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Abstract

We introduce a forecasting method that closely matches the econometric properties

required by the theory on exchange rate prediction. Our approach formally models (i)

when (and if) explanatory variables enter or leave a regression model, (ii) the degree of

parameter instability, (iii) the (potentially) rapidly changing relevance of regressors, and

(iv) the appropriate shrinkage intensity over time. We consider (short-term) forecasting

of six major US dollar exchange rates using a standard set of macro fundamentals. Our

results indicate the importance of shrinkage and �exible model selection/averaging criteria

to avoid poor forecasting results.
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1 Introduction

Forecasting problems in economics and �nance are in many cases complicated be-

cause potential predictive power of the considered regressors appears to be under-

mined by over�tting and instabilities, resulting in poor out-of-sample forecasting

performance.1 The forecasting literature has addressed those issues focusing on

parsimonious models that limit the e¤ect of parameter estimation error through

various shrinkage or regularization techniques. Furthermore, forecast combina-

tions have turned out to be useful to stabilize forecasts, since they are robust to

structural breaks and model misspeci�cation; see, e.g., Rapach, Strauss, and Zhou

(2010).

Particularly, exchange rate forecasting is known as very tough. Although eco-

nomic fundamentals are considered to contain information with regard to future

exchange rate movements, the forecasting performance of exchange rate models

has turned out to be frequently inferior to a naive random walk benchmark, a

�nding that dates back to the seminal study by Meese and Rogo¤ (1983). Given

the lack of success in predicting exchange rates by macro fundamentals, exchange

rates are considered as largely disconnected from economic fundamentals. This

phenomenon constitutes the "exchange rate disconnect" puzzle (Engel, Mark, and

West, 2008).2 The prevailing view is that Meese and Rogo¤�s �nding has not been

convincingly overturned until today. Providing a comprehensive survey study,

Rossi (2013) �nds that the forecasting ability crucially depends on the choice of

1See Rossi, Elliott, and Timmermann (2012) for a recent study on forecasting a very broad
set of �nancial and economic variables under model instability.

2The "exchange rate disconnect" puzzle particularly refers to short-term forecasting with
horizons of up to one year.
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predictors, the forecast horizon, the sample period, the type of forecasting mod-

els, and forecast evaluation method. Despite some encouraging result for certain

predictors such as Taylor-Rule based forecasts (Molodtsova and Papell, 2009), no

predictor or model seems to provide systematically superior forecasts compared to

a random walk. Rossi (2013) concludes that predictability only appears occasion-

ally for some countries and short periods of time.

Sarno and Valente (2009) consider forecasting exchange rates using a predictive

procedure that allows the relationship between exchange rates and fundamentals

to evolve in a very �exible fashion. They conclude that the poor out-of-sample

forecasting ability of exchange rate models may be caused by poor in-sample model

selection criteria rather than by the lack of information embedded in the funda-

mentals and that the di¢ culty in selecting the best predictive model is largely due

to frequent shifts in the fundamentals. This �nding fuels the search for a model

selection/averaging procedure that is able to keep up with frequent model changes.

Recent rational expectations models ascribe the instablity between exchange rates

and macro fundamentals to imperfect knowledge. Facing incomplete and het-

erogeneous information, investors in the foreign exchange market attach excessive

weight to an observed fundamental - the "scapegoat" variable - during some period

(Bacchetta and Van Wincoop, 2004; Bacchetta and Van Wincoop, 2006; Bacchetta

and Van Wincoop, 2013).3 Markiewicz (2012) proposes a learning theory in which

3They rationalize exchange rate movements by a shift in an unobserved fundamental (e.g.
liquidity trades). Searching for an explanation for the exchange rate change, investors in the
foreign exchange rate market may attribute such a movement to an observed macro fundamen-
tal. The concerned macro fundamental becomes the "scapegoat" and feeds back to investors�
trading strategies, resulting in time-varying weights for the fundamentals. For survey evidence
that agents in the foreign exchange rate market frequently change the weight they ascribe to
fundamentals, see Cheung and Chinn (2001) and Fratzscher, Sarno, and Zinna (2012).
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forecasts based on the selected macro variable feeds back into the actual exchange

rate dynamics. The theoretical argument behind those rational expectation mod-

els is that investors focus excessively on a time-varying subset of fundamentals

that changes over time. This gives rise to the need for an economertric forecasting

technique that is able to handle rapid shifts in parameters and allows the relevant

subset of economic fundamentals to change over time. That is, an appropriate

econometric model should be able to accomodate both parameter instability and

model uncertainty. Furthermore, the speci�ed model universe ought to be gen-

eral enough to comprise all possible models of exchange rate behavior considered

plausible by the researcher as well as to allow also for the possibility that none of

the regressors is indeed useful for forecasting and, in this case, the model should

collapse to a simple random walk speci�cation. Our approach allows a researcher

to include a multitude of di¤erent model speci�cations, while (s)he may rely on

the mechanism of the method to automatically eliminate potentially unnecessary

model features (such as regressors or time-varying coe¢ cients) and, hence, ensures

parsimony.4

Recent empirical studies on exchange rate prediction employ shrinkage tech-

niques and �exible model averaging or selection criteria: Wright (2008) and Corte,

Sarno, and Tsiakas (2009) use Bayesian Model Averaging, Li, Tsiakas, and Wang

(2014) use the elastic net as a shrinkage technique and report encouraging results.

4An alternative to choose appropriate model speci�cations in an automated fashion would
be sequential hypothesis testing. However, there are at least two problematic issues that arise
with such a strategy: (i) Pre-testing problems, (ii) hypothesis tests are designed for constant
parameter models. Sequential hypothesis testing analyzes whether a restriction holds globally.
However, in time-varying parameter models, restrictions should be allowed to hold locally, that
is, at some points in time but not at others. Hypothesis testing cannot properly address this
issue.
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Berge (2014) uses the gradient boosting method as a shrinkage device. Kouwen-

berg, Markiewicz, Verhoeks, and Zwinkels (2013) employ a backward elimination

rule as model selection criterion that intends to capture the (potentially rapidly

changing) set of relevant fundamentals which most accurately predicts exchange

rates.

The outlined theoretical and empirical literature on exchange rate forecasting

suggests a variety of desired characteristics with respect to a prediction procedure.

Our approach is meant to closely match those demands. Against this background,

we design a statistical approach that formally models (i) when (and if) explanatory

variables enter or leave a regression model, (ii) the degree of parameter instability,

(iii) the (potentially) rapidly changing relevance of regressors, and (iv) the appro-

priate shrinkage intensity over time. We use our proposed method to dissect the

di¤erent e¤ects that in�uence forecasting performance for exchange rates. Particu-

larly, we focus on the following key questions: Which set of macro fundamentals, if

any, is relevant for forecasting at each point in time? Are time-varying coe¢ cients

helpful? Is it worthwile to consider �exible model averaging/selection criteria?

How intensively are forecasts shrunk towards zero, that is, how strong is the data

support for the random walk model? Are the �exible models able to outperform

the random walk benchmark?

