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Abstract

A portfolio-resampling procedure invented by Richard and Robert Michaud is the subject of

a highly controversial discussion and big scientific dispute. It has been evaluated in many

empirical studies and Monte Carlo experiments. Apart from the contradictory findings,

the Michaud approach still lacks a theoretical foundation. I prove that portfolio resampling

has a strong foundation in the classic theory of rational behavior. Every noise trader

could do better by applying the Michaud procedure. By contrast, a signal trader who

has enough prediction power and risk-management skills should refrain from portfolio

resampling. The key note is that in most simulation studies, investors are considered as

noise traders. This explains why portfolio resampling performs well in simulation studies

but could be mediocre in real life.
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1. Motivation

T
his paper provides a theoretical foundation of portfolio resampling. Based on

the classic theory of rational behavior (von Neumann and Morgenstern, 1944),

I derive simple conditions under which portfolio resampling can be justified.

The given results do not require any specific assumption on the investment strategy,

probability distribution of asset returns, or on the utility function of the investor. I

clarify the impact of uncertainty on capital allocation in a very general setting. The

methodological framework allows me to obtain universal and reliable statements on

this subject.

This work is inspired by a famous experiment conducted by Harry Markowitz and

Nilufer Usmen (2003). They compared a Bayesian portfolio optimization method with

a portfolio-resampling technique invented by Richard Michaud and Robert Michaud

(Michaud, 1998).1 Markowitz and Usmen expected the Bayesian strategy to do better

than the resampling approach but, surprisingly, the Michaud strategy won the battle.

Markowitz and Usmen (2003) frankly state that,

“the results represent something of a crisis for the theoretical foundations

of portfolio theory.”

At the end of their paper, Markowitz and Usmen raise some basic questions, which

can be stated as follows:

Q1. How does Michaud’s procedure relate to the classic theory of rational behavior according

to von Neumann and Morgenstern (1944)?

Q2. Why does portfolio resampling performs so good in the experiment?

Q3. How much does the Michaud procedure contribute to the risk-adjusted expected return

in practice? This means after taking the true distribution of asset returns, transaction

costs, etc., into account.

Q4. Are Savage’s axioms of subjective probability (1954) violated by the Michaud player and

if so, do we have to blame the Michaud player or the axioms?

Q5. Does the Bayesian strategy perform so bad, because the chosen priors are incorrect or

because of a poor numerical approximation of the posteriors?

First of all, these questions are highly relevant from an academic point of view

but, nevertheless, Markowitz and Usmen (2003) emphasize that their experiment has

1The Michaud approach is a US patented procedure with patent number 6,003,018.
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also practical implications for mean-variance analysis. It is still unclear why Bayesian

analysis, which is a sophisticated method, apparently does not succeed over such a

relatively simple method like portfolio resampling.

Michaud’s portfolio resampling is a patented procedure. This means nobody can

use or distribute the algorithm without license or permission. According to Kovaleski

(2001), Michaud’s firm New Frontier Advisors “has licensed the optimizer to about 10

financial institutions, including money managers, financial services companies and

consultants.” Hence, some practitioners might wish to know why, and under which

circumstances, portfolio resampling could be useful in real-life applications.

The portfolio-resampling approach has been published in Michaud (1998) and only

a few years later it has become the subject of a highly controversial discussion and

big scientific dispute. In the following I will give an overview on the literature. It is

easy to divide the list of authors into the proponents and opponents of the Michaud

approach.

Fletcher and Hillier (2001) compare the out-of-sample performance of the Michaud

procedure with traditional mean-variance analysis based on empirical data of equity

indices between 1983 and 2000. They consider several estimation approaches for the

mean excess returns: The historical sample mean, the James-Stein shrinkage estimator,

a single-factor estimator, and a conditional model. Their study reveals that portfolio

resampling does slightly better than traditional mean-variance analysis, although the

results are not significant.

With regard to the Fletcher-Hillier study, Michaud and Michaud (2003) warn that

“A casual reader might conclude that resampled-efficiency improvements are not of

investment significance.” Their opinion is that a backtest cannot provide reliable in-

formation, since a “good” strategy may perform poorly and a “bad” strategy may

perform well in any given period. Moreover, Michaud and Michaud (2003) point out

that, “This is why I used simulation methods to prove the superiority of resampled

efficiency.”

