξ 7→ 1, Tyler’s weight function

w : ξ 7→ m/ξ, Student’s weight function w : ξ 7→ (m +ν)/(ξ+ν) with ν > 0, and Huber’s weight

function

w : ξ 7−→
κ , ξ<λ
κλ/ξ , ξ≥λ ,

where the parameters κ> 0 and λ> 0 are such that E
(
w(χ2

m)χ2
m

)= m. See Dümbgen et al. (2015)

for a comprehensive survey on M-estimation of scatter.

In the context of M-estimation, the distribution of the generating variate V is unknown. Since

ΛV U = (σΛ)
(
V /σ

)
U for all σ> 0, we have a well-known identification problem regarding the

scatter matrixΣ. This problem is typically solved by the choice of the weight function w . Another

alternative is to require σ2(Σ) = 1, where σ2 represents a certain scale function. This point will

be detailed below. In fact, the population version of the second part of (10) reads

Σ= E
(
w

(
(X −µ)>Σ−1(X −µ)

)
(X −µ)(X −µ)>

)
.

From (X −µ)>Σ−1(X −µ) =V 2, (X −µ)(X −µ)> =V 2ΛUU>Λ>, and E(UU>) = Im/m it follows

13
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that

E
(
ϕ(V 2)

)= m, ϕ(ξ) = w(ξ)ξ. (11)

Hence, by applying the second M-estimating equation in (10), we implicitly assume that the

generating variate V satisfies the scaling condition (11). Condition C of Maronna (1976) usually

guarantees that there is no positive number σ 6= 1 such that E
(
ϕ(V 2/σ2)

) = m. Otherwise,

we could substitute the generating variate V with V /σ and Λ with σΛ without changing the

distribution of X . Maronna’s Condition C fails to solve the identification problem if there exists

a threshold ζ ≥ 0 such that ϕ(ξ) is constant for all ξ > ζ. For example, Tyler’s weight function

implies that ϕ(ξ) = m for all ξ> 0. In this case, we have to fix the scale of Σ̂, i.e., the M-estimator

Σ̂ has to be normalized. This can be done, e.g., by requiring that tr Σ̂= m or det Σ̂= 1 (Frahm,

2009, Paindaveine, 2008).

4.2.2. Incomplete-Data Case

Things become more complicated in case of incomplete data, where the M-estimating equations

are similar to (9), i.e.,

0 = 1

n

n∑
i=1

vi
(
ξ

1
2
i

)〈
Σ̂−1

Ri
(XRi − µ̂Ri )

〉
1

n

n∑
i=1

〈
Σ̂−1

Ri

〉
= 1

n

n∑
i=1

wi (ξi )
〈
Σ̂−1

Ri
(XRi − µ̂Ri )(XRi − µ̂Ri )>Σ̂−1

Ri

〉
.

(12)

A keynote of this work is that the choice of the weight functions w1, w2, . . . , wn is not arbitrary.

More precisely, we have to guarantee that the basic condition expressed by (6) is satisfied. Thus,

we have to guarantee that

E
(
vi

({
(Xri −µri )>Σ−1

ri
(Xri −µri )

} 1
2

)
Σ−1

ri
(Xri −µri )

)
= 0 (13)

and

E
(
wi

(
(Xri −µri )>Σ−1

ri
(Xri −µri )

)
Σ−1

ri
(Xri −µri )(Xri −µri )>Σ−1

ri
−Σ−1

ri

)
= 0 (14)

for every fixed response ri that is possible for Individual i . To the best of our knowledge, this

issue has not yet been considered in the literature.

Now, we have that Xri −µri =Λ11V U , (Xri −µri )>Σ−1
ri

(Xri −µri ) =V 2β, and

(Xri −µri )(Xri −µri )> =V 2βΛ11UU>Λ>
11

with E(U ) = 0 and E(UU>) = Imi /mi , where the random quantities V , β ∼ Beta
(
mi /2,(m −

mi )/2
)
, and U ∼ Smi−1 are mutually independent. Hence, the condition expressed by (13) is

always satisfied, but (14) leads to the critical scaling condition

E
(
ϕi (V 2β)

)= mi , ϕi (ξ) = wi (ξ)ξ. (15)

14
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There exist two well-known weight functions that satisfy this scaling condition implicitly: The

Gaussian weight function and Tyler’s weight function. For the Gaussian weight function we have

that ϕi (ξ) = ξ. From (11) we already know that E(V 2) = E
(
ϕ(V 2)

)= m and thus we obtain

E
(
ϕi (V 2β)

)= E
(
V 2β

)= E(V 2)E(β) = m · mi

m
= mi .

Moreover, Tyler’s weight function leads to ϕi (ξ) = mi and thus E(ϕi (V 2β)) = mi . Hence, in our

context, these weight functions can be considered canonical.

As pointed out by Frahm and Jaekel (2010), the Gauss- and Tyler-type M-estimators for

scatter can always be considered ML-estimators, irrespective of whether the data are complete

or incomplete: The Gauss-type M-estimator is an (observed-data) ML-estimator under the

assumption that the data are multivariate normally distributed, whereas the Tyler-type M-

estimator maximizes the likelihood function after projecting the observed data of each individual

onto the unit hypersphere, in which case we obtain an angular central Gaussian distribution

(Tyler, 1987b). When applying the Tyler-type M-estimator it has to be assumed only that the data

are generalized elliptically distributed, which is shown in a 2004 Cologne University PhD thesis

by G. Frahm (http://kups.ub.uni-koeln.de/1319/). Moreover, the finite-sample distribution of

the Tyler-type M-estimator does not depend on the generating variate of each observation.

In this work, we generalize the insights given by Frahm and Jaekel (2010) by changing from

ML-estimation to M-estimation of location and scatter.

5. The Power Weight Functions

5.1. Theoretical Properties

In order to obtain M-estimators for location and scatter that are consistent in the case of

incomplete elliptically distributed data, we construct a class of weight functions that satisfy the

critical scaling condition (15). The Gaussian and Tyler’s weight function represent two extreme

elements of this class. Hence, this work closes a gap left open by Frahm and Jaekel (2010).

In the following, B(a,b) denotes Euler’s beta function with parameters a,b > 0. We define

B(a,0)/B(b,0) = 1 for all a,b > 0. It can easily be seen that B(a, x)/B(b, x) = 1 as x ↘ 0.

Theorem 3. Consider any real number 0 ≤α≤ 1 and suppose that

E

((
V 2

m

)−α
V 2

)
= m. (16)

Then, for every d ∈ {
1,2, . . . ,m

}
, we have that

E

 B
(

d
2 +1, m−d

2

)
B

(
d
2 +1−α, m−d

2

) (
V 2β

m

)−α
V 2β

= d ,

15



Frahm, Nordhausen & Oja • M-Estimation with Incomplete and Dependent Multivariate Data

where V and β∼ Beta
(
d/2,(m −d)/2

)
are assumed to be stochastically independent.

Hence, a natural weight function for scatter is

wi : ξ 7−→ B
(mi

2 +1, m−mi
2

)
B

(mi
2 +1−α, m−mi

2

) (
ξ

m

)−α
, 0 ≤α≤ 1.

In the complete-data case, we simply have that wi (ξ) = (ξ/m)−α. Hence, the scaling condition

expressed by (16) is an immediate consequence of (11).

The parameter α can be considered a tail index. For α = 0 we obtain the Gaussian weight

wi (ξ) = 1. Moreover, since

B
(mi

2
+1,

m −mi

2

)
= mi

m
B

(mi

2
,

m −mi

2

)
,

Tyler’s weight wi (ξ) = mi /ξ can readily be obtained by setting α equal to 1. Since (13) is always

satisfied, the choice of the weight function for µ is quite arbitrary, but it is tempting to choose

vi : ξ
1
2 7→ ξ−

α
2 (0 ≤ α ≤ 1). If the data are complete, α = 0 leads to the empirical mean vector,

whereas for α = 1 we obtain the M-estimator for location proposed by Hettmansperger and

Randles (2002). Similarly, if we choose α= 0, the resulting M-estimator for Σ corresponds to

the empirical covariance matrix, whereas for α = 1 we obtain Tyler’s M-estimator for scatter

(Tyler, 1987a). In the following, vi and wi will be referred to as power weight functions and each

M-estimator that is based on a power weight function will be called power M-estimator.

5.2. Asymptotic Distributions

The following theorems establish the joint asymptotic distribution of n
1
2 (µ̂−µ) and n

1
2 (Σ̂−Σ)

given that the M-estimators µ̂ and Σ̂ are based on the power weight functions with common tail

index α. It is straightforward to obtain similar results if the tail indices of vi and wi differ from

each other. If the data are complete and independent, we can apply the standard results given

by Huber (2003) and Maronna (1976). Alternatively, the asymptotic covariance matrices can be

derived by Theorem 2, which can be used even if the data are incomplete or dependent.

We concentrate on the case of complete and independent data in order to obtain closed-form

expressions. The m2 ×m2 identity matrix is symbolized by Im2 . Let ei j be the m ×m matrix

with 1 in the i j th position and zeros elsewhere. The m2 ×m2 commutation matrix is defined as

Km2 =∑m
i , j=1 ei j ⊗e j i , where ⊗ denotes the Kronecker product. For any m ×m random matrix

M , the m2-dimensional vector vec M is obtained by stacking the columns of M on top of each

other. Further, n
1
2 M → Nm×m(0,C ) (n →∞) means that n

1
2 vec M is asymptotically normally

distributed with asymptotic covariance matrix C ∈Rm2×m2
.