With respect to the methodological contribution, our work falls into the domain

of shrinkage in time-varying parameter models. We extend the complete subset

regression approach advanced by Elliott, Gargano, and Timmermann (2013) as a

shrinkage technique for constant linear regression models to a setting that allows

for time-varying coe¢ cients, and include �exible model weighting schemes both
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within and across subsets. There are only few studies in the econometric literature

that allow for changing complexity in time-varying parameter (TVP) models:5

These methods include the time-varying dimension model (Chan, Koop, Leon-

Gonzalez, and Strachan, 2012), the Dynamic Model Averaging approach (Koop

and Korobilis, 2012) and the normal-gamma autoregressive (NGAR) process prior

approach (Kalli and Gri¢ n, 2014).6 Our suggested approach has some appealing

properties: It allows for time-varying and predictor-speci�c shrinkage intensity,

it is transparent and computationally e¢ cient and avoids arbitrary choices to be

made by the researcher.

The rest of the paper is organized as follows. Section 2 describes the predictive

regressors based on standard empirical exchange rate models, Section 3 introduces

the employed model speci�cations and the econometric methodology underlying

our forecasting strategies. In Section 4, we run a Monte Carlo simulation to

analyze the behavior of our proposed forecasting method. In Section 5, we report

our empirical results. Section 6 concludes.

5From a theoretical perspective, one could argue that parameter shrinkage should be su¢ cient
to induce parsimony into TVP models and there was no further need for modelling explicit model
change (i.e., where the model dimension can be reduced or expanded over time by setting time-
varying coe¢ cients to zero). The argument is that coe¢ cients are allowed to be estimated
zero when they are temporarily unnecessary and thus the dimension of the model should (at
least approximately) change over time. In this case, model uncertainty would automatically be
addressed by modelling parameter instability. However, in practice, such over-parameterized
TVP models can lead to poor forecast performance (see the forecasting results in our paper for
the "kitchen-sink" models or those in, e.g., Koop and Korobilis (2012) or Chan, Koop, Leon-
Gonzalez, and Strachan (2012)).

6The approach by Groen, Paap, and Ravazzolo (2013) involves a latent variable that indicates
whether a regressor is included in or excluded from the model. The binary decision is irreversible.
Hence, the approach is limited in the sense that the relevance of a variable is measured globally,
rather than being allowed to �uctuate over time. Similarly, the hierarchical shrinkage prior
approach (Belmonte, Koop, and Korobilis, 2014) e¤ectively results in a variable selection method
since it shrinks some of the regression coe¢ cients extremely close to zero for the whole time series.
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2 The Menu of Fundamentals

Our considered set of variables for predicting end-of-month (log) exchange rate re-

turns comprises four regressors that are based on standard models. The predictive

variable in period t, xi;t, is de�ned by the regressors i = 1; :::; K = 5. In addition

to an intercept (x1;t), the regressors are:

2.1 Uncovered Interest Parity

The regressor UIP is based on the uncovered interest parity condition as follows:

x2;t = it � i�t . (1)

it is the domestic one-month nominal interest rate, i�t is the foreign one-month

nominal interest rate (proxied by Eurodeposit interest rates). The interest rate

di¤erential (it�i�t ) is identical to the forward premium (ft � st) since the literature

agrees that the covered interest parity condition holds (Akram, Rime, and Sarno,

2008). ft denotes the log of the one-month forward exchange rate at time t (i.e.,

the rate agreed at time t for an exchange of currencies at t+1). st denotes the log

of the exchange rate.7

2.2 Purchasing Power Parity

The regressor PPP is based on the purchasing power parity condition:

x3;t = pt � p�t � st. (2)

7All data series are obtained from Datastream.
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pt denotes the log of the domestic price level, p�t the log of the foreign price

level.8

2.3 Asymmetric Taylor Rule

The regressorAsyTaylor is based on the (asymmetric) Taylor (1993) rule as follows:

x4;t = 1:5 (�t � ��t ) + 0:1 (gt � g�t ) + 0:1 (st + p�t � pt) . (3)

�t is the domestic in�ation rate, ��t is the foreign in�ation rate, gt the do-

mestic output gap and g�t the foreign output gap. We measure the output gap

as the (percent) deviation of real output from an estimate of its potential level

calculated using the Hodrick and Prescott (1997) �lter.9 Fixing the parameters

to (1:5; 0:1; 0:1), we follow a standard choice in the literature (Molodtsova and

Papell, 2009).

2.4 Monetary Fundamentals

The regressor Monetary employs monetary fundamentals as follows:

x5;t = (mt �m�
t )� (ipt � ip�t )� st. (4)

mt denotes the log of the domestic money supply and m�
t the log of the foreign

money supply.10 ip(�)t is the log of the domestic (foreign) industrial production.

8Prices are approximated by consumer price indices.
9We set the smoothing parameter to 14; 400 as in Molodtsova and Papell (2009).
10We use the aggregates M0 and M1 as proxies for money supply.
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3 Model Speci�cations

We de�ne a range of model speci�cations, starting with a simple constant linear

regression model in Section 3.1. Then, we will extend the model step by step. In

order to limit the e¤ect of parameter estimation error, we employ the complete

subset regression approach (Elliott, Gargano, and Timmermann, 2013) in Section

3.2. WithK potential regressors, there are 2K model combinations if each regressor

is either included in or excluded from the model. The complete subset regression

involves running predictive regressions for all model con�gurations that keep the

number of predictors �xed. A subset k comprises
�
K
k

�
models of which each of

them includes k predictors. Elliott, Gargano, and Timmermann (2013) suggest

assigning equal weights to all models within a subset k to provide an aggregate

(point) forecast of the subset. Hence, K aggregate subset forecasts are available at

each point in time. The authors propose to select the forecast of the subset which

would have given the best forecasting performance up to the given point in time as

the overall forecast. To increase �exibility, we expand their setup in the following

directions: By rewriting the regression model into a state space representation

(Section 3.3), we allow for time-varying coe¢ cients. This way, we obtain density

forecasts for each model and exploit them to introduce �exible weighting schemes

within the subsets (Section 3.4). To combine the (density) forecasts across subsets,

we use optimal prediction pools (Geweke and Amisano, 2011), in Section 3.5. We

analyze how the shrinkage e¤ect of our model comes into play in Section 3.6.

3.1 Kitchen-Sink Regression

We start with a simple linear regression model with constant parameters:
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�st =
KX
i

�+ �ixi;t + "t+1; "t+1 = N
�
0; �2"

�
, (5)

where �st denotes the di¤erence in the log exchange rate between period t and

t�1. This model speci�cation is sometimes referred to as �kitchen sink�regression

because it throws �everything but the kitchen sink� into the regression. With

many possible regressors and only a small sample size (small n, large T ), economic

forecasting models that include all considered regressors are in many cases plagued

by parameter estimation error, resulting in a poor forecasts in terms of mean

squared prediction errors. For the case of constant linear regression models, many

techniques have been advanced to alleviate the concern of over�tting .11 We employ

complete subset regressions as a shrinkage technique for two reasons. First, the

technique outperforms many other shrinkage techniques both in a Monte Carlo

experiment and in an equity index forecasting exercise; see Elliott, Gargano, and

Timmermann (2013). Second, the method is extendable to the case of time-varying

coe¢ cients and �exible model combination schemes.
11Those include, among others, bagging (Breiman, 1996), the elastic net (Zou and Hastie,