Scherer (2002) tries to explain the potential benefits and pitfalls of the Michaud

procedure. He concludes that portfolio resampling can be useful to develop statistical

tests for the difference between two portfolios but at the end of his paper he writes,

“What is not clear, however, is why averaging over resampled portfolio weights should

represent an optimal portfolio construction solution to deal with estimation error.”

Further, he argues that portfolio resampling should not be compared with the naive

Markowitz approach, where sample means and sample (co-)variances are treated like

true moments and thus estimation risk is completely neglected. He recommends to

use Bayesian portfolio optimization strategies instead.
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In fact, Markowitz and Usmen (2003) apply a Bayesian strategy in their experiment

but, in contrast to Fletcher and Hillier (2001), they conduct a Monte Carlo simulation

and not an empirical study. As already mentioned, they come to the conclusion that

the Michaud procedure dominates the Bayesian procedure. At the same time, Scherer

(2004) propagates Bayesian strategies as a better alternative to portfolio resampling and

asserts that this is the “correct way to deal with estimation error.” He concentrates on

the drawbacks of portfolio resampling and concludes that the Michaud approach has

“serious statistical and decision theoretic limitations.”

By contrast, Kohli (2005) conducts an empirical study based on stock-market data

from 2011 to 2013 and find “no conclusive advantage or disadvantage of using resam-

pling as a technique to obtain better returns,” but “resampled portfolios do seem to

offer higher stability and lower transaction costs.” Scherer (2006) runs a new Monte

Carlo simulation, which reveals that the James-Stein shrinkage estimator outperforms

portfolio resampling. Nevertheless, the Michaud procedure is able to outperform the

naive Markowitz approach but “the exact mechanics remain unclear (and unformu-

lated).” Similarly, Scherer (2007) states that portfolio resampling is a “practitioner-

based heuristics with no rooting in decision theory.” Finally, Scherer (2006) notes that

it is impossible to compare portfolio resampling with Bayesian procedures: “For every

distribution, a prior will be found that will outperform resampling (and vice versa).

Equally, for every prior, a distribution will be found where resampling outperforms.”

Herold and Maurer (2006) compare Bayesian strategies with heuristic approaches

including portfolio resampling. In their study they distinguish between “conditional”

and “unconditional” strategies. Unconditional strategies assume that asset returns are

serially independent and identically distributed (i.i.d.). By contrast, the conditional

strategies are based on the assumption that asset returns are predictable. Their study

incorporates a long history of US stock-market data and a shorter history of European

stock prices. It turns out that the Michaud procedure does not significantly improve

the Sharpe ratio.

Wolf (2007) compares the Michaud approach with an active investment strategy

based on a shrinkage estimator for the covariance matrix of asset returns. This is done

on the basis of US stock-market data from 1983 to 2002. He finds that the shrinkage

estimator systematically outperforms portfolio resampling.

Harvey et al. (2008) repeat the Markowitz-Usmen experiment after changing the

priors and the numerical algorithm for calculating the posteriors. Their results are in

direct contrast to Markowitz and Usmen (2003), i.e., Bayes beats Michaud. They state

that “the Bayes player was handicapped because the algorithm that was used to evalu-

ate the predictive distribution of the portfolio provided only a rough approximation.”
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Michaud and Michaud (2008) reply that Harvey et al. (2008) use an inefficient method

for portfolio resampling and, moreover, the two inventors argue that the numerical

implementation of the Michaud procedure was less accurate than the implementation

of the Bayesian estimates.

Barros Fernandes et al. (2012) assert that “Several out-of-sample evaluations have

shown results in favor of resampling methodology, using different sets of data.” Becker

et al. (2013) perform an empirical study and a Monte Carlo experiment to compare

portfolio resampling with several optimization methods and find that Markowitz out-

performs Michaud on average. The empirical study is based on US and European

stock-market data from 1988 to 2007. However, the resampling method implemented

by Becker et al. (2013) suffers from the same drawback as in Harvey et al. (2008).

