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Abstract

Standard methods of random matrix theory have been often applied to high-dimensional

financial data. We discuss the fundamental results and potential shortcomings of random

matrix theory by taking the stylized facts of empirical finance into consideration. In par-

ticular, the Marčenko-Pastur law generally fails when analyzing the spectral distribution of

the sample covariance matrix if the data are generalized spherically distributed and heavy

tailed. We propose Tyler’s M-estimator as an alternative. Substituting the sample covariance

matrix by Tyler’s M-estimator resolves the typical difficulties that occur in financial-data

analysis. In particular, the Marčenko-Pastur law remains valid. This holds even if the data

are not generalized spherically distributed but independent and identically distributed.
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Figure 1: Normal Q-Q plots of daily log-returns on OMX Helsinki 25 (left) and DAX 30 (right)

from 2007-01-03 to 2009-12-31 (n = 756).

1. Motivation

The distribution of short-term asset returns usually exhibits heavy tails or at least leptokurto-

sis, tail dependence, skewness, volatility clusters or even long memory, etc. Moreover, high-

frequency data generally are non-stationary, have jumps, and are strongly dependent. These

stylized facts can be observed in particular for stocks, stock indices, and foreign exchange rates.

Indeed, the literature on this topic is overwhelming (Bouchaud et al., 1997, Breymann et al.,

2003, Ding et al., 1993, Eberlein and Keller, 1995, Embrechts et al., 1997, Engle, 1982, Fama,

1965, Junker and May, 2005, Mandelbrot, 1963, McNeil et al., 2005, Mikosch, 2003, etc.).

Figure 1 shows normal Q-Q plots of daily log-returns on the OMX Helsinki 25 and DAX 30

from 2007-01-03 to 2009-12-31.1 Hence, the chosen period covers the financial crisis 2007–

2009. During this period we can observe n = 756 log-returns and the given Q-Q plots clearly

indicate that the normal-distribution hypothesis is inappropriate. More precisely, the proba-

bility of extremes is much higher than suggested by the normal distribution.

Figure 2 shows the joint distribution of the log-returns considered above. We can observe

the following effects in the scatter plot:

1. The central region of the distribution seems to be elliptically contoured.

2. In the margins, the joint distribution of asset returns is asymmetric.

3. There is a number of outliers or extreme values.

4. Extremes typically occur simultaneously.

The fact that extreme asset returns typically occur simultaneously is denoted by tail depen-

dence. This is part of copula theory as well as multivariate extreme value theory. A profound

treatment of copula theory can be found, e.g., in Joe (1997) and Nelsen (2006). Moreover,

1The particular choice of the stock indices shall symbolize the nice and fruitful collaboration between Hannu Oja

(Finland) and Gabriel Frahm (Germany). Nonetheless, the empirical phenomena that can be observed in the figures

occur worldwide for most other stocks and stock indices. The data used in this work have been obtained from VWD

(Vereinigte Wirtschaftsdienste GmbH).
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Figure 2: Daily log-returns on OMX Helsinki 25 vs. DAX 30 from 2007-01-03 to 2009-12-31.

Mikosch (2003, Ch. 4) gives a nice overview of extreme value theory. The (lower) tail-dependence

coefficient of a pair of random variables X and Y or, equivalently, of their joint distribution, is

defined as

λ(X ,Y ) := lim
t ց0

P
(

FY (Y ) ≤ t | FX (X ) ≤ t
)

= lim
t ց0

C (t , t )

t
,

where C is the copula of (X ,Y ), FX is the marginal cumulative distribution function (c.d.f.) of

X , and FY is the marginal c.d.f. of Y . There exist various ways to extend the concept of tail

dependence to the multivariate case (De Luca and Rivieccio, 2012, Ferreira and Ferreira, 2012,

Frahm, 2006).

2. Elliptical and Generalized Elliptical Distributions

2.1. Elliptical Distributions

It is well-known that the multivariate normal distribution neither allows for heavy tails nor

for tail dependence. To overcome this problem, members of the traditional class of elliptical

distributions (Cambanis et al., 1981, Fang et al., 1990, Kelker, 1970) are often proposed for the

modeling of asset returns (cf., e.g., Bingham and Kiesel, 2002, Eberlein and Keller, 1995, McNeil

et al., 2005, Ch. 3).

In the following S
k−1 :=

{

u ∈Rk : ‖u‖ = 1
}

represents the unit hypersphere, i.e., ‖ · ‖ denotes

the Euclidean norm on Rk .