Theorem 4. Let µ̂ and Σ̂ be the power M-estimators for location and scatter with common tail

index 0 ≤α< 1. Suppose that X1, X2, . . . , Xn are complete, independent, and identically elliptically

16
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distributed. Further, let the assumptions A1–A3 be satisfied. Then we have that

n
1
2
(
µ̂−µ)−→ Nm

(
0,

m

(m −α)2

E
(
V 2(1−α)

)
E2

(
V −α) Σ

)
, n −→∞ ,

and n
1
2
(
Σ̂−Σ)→ Nm×m(0,C ) as n →∞ with

C = γ1
(
Im2 +Km2

)(
Σ⊗Σ)+γ2(vecΣ)(vecΣ)>.

The numbers γ1 and γ2 are

γ1 = (m +2)2τ1

(m +2τ2)2 and γ2 =
(τ1 −1)−2τ1(τ2 −1)

{
m + (m +4)τ2

}
/(m +2τ2)2

τ2
2

with

τ1 = m2α

m(m +2)
E
(
V 4(1−α)) and τ2 = 1−α

m1−α E
(
V 2(1−α)) .

Moreover, µ̂ and Σ̂ are asymptotically independent.

Theorem 4 does not cover the limiting case α= 1 because Tyler’s M-estimator for scatter has

to be normalized. Let σ2 be an appropriate scale function. This means that σ2 is a differentiable

homogeneous function, i.e., σ2(τΣ) = τσ2(Σ) > 0 for all τ> 0 and every positive definite m ×m

matrix Σ, that is such that σ2(Im) = 1. Each positive definite m ×m matrix Ω that is such

that σ2(Ω) = 1 is said to be a shape matrix. Now, Tyler’s M-estimator can be normalized by

Ω̂ = Σ̂/σ2(Σ̂), which represents an estimator for the shape matrix Ω = Σ/σ2(Σ) (Frahm, 2009,

Paindaveine, 2008). Apparently, estimating the shape matrix makes sense only if m > 1, i.e., for

multivariate data. In the following,Υ= Im2 − (vecΩ)Jσ2 symbolizes an m2 ×m2 matrix, where

Jσ2 = ∂σ2(Ω)/∂(vecΩ)> denotes the Jacobian of the chosen scale function σ2 (Frahm, 2009).

Theorem 5. Let µ̂ and Σ̂ be the power M-estimators for location and scatter with common tail

index 0 ≤α≤ 1. Further, let Ω̂= Σ̂/σ2(Σ̂) be the corresponding shape matrix estimator. Suppose

that X1, X2, . . . , Xn are complete, independent, and identically elliptically distributed with m > 1.

Further, let the assumptions A1–A3 be satisfied. Then we have that

n
1
2
(
µ̂−µ)−→ Nm

(
0,

m

(m −α)2

E
(
V 2(1−α)

)
E2

(
V −α) Σ

)
, n −→∞ ,

and n
1
2
(
Ω̂−Ω)→ Nm×m(0,C ) as n →∞ with

C = m +2

m

E
(
V 4(1−α)

)(
m1−α+2(1−α)E

(
V 2(1−α)

)
/m

)2 Υ
(
Im2 +Km2

)(
Ω⊗Ω)

Υ>.

Moreover, µ̂ and Ω̂ are asymptotically independent.

According to Theorem 4 and Theorem 5, the asymptotic normality of n
1
2
(
Σ̂−Σ)

and n
1
2
(
Ω̂−Ω)
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Figure 1: Responses (black lines) and non-responses (white space) in a sample with m = 100
dimensions and size n = 1000. There are 36727 missing values, i.e., about 37% of the
entire sample cannot be observed.

requires the generating variate, V , to have a finite moment of order 4(1−α). For this reason

we recommend to choose a sufficiently high tail index α ∈ [
0,1

]
if the data are heavy tailed.

Conversely, if the data are light tailed, the tail index should be sufficiently low. In fact, if α is

close to 1, the data must not be too heavily concentrated around µ. More precisely, for the

asymptotic normality of the power M-estimators for location and scatter, we must guarantee

that E
(
V −α)<∞. In the case of α= 1, this phenomenon is already observed by Tyler (1987a).

The power M-estimates can be computed by the fixed-point algorithm developed by Frahm

and Jaekel (2010). This algorithm turns out to be very fast and reliable even if the number of

dimensions is high. Since every ML-estimator for location and scatter is an M-estimator, of

course, the same estimation procedure can be applied in order to compute the ML-estimator.

However, in quite simple cases (for example, if the data are multivariate normally distributed), it

could be more efficient to apply some standard algorithm (e.g., the EM-algorithm). For example,

in the case of α = 0, i.e., when computing the Gauss-type M-estimates, we recommend an

algorithm based on the sweep operator (Schafer, 1997, Ch. 6.5). This leads to exact solutions

and is even faster than our fixed-point algorithm. Dümbgen et al. (2016) propose an alternative

procedure based on a Taylor expansion, which could be useful also in the case of missing data.

5.3. Graphical Illustration

Now, we want to illustrate the impact of the tail index α. For this purpose, we simulate two

samples of n = 1000 multivariate t-distributed data with m = 100 dimensions. In the first sample

the number of degrees of freedom of the t-distribution amounts to ν = 2, which means that

the data are heavy tailed. By contrast, in the second sample the data are multivariate normally

distributed (ν=∞). The location vector corresponds to µ= 0 and the shape matrix is given by
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Figure 2: Power M-estimates of µ for multivariate t-distributed data (left) and multivariate
normally distributed data (right): The Gauss-type M-estimates (dashes), the power
M-estimates with α = 0.5 (dots and dashes), and the Tyler-type M-estimates (dots).
The horizontal lines indicate the true location vector.

the Toeplitz matrix

Ω=



1 0.99 · · · 0.02 0.01

0.99 1 0.02
...

. . .
...

0.02 1 0.99

0.01 0.02 · · · 0.99 1


.

Figure 1 indicates which part of both samples is observed (black) and which part is missing

(white). We can see that this is a monotone missingness pattern, which typically occurs when

analyzing time-series or panel data. The unobserved data are MCAR.

The different power M-estimates for the location vector µ are depicted in Fig. 2. If the data

are heavy tailed, a higher tail index is preferable. By contrast, if the data are not heavy tailed, a

lower tail index leads to an outcome that is slightly better. For making the power M-estimates

for scatter with different choices of α comparable, we need to normalize Σ̂. Here, we choose the

scale function σ2 :Σ 7→ trΣ/m and consider the shape matrix estimator Ω̂= Σ̂/σ2(Σ̂). Due to this

normalization, we have that trΩ̂= m. Note that the true shape matrix Ω already satisfies the

condition trΩ= m by construction.

The results for the multivariate t-distributed data are depicted in Fig. 3, whereas the results

for the multivariate normally distributed data are given by Fig. 4. The Gauss-type M-estimate on

the upper right of Fig. 3 is heavily distorted. This is due to the fact that ν= 2. That is, the number

of degrees of freedom of the multivariate t-distribution is very low. Hence, we can expect to get

a better estimate by choosing a higher tail index α for the power weight functions. If we choose

the common tail index α= 0.5 the result looks a little bit better than the Gauss-type M-estimate

(see the lower left of Fig. 3). However, the Tyler-type M-estimator, i.e., the power M-estimator

with α= 1, clearly provides the best result (see the lower right of Fig. 3). By contrast, if the data

are not heavy tailed but multivariate normally distributed (see Fig. 4), Theorem 1 implies that
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Figure 3: Power M-estimates ofΩ for multivariate t-distributed data: The Gauss-type M-estimate
(upper right), the power M-estimate with α = 0.5 (lower left), and the Tyler-type M-
estimate (lower right). The upper left is the true shape matrix. Violet cells indicate
small numbers and red cells represent large numbers.

Figure 4: Power M-estimates ofΩ for multivariate normally distributed data: The Gauss-type
M-estimate (upper right), the power M-estimate with α = 0.5 (lower left), and the
Tyler-type M-estimate (lower right). The upper left is the true shape matrix. Violet cells
indicate small numbers and red cells represent large numbers.
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the Gaussian weight functions are superior because, in this case, they lead to an ML-estimator.

Does this mean that the power M-estimates with α> 0 are much worse? The answer is “No!” As

we can see on the right-hand side of Fig. 2, as well as throughout Fig. 4, the power M-estimates

with tail index α> 0 are almost indistinguishable from the Gauss-type M-estimates.

6. Simulation Study

Of course, the graphical illustration of the power M-estimates does not say much about which

M-estimator should be favored in different real-life situations. In order to answer this question

we have to conduct an extensive simulation study.

6.1. Design of the Study

To be able to compare the power M-estimators for scatter, we apply the canonical scale function

σ2 :Σ 7→ (detΣ)1/m (Paindaveine, 2008). Hence, we focus on the M-estimator Ω̂= Σ̂/(det Σ̂)1/m

for the shape matrixΩ=Σ/(detΣ)1/m . Apart from its theoretical advantages—which have been

thoroughly investigated by Paindaveine (2008)—the canonical scale function turns out to be

convenient from a numerical perspective: It guarantees that detΩ̂= 1 and thus Ω̂ can never be

singular, even if the number of dimensions, m, is very high. In our simulation study, we always

consider µ unknown when estimatingΩ. This is in contrast to the simulation study conducted

by Frahm and Jaekel (2010), where the location vector is considered known.