2005), lasso (Tibshirani, 1996) or Bayesian Model Averaging (Raftery, Madigan, and Hoeting,
1997). All shrinkage methods have one common characteristic: They aim at improving the
variance-bias tradeo¤ to enhance out-of-sample forecasting results. To illustrate this argument,
consider a simple linear regression model y = X� + " with E (") = 0 and V (") = �2". The

mean-squared error (MSE) of � can be decomposed as folows. MSE
�b�� = E

h�b� � ��i2 =
Bias

�b��2 + V�b��, where Bias�b�� = E
�b�� � �. While the OLS estimator is unbiased, the

shrinkage estimator is usually biased. However, its variance is in many cases lower than that of
the OLS estimator (in an extreme case, for a random walk forecast without drift, it is 0). As
shown by Tibshirani (1996), the MSE for the model forecasts is directly linked to the MSE of

the estimator: MSE (y � by)2 = E (y � by)2 = MSE �b�� + �2". Hence, the forecasting accuracy
can be improved by reducing MSE

�b��.
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3.2 Complete Subset Regressions

For a given set of potential predictor variables, the forecasts from all possible

linear regression models that keep the number of predictors �xed, are combined.

A complete subset is de�ned by the set of models that include k � K regressors

.WithK possible predictors, there areK unique univariate models and nk;K =
�
K
k

�
di¤erent k-variate models for k � K. With K regresors in the full model and k

regressors chosen for each of the �short�models, there will be
�
K
k

�
subset regressions

to average over within each complete subset, where each regressor in subset k is

included a total of nk�1;K�1 =
�
K�1
k�1
�
times. To get an insight into how the method

provides shrinkage, we outline the mechanism in A.1, closely following the setup

of Elliott, Gargano, and Timmermann (2013) and refer to their work for a more

detailed presentation.

3.3 State Space Representation

We introduce state space representation for a dynamic linear regression model

to accomodate time-varying coe¢ cients. The speci�ed TVP models di¤er with

regard to the included explanatory variables (with 2K possible combinations) and

the values that control the evolution of (possibly) time-varying coe¢ cients. For

ease of presentation, we drop model indices and show the structure of a typical

dynamic linear model for t = 1; :::; T , consisting of an observation equation (6)

and a system equation (7),

11



yt = F
0

t �t + vt; vt � N (0; Vt) (6)

�t = �t�1 + wt; wt � N (0; VtW �
t ) . (7)

The TVP model allows for a time-varying linear relationship between the uni-

variate (scalar) variable yt (in our case: log exchange rate returns �st) and the

vector of the explanatory variables Ft, observed at time t � 1.12 Ft = [1; Xt�1]

is a r � 1 vector of predictors for exchange rates, where r � K. �t is an r � 1

vector of coe¢ cients (states). We adopt a strict out-of-sample approach. That

is, for predicting yt, only information at or before time t � 1 is used. To state

precisely on which information set beliefs about parameters are formed, let denote

It = [yt; yt�1;:::; y1; Ft; Ft�1; :::; F1;Priorst=0]. This information set contains all re-

alized values of the variable of interest, all realizations of the considered predictive

variables as well as the priors for the system coe¢ cients (�0) and the observational

variance (V0). As the system equation (7) indicates, the evolution of the system

coe¢ cients is assumed to follow a random walk, with coe¢ cients being exposed to

random shocks wt.13

Adopting a (conditionally) normally distributed prior for the system coe¢ cients

and an inverse-gamma distributed prior for the observational variance results in a

12We will also consider direct 12-month ahead forecasts in our empirical work. However, to
keep our notation simple, we condition on the information set in period t� 1.
13All variances and covariances in the dynamic linear model are scaled by the unknown obser-

vational variance Vt. Unscaled (co-)variances are indcated by asterisks, e.g., in the case of the
system variance, Wt = VtW

�
t . For this aspect as wells as for the description of TVP models in

general, our notation is based on West and Harrison (1997). In empirical macroeconomics, there
is a widespread consensus to model time-varying parameters as random walks; see, e.g., Cogley
and Sargent (2005) or Primiceri (2005).
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fully conjugate Bayesian analysis, ensuring that both prior and posterior come from

the same family of distributions. The conjugate speci�cation at some arbitrary

time t can be expressed as

VtjIt � IG

�
nt
2
;
ntSt
2

�
; (8)

�tjIt � tnt [mt; StC
�
t ] ; (9)

�tjIt; Vt � N [mt; VtC
�
t ] : (10)

St is a point estimate for the observational variance Vt. nt denotes the degrees

of freedom for the (unconditionally on Vt) t-distributed coe¢ cients. To initialize

the sequential prediction and updating process, we have to specify m0, C0 and

S0.14 The point estimate for the coe¢ cient vector is mt with scale matrix Ct =

StC
�
t . The forecast of yt (i.e., the predictive density) is obtained by integrating

out the uncertainty in the states �t and the volatility Vt, rendering a t-distributed

predictive density. In A.2, we will describe in detail, how, at some arbitrary time

t, beliefs are formed for the variable of interest and how new observations lead to

an update for the estimated system coe¢ cients and their associated scale matrix.

We adopt a discount factor approach for modelling the unknown sequence for

Wt. Consider the transition from the posterior time t � 1 estimate for the scale
14In our empirical work, we use the empirical variance of the log exchange rate returns from

the "burn-in" period to determine S0 and choose n0 = 5 to to express our initial uncertainty
about the observational variance. For a model with k regressors, we set m0 = 0k�1, C0 = g � Ik
with g = 10. Thus we center the initial values for the system coe¢ cients around zero, surrounded
by a high degree of uncertainty. This di¤use prior allows for data patterns to be quickly adapted
at the beginning of the estimation. The results are qualitatively una¤ected by alternative choices
for g, n0 and S0.
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matrix of coe¢ cients (Ct�1) to the time t prior for the scale matrix of coe¢ cients

(Rt),

Rt = Ct�1 +Wt. (11)

To accomodate the additional uncertainty involved in the estimate for the coe¢ -

cients proceeding from time t� 1 to time t, Ct�1 is in�ated by the system variance

Wt. Instead of estimating Wt, the discount approach involves replacing Wt by

Wt =
1� �
�
Ct�1; 0 < � � 1; (12)

and, hence,

Rt =
1

�
Ct�1. (13)

� is a discount factor providing that observations s periods in the past have

weight �s, implying an age-weighted estimation with an e¤ective window size of

(1� �)�1; see Hannan, McDougall, and Poskitt (1989).15 For � = 1, the case of

constant parameters is included,16 � < 1 explicitly allows for variability in the

system coe¢ cients. Values of � near 1 are consistent with gradual parameter

evolution, whereas low values of � allow for abrupt parameter changes. In our

empirical work, we will consider a grid of values for � 2 f�1; :::; �dg to allow for

di¤erent degrees of parameter instability. Concretely, we will consider a grid cov-

15The discounting/forgetting approach is well established in the state space literature, see West
and Harrison (1997)
16In this case, the diagonal elements in Rt and Ct will converge to 0 as t increases, ruling out

any uncertainty about the value of the co¢ cients. To see this, consider that in Equation (35)
both Rt and AtA

0

tQt are positive (semi-)de�nite and St = S for increasing t, since nt !1; see
Equations (31) and (32).
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ering � 2 f0:96; 0:97; 0:98; 0:99; 1g.17 Notice, however, that � is �xed within each

individual model. The data support for di¤erent degrees of parameter instability

is displayed at the level of the multimodel forecast, re�ecting the data support

across models with di¤erent values of � at each point in time.