Definition 1 (Elliptical Distribution). A d-dimensional random vector X is said to be elliptically

distributed if and only if there exist

1. a k-dimensional random vector U, uniformly distributed on S
k−1,

2. a nonnegative random variable R being stochastically independent of U,

3. a vector µ ∈Rd , and a matrix Λ ∈Rd×k such that

X =µ+RΛU .

3
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The random vector X is said to be spherically distributed if and only if X =RU.

We will assume that the location vector µ is known and so we set µ= 0 without loss of gener-

ality. Further, we will call Σ=ΛΛ
⊤ the dispersion matrix of X and R its generating variate.

The main fact that we would like to point out for the further discussion is that elliptical dis-

tributions possess two sorts of dependencies, viz

1. linear dependencies, which can be expressed by the dispersion matrix Σ and

2. nonlinear dependencies imposed by the generating variate R.

For example, consider a bivariate elliptically distributed random vector with components X

and Y . Further, suppose that the generating variate R is regularly varying. This means we have

that

P(R > x) = f (x) x−α, ∀ x > 0,

where f is a slowly varying function, i.e., f (t x)/ f (x) → 1 as x →∞ for every t > 0. The number

α > 0 represents the tail index of R (Mikosch, 2003). Thus P(R > x) tends to a power law

for x → ∞ and R is said to be “heavy tailed.” It is intuitively clear that in this case the two

components X and Y are heavy tailed, too. In fact, as is shown by Frahm et al. (2003), the

tail-dependence coefficient of X and Y amounts to

λ= 2t̄α+1

(

p
α+1

√

1−ρ

1+ρ

)

,

where t̄ν denotes the survival function of Student’s t -distribution with ν> 0 degrees of freedom

and ρ is the linear correlation coefficient of X and Y . Hence, the tail dependence is essentially

determined by the tail index,α, of R. In particular, the components X and Y can highly depend

on each other in a nonlinear way even if they are uncorrelated, i.e., if ρ = 0 but R is regularly

varying. The same conclusion can be drawn in the multivariate case (Frahm, 2006). Without

regular variation, the most evident example, where the components of X are uncorrelated but

(strongly) dependent, is the uniform distribution on a sphere.

2.2. Generalized Elliptical Distributions

Elliptical distributions inherit many nice properties from the Gaussian distribution. For ex-

ample, they are closed under affine-linear transformations, the marginal distributions are also

elliptical, and even the conditional distributions remain elliptical. Many elliptical distributions

are infinitely divisible, which is an appealing property in the context of financial-data analysis

(Bingham and Kiesel, 2002). Further, due to the simple stochastic representation of elliptical

distributions, they are appropriate for the modeling of high-dimensional financial data. Never-

theless, they suffer from the property of symmetry. For this reason we will bear on the class of

generalized elliptical distributions (Frahm, 2004, Ch. 3).

Definition 2 (Generalized Elliptical Distribution). A d-dimensional random vector X is said to

be generalized elliptically distributed if and only if there exist

1. a k-dimensional random vector U, uniformly distributed on S
k−1,

2. a random variable R,

4
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Figure 3: Simulated generalized elliptically distributed daily log-returns (n = 756).

3. a vector µ ∈Rd , and a matrix Λ ∈Rd×k such that

X =µ+RΛU .

The random vector X is said to be generalized spherically distributed if and only if X =RU.

All components of elliptical distributions, i.e., the location vector µ, the linear operator Λ,

and the generating variate R, are preserved in Definition 2. The only difference is that R can

be negative and even more it may depend on U. This means the radial part of X may depend on

its angular part. This allows us to control for tail dependence and asymmetry. A more detailed

discussion regarding the practical implementation of generalized elliptical distributions can be

found in Frahm (2004, Sec. 3.4) and Kring et al. (2009).

It is worth pointing out that the class of generalized elliptical distributions does not only

include the traditional class of elliptical distributions, but also the class of skew-elliptical distri-

butions (Branco and Dey, 2001, Liu and Dey, 2004). The latter can be obtained by a modeling

technique called hidden truncation (Arnold and Beaver, 2004, Frahm, 2004, p. 47). However,

skew-elliptical distributions have been introduced especially for the modeling of skewness and

heavy tails rather than tail dependence (Branco and Dey, 2001).