Summing up, there is still no clear answer to the questions raised by Markowitz and

Usmen (2003). Most firms and professional investors would never implement a rule-

based investment strategy without a backtest. Hence, it is necessary to evaluate every

investment rule ex post on the basis of historical price data, at least for demonstrating

its potential benefit. Nevertheless, a serious empirical study that aims at comparing

different strategies must control for non-normality, serial dependence, selection bias,

multiple testing, etc. After taking all that issues properly into account, in general it is

hard to find significant results in favor of any strategy (Frahm et al., 2012). This means

the question whether portfolio resampling is better or worse than other investment

strategies cannot be solved by statistical inference.

Unfortunately, the same holds for Monte Carlo simulation. As is pointed out by

Scherer (2006), one can always create situations where a Bayesian strategy performs

better than any other strategy and vice versa. Every strategy works good if the un-

derlying assumptions are satisfied and so it is relatively easy to construct a Monte

Carlo experiment where Strategy A outperforms Strategy B and to find another set-

ting where the opposite is true. For this reason, Monte Carlo simulation can only be

used to compare strategies under a hypothetical situation but does not explain how the

strategies perform in real life.

In my opinion, the only way to provide satisfactory answers to the basic questions

raised by Markowitz and Usmen is to derive precise theoretical arguments for or against

portfolio resampling. This goal can be only achieved by analytical investigation and

not by observation or simulation. I hope that the results presented in this paper pro-

vide new insights and a better understanding of the mechanisms governing individual

investment decisions in a world of uncertainty.
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2. Preliminary Assumptions and Definitions

In the following x = (x1, x2, . . . , xN) ∈ R
N represents an N-dimensional column vector.

The equality “X = Y” for any two random vectors X and Y of the same dimension

means that X and Y are almost surely equal. The symbol 0 denotes a vector of zeros

and 1 is a vector of ones. The dimensions of 0 and 1 will be clear from the context. Let

R = (R1, R2, . . . , RN) be an N-dimensional random vector of risky asset returns. More

precisely, R denotes the vector of returns in excess of the risk-free interest rate, i.e., a

number r ≥ 0 at the beginning of the investment period. The prefix “excess” will be

dropped for convenience.

Let w = (w1,w2, . . . ,wN) be a vector of portfolio weights. The weight of the risk-free

asset follows by w0 = 1− w′1 . This guarantees that the budget constraint w0 + w′1 = 1

is satisfied for every portfolio w ∈ R
N. Moreover, let C ⊆ R

N be any convex set of

constraints on the portfolio weights. It might contain any number of linear equality

and inequality constraints like, e.g., short-selling constraints or nonlinear inequality

constraints like, e.g., a norm constraint ‖w‖ ≤ δ > 0 (DeMiguel et al., 2009). It is worth

emphasizing that C is required to be convex, which appears to be a realistic assumption

in most practical situations.

Consider an investor or trader who is about to select a portfolio of risky assets.2

Once the decision is made, the entire portfolio is held for some fixed period of time.

Although the investment period is fixed, the length of the period can be very short,

very long or anything in between. At the end of the investment period, the investor

liquidates all positions and possibly re-allocates his capital. He aims at maximizing

his expected utility by choosing the “best” portfolio weights at the beginning of each

investment period. Whenever it is not necessary to distinguish specific points in time,

I will omit time indices for notational convenience.

Let I be any information that is available to the investor at the beginning of the

investment period. To avoid unnecessary complications, I will not give a formal, i.e.,

measure theoretic, definition of I . The information I can be simply interpreted as

“observation and experience” (Markowitz, 1952):

“The process of selecting a portfolio may be divided into two stages. The

first stage starts with observation and experience and ends with beliefs

about the future performances of available securities. The second stage

starts with the relevant beliefs about future performances and ends with

the choice of portfolio.”

2In the following I use both terms “investor” and “trader” synonymously.
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Unlike the second stage, the first stage of capital allocation can be a complicated pro-

cess rather than a simple calculus. The problem is that investors are faced with uncer-

tainty and so it is not clear to them which kind of information to choose and how to

combine this information to obtain reliable expectations. In the following discussion I

use the terms risk and uncertainty according to the usual definition by Knight (1921).