The power M-estimators for µ and Ω are symbolized by µ̂α and Ω̂α, respectively, where α

represents the common tail index of the power weight functions vi and wi . In the simulation

study, we take the tail indices α= 0,0.25,0.50,0.75,1 into account. In the limiting cases α= 0

and α = 1 we obtain the Gauss-type and the Tyler-type M-estimators for location and shape.

Those power M-estimators are symbolized by µ̂G,Ω̂G, µ̂T,Ω̂T. If the data are complete, µ̂G is

the empirical mean vector. Moreover, in this case, we have that Ω̂G = Σ̂G/(det Σ̂G)1/m , where

Σ̂G represents the empirical covariance matrix. Analogously, µ̂T is the M-estimator for location

proposed by Hettmansperger and Randles (2002), whereas Σ̂T is Tyler’s (normalized) M-estimator

for scatter (Tyler, 1987a). Actually, Tyler (1987a) uses the scale function σ2 : Σ 7→ trΣ/m for

normalization, but this does not alter the conclusions of our simulation study. A similar study

can be found in Frahm and Jaekel (2010), but they investigate only the Gauss-type and Tyler-

type M-estimators for shape. Hence, the study presented here can be considered a substantial

generalization of the results documented by Frahm and Jaekel (2010).

For simulating heavy-tailed data, we use the multivariate t-distribution with ν> 0 degrees

of freedom. The multivariate t-distribution converges to the multivariate normal distribution

as ν→∞, which is indicated by ν=∞. By contrast, for simulating light-tailed data, we apply

the multivariate power-exponential distribution with parameter γ > 0. In the case of γ = 1 it

coincides with the multivariate normal distribution. By contrast, for γ> 1 its tails are lighter and

for 0 < γ< 1 they are heavier than the tails of the multivariate normal distribution. We consider
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scenarios in which the data are multivariate t-distributed with ν= 1,2,3,4,∞ degrees of freedom

(t1, t2, t3, t4, t∞) and multivariate power-exponentially distributed with γ= 5 (p5). The random

vectors X1, X2, . . . , Xn are independent and identically distributed. Due to space limitations

we concentrate on independent data. We do not think that the comparative result would be

surprisingly different for dependent data. Our working hypothesis is that the components of{
(XRi ,Ri )

}
are independent and thus, according to Theorem 2, serial or spatial dependence first

and foremost blows up the asymptotic covariance matrices of the M-estimators.

The number of dimensions amounts to m = 5 and the true parameters of location and scatter

are µ= 0 and Σ= I5, respectively. Besides the six aforementioned scenarios, t1, t2, t3, t4, t∞, p5,

we consider three additional scenarios in which the data are contaminated. More precisely,

we substitute a number of cn (0 < c < 1) multivariate normally distributed observations with

the outlier (10,10, . . . ,10) ∈R5. We consider the contamination rates c = 0.01,0.05,0.10. We also

distinguish between a small sample (n = 100), a moderate sample (n = 1000), and a large sample

(n = 10000). The number of Monte Carlo replications is always 10000.

As is done in Frahm and Jaekel (2010), the estimators are evaluated by their absolute bias (AB),

i.e.,

AB
(
µ̂
)= 1>|E(µ̂−µ)|

m
and AB

(
Ω̂

)= 1>|E(Ω̂−Ω)|1
m2 ,

where |A| is the matrix of absolute values of A and 1 is an appropriate vector of ones. The

absolute bias can be relatively large for small or moderate sample sizes, although it is supposed

to vanish in large samples. Our second quantity of interest is the mean squared error (MSE).

This is the average mean squared error of all components, i.e.,

MSE
(
µ̂
)= E

(
(µ̂−µ)>(µ̂−µ)

)
m

and MSE
(
Ω̂

)= E
(

tr
(
(Ω̂−Ω)(Ω̂−Ω)>

))
m2 .

Finally, we investigate the relative efficiency (RE) of the Tyler-type M-estimators with respect to

the Gauss-type M-estimators by

RE
(
µ̂T

)= MSE(µ̂G)

MSE(µ̂T)
and RE

(
Ω̂T

)= MSE(Ω̂G)

MSE(Ω̂T)
.

The reader can easily derive the relative efficiency of some power M-estimator with respect to

any other power M-estimator by the mean squared errors reported in the appendix.

The complete-data case is denoted by COM. For investigating the performance of the power M-

estimators in the case of incomplete data, we simulate three different missingness mechanisms

that satisfy MCAR, MAR (but not MCAR), and NMAR. Let xi be a realization of Xi . We allow only

the first component of xi , i.e., x1i , to be missing. More precisely, we have that r1i = 0 if x1i is

missing and r1i = 1 if x1i is observed. This means that r1i is the realization of the first component

of the response vector Ri . The unobserved data are MCAR if Ri is stochastically independent

of Xi . It is worth emphasizing that in principle we need not assume that Ri is stochastically

independent of X j with j 6= i , but this assumption is implicitly satisfied in our simulation study.
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If the distribution of Ri depends only on the observed part of Xi , the missing data are MAR, and

if the response is determined by the unobserved part of Xi , the missing data are NMAR. For

the MCAR case, we simulate n mutually independent Bernoulli variables R11,R12, . . . ,R1n with

probability of success π= 0.5, where R1i is stochastically independent of Xi . In the MAR case,

we have that r1i = 0, i.e., x1i is considered missing, if x2i < 0. Finally, in the NMAR case we set

r1i = 0 if x1i < 0. This procedure guarantees that approximately 50% of the data in the first row

of the sample are missing for each missingness mechanism.

6.2. Numerical Results

The results of our simulation study can be found in the appendix (see Tables 2–9). Tables 2,4,6,8

provide the results regarding the location vector, whereas Tables 3,5,7,9 refer to the shape matrix.

It is well-known that the generating variate of a multivariate t-distribution with ν degrees of

freedom has finite moments only of orders lower than ν. In Section 5.2 we demonstrated that the

joint asymptotic normality of the standardized power M-estimators with common tail index α

requires the generating variate to have a finite moment of order 4(1−α). In fact, our fixed-point

algorithm sometimes diverges if α≤ 1−ν/4. This could be due to the fact that a solution of the

power M-estimating equations may not exist if the data are heavy tailed but the tail index of the

power weight functions is too low. Hence, for ν= 1 we do not apply the power M-estimators

with tail indices α= 0.25,0.50,0.75. Similarly, for ν= 2 we ignore the power M-estimators with

α= 0.25,0.50, etc. Nonetheless, we always compute the Gauss-type M-estimators by using the

sweep operator (Schafer, 1997, Ch. 6.5), which cannot diverge by construction.

First of all we refer to Table 2 and Table 3, which contain the results of the complete-data

case. If the data are clean, the absolute bias of the power M-estimators with α> 0 decreases with

the sample size, n, and eventually vanishes in the large samples. The Gauss-type M-estimators

remain biased if ν is too low, i.e., ν< 2 (Table 2) and ν< 4 (Table 3). If the data are contaminated,

the absolute bias essentially decreases with α, but it does not vanish with n. Indeed, the power

M-estimators cannot be expected to be consistent if the data are contaminated, but in this case

the Tyler-type M-estimators turn out to be always preferable in terms of bias.

Table 4 and Table 5 provide the results under the assumption that the unobserved data are

MCAR. The overall findings do not differ essentially from Table 2 and Table 3. Our numerical

results confirm that the power M-estimators are consistent if the unobserved data are MCAR.

This picture changes substantially in Table 6 and 7, which cover the case in which the unobserved

data are MAR. In the previous sections, we have argued that in this case the M-estimators can

be inconsistent—even if the data are uncontaminated. This is confirmed by the results of our

simulation study. The only exception are the Gauss-type M-estimators in the case of multivariate

normally distributed data. Indeed, in this special case the Gauss-type M-estimators represent

ML-estimators and their consistency under MAR is guaranteed by Theorem 1. Otherwise, we

must accept that the power M-estimators are biased even in large samples. Finally, Table 8 and

Table 9 are based on the assumption that the unobserved data are NMAR. In this case, also the
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Table 1: Most favorable tail index of the power M-estimators under different scenarios.

Location vector Shape matrix

Small sample COM MCAR MAR NMAR COM MCAR MAR NMAR
Light tails AB 0 0 0 0 0 0 0 0

MSE 0 0 1 0 0 0 0 0
Normal tails AB 0 0.50 0 1 0 0 0 0

MSE 0 0 1 1 0 0 0 0
Heavy tails AB 1 1 0 1 0.75 0.75 1 0.50

MSE 1 1 1 1 0.75 0.75 1 0.75
Contaminated

1% AB 1 1 1 1 1 1 1 1
MSE 0.75 0.75 1 1 0.75 0.75 1 0.75

5% AB 1 1 1 1 1 1 1 1
MSE 1 1 1 1 1 1 1 1

10% AB 1 1 1 1 1 1 1 1
MSE 1 1 1 1 1 1 1 1

Moderate sample COM MCAR MAR NMAR COM MCAR MAR NMAR
Light tails AB 0 0 0 0 0 0 0 0

MSE 0 0 0 0 0 0 0 0
Normal tails AB 0.75 0.25 0 1 0.25 0 0 0

MSE 0 0 0 1 0 0 0 0
Heavy tails AB 1 0.75 0 1 0.75 0.75 0.75 0

MSE 1 1 1 1 0.75 0.75 1 0.50
Contaminated

1% AB 1 1 1 1 1 1 1 1
MSE 1 1 1 1 1 1 1 0.75

5% AB 1 1 1 1 1 1 1 1
MSE 1 1 1 1 1 1 1 1

10% AB 1 1 1 1 1 1 1 1
MSE 1 1 1 1 1 1 1 1

Large sample COM MCAR MAR NMAR COM MCAR MAR NMAR
Light tails AB 0 0 0 0 0 0 0 0

MSE 0 0 0 0 0 0 0 0
Normal tails AB 0 0 0 1 0 0 0.25 0

MSE 0 0 0 1 0 0 0 0
Heavy tails AB 1 1 0 1 0.75 0.75 0.25 0

MSE 1 1 0.25 1 0.75 0.75 0.75 0
Contaminated

1% AB 1 1 1 1 1 1 1 1
MSE 1 1 1 1 1 1 1 1

5% AB 1 1 1 1 1 1 1 1
MSE 1 1 1 1 1 1 1 1

10% AB 1 1 1 1 1 1 1 1
MSE 1 1 1 1 1 1 1 1
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Gauss-type M-estimators are inconsistent, even if the data stem from a clean multivariate normal

distribution. Similar arguments hold for the mean squared error of the power M-estimators.