By fitting Student’s t -distribution to daily log-returns on stocks, several authors come to the

conclusion that the number of degrees of freedom, ν, typically lies between 3 and 7 (see, e.g.,

McNeil et al., 2005, p. 85). Hence, the t -distribution seems to provide a fairly good fit to daily

log-returns. Figure 3 contains simulated generalized elliptically distributed daily log-returns.

The simulation is based on the idea that ν depends on the direction of the data. More precisely,

the log-returns have been simulated as follows:

1. We calculated the eigenvector, v, associated with the larger eigenvalue of the sample co-

variance matrix of the n = 756 daily log-returns depicted in Figure 2. This means we

applied a principal-components analysis.

2. Then we simulated n = 756 i.i.d. random vectors Xt = RtΛUt (t = 1,2, . . . ,n), where Λ

5
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denotes the lower triangular Cholesky root of the sample covariance matrix.2 Moreover,

the generating variate is given by

Rt =

√

√

√

√

χ2
t ,2

χ2
t ,ν/ν

with ν= 5+95
(

min
{

∠(ΛUt ,v),∠(ΛUt ,−v)
}

/(π/2)
)2

, where ∠(a,b) denotes the angle be-

tween a,b ∈R2 and χ2
t ,2 is independent of χ2

t ,ν and Ut .

Hence, if X tends to its first principal component (or to the opposite direction), Rt has a tail

index of ν= 5 and can be considered as heavy tailed. By contrast, if it tends to its second prin-

cipal component, the tail index amounts to ν= 100 and so Rt is close to the generating variate

of a normal distribution. This demonstrates that the class of generalized elliptical distributions

is able to reproduce the aforementioned observations regarding the daily log-returns on the

stock indices during the financial crisis 2007–2009 (cf. Figure 2).

In virtue of the previous findings, our preliminary conclusions are as follows:

1. The class of generalized elliptical distributions is sufficiently rich. In particular, it in-

cludes the class of elliptical and skew-elliptical distributions.

2. The stylized facts of empirical finance can be reproduced by the class of generalized el-

liptical distributions.

3. This class of distributions seems to be an appropriate model for financial data when in-

vestigating standard methods of random matrix theory (RMT).

The problem is that there exists a tremendous amount of generalized elliptical distribution

families that could be considered for the modeling of financial data. Later on we will see that

the results given by standard methods of RMT heavily depend on the underlying assumptions

concerning the dependence structure of the data and this is essentially determined by the gen-

erating variate R. Thus we aim at finding a distribution-free approach such that standard meth-

ods of RMT can be applied irrespective of the generating variate R.

3. Random Matrix Theory

RMT has its origin in nuclear physics, where it has been developed for the modeling of the en-

ergy levels of complex nuclei. A contemporary overview of RMT can be found, e.g., in Bai and

Silverstein (2010) and Debashis and Aue (2014). During the last years, this topic becomes in-

creasingly important in statistics, particularly in financial-data analysis. For example, Bai et al.

(2009), Glombek (2012) and Karoui (2010, 2013) investigate problems of Markowitz portfolio

optimization. Moreover, Bouchaud et al. (2003), Laloux et al. (1999) and Plerou et al. (1999,

2002) discuss the application of RMT in the context of principal-components analysis, whereas

Bai (2003) as well as Bai and Ng (2002, 2007) refer to factor analysis.

The spectral distribution of a random matrix M is defined as follows.

2The sample means of the daily log-returns on the OMX Helsinki 25 and DAX 30 are −4.7489·10−4 and −1.3487·10−4 ,

respectively. For this reason, we can simply ignore the location.
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Definition 3 (Spectral distribution). Let M be a d×d symmetric random matrix with eigenvalues

λ1,λ2, . . . ,λd . Then the function

FM(λ) =
1

d

d
∑

i=1

1λi≤λ , ∀ λ∈R ,

is called the spectral distribution of M.

In multivariate analysis it is usually assumed that the number of dimensions, i.e., d , is fixed.

By contrast, in RMT we have that d →∞ as n →∞. This makes it possible to derive asymptotic

results for high-dimensional data.

Let X1,X2, . . . ,Xn be a sequence of d-dimensional random vectors with zero mean. More

precisely, we have that Xt = (X1t , X2t , . . . , Xdt ) with E(Xi t ) = 0 for each sample element Xi t (i , t =
1,2, . . . ,d ,n). The sample covariance matrix is given by

S = 1

n

n
∑

t=1

Xt X′
t .