For example, I could be a set of technical indicators like, e.g., moving averages,

candlesticks, support and resistance lines, etc. In this case I is a function of the

price history at the beginning of the investment period. This will be denoted by H.

Equivalently, we could write “I ⊆ H” or we could say that “I is implied by H.” In

most practical situations we have that I ⊆ J , where J is any kind of information like,

e.g., public or private information. In these cases it is usually assumed that H ⊆ J .

The information I is a random object. Let ℑ be the support of I , i.e., the space of all

information that can occur to the investor at the beginning of the investment period. It

is assumed that the information I implies one and only one vector of portfolio weights,

i.e., w̃(I) ∈ C ⊆ R
N . This means there exists a map w̃ : ℑ → R

N which assigns an

element of C to each information I ∈ ℑ . This map is said to be the strategy, whereas

the output of w̃, i.e., w̃(I), is said to be a portfolio. In terms of decision theory, w̃(I)

represents an act or a decision based on a state or event I . Since I is stochastic, w̃ in

general represents a non-deterministic random vector and then it is said to be a mixed

strategy. In the special case where w̃ is fixed, i.e., deterministic, it is said to be a pure

strategy. The vector R of asset returns can be interpreted as the response of the nature.

In our framework the nature is simply the financial market.

The dot product w̃′R represents the excess return on the strategy w̃, whereas the

actual return on the strategy amounts to r + w̃′R . The investor aims at finding an

optimal strategy. Let W > 0 be the current wealth of the investor and consider any

single-period utility function u : [0,∞ [ → R . Hence, as is usual in the literature on

portfolio optimization, I assume that the investor tries to maximize a single-period

expected utility. More precisely, the investor treats each period as if it were the last

one and so his decisions are myopic (Mossin, 1968).

3. Capital Allocation under Risk and Uncertainty

3.1. Allocation under Risk

The investor aims at maximizing his expected utility

E
(

u
(
W (1 + r + w̃′R)

))
, w̃ ∈ C .

7
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Under the circumstances of risk (Knight, 1921), it is simply possible to calculate the

optimal portfolio under the constraint C, i.e., to apply the pure strategy

w∗ = argmax
w∈C

E
(

u
(
W (1 + r + w′R)

))
.

So why should the investor take observation and experience into account? Let

w̃∗(I) = argmax
w∈C

E
(

u
(
W (1 + r + w′R)

)
| I
)

be the optimal portfolio conditional on the information I . In contrast to w∗, w̃∗ is a

random vector and thus it represents a mixed but not a pure strategy. It is clear that

E
(

u
(
W (1 + r + w̃∗′R)

)
| I
)
≥ E

(
u
(
W (1 + r + w∗′R)

)
| I
)

and so, by the law of total expectation, we obtain

E
(

u
(
W (1 + r + w̃∗′R)

))
≥ E

(
u
(
W (1 + r + w∗′R)

))
.

Hence, the optimal strategy is more favorable than the optimal portfolio. This means

maximizing the expected utility conditional on I can only increase but never decrease

the expected utility of the investor. To put it another way, it is always recommended

to search for as much information as possible and to “act conditionally” on I .3

A function f : ℑ → R is said to be increasing if and only if f (I) ≤ f (J ) for every

information I ,J ∈ ℑ such that I ⊆ J .

In a world of risk, the expected utility of an investor increases with information.

Hence, the investor should gather as much information as possible to make the most

of his money. This means observation and experience are precious things and should

never be disdained in a risky world. This obvious conclusion changes essentially when

the world becomes uncertain, which is the topic of the following sections.

3.2. Allocation under Uncertainty

Definition 1 (Irrelevant information). Let I and J be some information such that I ⊆ J .

The complementary information J \ I is said to be irrelevant given I if and only if

P(R ≤ x |J ) = P(R ≤ x | I)

for all x ∈ R
N. In particular, J is simply called irrelevant if and only if

P(R ≤ x |J ) = P(R ≤ x)

for all x ∈ R
N.