3.4 Flexible Model Averaging and Selection

There are d �
�
K
k

�
individual models in a typical subset k. The large set of models

at disposal raises the issue of an appropriate model averaging or selection scheme.

Elliott, Gargano, and Timmermann (2013) propose to assign equal weights to

the models, argumenting that this simple weighting scheme has turned out to be

di¢ cult to be beaten by more �exible weighting schemes. However, in our con-

sidered model universe that includes also time-varying parameter models, simply

averaging the models can lead to poor forecasting results if a large part of the

model pool is inappropriate. Suppose, for example, constant coe¢ cient models

are appropriate (over the entire period or at a certain point in time). Then, with

� 2 f0:96; 0:97; 0:98; 0:99; 1g, constant parameter models make up only 1
5
of the

model pool in each subset. With equal weighting, there would be no mechanism to

control for this issue. For this reason, we search for model averaging/selection pro-

cedures that choose (temporarily) appropriate models in a data-adaptive fashion.

We will introduce two methods, Bayesian Dynamic Model Averaging (BDMA) and

Bayesian Dynamic Model Selection (BDMS). The BDMA approach nests classi-

cal BMA and equal weighting as special cases. With forecasting densities of the

17The boundaries are set based on the following considerations. As we want to allow for time-
varying coe¢ cients rather than impose them, constant coe¢ cients ought to be included in the
model. The lower boundary is set to 0:96 since we also want to include the possibility of very
unstable coe¢ cients.
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models provided by the estimation of the state space models, our combination

procedures exploits the models�log predictive likelihoods for model combination

rather than measures of point forecasting accuracy.

3.4.1 Bayesian Dynamic Model Averaging

Our BDMA approach draws on insights from Dynamic Model Averaging (DMA)

proposed by Raftery, Kárný, and Ettler (2010).18 DMA employs exponential dis-

counting in the weight dynamics according to the past forecast performance of the

individual models, thus allowing recent data to be emphasized.19 DMA involves

specifying a discount factor to control down-weighting of older data. We gener-

alize Raftery�s implementation of DMA by addressing the uncertainty about the

discount factor, calculating it in a data-adaptive fashion.

Let denote p (MijIt�1) the updated model weight for model i at time t� 1. P

(MijIt�1) indicates the prediction weight for model i at time t� 1 (or put another

way: the prior weight for time t). � is a discount factor, 0 � � � 1, and shrinks

the posterior model weights towards equal weights,

P (MijIt�1) =
p (MijIt�1)�
JX
j=1

p (MjjIt�1)�
. (14)

Updating model weights is accomplished by using Bayes�rule,

18See Koop and Korobilis (2012) for an application to in�ation forecasting.
19Emphasizing recent data when combining models is also well known in the literature about

point forecasting; see, e.g., Stock and Watson (2004).
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p (MijIt) =
p (ytjMi; It�1)P (MijIt�1)
JX
j=1

p (ytjMj; It�1)P (MjjIt�1)
, (15)

where the predictive likelihood of model i;

p (ytjMi; It�1) �
1p
Qi;t

tnt�1;i

 
yt � byi;tp
Qi;t

!
, (16)

is used to a assess the forecasting performance for model i and is obtained by

evaluating the predictive density at the actual value yt. byt;i, Qt;i and nt�1;i denote
the point estimate, the scale and the degrees of freedom of the predictive density

for a particular model i, respectively. High values of the predictive likelihoods

are associated with good forecast performance. Obviously, for � = 0, all models

are equally weighted, while for � = 1, there is no discounting and, hence, BMA

is recovered as a special case.20 BMA attaches equal weights to all data from

s = 1; :::; t and, as t gets larger, posterior model probabilities will typically change

only slightly as new data points are added. Allowing for � < 1 increases �exibility

as model weights may change more rapidly.

Using Raftery�s version of DMA with a discount factor �, the predictive weight

attached to model i is

P (MijIt�1) / [P (MijIt�2) p (yt�2jMi;It�2)]
� (17)

=
t�1Y
s=1

p (yt�sjMi; It�s�1)
�s .

20In this case, the predictive likelihoods are identical to the marginal likelihoods; see Raftery,
Kárný, and Ettler (2010).
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Thus, model i will be attached more weight if it has provided accurate forecasts

in terms of predictive likelihoods in the (recent) past compared to its peers. The

discount factor � controls the exponential discounting of likelihoods according to

their recency.

As, however, a certain value of � might only be locally appropriate, we let �

evolve over time and integrate (sum) out the associated uncertainty. Initializing

the process of model combinations involves specifying priors on model weights,

p (MijI0), 8i = 1; :::; J .21 To obtain predictive weights, we use an equation similar

to (14), but in contrast to (14), we sum over the discrete set of considered grid

points for �.

P (MijIt�1) =
aX
v=1

:=P(MijIt�1;�v)z }| {
p (MijIt�1)�v
JX
j=1

p (MjjIt�1)�v
� p (�vjIt�1) . (18)

p (MijIt�1) refers to the time t�1 posterior model weights. We consider values

on the grid �v 2 f�1; �2; ::; �ag, where 0 � �v � 1 and a denotes the number

of grid points.22 We will consider the grid � 2 f0; 0:80; 0:90; 0:95; 0:99; 1g. The

updating step for model weights is accomplished by

p (MijIt) =
aX
v=1

p (ytjMi; It�1)P (MijIt�1; �v)
JX
j=1

p (ytjMj; It�1)P (MjjIt�1; �v)
� p (�vjIt) . (19)

21In our empirical work, we initially assign equal weights to each model con�guration, that is
p (MijI0) = 1

d�(Kk)
;8i = 1; :::; J .

22In our empirical work, we assign equal weights to each considered grid point for �, i.e.
p (�zjI0) = 1

a ; z = 1; :::a.
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The time-t posterior of a particular grid point for the discount factor � is

obtained as

p (�zjIt) =

JX
j=1

p (ytjMj; It�1)P (MjjIt�1; �z) p (�zjIt�1)

aX
v=1

JX
j=1

p (ytjMj; It�1)P (MjjIt�1; �v) p (�vjIt�1)
;8z = 1; ::; a, (20)

where
JX
j=1

p (ytjMj; It�1)P (MjjIt�1; �z) is the predictive likelihood of the multi-

model involving all J considered models with weights governed by the particular

value �z.

There are at least two motivating aspects for the use of likelihood discounting.

First, it is reasonable to think that more recent data will provide more relevant

information for predicting, since recent data are in many situations more likely to

occur in a similar (economic) environment. Second, the discounting approach with

its provided shrinkage toward equal weights can prevent attaching the entire weight

to one particaular model, as it is (asymptotically) the case for standard BMAwhich

cumulates the unweighted likelihoods. In a calm environment, high values for �

are expected to be supported by the data, while in unstable periods low values for

� are likely to be favored, re�ecting the need for changes in model weights. When

focussing on a particular variable (or combination of variables), that is, set aside

speci�cation uncertainty, the combination of (possibly) time-varying coe¢ cients

(� < 1) and (possibly) time-varying model weights (� < 1) amounts to a version

of averaging across estimation windows as analyzed in Pesaran and Timmermann
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(2007), Pesaran and Pick (2011) and Pesaran, Pick, and Pranovich (2013).23

3.4.2 Bayesian Dynamic Model Selection

In contrast to BDMA, BDMS chooses a single model within each subset to provide

the subset forecast rather than average over individual models. At each point in

time, the model with the (currently) highest log predictive score is used as the

subset forecast, the remaining models are (temporarily) removed.