In the following Id denotes the d×d identity matrix and x+ represents the positive part of x ∈R,

i.e., x+ = max{0, x}. In RMT it is typically assumed that the sample elements are independent

and identically distributed (i.i.d.).

Theorem 1 (Bai and Yin (1988)). Suppose that the sample elements are i.i.d., have zero mean,

unit variance, and finite fourth moment. Consider the random matrix M =
p

n/d (S− Id ). Then

for all λ∈R the spectral distribution FM(λ) converges almost surely to FW(λ) =
∫λ
−∞ fW(x)d x with

fW(x) =
1

2π

(

4−x2
)+

as n,d →∞ and n/d →∞ .

This theorem guarantees that the eigenspectrum of the sample covariance matrix of a se-

quence of i.i.d. data converges to Wigner’s semicircle law (Wigner, 1955, 1958) as n,d →∞ and

n/d →∞.3 Indeed, this is a remarkable result, but in many practical applications, the number

of observations, n, is not large enough compared to the number of dimensions, d . The follow-

ing theorem only requires that n/d → q with q ∈ ]0,∞[ and so the effective sample size n/d can

be a small number.

Theorem 2 (Bai and Silverstein (2010)). Suppose that the sample elements are i.i.d., have zero

mean, and unit variance. Then for all λ ∈ R the spectral distribution FS(λ) converges almost

surely to FMP(λ) =
∫λ
−∞ fMP(x)d x with

fMP(x) =
q

2π
·
√

(λ+−x)+ (x −λ−)+

x
, λ± =

(

1±
1
p

q

)2

,

as n,d →∞ and n/d → q with 1 ≤ q <∞. In case 0 < q < 1 the limiting density is a mixture of a

point mass at 0 and fMP(x) with weights 1−q and q, respectively.

The limiting distribution that is given by Theorem 2 is known as the Marčenko-Pastur law

(Marčenko and Pastur, 1967). It implies that all eigenvalues outside its support
[

(1−1/
p

q)2, (1+
1/
p

q)2
]

vanish asymptotically.

3The semicircle law implies that all eigenvalues outside its support [−2,2] vanish asymptotically.
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Figure 4: Eigenspectra of S based on non-elliptically, i.e., independent (left), vs. elliptically, i.e.,

uncorrelated (right), multivariate t -distributed data (n = 1000,d = 500) with 5 degrees

of freedom. The green curve represents the density function of the Marčenko-Pastur

law for q = 2.

4. Pitfall and Alternative

4.1. Sample Covariance Matrix

Consider a sample of 500-dimensional random vectors with sample size n = 1000, where the

vector components are mutually independent and possess a standardized univariate t -distri-

bution with 5 degrees of freedom. In the subsequent discussion this is said to be a multivariate

non-elliptical t -distribution. The left-hand side of Figure 4 contains the eigenspectrum ob-

tained by the sample covariance matrix. Obviously, this is consistent with the Marčenko-Pastur

law. By contrast, suppose that the random vectors have a standardized multivariate elliptical

t -distribution with 5 degrees of freedom. More precisely, it is supposed that the vector compo-

nents are uncorrelated, i.e., Σ∝ I500, but not independent. In this case the Marčenko-Pastur

law is clearly violated.

More precisely, we find 27 spurious eigenvalues exceeding the Marčenko-Pastur upper bound

λ+ = (1+1/
p

2 )2 = 2.91 and the largest eigenvalue corresponds to 14.0528. In the physics liter-

ature, the exceeding eigenvalues are often considered as “signals” or “information” (see, e.g.,

Bouchaud et al., 2003, Laloux et al., 1999, Plerou et al., 1999, 2002). In terms of principal-

components analysis, the exceeding eigenvalues could be interpreted as the contribution of

the first principal components to the total variation of the data. Figure 4 demonstrates that in

this case we would seriously overestimate the systematic risk of asset returns.

Theorem 2 does not require any specific distributional assumption. In the context of ellip-

tical and generalized elliptical distributions this is a potential fallacy. It is well-known that the

multivariate normal is the only elliptical distribution that allows for independent components.