3Here it is implicitly assumed that the search costs for the information I are negligible.
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Irrelevant information I cannot be used for predicting future asset returns, since

R does not depend on I . If I is not irrelevant, i.e., relevant, the investor could at

least ignore all parts of I that are irrelevant given a subset of I . The problem is that

the real world is uncertain (Knight, 1921) and so the investor cannot see which parts

of I are irrelevant. Moreover, since the investor does not know the distribution of R

conditional on I , he is not able to apply the optimal strategy w̃∗. Therefore, he applies

another strategy w̃ ∈ C.

Suppose that w̃ is determined by any kind of relevant or irrelevant information I .

Then, once again by the law of total expectation, we obtain

E
(

u
(
W (1 + r + w̃′R)

))
≤ E

(
u
(
W (1 + r + w̃∗′R)

))
.

Now, consider the mean portfolio w̄ = E(w̃) ∈ C associated with w̃ .4 It is clear that

E
(

u
(
W (1 + r + w̄′R)

))
≤ E

(
u
(
W (1 + r + w̃∗′R)

))
.

This means the mean portfolio cannot beat the optimal strategy, but w̄ could at least

be better than the actual strategy w̃ . In fact, this turns out to be always true under the

following very general assumptions:

A1. The investor has an increasing and strictly concave utility function u .

A2. The strategy w̃ is stochastically independent of the vector R of asset returns.

A sufficient condition for A2 is that the strategy w̃ of the investor is determined by

some irrelevant information I . Another possibility is that w̃ is a pure strategy.

Theorem 1. Consider a mixed strategy w̃ ∈ C and suppose that the assumptions A1 and A2

are satisfied. Then

E
(

u
(
W (1 + r + w̄′R)

))
> E

(
u
(
W (1 + r + w̃′R)

))
,

where w̄ = E(w̃) ∈ C is the mean portfolio associated with w̃ .

Definition 2 (Noise trader). An investor with a mixed strategy w̃ is called a noise trader if

and only if w̃ is stochastically independent of R . Otherwise he is called a signal trader.

Theorem 1 implies that every noise trader with increasing and strictly concave utility

function should try to substitute his strategy by the associated mean portfolio. This

fundamental result does not depend on the specific utility function.

4Here w̄ denotes the theoretical expectation of w̃ but not some corresponding approximation or estimate.
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Example 1 (The account manager). Suppose that a noise trader acts as an account

manager. Then every risk averse client, independent of his own utility function, would

benefit if the trader substitutes his strategy w̃ by the mean portfolio w̄. For the sake of

simplicity we may assume that for each asset i = 1, . . . , N, the trader either decides to

go long (w̃i = 1), short (w̃i = −1), or flat (w̃i = 0). It follows that w̄ = p − q , where the

vectors p = (p1, p2, . . . , pN) and q = (q1,q2, . . . ,qN) contain his probabilities to go long

and short, respectively. In case p = q , i.e., if his trading strategy is symmetric, it turns

out that w̄ = 0 and so it would be better for his clients to stop trading at all.

Example 2 (The blindfolded chimpanzee). According to Malkiel (2003) “A blindfolded

chimpanzee throwing darts at the Wall Street Journal could select a portfolio that

would do as well as the experts.” Suppose that N = 2 and consider some number

δ > 0. The set of constraints C =
{

w ∈ R
2 : ‖w‖2 ≤ δ

}
represents the dartboard. (A

shot is simply repeated if it is outside C.) It is clear that the chimpanzee is a noise

trader. Instead of letting him throw the next dart, it would be better to take the “mean

shot” on the dartboard, i.e., w̄ = E(w̃) ∈ C (which need not be 0 ∈ R
2).

Example 3 (The i.i.d. assumption). Consider the process {Rt}t∈Z of asset returns and

suppose that w̃t is a function of the asset-return history It = (Rt, Rt−1, . . .) at any time

t ∈ Z, i.e., at the beginning of some investment period. Every portfolio optimization

method that aims at estimating the parameters of the conditional or unconditional

asset-return distribution on the basis of past asset returns falls into this category. It is

often assumed that asset returns are serially independent and identically distributed.