The results of our simulation study are summarized in Table 1. This table indicates which

power M-estimator is favorable in different situations. The M-estimators have been evaluated

by means of their absolute bias and mean squared error. Each number in Table 1 represents the

optimal choice of the tail index αwith respect to the efficiency of the power M-estimator relative

to the Gauss-type M-estimator. We can see that the Tyler-type M-estimators are nearly always

preferable for contaminated data, whereas the Gauss-type M-estimators should be preferred

only if the data have normal or light tails. If the data are heavy tailed one should choose a large

tail index α. However, regarding the shape matrix it is usually better not to choose α= 1, i.e., to

avoid the Tyler-type M-estimator. This holds for complete and incomplete data, irrespective of

whether the missing data are MCAR, MAR or NMAR.
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A. Proofs

A.1. Proof of Proposition 1

We have that

E

(
∂ log f (XRi ;θ)

∂θ

)
=

∫ ∫
∂ log f (xri ;θ)

∂θ
f (ri , xri ;θ)d xri dri

=
∫ ∫

f (ri |Xri = xri )
∂ log f (xri ;θ)

∂θ
f (xri ;θ)d xri dri

=
∫ ∫

∂ f (ri |Xri = xri ) f (xri ;θ)

∂θ
d xri dri

=
∫ ∫

∂ f (ri , xri ;θ)

∂θ
d xri dri

= ∂

∂θ

∫ ∫
f (ri , xri ;θ)d xri dri = ∂

∂θ
1 = 0.

A.2. Proof of Theorem 1

The ML-estimator of θ is the solution of

ΦR
(
θ̂; XR

)= 1

n

n∑
i=1

∂ log f
(
XRi ; θ̂

)
∂θ

= 0.
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A3 guarantees that

ΦR
(
θ̂; XR

)=ΦR
(
θ; XR

)+ ∂ΦR
(
θ; XR

)
∂θ>

(
θ̂−θ)+Op

(
n−1) .

Hence, we have that

n
1
2
(
θ̂−θ)=−

(
∂ΦR

(
θ; XR

)
∂θ>

)−1

n
1
2ΦR

(
θ; XR

)+Op
(
n− 1

2
)
.

From Proposition 1 we know that E
(
φRi (θ; XRi )

)= 0. Due to A1 we conclude that n
1
2ΦR

(
θ; XR

)→
Np (0,Fθ) as n →∞. A2 in connection with Slutsky’s theorem implies that

n
1
2
(
θ̂−θ)−→ Np

(
0, H−1

θ FθH−1
θ

)
, n −→∞ .

Moreover, due to DIS, MAR, and INT, we obtain

0 = ∂2

∂θ∂θ>

∫ ∫
f (ri , xri ;θ)d xri dri︸ ︷︷ ︸

=1

= ∂

∂θ>

∫ ∫
f (ri |Xri = xri )

∂ f (xri ;θ)

∂θ
d xri dri

=
∫ ∫

f (ri |Xri = xri )
∂

∂θ>

(
∂ log f (xri ;θ)

∂θ
f (xri ;θ)

)
d xri dri ,

where

∂

∂θ>

(
∂ log f (xri ;θ)

∂θ
f (xri ;θ)

)
= ∂2 log f (xri ;θ)

∂θ∂θ>
f (xri ;θ)+

∂ log f (xri ;θ)

∂θ

∂ log f (xri ;θ)

∂θ>
f (xri ;θ)

and thus∫ ∫
∂2 log f (xri ;θ)

∂θ∂θ>
f (ri , xri ;θ)d xri dri+∫ ∫

∂ log f (xri ;θ)

∂θ

∂ log f (xri ;θ)

∂θ>
f (ri , xri ;θ)d xri dri = 0.

Hence, if f (XR1 ;θ), f (XR2 ;θ), . . . , f (XRn ;θ) are mutually independent then Fisher’s information

equality Fθ =−Hθ is satisfied and we obtain n
1
2
(
θ̂−θ)→ Np

(
0,F−1

θ

)
as n →∞. Now, the Cramér-

Rao Theorem implies that θ̂ is asymptotically efficient.

A.3. Proof of Proposition 2

MCAR implies that

f (ri , xri ;θ) =
∫

f (ri , xri , xr̄i ;θ)d xr̄i = f (ri ;θ)
∫

f (xri , xr̄i ;θ)d xr̄i = f (ri ;θ) f (xri ;θ)
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and thus

E
(
ψRi (ϑ; XRi )

)= ∫ ∫
ψri (ϑ; xri ) f (ri , xri ;θ)d xri dri

=
∫

f (ri ;θ)
∫
ψri (ϑ; xri ) f (xri ;θ)d xri dri

=
∫

f (ri ;θ)E
(
ψri (ϑ; Xri )

)
dri =

∫
f (ri ;θ)0dri = 0.

A.4. Proof of Theorem 2

This proof is skipped, since it follows from the same arguments as those in the first part of the

proof of Theorem 1. The second part of that proof, which refers to the asymptotic efficiency of

the ML-estimator, is void in the case of M-estimation.

A.5. Proof of Theorem 3

We obtain

E

 B
(

d
2 +1, m−d

2

)
B

(
d
2 +1−α, m−d

2

) (
V 2β

m

)−α
V 2β

=
B

(
d
2 +1, m−d

2

)
B

(
d
2 +1−α, m−d

2

) mαE
(
(V 2β)1−α)

,

where E
(
(V 2β)1−α)= E

(
V 2(1−α)

)
E(β1−α). From (16) it follows that E

(
V 2(1−α)

)= m1−α. Thus, we

have that
B

(
d
2 +1, m−d

2

)
B

(
d
2 +1−α, m−d

2

) mαE
(
(V 2β)1−α)= B

(
d
2 +1, m−d

2

)
B

(
d
2 +1−α, m−d

2

) mE(β1−α).

Moreover, since B
(

d
2 , m−d

2

)
= m

d B
(

d
2 +1, m−d

2

)
and thus

E(β1−α) =
B

(
d
2 +1−α, m−d

2

)
B

(
d
2 , m−d

2

) = d

m

B
(

d
2 +1−α, m−d

2

)
B

(
d
2 +1, m−d

2

) ,

we conclude that
B

(
d
2 +1, m−d

2

)
B

(
d
2 +1−α, m−d

2

) mE(β1−α) = d .

A.6. Proof of Theorem 4

The asymptotic covariance matrix of n
1
2 (µ̂−µ) can be obtained by Theorem 6 of Maronna (1976).

We have that v
(
ξ

1
2
)= ξ− α

2 and thus ϕµ
(
ξ

1
2
)= v

(
ξ

1
2
)
ξ

1
2 = ξ 1−α

2 . It follows that ϕ2
µ

(
ξ

1
2
)= ξ1−α and

ϕ′
µ

(
ξ

1
2
)= (1−α)ξ−

α
2 , where ϕ′

µ denotes the first derivative of ϕµ with respect to ξ
1
2 . Further, we
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already know that ξ=V 2. This means that a = E
(
ϕ2
µ(V )

)
/m = E

(
V 2(1−α)

)
/m and

b = E

(
v(V )

(
1− 1

m

)
+
ϕ′
µ(V )

m

)
= E

(
(m −1)V −α+ (1−α)V −α)

m
=

(m −α
m

)
E
(
V −α)

.

Hence, we obtain
a

b2 = m

(m −α)2

E
(
V 2(1−α)

)
E2

(
V −α) ,

which leads to the given asymptotic covariance matrix of n
1
2 (µ̂−µ). Now, we turn to the asymp-

totic covariance matrix of n
1
2 (Σ̂−Σ). The numbers γ1 and γ2 are given by Tyler (1982, p. 432). We

have that w(ξ) = (ξ/m)−α and thus ϕΣ(ξ) = w(ξ)ξ= mαξ1−α. This implies ϕ2
Σ(ξ) = m2αξ2(1−α)

andϕ′
Σ(ξ) = (1−α)mαξ−α, whereϕ′

Σ is the first derivative ofϕΣ with respect to ξ. For calculating

the numbers γ1 and γ2 we need

τ1 =
E
(
ϕ2
Σ(V 2)

)
m(m +2)

= m2α

m(m +2)
E
(
V 4(1−α)) and τ2 =

E
(
ϕ′
Σ(V 2)V 2

)
m

= 1−α
m1−α E

(
V 2(1−α)) .

Finally, according to Theorem 6 of Maronna (1976), µ̂ and Σ̂ are asymptotically independent.