Hence, the problem is that the components of a spherically distributed random vector X =RU

are not independent unless R ∝χd , i.e., if X has a multivariate normal distribution. For exam-

ple, if asset returns follow a multivariate elliptical t -distribution, they might be uncorrelated

but never independent in the cross section. More precisely, short-term asset returns are tail

dependent. This is the reason why the Marčenko-Pastur law in general does not work for spher-

8



Frahm and Jaekel, 2015 • Tyler’s M-Estimator in High-Dimensional Financial-Data Analysis

ically distributed data.4 We often have observations suggesting that the vector components are

highly correlated. The smaller the tail index of the generating variate R, i.e., the heavier the

tails of X, the more spurious eigenvalues occur.

4.2. Tyler’s M-Estimator

Since daily asset returns follow a leptokurtic or heavy-tailed distribution, it seems natural to use

a robust covariance matrix as an alternative to the sample covariance matrix. In the following

discussion we focus on Tyler’s M-estimator (Tyler, 1987a). Its many nice properties have been

established, e.g., by Adrover (1998), Dümbgen (1998), Dümbgen and Tyler (2005), Frahm (2009),

Frahm and Glombek (2012), Kent and Tyler (1988, 1991), Maronna and Yohai (1990), Paindav-

eine (2008), Tyler (1987b), etc. We do not take other estimators into consideration, because

Tyler’s M-estimator turns out to be a canonical choice in the context of financial time series.

This will become clear by the end of this section.

If the log-returns are elliptically distributed and the second moment of R is finite, we have

that Var(X) = E(R2)/k ·Σ. However, in many applications of multivariate data analysis we need

to know only the shape matrix of X, i.e., Ω = Σ/σ2(Σ), where σ2 is any scale function, i.e., a

positive homogeneous function of degree 1 such that σ2(Id ) = 1.5 The shape matrix Ω reflects

the linear dependence structure of X. Since the covariance matrix of X is proportional to Σ,

S/σ2(S) represents a consistent estimator for Ω. In general, this is not satisfied if R depends

on U, i.e., if X is not elliptically distributed. In the subsequent discussion it is shown that Tyler’s

M-estimator is a canonical estimator for the linear dependence structure of any generalized

elliptically distributed random vector X.

We assume thatµ= 0, Λ ∈Rd×k with rkΛ= d , andP(R = 0) = 0, i.e., X has no point mass at its

origin. Due to the stochastic representation of X given by Definition 2, the following relations

hold:
X

‖X‖
=

RΛU

‖RΛU‖
= sgn(R)

ΛU

‖ΛU‖
= sgn(R)V , V :=ΛU . (1)

The unit random vector sgn(R)V does not depend on the absolute value of R. In particular,

it is invariant under the occurrence of extreme values of R. Nonetheless, sgn(R) cannot be

cancelled out and indeed sgn(R) may depend on U.

Suppose for the moment that sgn(R) was known for each realization of R, so that we can

easily calculate every realization of V, i.e., Vt = sgn(Rt )Xt /‖Xt‖ for t = 1,2, . . . ,n . The distri-

bution of V depends on Λ only through Σ = ΛΛ
⊤ and thus we can estimate Σ by maximum

likelihood. Interestingly, for this purpose we need no assumption about the generating variate

R. Even the dependence structure of R and U is not relevant. Hence, the resulting estimator is

distribution-free.

For deriving the corresponding ML-estimator, we have to calculate the density function of V

and search for T =ΥΥ
⊤ with

Υ= arg max
Λ

n
∏

t=1

ψ (Vt ;Λ) ,

4We know only two exceptions, i.e., (i) R =χd and (ii) R =
p

d (Marčenko and Pastur, 1967).
5For example, we could choose σ2(Σ) = (trΣ)/d so that trΩ= d or σ2(Σ) = (detΣ)1/d so that detΣ= 1 (Frahm, 2009,

Paindaveine, 2008).

9



Frahm and Jaekel, 2015 • Tyler’s M-Estimator in High-Dimensional Financial-Data Analysis

ψ
(v

1
,v

2
)

v1

v2

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

0

0.2

0.4

Figure 5: Density of the angular central Gaussian distribution of a 2-dimensional unit random

vector generated by Σ11 =Σ22 ∝ 1 and Σ12 =Σ21 ∝ 0.7.

where ψ(v) represents the density of V at v ∈ S
d−1. In the following theorem it is assumed

without loss of generality that detΛ= detΣ= 1.6

Theorem 3. Let Λ be a d ×k matrix with rkΛ = d and detΛ = 1. Further, consider the matrix

Σ = ΛΛ
⊤. The density of the unit random vector V = ΛU/‖ΛU‖ with respect to the uniform

measure on S
d−1 corresponds to

ψ(v) =
Γ(d/2)

2πd/2
·
√

v⊤Σ−1v
−d

for all v ∈S
d−1.