3.5 Optimal Prediction Pools

In the previous section, we have addressed the issue of how to combine or select

models within a subset k. In the following section, we focus on combining the

aggregate density forecasts of the K subsets. To this end, we employ optimal

prediction pools (Geweke and Amisano, 2011). The method combines models

so as to maximize the log predictive score.and has several attractive theoretical

properties such as it does not assume that the true model is included in the speci�ed

model set.

Let p (ytjIt�1;Mk) denote the (combined) density forecast of subset k � K for

period t. In period t � 1, the aggregate predictive density for period t using the

linear prediction pool is

p (yjIt�1) =
KX
k=0

wk;t�1p (ytjIt�1;Mk) . (21)

23Averaging information across window sizes has turned out as successful in many instances;
see Rossi (2013).
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The weight vector wt�1 = (w0;t�1; :::; wK;t�1) satsis�es
KX
k=0

wk;t = 1 and wk;t � 0,

8k � K. The optimal weight vector w�k;t�1 is to be chosen such as to maximize

the log predictive score up to period t� 1:

f (wt�1jIt�1) =
t�1X
s=1

ln
KX
k=0

wk;t�1p (ysjIs�1;Mk) . (22)

3.6 The Role of Shrinkage

Our forecasting method can be considered as a hierarchical combination of TVP

models. To explore how the shrinkage works, we decompose the point forecast of

(an arbitrary) period t as

bytjIt�1 = KX
k=0

w�k;t�1 �
�b�agg

k;t�1

�0
�zt, (23)

where

b�aggk;t�1 = d�(Kk)X
j=1

b�j;t�1P (MjjIt�1) . (24)

zt denotes the fullK�1 vector of regressors in period t. Following the notation

in Section 3.3, zt = [1; Xt�1] and k = K. b�j;t�1 denotes the updated full K � 1

coe¢ cient vector in period t � 1 for model j. For example, if the individual

model j includes the regressors 1; 3 and 5, but not the regressor 2 and 4, the

estimated coe¢ cient mj;t�1 (updated in period t � 1) is an r � 1 vector with

r = 3. In the full coe¢ cient vector b�j;t�1, all entries for which the associated
regressor is excluded from the model, are �lled up with zeros. In the particular

example case, we have b�0
j;t�1 =

�
m
(1)
j;t�1; 0;m

(3)
j;t�1; 0;m

(5)
j;t�1

�
. m(i)

j;t�1 denotes the

estimated coe¢ cient associated with the i-th regressor of zt. b�aggk;t�1 denominates
21



the aggregate coe¢ cient vector for subset k. � indicates the Hadamard product.

Equations 23 and 24 illustrate that the �nal model forecast can be decomposed

into a linear combination of the estimated model coe¢ cients and the regressors.

This renders the method transparent. The shrinkage intensity may evolve over

time. Suppose, for example, none of the regressors is important at a certain point

around period t. In this case, the weight w0;t�1 attached to the random walk

forecast is expected to be high. In the extreme case, w0;t�1 = 1 and, hence, the

�nal model forecast for period t is 0. If, however, around another period, some

regressors become important, the weight attached to the random walk forecast is

expected to decrease. It is worth to note that by pooling the aggregate subset

density forecasts, models with di¤erent complexity have equal chances to turn out

as important. The subset k = 0 contains only
�
K
0

�
= 1 model, i.e., the random

walk forecast, while the subset k = 3 comprises 5 �
�
5
3

�
= 50 models for d = 5

and K = 5. However, each subset k provides only one aggregate forecast density

p (ysjIs�1;Mk) in period s.24 The OLS estimate is, of course, also recovered as

a special case. In this case, wK;t�1 = 1, P (MjjIt�1) = 1 for the model which

includes all K regressors and assumes constant coe¢ cients.

4 Monte Carlo Simulation

We consider a small Monte Carlo simulation to assess our method�s ability to

recover the generating data mechanism. Particularly, we are interested if (a �ex-

24In contrast, in a BMA (DMA) weighting scheme over the entire model pool, the random
walk model would be assigned only 1

10 of the weight of the subset with 3 regressors (for K = 5
and d = 5), if all the models have equal marginal (predictive) likelihoods. Hence, BMA (DMA)
automatically disadvantages very sparse models. Addressing this issue by assigning high a priori
weights to very sparse models is overturned after few periods in the updating process.
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ible version of) our approach manages to rapidly adjust to gradually or abruptly

changing coe¢ cients. For the setup of the Monte Carlo study, we assume a TVP

model of the form:

Yt+1 =

4X
i=1

�i;txi;t + "t+1; "t+1 � N
�
0; �2"

�
:

We set �2" = 0:01, t = 1; :::; 500, and consider the following structure for the

evolution of the coe¢ cients:

�1;t =

8><>: �0:2 , 120 < t < 300

0:6 , otherwise
,

�2;t =

8><>: 0 , t < 120

�5� 10�4 � t , otherwise
,

�3;t =

8>>>><>>>>:
0:8� 0:2 � t=120 , t < 120

0:4 + 0:2 � t=120 , 120 < t < 300

0 , otherwise

,

�4;t =

8><>: 0:8 , t > 300

0 , otherwise
.

Figure 1 presents the results for three di¤erent model settings. In the most

restrictive setting, we set � = 1, � = 1, and hence, do not allow for time-

varying coe¢ cients. The graph clearly indicates that constant coe¢ cients fail

in picking up the changes in the coe¢ cients. The setting that allows for time-

varying coe¢ cients and combines the models via BMA within the subsets, � 2
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Figure 1: Evolution of coe¢ cients. The �gure presents the evolution of the coe¢ cients in the
simulation experiment. The solid red line indicates the true evolution of the coe¢ cient. The

solid black line shows the evolution of the estimated coe¢ cients under the most restrictive setting

(� = 1, � = 1). The dotted black line indicates the behavior of the estimated coe¢ cients under

Bayesian Model Averaging of TVP models, � 2 f0:96; 0:97; 0:98; 0:99; 1g and � = 1. The dotted
red line displays the evolution of the estimated coe¢ cients under the most �exible model setting

with � 2 f0:96; 0:97; 0:98; 0:99; 1g and � 2 f0; 0:80; 0:90; 0:95; 0:99; 1g.
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f0:96; 0:97; 0:98; 0:99; 1g, � = 1, does considerably better in tracking both gradual

as well as abrupt coe¢ cient changes. We observe only marginal performance im-

provement for our most �exible setting with time-varying coe¢ cients and BDMA

weights, � 2 f0:96; 0:97; 0:98; 0:99; 1g, � 2 f0; 0:80; 0:90; 0:95; 0:99; 1g. For some

cases, this version is slightly less sluggish in adapting to parameter changes. How-

ever, this e¤ect becomes more pronounced if the variance of the data generating

process is increased. We next turn to our empirical work, reporting and discussing

the forecasting results.