A.7. Proof of Theorem 5

For 0 ≤ α< 1, the asymptotic covariance matrix of n
1
2 (µ̂−µ) has already been established by

Theorem 4. The case α = 1 is investigated by Hettmansperger and Randles (2002). It can be

verified that the resulting asymptotic covariance matrix is covered by Theorem 4. Furthermore,

according to Frahm (2009), the asymptotic covariance matrix of n
1
2 (Ω̂−Ω) corresponds to

C = γ1Υ(Im2 +Km2 )(Ω⊗Ω)Υ>, where γ1 is already given by Theorem 4. The numbers τ1 and τ2

have been derived in the proof of Theorem 4 and lead to

γ1 = m +2

m

E
(
V 4(1−α)

)(
m1−α+2(1−α)E

(
V 2(1−α)

)
/m

)2 .

Finally, according to Theorem 4, µ̂ and Σ̂ are asymptotically independent in the case of 0 ≤α< 1.

Since Ω̂ is a function of Σ̂, we conclude that µ̂ and Ω̂ are asymptotically independent, too. This

holds irrespective of the chosen scale function. Moreover, forα= 1 the asymptotic independence

of µ̂ and Ω̂ is proved by Hettmansperger and Randles (2002). We can switch from one scale

function to another by re-scaling the shape matrix, and so their result does not depend on the

chosen scale function either.
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B. Detailed Results of the Simulation Study

Table 2: Results for the location vector with complete data.

Small sample (n = 100)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
µ̂G

)
0.5261 0.0023 0.0005 0.0010 0.0011 0.0005 0.0993 0.4994 1.0007

AB
(
µ̂0.25

)
— — — 0.0010 0.0011 0.0005 0.0629 0.3897 0.8863

AB
(
µ̂0.50

)
— — 0.0005 0.0010 0.0012 0.0006 0.0351 0.2561 0.7192

AB
(
µ̂0.75

)
— 0.0007 0.0004 0.0009 0.0013 0.0006 0.0188 0.1284 0.4413

AB
(
µ̂T

)
0.0010 0.0007 0.0004 0.0009 0.0013 0.0006 0.0101 0.0604 0.1622

MSE
(
µ̂G

)
3×103 0.1382 0.0302 0.0202 0.0100 0.0022 0.0198 0.2590 1.0103

MSE
(
µ̂0.25

)
— — — 0.0166 0.0100 0.0023 0.0140 0.1617 0.7948

MSE
(
µ̂0.50

)
— — 0.0164 0.0144 0.0102 0.0025 0.0115 0.0760 0.5271

MSE
(
µ̂0.75

)
— 0.0167 0.0141 0.0132 0.0105 0.0027 0.0110 0.0275 0.2055

MSE
(
µ̂T

)
0.0177 0.0142 0.0131 0.0127 0.0111 0.0030 0.0113 0.0154 0.0385

RE
(
µ̂T

)
2×105 9.7160 2.2957 1.5921 0.8995 0.7311 1.7480 16.8372 26.2520

Moderate sample (n = 1000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
µ̂G

)
0.8176 0.0011 0.0006 0.0004 0.0001 0.0001 0.0999 0.5002 1.0001

AB
(
µ̂0.25

)
— — — 0.0004 0.0001 0.0001 0.0636 0.3906 0.8856

AB
(
µ̂0.50

)
— — 0.0004 0.0004 0.0001 0.0001 0.0360 0.2579 0.7195

AB
(
µ̂0.75

)
— 0.0003 0.0003 0.0004 0.0001 0.0001 0.0196 0.1312 0.4441

AB
(
µ̂T

)
0.0003 0.0003 0.0002 0.0004 0.0001 0.0001 0.0108 0.0629 0.1659

MSE
(
µ̂G

)
5×103 0.0157 0.0003 0.0020 0.0010 0.0002 0.0110 0.2512 1.0011

MSE
(
µ̂0.25

)
— — — 0.0016 0.0010 0.0002 0.0050 0.1535 0.7852

MSE
(
µ̂0.50

)
— — 0.0016 0.0014 0.0010 0.0002 0.0023 0.0676 0.5187

MSE
(
µ̂0.75

)
— 0.0017 0.0014 0.0013 0.0011 0.0003 0.0014 0.0183 0.1984

MSE
(
µ̂T

)
0.0017 0.0014 0.0013 0.0012 0.0011 0.0003 0.0012 0.0051 0.0287

RE
(
µ̂T

)
3×106 11.0379 2.3107 1.5966 0.9023 0.7334 8.9184 49.0186 34.8332

Large sample (n = 10000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
µ̂G

)
0.6699 0.0003 0.0001 0.0002 0.0001 0 0.1000 0.5000 1.0000

AB
(
µ̂0.25

)
— — — 0.0002 0.0001 0 0.0637 0.3903 0.8854

AB
(
µ̂0.50

)
— — 0 0.0001 0.0001 0 0.0361 0.2577 0.7194

AB
(
µ̂0.75

)
— 0.0001 0 0.0001 0.0001 0 0.0197 0.1311 0.4443

AB
(
µ̂T

)
0.0001 0.0001 0 0.0001 0.0001 0 0.0108 0.0627 0.1662

MSE
(
µ̂G

)
9×103 0.0017 0.0003 0.0002 0.0001 0 0.0101 0.2501 1.0001

MSE
(
µ̂0.25

)
— — — 0.0002 0.0001 0 0.0042 0.1524 0.7840

MSE
(
µ̂0.50

)
— — 0.0002 0.0001 0.0001 0 0.0014 0.0665 0.5177

MSE
(
µ̂0.75

)
— 0.0002 0.0001 0.0001 0.0001 0 0.0005 0.0173 0.1975

MSE
(
µ̂T

)
0.0002 0.0001 0.0001 0.0001 0.0001 0 0.0002 0.0041 0.0277

RE
(
µ̂T

)
5×107 11.9105 2.2830 1.5822 0.9047 0.7327 44.2474 61.7401 36.0633
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Table 3: Results for the shape matrix with complete data.

Small sample (n = 100)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
Ω̂G

)
67.3426 0.1971 0.0393 0.0195 0.0065 0.0051 0.6654 2.5962 4.6046

AB
(
Ω̂0.25

)
— — — 0.0129 0.0066 0.0057 0.3246 1.8825 4.1346

AB
(
Ω̂0.50

)
— — 0.0108 0.0092 0.0070 0.0064 0.1225 1.0068 3.2077

AB
(
Ω̂0.75

)
— 0.0095 0.0082 0.0083 0.0077 0.0074 0.0445 0.3185 1.5368

AB
(
Ω̂T

)
0.0092 0.0097 0.0089 0.0093 0.0090 0.0090 0.0206 0.0865 0.2739

MSE
(
Ω̂G

)
2×107 61.9094 0.6033 0.0672 0.0122 0.0097 0.4645 6.8070 21.3399

MSE
(
Ω̂0.25

)
— — — 0.0306 0.0124 0.0108 0.1199 3.5933 17.2155

MSE
(
Ω̂0.50

)
— — 0.0273 0.0177 0.0132 0.0123 0.0270 1.0445 10.3807

MSE
(
Ω̂0.75

)
— 0.0184 0.0161 0.0157 0.0148 0.0145 0.0158 0.1192 2.4132

MSE
(
Ω̂T

)
0.0182 0.0180 0.0179 0.0180 0.0179 0.0180 0.0180 0.0247 0.0977

RE
(
Ω̂T

)
9×108 3×103 33.6585 3.7324 0.6828 0.5409 25.8446 275.8591 218.3199

Moderate sample (n = 1000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
Ω̂G

)
102.0371 0.1098 0.0102 0.0029 0.0007 0.0007 0.6413 2.5189 4.4619

AB
(
Ω̂0.25

)
— — — 0.0014 0.0007 0.0007 0.3119 1.8297 4.0141

AB
(
Ω̂0.50

)
— — 0.0012 0.0009 0.0007 0.0008 0.1154 0.9804 3.1178

AB
(
Ω̂0.75

)
— 0.0010 0.0010 0.0009 0.0008 0.0009 0.0379 0.3104 1.5005

AB
(
Ω̂T

)
0.0010 0.0010 0.0010 0.0010 0.0009 0.0010 0.0127 0.0795 0.2676

MSE
(
Ω̂G

)
5×107 8.9332 0.0800 0.0060 0.0011 0.0009 0.4264 6.3844 19.9645

MSE
(
Ω̂0.25

)
— — — 0.0024 0.0011 0.0010 0.1050 3.3803 16.1651

MSE
(
Ω̂0.50

)
— — 0.0019 0.0015 0.0012 0.0011 0.0161 0.9826 9.7658

MSE
(
Ω̂0.75

)
— 0.0016 0.0015 0.0014 0.0013 0.0013 0.0029 0.1043 2.2812

MSE
(
Ω̂T

)
0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0017 0.0088 0.0790

RE
(
Ω̂T

)
3×1010 6×103 50.1581 3.8112 0.7120 0.5693 245.0330 727.1088 252.7565

Large sample (n = 10000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
Ω̂G

)
128.8058 0.0755 0.0032 0.0005 0.0001 0.0001 0.6390 2.5112 4.4480

AB
(
Ω̂0.25

)
— — — 0.0002 0.0001 0.0001 0.3108 1.8243 4.0024

AB
(
Ω̂0.50

)
— — 0.0002 0.0001 0.0001 0.0001 0.1147 0.9777 3.1092

AB
(
Ω̂0.75

)
— 0.0002 0.0001 0.0001 0.0001 0.0001 0.0373 0.3096 1.4971

AB
(
Ω̂T

)
0.0002 0.0002 0.0001 0.0001 0.0002 0.0001 0.0120 0.0788 0.2671

MSE
(
Ω̂G

)
2×108 4.6930 0.0106 0.0009 0.0001 0.0001 0.4228 6.3431 19.8327

MSE
(
Ω̂0.25

)
— — — 0.0002 0.0001 0.0001 0.1036 3.3595 16.0654

MSE
(
Ω̂0.50

)
— — 0.0002 0.0002 0.0001 0.0001 0.0151 0.9766 9.7083

MSE
(
Ω̂0.75

)
— 0.0002 0.0001 0.0001 0.0001 0.0001 0.0018 0.1029 2.2690

MSE
(
Ω̂T

)
0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0074 0.0773

RE
(
Ω̂T

)
1×1012 3×104 67.0743 6.0001 0.7146 0.5721 1×103 861.3457 256.4386
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Table 4: Results for the location vector with incomplete data (MCAR).