Proof. See, e.g., Frahm (2004, pp. 59–60).

The distribution given by Theorem 3 is the angular central Gaussian distribution (Tyler, 1987b,

Watson, 1983). Due to the Courant-Fischer Theorem, the density function ψ has a local ex-

tremum at w ∈ S
d−1 if and only if w is an eigenvector of Σ and we have that ψ(w) ∝ λd/2,

where λ is the eigenvalue associated with w.

Figure 5 exemplifies the density function of the angular central Gaussian. Note that ψ is

symmetric, i.e., ψ(v) =ψ(−v), and thus it is not necessary to know the sign of R for calculating

the ML-estimator based on the density function of the angular central Gaussian. This means

our previous assumption is superfluous.

Now, consider a sample of generalized elliptically distributed observations X1,X2, . . . ,Xn . As

noted by Tyler (1987b) and Frahm (2004, Sec. 4.2.2),7 the desired ML-estimator is given by the

fixed-point equation

T =
d

n

n
∑

t=1

Vt V′
t

V′
t T−1Vt

. (2)

Actually, this corresponds to Tyler’s M-estimator (Tyler, 1987a), i.e.,

T =
d

n

n
∑

t=1

Xt X⊤
t

X⊤
t T−1Xt

.

6This sort of normalization can be considered as canonical (Paindaveine, 2008).
7Tyler (1987b) refers only to elliptical distributions, whereas Frahm (2004) observes that the same result applies as

well to generalized elliptical distributions.
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Figure 6: True dispersion matrix (middle), sample covariance matrix (left) and Tyler’s M-

estimator (right). The estimates are based on a sample of multivariate elliptically t -

distributed observations with sample size n = 1000, d = 500 dimensions, and ν = 2

degrees of freedom.

If the solution of this fixed-point equation exists, it is unique only up to a scaling constant. This

means T must be normalized in any way and in the following we assume that trT= d .

The right-hand side of Figure 6 contains a realization of Tyler’s M-estimator T, based on a

simulated sample of n = 1000 multivariate elliptically t -distributed observations with d = 500

dimensions and ν= 2 degrees of freedom. The true dispersion matrix Σ is a symmetric Toeplitz

matrix, which can be seen in the middle of Figure 6. The corresponding realization of the sam-

ple covariance matrix S is depicted on the left-hand side of Figure 6. Obviously, T is a robust

alternative to S.

At the beginning of this section we claimed that T is a canonical choice when dealing with

financial time-series data. Asset returns typically exhibit nonlinear dependencies both in the

cross section and in time. We already showed that the tail-dependence coefficients of the com-

ponents of an elliptically distributed random vector X essentially depend on the tail index of its

generating variate. Now, suppose that the time series X1,X2, . . . ,Xn is such that U1,U2, . . . ,Un are

serially independent, but in contrast R1,R2, . . . ,Rn have a serial dependence structure. For ex-

ample, the log-returns could be conditionally heteroscedastic. Our key note is that T depends

only on U1,U2, . . . ,Un , i.e., the angular part, but not on R1,R2, . . . ,Rn , i.e., the radial part of the

data. This can be seen by re-writing Eq. 2:

T = d

n

n
∑

t=1

ΛUt U⊤
t Λ

⊤

U⊤
t Λ

⊤T−1ΛUt

.

Hence, the solution of the fixed-point equation does not depend on R1,R2, . . . ,Rn and so it

does not matter how the sequence X1,X2, . . . ,Xn is driven by the generating variates both in the

cross section or in time. This means the asset returns might depend on each other through

their generating variates in an arbitrary way. Even the finite-sample distribution of T is not

influenced by R1,R2, . . . ,Rn . This makes T highly favorable for heavy-tailed financial time

series, irrespective of whether the sample size, n, is large or small or the number of dimensions,

d , is high or low.
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5. Spectral Properties of Tyler’s M-Estimator

In virtue of the aforementioned results we can expect that T is an appropriate alternative to S

in the context of RMT. This is confirmed by the next theorem.