5 Empirical Analysis

Our forecasting exercise comprises the following currencies: the British pound

(GBP), Japanese yen (JPY), German mark/euro (DEM), Canadian dollar (CAD),

Swiss franc (SWF) and the Australian dollar (AUD). The (monthly) data cover the

period from 1975 : 03 to 2013 : 06. We report forecasting results after a "burn-in"

period from 1985 : 04 to 2013 : 06 for a range of model speci�cations.

Table 1 shows the results for point prediction accuracy in terms of the out-

of-sample R2 (R2OOS) proposed by Campbell and Thompson (2008) for one-month

ahead forecasts.25 Table 2 shows the forecasting results for direct twelve-month

25The out-of sample R2 is calculated as

R2OOS = 1�

T�1X
t=�+1

(yt+1 � byt+1jIt)2
T�1X
t=�+1

�
yt+1 � cbmt+1jIt

�2 ,
where � denotes the "burn-in" sample, byt+1jIt refers to the point forecast of the respective

model con�guration, and cbmt+1jIt to the point forecast of the benchmark model. As we use the
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ahead forecasts. Our set of model con�gurations is divided into two main groups,

the constant parameter models (� = 1) and the TVPmodels (� 2 f0:96; 0:97; 0:98; 0:99; 1g).

The kitchen sink speci�cation considers only the subset that includes all K regres-

sors. That is, wK;t = 1, 8t. The Subset-Regression-EW speci�cation employs the

complete subset regressions approach with equal weighting of the models within the

subsets (as suggested by Elliott, Gargano, and Timmermann (2013)). However,

to combine the models across subsets, optimal prediction pools are employed.26

The Subset-Regression-BDMA and Subset-Regression-BDMS model con�gurations

(outlined in Section 3.4) allow for �exible weighting schemes within the subsets.

We will comment on the results, supported by some graphical devices, in the con-

text of the key questions we have raised at the beginning. All graphical devices

are based on our baseline results, the one-month ahead forecasting con�guration.

Which set of macro fundamentals (if any) is relevant for forecasting at each

point in time? Figure 2 shows the inclusion probabilities for the regressors over

time. The inclusion probabilities are simply calculated as summing over the pre-

dictive model probabilities that include a particular regressor i, that is
KX
k=0

d�(Kk)X
j=1

P (MjjIt�1) � Ifi2Mjg for period t. The regressor AsyTaylor receives rela-

tively constant support over time for the GBP and JPY. For the DEM, the PPP

regressor gains some importance after the Subprime Crisis, while the other regres-

random walk without drift as the benchmark model, cbmt+1jIt is always 0. The random walk
without drift is known as the toughest bennchmark in the exchange rate forecasting literature;
see Rossi (2013). If we use the random walk with drift as benchmark model, i.e., the prevailing
unconditional mean, our results are revolved around: for this case, our �exible model con�gu-
rations regularly and (to a large extent signi�cantly) outperform the the benchmark in terms of
R2OOS . Results are omitted but are available upon request.
26We use optimal prediction pools to provide comparability to the other model con�gurations.

However, if we recursively select the hyperparameter k (that is, choose the subset k which would
have given the best forecasting performance in terms of the MSE), our results are generally
slightly worse. Results are available upon request.
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Table 1: Prediction accuracy of one-step ahead forecasts.
R2OOS measures the percentage reduction in mean squared prediction error (MSPE) based on
the forecast of the respective model relative to the random walk benchmark forecast. Statistical
signi�cance is assessed by the Clark and West (2007) test. a,b,c indicate signi�cance at the 10%,
5% and 1% level, respectively, that the random walk MSPE is less or equal to the respective
predictive model�s MSPE against the alternative that the random walk MSPE is greater than
the predictive model�s MSPE. R2OOS statistics are computed for the 1985 : 04�2013 : 06 forecast
evaluation period.

Model con�guration R2OOS%
GBP JPY DEM CAD SWF AUD

Constant Parameter Models
Kitchen Sink �2:55 �1:47 �4:08 �0:81 �1:09 �3:02
Subset Regressions - EW �0:13 0:62 0:00 �0:01 0:35 �0:04
Subset Regressions - BDMA �0:17 0:38b 0:00 0:00 0:48a �0:03
Subset Regressions - BDMS �0:14 0:73b 0:00 �0:04 0:88b 0:00
TVP Models
Kitchen Sink �6:02 �0:27 �4:17 �9:36 �8:84 �10:01
Subset Regressions - EW �0:23 0:51 0:04a �0:06 0:09 �0:04
Subset Regressions - BDMA �0:07 0:48 0:06b �0:23 �0:05 �0:13
Subset Regressions - BDMS 0:20 0:51 0:15 �0:56 �0:43 �0:09

sors are essentially removed from the aggregate model. Also, for the AUD none

of the regressors is included. For the CAD, the UIP and Monetary regressors

gain importance after the Subprime Crisis. For the remaining exchange rates, the

Monetary regressor turns out as unneccessary for short-term forecasting.27 We

observe an interesting pattern for the SWF. The UIP and PPP regressors display

rapidly changing inclusion probabilities that seem to move in opposite directions

from the middle of the sample. This pattern illustrates the �exibility embedded in

our approach, allowing the weights attached to fundamentals to change abruptly

if required by the data. Bottom line, none of the regressor seems to be important

for forecasting across all countries.

27This �nding is in line with Engel, Mark, and West (2008).
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Figure 2: Evolution of inclusion probabilities for the regressors of the TVP-Subset Regressions-
BDMA model con�guration. The dotted red (black) line indicates the evolution for the inclusion

probability of the AsyTaylor (UIP) regressor. The solid black (red) line shows the evolution

of the inclusion probability of the PPP (Monetary) regressor. The solid blue line tracks the

inclusion of the intercept.

28



Table 2: Prediction accuracy of twelve-step ahead forecasts.
R2OOS measures the percentage reduction in mean squared prediction error (MSPE) based on
the forecast of the respective model relative to the random walk benchmark forecast. Statistical
signi�cance is assessed by the Clark and West (2007) test. a,b,c indicate signi�cance at the 10%,
5% and 1% level, respectively, that the random walk MSPE is less or equal to the respective
predictive model�s MSPE against the alternative that the random walk MSPE is greater than
the predictive model�s MSPE. R2OOS statistics are computed for the 1985 : 04�2013 : 06 forecast
evaluation period.

Model con�guration R2OOS%
GBP JPY DEM CAD SWF AUD

Constant Parameter Models
Kitchen Sink �108:92 �14:87 �83:71 �30:60 �38:69 �68:93
Subset Regressions - EW 0:00 �0:60 0:00 �1:02 0:00 0:00
Subset Regressions - BDMA 0:00 �0:15 0:00 �0:04 0:00 0:00
Subset Regressions - BDMS 0:00 �0:04 0:00 0:00 0:34 0:00
TVP Models
Kitchen Sink �107:95 �13:80 �83:68 �30:67 �37:00 �55:73
Subset Regressions - EW 0:00 �0:62 0:00 �0:92 0:00 0:00
Subset Regressions - BDMA 0:00 �0:26 0:00 �0:02 0:00 0:00
Subset Regressions - BDMS 0:00 0:83 0:00 0:00 0:00 0:00

Are time-varying coe¢ cients helpful? For the Kitchen Sink model con�gu-

rations, the increased �exibility of the TVP has a negative e¤ect on forecasting

performance for the one-step ahead forecasts (except for the JPY), while the e¤ect

on the twelve-step ahead forecasts is ambiguous. For the con�gurations that use

shrinkage and model averaging/selection, results are mixed and no clear pattern

arises whether the TVP models outperform their constant counterparts.