Under this widespread “i.i.d. assumption,” the history of asset returns is irrelevant.

In this case every investor applying a simple strategy or even a a highly sophisticated

statistical method based on past asset returns is just a noise trader! This means the mean

portfolio w̄t is more favorable than his actual strategy w̃t .5

Example 4 (Random-walk hypothesis). Fama’s (1970) famous random-walk model states

that

P
(

Rt+1 ≤ x |Jt

)
= P

(
Rt+1 ≤ x

)
= F(x), ∀ x ∈ R

N , t ∈ Z ,

where Jt represents any information at time t . It is usually assumed that Ht ⊆ Jt .

This means Jt contains the history of asset prices and it is often regarded as public or

private information manifested at time t . Hence, the random-walk model implies that

the asset returns are serially independent and identically distributed. If the strategy

w̃t is determined by It ⊆ Jt and the random-walk hypothesis is true with respect to

Jt , the investor is a noise trader and once again w̄t beats the actual strategy w̃t .

5Here the mean portfolio w̄t is a function of time, since the distribution of w̃t might depend on t ∈ Z .
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Begin

End

I w̃

R w̃′R

Random walk

I w̃

R w̃′R

Noise trader

I w̃

R w̃′R

Signal trader

Figure 1: Influence diagrams.

Figure 1 contains three different influence diagrams, which illustrate the possible

interconnections between I , w̃, R, and w̃′R. The first diagram represents the random-

walk model. If the strategy w̃ is a function of some information I and R does not

depend on I , it cannot depend on w̃ either. Hence, the return on the strategy, i.e., w̃′R,

is the product of two independent random vectors.

A noise trader might use relevant information. This is illustrated by the dashed line

between I and R in the second diagram of Figure 1. Nevertheless, he is not able to

create a strategy w̃ such that R depends on w̃. This is not meant in the sense that

the trader were able to affect market prices. Here “dependence” merely refers to a

stochastic, but not a causal relation between w̃ and R .

The situation of a signal trader is depicted in the third diagram of Figure 1. A signal

trader has access to relevant information and he can create a strategy w̃ such that w̃

and R depend on each other. For example, it could be that the trader has found an

appropriate set of predictors for the vector R of asset returns and applies a conditional

strategy based on his forecasts.

The fact that every statistical portfolio optimization method, that is based only on

the history of asset returns, leads to a noise-trading strategy might be counterintuitive.

The random-walk hypothesis implies that future asset returns do not depend on his-

torical price data. Hence, past asset returns are only “irrelevant” in the sense that they

cannot be used to predict future asset returns.6 This is not to say that they are useless

from a statistical point of view. In particular, without any history of asset returns it is

impossible to estimate the parameters of the asset-return distribution, i.e., x 7→ F(x).

3.3. The Bias-Variance Trade-Off

Under quite general conditions regarding the utility function u and the distribution of

the return on the strategy, the expected utility of the investor can be approximated (up

6In Section 4.2 I discuss the apparent link between the random-walk and the efficient-market hypothesis.
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to an affine-linear transformation) by the “mean-variance” objective function

E
(

w̃′R −
α

2
(w̃′R)2

)
(1)

(Kroll et al., 1984, Markowitz, 2012, Pulley, 1981). Assumption A1 guarantees that α,

i.e., the relative risk aversion (Arrow, 1971, Pratt, 1964), is positive.

In the following I write µ = E(R) and Σ = E(RR′). Further, I assume that it is not

possible to construct a risk-free portfolio with risky assets, i.e., Σ is positive definite.

Suppose that the investor is a noise trader. Then (1) equals

E
(

w̃′E(R | w̃)−
α

2
w̃′E(RR′ | w̃) w̃

)
= E

(
w̃′µ −

α

2
w̃′Σ w̃

)
.