Theorem 4 (Frahm and Glombek (2012)). Let X1,X2, . . . ,Xn be a sequence of d-dimensional gen-

eralized spherically distributed random vectors whose angular parts U1,U2, . . . ,Un are mutually

independent. Consider the random matrix M =
p

n/d (T−Id ) with trT = d. Then for all λ ∈R the

spectral distribution FM(λ) converges in probability to FW(λ) =
∫λ
−∞ fW(x)d x with

fW(x) = 1

2π

(

4−x2
)+

as n,d →∞ and n/d →∞ .

Hence, after an appropriate normalization, the spectral distribution of Tyler’s M-estimator

converges in probability to Wigner’s semicircle law as n,d →∞ but n/d →∞.8 Hence, in con-

trast to Theorem 1, the components of X are not required to be independent. For other results

related to Tyler’s M-estimator in the case n,d →∞ and n/d →∞ see Dümbgen (1998).

The remaining question is whether the spectral distribution of T converges to the Marčenko-

Pastur law in case n/d → q <∞. This is formalized by the following conjecture.

Conjecture. Suppose that one of the following conditions is satisfied:

1. The sample elements are i.i.d., have zero mean, finite variance, and a continuous distribu-

tion.

2. X1,X2, . . . ,Xn is a sequence of d-dimensional generalized spherically distributed random

vectors whose angular parts U1,U2, . . . ,Un are mutually independent.

Then for all λ ∈R the spectral distribution FT(λ) converges in probability to

FMP(λ) =
∫λ

−∞
fMP(x)d x

with

fMP(x) =
q

2π
·
√

(λ+−x)+ (x −λ−)+

x
, λ± =

(

1±
1
p

q

)2

,

as n,d →∞ and n/d → q with 1 ≤ q <∞. In case 0 < q < 1 the limiting density is a mixture of a

point mass at 0 and fMP(x) with weights 1−q and q, respectively.

Figure 7 demonstrates our conjecture. In contrast to Figure 6 we can see that the spectral

distribution of T converges to the Marčenko-Pastur law both if the data are independent and if

they are only uncorrelated.

Our arguments can be understood as follows. Suppose that the first condition of our conjec-

ture is satisfied. Then we have that E(XX⊤) = σ2Id , where σ2 > 0 is the variance of any sample

8In contrast to Theorem 1 and Theorem 2, Theorem 4 only states that the spectral distribution converges in proba-

bility but not almost surely. More details on the technical difficulties related to the proof of strong consistency can

be found at the end of Frahm and Glombek (2012).
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Figure 7: Eigenspectra of T based on non-elliptically, i.e., independent (left), vs. elliptically, i.e.,

uncorrelated (right), multivariate t -distributed data (n = 1000,d = 500) with 5 degrees

of freedom. The green curve represents the density function of the Marčenko-Pastur

law for q = 2.

element. Suppose that d is large. From the Law of Large Numbers we conclude that X⊤X/d ≈σ2

and thus E
[

(XX⊤)/(X⊤X/d )
]

≈ Id . For this reason, Tyler’s M-estimator

T= 1

n

n
∑

t=1

Xt X⊤
t

X⊤
t T−1Xt /d

converges almost surely to a d ×d matrix that is close to Id as n →∞ (Tyler, 1987a). This means

for all t = 1,2, . . . ,n we expect that X⊤
t T−1Xt /d →a.s. σ

2 as n,d →∞ and thus T ≈ S if d and n are

large. Here S denotes the sample covariance matrix of X1/σ,X2/σ, . . . ,Xn/σ, which satisfies the

global i.i.d. assumption of Theorem 2.

By contrast, if the second condition is satisfied, Tyler’s M-estimator corresponds to

T =
d

n

n
∑

t=1

Ut U⊤
t

U⊤
t T−1Ut

=
d

n

n
∑

t=1

(χd ,t Ut )(χd ,t U⊤
t )

(χd ,t U⊤
t )T−1(χd ,t Ut )

=
1

n

n
∑

t=1

Yt Y⊤
t

Y⊤
t T−1Yt /d

,

where Yt = χd ,t Ut (t = 1,2, . . . ,n) is a sequence of independent standard normally distributed

random vectors. Now, due to the same arguments we obtain T≈ S, where S denotes the sample

covariance matrix of Y1,Y2, . . . ,Yn . It is clear that also the latter sample satisfies the global i.i.d.

assumption of Theorem 2. Thus our intuition tells us that FT and FS converge to the same limit,

i.e., to the Marčenko-Pastur law, if n,d →∞ with n/d → q <∞. Nonetheless, the proof of our

conjecture is formidable and, to the best of our knowledge, still missing in the literature.
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