Small sample (n = 100)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
µ̂G

)
0.6890 0.0020 0.0019 0.0018 0.0006 0.0003 0.0911 0.4968 1.0000

AB
(
µ̂0.25

)
— — — 0.0017 0.0006 0.0003 0.0583 0.3794 0.8653

AB
(
µ̂0.50

)
— — 0.0013 0.0017 0.0006 0.0003 0.0340 0.2439 0.6753

AB
(
µ̂0.75

)
— 0.0008 0.0012 0.0016 0.0006 0.0004 0.0192 0.1242 0.3921

AB
(
µ̂T

)
0.0009 0.0008 0.0012 0.0015 0.0006 0.0004 0.0107 0.0611 0.1552

MSE
(
µ̂G

)
5×103 0.1256 0.0341 0.0240 0.0122 0.0026 0.0215 0.2606 1.0116

MSE
(
µ̂0.25

)
— — — 0.0201 0.0123 0.0028 0.0161 0.1574 0.7609

MSE
(
µ̂0.50

)
— — 0.0202 0.0176 0.0125 0.0030 0.0138 0.0730 0.4690

MSE
(
µ̂0.75

)
— 0.0207 0.0176 0.0162 0.0130 0.0033 0.0134 0.0292 0.1682

MSE
(
µ̂T

)
0.0219 0.0176 0.0163 0.0155 0.0135 0.0036 0.0137 0.0179 0.0396

RE
(
µ̂T

)
2×105 7.1467 2.0978 1.5453 0.9024 0.7391 1.5728 14.5373 25.5596

Moderate sample (n = 1000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
µ̂G

)
2.8973 0.0019 0.0006 0.0002 0.0003 0.0002 0.0994 0.4998 1.0000

AB
(
µ̂0.25

)
— — — 0.0002 0.0003 0.0002 0.0626 0.3818 0.8651

AB
(
µ̂0.50

)
— — 0.0005 0.0001 0.0003 0.0002 0.0355 0.2462 0.6764

AB
(
µ̂0.75

)
— 0.0006 0.0005 0.0001 0.0003 0.0002 0.0195 0.1260 0.3959

AB
(
µ̂T

)
0.0003 0.0005 0.0005 0.0002 0.0003 0.0002 0.0107 0.0618 0.1584

MSE
(
µ̂G

)
1×105 0.0160 0.0035 0.0024 0.0012 0.0003 0.0111 0.2510 1.0011

MSE
(
µ̂0.25

)
— — — 0.0020 0.0012 0.0003 0.0052 0.1470 0.7497

MSE
(
µ̂0.50

)
— — 0.0019 0.0017 0.0013 0.0003 0.0025 0.0619 0.4588

MSE
(
µ̂0.75

)
— 0.0020 0.0017 0.0016 0.0013 0.0003 0.0017 0.0172 0.1581

MSE
(
µ̂T

)
0.0021 0.0017 0.0016 0.0015 0.0014 0.0003 0.0015 0.0052 0.0266

RE
(
µ̂T

)
7×107 9.2500 2.2195 1.5890 0.8925 0.7270 7.5619 47.9879 37.6154

Large sample (n = 10000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
µ̂G

)
1.1483 0.0003 0.0002 0.0001 0.0001 0 0.1000 0.4999 1.0000

AB
(
µ̂0.25

)
— — — 0.0001 0.0001 0 0.0631 0.3819 0.8651

AB
(
µ̂0.50

)
— — 0.0001 0.0001 0.0001 0 0.0358 0.2465 0.6764

AB
(
µ̂0.75

)
— 0.0001 0.0001 0 0.0001 0 0.0197 0.1264 0.3960

AB
(
µ̂T

)
0 0.0001 0.0001 0 0.0001 0 0.0108 0.0621 0.1584

MSE
(
µ̂G

)
2×104 0.0021 0.0003 0.0002 0.0001 0 0.0101 0.2501 1.0001

MSE
(
µ̂0.25

)
— — — 0.0002 0.0001 0 0.0041 0.1460 0.7485

MSE
(
µ̂0.50

)
— — 0.0002 0.0002 0.0001 0 0.0014 0.0609 0.4576

MSE
(
µ̂0.75

)
— 0.0002 0.0002 0.0002 0.0001 0 0.0005 0.0161 0.1570

MSE
(
µ̂T

)
0.0002 0.0002 0.0002 0.0002 0.0001 0 0.0003 0.0040 0.0253

RE
(
µ̂T

)
7×107 12.0377 2.2789 1.5840 0.8926 0.7259 40.0740 62.5207 39.6063
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Table 5: Results for the shape matrix with incomplete data (MCAR).

Small sample (n = 100)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
Ω̂G

)
287.2054 0.1696 0.0413 0.0236 0.0092 0.0074 0.5704 2.6018 4.6651

AB
(
Ω̂0.25

)
— — — 0.0165 0.0093 0.0081 0.2856 1.8437 4.0901

AB
(
Ω̂0.50

)
— — 0.0148 0.0125 0.0098 0.0092 0.1171 0.9574 3.0229

AB
(
Ω̂0.75

)
— 0.0129 0.0121 0.0116 0.0109 0.0108 0.0471 0.3110 1.3323

AB
(
Ω̂T

)
0.0132 0.0132 0.0136 0.0132 0.0130 0.0133 0.0243 0.0924 0.2682

MSE
(
Ω̂G

)
6×108 11.7595 0.2093 0.0769 0.0178 0.0140 0.4394 6.9380 21.9404

MSE
(
Ω̂0.25

)
— — — 0.0398 0.0181 0.0155 0.1239 3.5027 16.8824

MSE
(
Ω̂0.50

)
— — 0.0318 0.0257 0.0192 0.0178 0.0352 0.9679 9.2563

MSE
(
Ω̂0.75

)
— 0.0270 0.0238 0.0232 0.0218 0.0212 0.0230 0.1228 1.8437

MSE
(
Ω̂T

)
0.0270 0.0270 0.0269 0.0270 0.0269 0.0269 0.0269 0.0341 0.1033

RE
(
Ω̂T

)
2×1010 435.1656 7.7806 2.8476 0.6612 0.5210 16.3347 203.2369 212.4660

Moderate sample (n = 1000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
Ω̂G

)
2×103 0.1030 0.0121 0.0041 0.0010 0.0008 0.6373 2.5212 4.4656

AB
(
Ω̂0.25

)
— — — 0.0021 0.0010 0.0009 0.3069 1.7903 3.9256

AB
(
Ω̂0.50

)
— — 0.0016 0.0014 0.0010 0.0010 0.1147 0.9305 2.9055

AB
(
Ω̂0.75

)
— 0.0014 0.0013 0.0013 0.0011 0.0012 0.0385 0.2981 1.2843

AB
(
Ω̂T

)
0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0133 0.0798 0.2529

MSE
(
Ω̂G

)
3×1010 9.3080 0.0689 0.0086 0.0015 0.0012 0.4230 6.3970 20.0003

MSE
(
Ω̂0.25

)
— — — 0.0033 0.0016 0.0013 0.1030 3.2381 15.4641

MSE
(
Ω̂0.50

)
— — 0.0027 0.0021 0.0017 0.0015 0.0166 0.8874 8.4878

MSE
(
Ω̂0.75

)
— 0.0022 0.0020 0.0019 0.0018 0.0018 0.0035 0.0971 1.6778

MSE
(
Ω̂T

)
0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0024 0.0094 0.0715

RE
(
Ω̂T

)
1×1013 4×103 31.1264 3.8627 0.6919 0.5533 177.9689 678.5405 279.5977

Large sample (n = 10000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
Ω̂G

)
123.2153 0.0829 0.0032 0.0007 0.0001 0.0001 0.6386 2.5113 4.4484

AB
(
Ω̂0.25

)
— — — 0.0003 0.0001 0.0001 0.3080 1.7838 3.9110

AB
(
Ω̂0.50

)
— — 0.0002 0.0002 0.0001 0.0001 0.1145 0.9276 2.8946

AB
(
Ω̂0.75

)
— 0.0002 0.0002 0.0002 0.0002 0.0002 0.0377 0.2971 1.2790

AB
(
Ω̂T

)
0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0122 0.0789 0.2509

MSE
(
Ω̂G

)
1×108 9.4276 0.0086 0.0011 0.0002 0.0001 0.4225 6.3439 19.8366

MSE
(
Ω̂0.25

)
— — — 0.0003 0.0002 0.0001 0.1019 3.2128 15.3420

MSE
(
Ω̂0.50

)
— — 0.0003 0.0002 0.0002 0.0002 0.0151 0.8804 8.4186

MSE
(
Ω̂0.75

)
— 0.0002 0.0002 0.0002 0.0002 0.0002 0.0019 0.0951 1.6611

MSE
(
Ω̂T

)
0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0004 0.0074 0.0686

RE
(
Ω̂T

)
5×1011 4×104 39.5784 4.9955 0.6949 0.5560 1×103 853.3625 289.3145
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Table 6: Results for the location vector with incomplete data (MAR).