Is it worthwile to consider �exible model averaging/selection criteria? The

BDMA and BDMS model averaging/selection schemes provide, is sum, slightly

better results than the equal-weighting benchmark.

How intensively are the forecasts shrunk towards zero? Figure 3 displays the

results for the Kitchen Sink approach without shrinkage, Figure 4 corresponds
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to the �nal results after shrinkage based on the �exible TVP-Subset Regression-

BDMA con�guration. A comparison readily shows that the coe¢ cients display

signi�cantly less variation after shrinkage has been introduced. However, abrupt

changes in coe¢ cients can still be observed, in particular around the end of the

sample after the emergence of the Subprime Crisis. Figure 5 shows the weights

assigned to the random walk forecast over time. If the weight equals one, the �nal

forecast of the model is 0 and, hence, the shrinkage intensity is maximal. Overall,

the shrinkage intensity is high (except for the JPY, it is always above 50%). For

the DEM, the shrinkage intensity is maximal until near the end of the sample.

Figure 5 is intimately related to Figure 2. The inclusion probabilities of all macro

fundamentals are close to zero for most of the time. Near the end of the sample,

the PPP regressor gains importance and is assigned an increasing weight at the

expense of the random walk model. The shrinkage intensity for the CAD also

changes over time, while it is roughly constant for the remaining countries. An in-

teresting piece of evidence is that the previous shown �exibility of our model pays

o¤ in terms of forecasting performance for the JPY and SWF since some �exible

model con�gurations do comparatively well for both countries. This suggests that

our approach is able to detect (temporarily) relevant information embedded in the

macro fundamentals. Figure 6 shows the MSE of the aggregate subset forecasts as

a function of the number of predictors that are included. For all six currencies, the

MSE increases when more than three predictors are included. This highlights the

issue of over�tting and the superiority of parsimonious models. As our model com-

bination/selection exploits the prediction densities rather the conditional means,

Figure 7 is intended to provide information to whether the criteria MSE and log

predictive likelihoods favor a similar degree of model complexity. The measures
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Figure 3: Evolution of coe¢ cients of the TVP - Kitchen Sink model con�guration. The dotted
red (black) line indicates the evolution of the coe¢ cient associated with the AsyTaylor (UIP)

regressor. The solid black (red) line shows the evolution of the PPP (Monetary) regressor.

largely agree, suggesting that our combination scheme is appropriate, although we

focus on point forecast accuracy.28

Are the �exible models able to outperform the random walk benchmark? The

results are mixed for the one-step ahead forecasts. For the twelve-month horizon,

none of the model con�gurations signi�cantly outperforms the random walk fore-

cast. Instead, forecasts of the �exible models are intensively shrunk towards zero.

Bottom line, the considered model con�gurations cannot consistently outperform

the random walk benchmark.

As a robustness check, the set of potential regressors has been extended by

including several other predictors, namely changes in cumulated trade balances,

28We have already mentioned that the R2OOS generally decreases if we use the recursive sub-
set selection strategy proposed by Elliott, Gargano, and Timmermann (2013) that is based on
forecasting accuracy measured by the MSE.
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Figure 4: Evolution of coe¢ cients of the TVP-Subset Regressions-BDMA model version. The
dotted red (black) line indicates the evolution of the coe¢ cient associated with the AsyTaylor

(UIP) regressor. The solid black (red) line shows the evolution of the PPP (Monetary) regressor.
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Figure 6: Out-of-sample forecast performance (MSE). The mean squared errors of the TVP-
Subset Regressions-BDMA model con�gurations are shown as a function of the number of pre-

dictors.
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Figure 7: Out-of-sample forecast performance (Predictive Log Likelihoods). The sums of

predictive log likelihoods of the TVP-subset regressions-BDMA model con�gurations are shown

as a function of the number of predictors.
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stock price returns and commodity index returns. We have also analyzed whether

including the considered fundamentals directly as regressors rather than pre-estimate

models (as outlined in Section 2) changes the results. Furthermore, we have ex-

perimented with di¤erent sample periods. To conserve space, the results are not

displayed since our our main �ndings are qualitatively una¤ected in all cases. The

results are available upon request.

6 Conclusion

We have introduced a method for shrinkage in TVP models that is tailored to the

econometric demands for exchange rate forecasting models. The method has a

range of desirable properties, particularly it allows for time-varying and predictor-

speci�c shrinkage intensity. Our empirical results amass evidence for the prevail-

ing view that (short-term) forecasting of exchange rates with macro fundamentals

cannot systematically beat a naive random walk benchmark in terms of point pre-

diction accuracy (measured by the root mean squared error). The naive random

walk model is frequently selected as the most appropriate model. However, the em-

pirical �ndings suggest that changing relevance of nformation embedded in macro

fundamentals is detected in the �exible model versions.

The emphasis of our analysis has dealt with designing a �exible econometric

forecasting technique. Against this background, we are con�dent to have provided

a suitable setup for conditional predictability, as far as it genuinely exists. While

our results are robust to alternative predictors, they do not rule out predictability

for other settings, such as real-time (rather than revised) macro fundamentals. As

our method is of general purpose (though inspired by the demands for predicting
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exchange rates), it is suited for predicting other variables in macroeconomics and

�nance.

Our results a¢ rm the importance for shrinkage and �exible model averag-

ing/selection criteria to avoid poor forecasting performance. The researcher using

the approach bene�ts from the automated shrinkage procedure. (S)he avoids the

risk of misspeci�cation associated with a simpler model (such as the random walk)

from the outset and, simultaneously, circumvents the caveat of over�tting that

is associated with using unrestricted TVP models. Thus the suggested method

provides a "failsafe mechanism" against inappropriate model choices.
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A Appendix

A.1 The Shrinkage Mechanism in Complete Subset Re-

gressions

Suppose we are interested in predicting the univariate (scalar) variable yT+1 in a

simple linear regression model with k predictors xT 2 Rk, and a history of data,

fyt+1; xtgT�1t=0 . Let E(x
0
txt) = �X for all t, and without loss of generality, assume

that E(xt) = 0 for all t. To focus on regressions that include only a subset of the

predictors, de�ne � to be a K � 1 vector with coe¢ cients in the rows representing

included regressors and zeros in the rows of excluded variables. y = (y1; :::; yT ) is

a T � 1 vector and X = (x0; x1:::; xT�1)
0 stacks the x observations into a T �K

matrix. Denote the generalized inverse of a matrix A by A�. Let Si be a K �K

matrix with zeros everywhere except for ones in the diagonal cells corresponding

to included variables, such that if the (j; j) element of Si is one, the jth regressor

is included, while if this element is zero, the jth regressor is excluded. Sums over

i are sums over all permutations of Si. The subset regression estimators can be

represented as a weighted average of the components of the full regression OLS

estimator, b�OLS. Elliott, Gargano, and Timmermann (2013) show that, for a large
sample size and under general conditions, the estimator for the complete subset

regression, b�k;K , can be written as
b�k;K = �k;Kb�OLS + op (1) ,

where
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�k;K =
1

nk;K
=

nk;KX
i=1

�
S
0

i�XSi

�� �
S
0

i�X

�
.

To gain insight into how the method works as a shrinkage estimator, we will

�rst focus on the special case when the covariates are orthonormal. In this case,b�k;K = �k;Kb�OLS, where �k;K = 1��nk;K�1nk;K

�
is a scalar. To see this, note that for

this special case, b�OLS = X
0
y, while each of the subset regression estimates can

be written b�i = SiX 0
y. The complete subset regression estimator is then given by

b�k;K =
1

nk;K

nk;KX
i=1

b�i
=

1

nk;K

nk;KX
i=1

SiX
0
y

=

 
1

nk;K

nk;KX
i=1

Si

!b�OLS.

The result follows by noting that the elements of
nk;KX
i=1

Si are zero for the o¤-

diagonal terms, and equal the number of times the regressor is included in the

subset regressions for the diagonal terms, that is
�
nK�1
nk�1

�
times. In turn, the diagonal

terms equal nk;K minus the number of times a regressor is excluded, which gives

the result, noting that the solution is the same for each diagonal. The smaller k

relative to K, the greater the amount of shrinkage.

For the general case, where regressors are correlated, the subset regression

coe¢ cients are not simple regressor-by-regressor shrinkages of the OLS estimates,

and will depend on the full covariance matrix of all regressors. Speci�cally, �k;K
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is not diagonal and each element of b� is approximately a weighted sum of all of

the elements in b�OLS. The weights depend not only on fk;Kg but on all elements
in �X , denoted �ij. For example, if K = 3 and k = 1, we have

�1;3 =
1

3

0BBBB@
1 �12

�11

�13
�11

�12
�22

1 �23
�22

�13
�33

�23
�33

1

1CCCCA .

Each row of �1;3 is the result of including a particular subset regression in the

average. For example, the �rst row gives the �rst element of b�1;3 as a weighted
sum of the OLS regressors b�OLS. Apart from the multiplication with 1

3
, its own

coe¢ cient is given a relative weight of one while the remaining coe¢ cients are those

we expect from accomodating the omitted variable bias. The e¤ect of dividing by

n1;3 = 3 is to shrink all coe¢ cients, including its own coe¢ cient, towards zero. For

k > 1, each regressor gets included more often in the regressions. This increases

the their e¤ect on �k;K through a higher inclusion frequency, but decreases their

e¤ect through the omitted variable bias. Since the direct e¤ect is larger than the

omitted variable bias, an increased k generally reduces the amount of shrinkage.

Of course, in the limit as k = K, there is no shrinkage and the method is identical

to OLS.
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A.2 The Structure of Dynamic Linear Models

Based on the speci�cation of the dynamic linear model in equations (6) and (7), we

describe the sequential updating of the the beliefs about system coe¢ cients, the

scale matrix of the coe¢ cients and the observational variance. Suppose, at some

arbitrary time t� 1, we have already observed yt�1. Hence, we are able to form a

posterior belief about the values of the unobservable coe¢ cients �t�1jIt�1 and of

the observational variance Vt�1jIt�1: These posteriors are normally/inverse-gamma

distributed

Vt�1jIt�1 � IG

�
nt�1
2
;
nt�1St�1

2

�
, (25)

�t�1jIt�1; Vt�1 � N
�
mt�1; Vt�1C

�
t�1
�
. (26)

After integrating out the uncertainty in the observational variance, the poste-

riors of the coe¢ cients are t-distributed as

�t�1jIt�1 � tnt�1
�
mt�1; St�1C

�
t�1
�
. (27)

The prior distribution of the time-varying regression coe¢ cients, �tjIt�1 acco-

modates for the system coe¢ cients being exposed to shocks, increasing the system

variance by Wt,

�tjIt�1 � tnt�1
�
mt�1; St�1C

�
t�1 + St�1W

�
t

�
. (28)

Equations (11), (12) and (13) in the main text show the discount approach for
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specifying Wt.

The predictive density of yt is obtained by integrating the conditional density

of yt over the range of �t and Vt. Let # (y;�; �2) denote the density of a normal

distribution evaluated at y and IG (V ; a; b) the density of an IG (a; b) distributed

variable evaluated at V . We obtain the predictive density as

p (ytjIt�1) =

1Z
0

�Z
#
�eyt;F 0

t �t; Vt

�
#
�
�t;m

0

t�1; Vt
�
C�t�1 +W

�
t

��
d�t

�

� IG
�eVt; nt�1

2
;
St�1nt�1

2

�
dVt

=

1Z
0

#
�eyt;F 0

tmt�1; Vt

h
1 + F

0

t

�
C�t�1 +W

�
t

�
Ft

i�
� IG

�eVt; nt�1
2
;
St�1nt�1

2

�
dVt.

The predictive density

p (ytjIt�1) = tnt�1

0BBBBBBBBBBB@
eyt;F 0

tmt�1;St�1 �

2641 + F 0

t

0B@C�t�1 +W �
t| {z }

:=R�t

1CAFt
375

| {z }
:=Q�t| {z }
:=Qt

1CCCCCCCCCCCA
(29)

is Student-t distributed with location F
0
tmt�1, scale Qt and nt�1 degrees of

freedom, evaluated at eyt. Rt denotes the prior variance of the coe¢ cient vector
�t. St�1 represents the estimate for the observational variance. With all inputs for
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the predictive density determined, the prediction step is �nished and we continue

to outline the update step.

After the yt has materialized, the priors about the system coe¢ cients and the

observational variance are updated based on the prediction error

et = yt � byt, (30)

playing a key role in signal conditioning learning. Updating the degrees of

freedom is accomplished by

nt = nt�1 + 1 (31)

and the point estimate for the observational variance is updated as

St = St�1 +
St�1
nt

�
e2t
Qt
� 1
�
. (32)

Qt denotes the scale associated with the t-distributed forecast yt, see (29) in

A.2. Equation (32) shows, that if the prediction error et of a model coincides with

its expectation Qt (i.e., e2t = Qt), St = St�1. Prediction errors above the expected

error lead to an increase in the estimated observational variance and vice versa.

The r � 1 adaptive coe¢ cient vector29

29Rewriting the adaptive vector as At =
St�1(C�

t�1+W
�
t�1)Ft

St�1

2666641+F 0
t

�
C�t�1 +W

�
t

�| {z }
R�t

Ft

377775
= RtFt

Qt
shows that the

adaptiveness to new observations does not depend on St�1.

47



At =
RtFt
Qt

(33)

relates the precision of the estimated coe¢ cients to the variance, and hence,

the information content of the current observation. At determines the degree to

which the updated values for estimates of the coe¢ cients react to new observations.

Updating for point estimates of the system coe¢ cients and the associated estimate

of the scale matrix is completed by

mt = mt�1 + Atet; (34)

Ct =
St
St�1

�
Rt � AtA

0

tQt

�
. (35)
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