Small sample (n = 100)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
µ̂G

)
0.8378 0.0031 0.0015 0.0027 0.0008 0.0008 0.1281 0.4305 0.9339

AB
(
µ̂0.25

)
— — — 0.0052 0.0032 0.0019 0.0964 0.3082 0.7961

AB
(
µ̂0.50

)
— — 0.0074 0.0077 0.0059 0.0032 0.0598 0.2112 0.6100

AB
(
µ̂0.75

)
— 0.0112 0.0100 0.0103 0.0089 0.0047 0.0296 0.1202 0.3356

AB
(
µ̂T

)
0.0153 0.0131 0.0126 0.0124 0.0120 0.0065 0.0186 0.0536 0.1576

MSE
(
µ̂G

)
6×103 0.1599 0.0505 0.0368 0.0210 0.0050 0.0378 0.2222 0.9056

MSE
(
µ̂0.25

)
— — — 0.0312 0.0214 0.0053 0.0334 0.1331 0.6695

MSE
(
µ̂0.50

)
— — 0.0311 0.0282 0.0225 0.0057 0.0271 0.0678 0.4106

MSE
(
µ̂0.75

)
— 0.0346 0.0299 0.0286 0.0246 0.0063 0.0241 0.0367 0.1530

MSE
(
µ̂T

)
0.0237 0.0188 0.0171 0.0166 0.0146 0.0038 0.0147 0.0184 0.0414

RE
(
µ̂T

)
2×105 8.4895 2.9493 2.2188 1.4384 1.2917 2.5810 12.1041 21.8539

Moderate sample (n = 1000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
µ̂G

)
1.9746 0.0011 0.0003 0.0003 0.0003 0.0001 0.1271 0.4309 0.9342

AB
(
µ̂0.25

)
— — — 0.0030 0.0026 0.0012 0.0952 0.3084 0.7962

AB
(
µ̂0.50

)
— — 0.0063 0.0059 0.0052 0.0025 0.0583 0.2122 0.6111

AB
(
µ̂0.75

)
— 0.0098 0.0092 0.0089 0.0081 0.0041 0.0292 0.1218 0.3389

AB
(
µ̂T

)
0.0146 0.0129 0.0124 0.0123 0.0113 0.0060 0.0189 0.0552 0.1610

MSE
(
µ̂G

)
7×104 0.0382 0.0086 0.0047 0.0019 0.0005 0.0208 0.2065 0.8916

MSE
(
µ̂0.25

)
— — — 0.0032 0.0020 0.0005 0.0160 0.1166 0.6542

MSE
(
µ̂0.50

)
— — 0.0032 0.0027 0.0021 0.0006 0.0088 0.0503 0.3951

MSE
(
µ̂0.75

)
— 0.0035 0.0031 0.0029 0.0025 0.0007 0.0033 0.0173 0.1361

MSE
(
µ̂T

)
0.0032 0.0026 0.0024 0.0023 0.0020 0.0005 0.0019 0.0053 0.0287

RE
(
µ̂T

)
2×107 14.8351 3.5916 2.0513 0.9573 0.8537 10.7778 38.7109 31.0715

Large sample (n = 10000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
µ̂G

)
0.7493 0.0005 0.0007 0.0002 0.0001 0 0.1269 0.4311 0.9341

AB
(
µ̂0.25

)
— — — 0.0029 0.0024 0.0012 0.0951 0.3087 0.7961

AB
(
µ̂0.50

)
— — 0.0061 0.0058 0.0050 0.0025 0.0582 0.2119 0.6110

AB
(
µ̂0.75

)
— 0.0098 0.0090 0.0088 0.0079 0.0040 0.0291 0.1215 0.3390

AB
(
µ̂T

)
0.0142 0.0128 0.0123 0.0120 0.0113 0.0058 0.0188 0.0555 0.1612

MSE
(
µ̂G

)
1×104 0.0192 0.0025 0.0007 0.0002 0 0.0192 0.2050 0.8901

MSE
(
µ̂0.25

)
— — — 0.0004 0.0002 0.0001 0.0143 0.1150 0.6525

MSE
(
µ̂0.50

)
— — 0.0005 0.0004 0.0003 0.0001 0.0071 0.0485 0.3935

MSE
(
µ̂0.75

)
— 0.0008 0.0007 0.0006 0.0005 0.0001 0.0014 0.0153 0.1344

MSE
(
µ̂T

)
0.0012 0.0010 0.0009 0.0009 0.0008 0.0002 0.0007 0.0041 0.0274

RE
(
µ̂T

)
1×107 19.5087 2.7638 0.8221 0.2507 0.2256 28.1668 50.4076 32.5334
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Table 7: Results for the shape matrix with incomplete data (MAR).

Small sample (n = 100)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
Ω̂G

)
142.4627 0.1917 0.0473 0.0264 0.0110 0.0093 0.7344 2.7633 4.9146

AB
(
Ω̂0.25

)
— — — 0.0189 0.0112 0.0101 0.3871 2.0270 4.4403

AB
(
Ω̂0.50

)
— — 0.0165 0.0147 0.0119 0.0113 0.1694 1.1269 3.4790

AB
(
Ω̂0.75

)
— 0.0155 0.0138 0.0139 0.0135 0.0132 0.0681 0.4085 1.7448

AB
(
Ω̂T

)
0.0126 0.0124 0.0126 0.0124 0.0126 0.0125 0.0264 0.1124 0.3501

MSE
(
Ω̂G

)
2×108 26.2678 0.6868 0.0781 0.0219 0.0183 0.5733 7.7329 24.3710

MSE
(
Ω̂0.25

)
— — — 0.0440 0.0223 0.0202 0.1765 4.1801 19.9067

MSE
(
Ω̂0.50

)
— — 0.0460 0.0302 0.0240 0.0231 0.0516 1.3168 12.2466

MSE
(
Ω̂0.75

)
— 0.0326 0.0296 0.0287 0.0279 0.0276 0.0295 0.1988 3.1250

MSE
(
Ω̂T

)
0.0255 0.0253 0.0256 0.0255 0.0253 0.0253 0.0251 0.0368 0.1554

RE
(
Ω̂T

)
6×109 1×103 26.7828 3.0648 0.8625 0.7231 22.7975 210.1198 156.8042

Moderate sample (n = 1000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
Ω̂G

)
703.3148 0.1459 0.0110 0.0043 0.0013 0.0010 0.6990 2.6460 4.7007

AB
(
Ω̂0.25

)
— — — 0.0022 0.0013 0.0011 0.3667 1.9444 4.2560

AB
(
Ω̂0.50

)
— — 0.0017 0.0015 0.0014 0.0012 0.1564 1.0811 3.3354

AB
(
Ω̂0.75

)
— 0.0016 0.0013 0.0016 0.0017 0.0015 0.0565 0.3884 1.6715

AB
(
Ω̂T

)
0.0032 0.0031 0.0028 0.0031 0.0032 0.0031 0.0174 0.1003 0.3313

MSE
(
Ω̂G

)
5×109 40.4568 0.0393 0.0096 0.0018 0.0015 0.5113 7.0528 22.1746

MSE
(
Ω̂0.25

)
— — — 0.0038 0.0019 0.0017 0.1491 3.8234 18.1861

MSE
(
Ω̂0.50

)
— — 0.0030 0.0025 0.0020 0.0019 0.0317 1.1982 11.1862

MSE
(
Ω̂0.75

)
— 0.0026 0.0024 0.0023 0.0023 0.0022 0.0063 0.1652 2.8333

MSE
(
Ω̂T

)
0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0024 0.0140 0.1205

RE
(
Ω̂T

)
2×1012 2×104 18.2494 4.4252 0.8462 0.7076 210.9266 504.7486 183.9650

Large sample (n = 10000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
Ω̂G

)
326.2852 0.1450 0.0069 0.0008 0.0001 0.0001 0.6957 2.6343 4.6813

AB
(
Ω̂0.25

)
— — — 0.0003 0.0001 0.0002 0.3648 1.9363 4.2393

AB
(
Ω̂0.50

)
— — 0.0004 0.0005 0.0004 0.0005 0.1552 1.0766 3.3224

AB
(
Ω̂0.75

)
— 0.0010 0.0010 0.0011 0.0010 0.0011 0.0556 0.3866 1.6650

AB
(
Ω̂T

)
0.0023 0.0023 0.0023 0.0023 0.0022 0.0023 0.0169 0.0993 0.3295

MSE
(
Ω̂G

)
7×108 115.5289 0.2165 0.0012 0.0002 0.0002 0.5058 6.9877 21.9816

MSE
(
Ω̂0.25

)
— — — 0.0004 0.0002 0.0002 0.1467 3.7893 18.0352

MSE
(
Ω̂0.50

)
— — 0.0003 0.0002 0.0002 0.0002 0.0300 1.1872 11.0936

MSE
(
Ω̂0.75

)
— 0.0003 0.0002 0.0002 0.0002 0.0002 0.0045 0.1624 2.8084

MSE
(
Ω̂T

)
0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0005 0.0121 0.1175

RE
(
Ω̂T

)
3×1012 5×105 893.0252 4.9298 0.7389 0.6126 927.1899 576.8705 186.9984
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Table 8: Results for the location vector with incomplete data (NMAR).

Small sample (n = 100)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
µ̂G

)
1.5783 0.2621 0.2137 0.1967 0.1600 0.0768 0.2600 0.6543 1.1454

AB
(
µ̂0.25

)
— — — 0.1883 0.1581 0.0769 0.2218 0.5374 1.0147

AB
(
µ̂0.50

)
— — 0.1895 0.1799 0.1560 0.0769 0.1925 0.4037 0.8365

AB
(
µ̂0.75

)
— 0.1940 0.1782 0.1717 0.1539 0.0769 0.1733 0.2818 0.5672

AB
(
µ̂T

)
0.2037 0.1771 0.1674 0.1635 0.1513 0.0768 0.1611 0.2144 0.3216

MSE
(
µ̂G

)
9×103 0.4533 0.2560 0.2123 0.1368 0.0314 0.1798 0.5321 1.4060

MSE
(
µ̂0.25

)
— — — 0.1927 0.1338 0.0316 0.1610 0.3942 1.1248

MSE
(
µ̂0.50

)
— — 0.1947 0.1752 0.1307 0.0318 0.1478 0.2707 0.7975

MSE
(
µ̂0.75

)
— 0.2047 0.1721 0.1596 0.1277 0.0320 0.1380 0.1906 0.4254

MSE
(
µ̂T

)
0.2261 0.1707 0.1527 0.1455 0.1243 0.0322 0.1299 0.1593 0.2258

RE
(
µ̂T

)
4×104 2.6550 1.6761 1.4589 1.1011 0.9753 1.3842 3.3412 6.2255

Moderate sample (n = 1000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
µ̂G

)
1.5171 0.2759 0.2193 0.1996 0.1599 0.0764 0.2601 0.6538 1.1457

AB
(
µ̂0.25

)
— — — 0.1890 0.1576 0.0765 0.2217 0.5367 1.0143

AB
(
µ̂0.50

)
— — 0.1893 0.1793 0.1553 0.0765 0.1923 0.4035 0.8369

AB
(
µ̂0.75

)
— 0.1921 0.1770 0.1704 0.1529 0.0766 0.1729 0.2820 0.5697

AB
(
µ̂T

)
0.2006 0.1748 0.1661 0.1621 0.1504 0.0765 0.1609 0.2146 0.3247

MSE
(
µ̂G

)
2×103 0.3952 0.2429 0.2008 0.1283 0.0294 0.1710 0.5229 1.3983

MSE
(
µ̂0.25

)
— — — 0.1799 0.1247 0.0294 0.1518 0.3842 1.1152

MSE
(
µ̂0.50

)
— — 0.1805 0.1618 0.1211 0.0295 0.1380 0.2606 0.7886

MSE
(
µ̂0.75

)
— 0.1856 0.1578 0.1461 0.1174 0.0295 0.1275 0.1798 0.4174

MSE
(
µ̂T

)
0.2026 0.1537 0.1391 0.1323 0.1137 0.0295 0.1193 0.1479 0.2157

RE
(
µ̂T

)
1×104 2.5712 1.7463 1.5173 1.1286 0.9952 1.4340 3.5361 6.4809

Large sample (n = 10000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
µ̂G

)
2.3292 0.2810 0.2204 0.2000 0.1596 0.0764 0.2600 0.6537 1.1456

AB
(
µ̂0.25

)
— — — 0.1891 0.1573 0.0764 0.2216 0.5366 1.0142

AB
(
µ̂0.50

)
— — 0.1892 0.1792 0.1550 0.0765 0.1921 0.4033 0.8368

AB
(
µ̂0.75

)
— 0.1917 0.1768 0.1702 0.1526 0.0765 0.1727 0.2819 0.5699

AB
(
µ̂T

)
0.2001 0.1743 0.1659 0.1619 0.1501 0.0765 0.1608 0.2146 0.3249

MSE
(
µ̂G

)
2×104 0.3956 0.2429 0.2001 0.1274 0.0292 0.1701 0.5219 1.3974

MSE
(
µ̂0.25

)
— — — 0.1788 0.1238 0.0292 0.1508 0.3831 1.1142

MSE
(
µ̂0.50

)
— — 0.1791 0.1605 0.1201 0.0292 0.1370 0.2595 0.7876

MSE
(
µ̂0.75

)
— 0.1837 0.1564 0.1448 0.1164 0.0293 0.1264 0.1786 0.4165

MSE
(
µ̂T

)
0.2003 0.1519 0.1377 0.1310 0.1126 0.0293 0.1181 0.1467 0.2147

RE
(
µ̂T

)
8×104 2.6043 1.7638 1.5267 1.1319 0.9973 1.4393 3.5570 6.5092
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Table 9: Results for the shape matrix with incomplete data (NMAR).

Small sample (n = 100)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
Ω̂G

)
283.6810 0.1847 0.0774 0.0657 0.0674 0.0723 0.8097 3.0516 5.4274

AB
(
Ω̂0.25

)
— — — 0.0603 0.0679 0.0735 0.4329 2.2332 4.8967

AB
(
Ω̂0.50

)
— — 0.0561 0.0583 0.0688 0.0751 0.2087 1.2313 3.8240

AB
(
Ω̂0.75

)
— 0.0479 0.0559 0.0590 0.0702 0.0771 0.1140 0.4461 1.8948

AB
(
Ω̂T

)
0.0341 0.0512 0.0587 0.0616 0.0727 0.0801 0.0850 0.1684 0.4211

MSE
(
Ω̂G

)
1×109 13.8695 0.3339 0.0952 0.0416 0.0420 0.6881 9.4293 29.7487

MSE
(
Ω̂0.25

)
— — — 0.0572 0.0422 0.0443 0.2033 5.0664 24.2249

MSE
(
Ω̂0.50

)
— — 0.0494 0.0423 0.0438 0.0474 0.0605 1.5629 14.7967

MSE
(
Ω̂0.75

)
— 0.0377 0.0394 0.0402 0.0470 0.0521 0.0434 0.2208 3.6744

MSE
(
Ω̂T

)
0.0323 0.0389 0.0437 0.0452 0.0535 0.0597 0.0513 0.0591 0.2103

RE
(
Ω̂T

)
4×1010 356.3258 7.6470 2.1062 0.7778 0.7030 13.4144 159.5002 141.4512

Moderate sample (n = 1000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
Ω̂G

)
61.6154 0.1250 0.0452 0.0455 0.0591 0.0653 0.7708 2.9225 5.1907

AB
(
Ω̂0.25

)
— — — 0.0467 0.0599 0.0661 0.4136 2.1441 4.6965

AB
(
Ω̂0.50

)
— — 0.0441 0.0486 0.0606 0.0669 0.1978 1.1836 3.6719

AB
(
Ω̂0.75

)
— 0.0387 0.0465 0.0504 0.0613 0.0678 0.1052 0.4296 1.8222

AB
(
Ω̂T

)
0.0247 0.0418 0.0483 0.0516 0.0619 0.0688 0.0749 0.1578 0.4047

MSE
(
Ω̂G

)
2×107 24.4671 0.1149 0.0215 0.0222 0.0261 0.6168 8.6056 27.0691

MSE
(
Ω̂0.25

)
— — — 0.0167 0.0227 0.0267 0.1759 4.6451 22.1659

MSE
(
Ω̂0.50

)
— — 0.0147 0.0166 0.0232 0.0275 0.0429 1.4316 13.5643

MSE
(
Ω̂0.75

)
— 0.0117 0.0153 0.0173 0.0238 0.0283 0.0228 0.1899 3.3639

MSE
(
Ω̂T

)
0.0062 0.0131 0.0164 0.0183 0.0245 0.0294 0.0233 0.0325 0.1689

RE
(
Ω̂T

)
4×109 2×103 7.0127 1.1762 0.9076 0.8873 26.4378 265.1185 160.2652

Large sample (n = 10000)
t1 t2 t3 t4 t∞ p5 t 0.01∞ t 0.05∞ t 0.10∞

AB
(
Ω̂G

)
322.1516 0.0729 0.0385 0.0416 0.0582 0.0646 0.7674 2.9098 5.1690

AB
(
Ω̂0.25

)
— — — 0.0450 0.0590 0.0654 0.4119 2.1353 4.6783

AB
(
Ω̂0.50

)
— — 0.0428 0.0476 0.0596 0.0662 0.1968 1.1788 3.6583

AB
(
Ω̂0.75

)
— 0.0378 0.0456 0.0494 0.0602 0.0670 0.1044 0.4277 1.8158

AB
(
Ω̂T

)
0.0238 0.0408 0.0472 0.0506 0.0606 0.0678 0.0741 0.1565 0.4032

MSE
(
Ω̂G

)
1×109 4.3763 0.4222 0.0122 0.0205 0.0247 0.6107 8.5269 26.8312

MSE
(
Ω̂0.25

)
— — — 0.0131 0.0210 0.0252 0.1735 4.6047 21.9843

MSE
(
Ω̂0.50

)
— — 0.0120 0.0144 0.0214 0.0258 0.0413 1.4187 13.4568

MSE
(
Ω̂0.75

)
— 0.0095 0.0133 0.0154 0.0218 0.0263 0.0211 0.1869 3.3371

MSE
(
Ω̂T

)
0.0041 0.0110 0.0142 0.0160 0.0221 0.0269 0.0211 0.0301 0.1654

RE
(
Ω̂T

)
2×1011 399.5492 29.7291 0.7632 0.9286 0.9174 29.0087 282.9399 162.2019
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