The quantity

ϕα(w̃) = w̃′µ −
α

2
w̃′Σ w̃

is often referred to as the out-of-sample performance (Kan and Zhou, 2007) or out-of-

sample certainty equivalent (Frahm et al., 2012) of w̃.7

The expected out-of-sample performance, i.e., E
(

ϕα(w̃)
)
, is a popular means for

evaluating investment strategies. In particular, it is used by Markowitz and Usmen

(2003) in their experiment. Hence, a theoretical investigation of the potential impact of

portfolio resampling on the expected out-of-sample performance is crucial. This shall

be tackled in the subsequent analysis.

Nevertheless, as it can be seen from the derivation above, the expected value of

ϕα(w̃) in general can only be used in place of (1) if the investor is considered as a noise

trader. More precisely, the first and second moments of R, conditional on the strategy

w̃, must not depend on w̃. This means the expected out-of-sample performance is a

meaningful measure if the investor is assumed to be a noise trader. By contrast, if he

is a signal trader, E
(

ϕα(w̃)
)

becomes meaningless. This point turns out to be essential

later on, when clarifying the potential benefits and pitfalls of portfolio resampling.

Consider the mean-variance optimal portfolio without any constraints on the port-

folio weights, i.e.,

w∗ = arg max
w∈RN

(
w′µ −

α

2
w′Σ w

)
=

Σ−1µ

α
.

The loss of every noise-trading strategy w̃ is defined as ϕα(w∗)− ϕα(w̃) and

Lα(w̃) = E
(

ϕα(w
∗)− ϕα(w̃)

)

is said to be the expected loss of w̃. The following theorem guarantees that Lα(w̃) ≥ 0.

7In most publications, Σ typically denotes the covariance matrix Var(R) but not the uncentered second-

moment matrix of R. For short-term asset returns the difference between Var(R) and E(RR′) is negligible.
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Theorem 2. Let w̃ ∈ C be any strategy and suppose that the assumptions A1 and A2 are

satisfied. The expected loss of w̃ amounts to

Lα(w̃) =
α

2
E
(
(w̃ − w∗)′Σ (w̃ − w∗)

)
= Bα(w̃) + Vα(w̃) ≥ Lα(w̄)

where w∗ = Σ−1µ/α , w̄ = E(w̃) ∈ C,

Bα(w̃) =
α

2
(w̄ − w∗)′Σ (w̄ − w∗) , and Vα(w̃) =

α

2
E
(
(w̃ − w̄)′Σ (w̃ − w̄)

)
.

The inequality Lα(w̃) ≥ Lα(w̄) is strict if and only if w̃ is a mixed strategy.

Hence, the expected loss of every noise-trading strategy w̃ can be divided into two

parts: The bias, i.e., Bα(w̃), and the variance, i.e., Vα(w̃), of w̃. This illustrates the

fundamental bias-variance trade-off, which has been often observed in the literature

on portfolio optimization. In particular, Theorem 2 clarifies why it can be better to

prefer a biased but robust strategy versus an unbiased strategy that is strongly affected

by estimation errors. For an analytical investigation of the bias-variance trade-off and

the impact of estimation errors under the i.i.d. assumption see, e.g., Frahm (2011),

Frahm and Memmel (2010), Jobson and Korkie (1980) as well as Kan and Zhou (2007).

Hence, the more the strategy of a noise trader is affected by noise, the bigger his

expected loss. Now, it is intuitively clear that the financial success of a noise or signal

trader essentially depends on (i) the quality of information I and (ii) his capability to

ignore the irrelevant part of I , i.e., to separate signal from noise.

In a world of uncertainty, the expected utility of a risk averse investor tends to

decrease, the more his strategy is exposed to irrelevant information.

4. Does Portfolio Resampling Really Make Sense?

4.1. The Michaud Approach

The Michaud procedure (Michaud, 1998) works as follows:

1. Consider a sample of past asset returns with sample size n .

2. Estimate the unknown parameters µ and Σ by the empirical moments µ̂ and Σ̂ .8

3. Generate a sample of n independent asset returns from NN

(
µ̂, Σ̂

)
.

4. Estimate µ̂ and Σ̂ by the empirical moments ˆ̂µ and ̂̂Σ .

8Here Σ refers to the covariance matrix of R (Michaud, 1998).
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5. Calculate the weights of 101 efficient portfolios ˆ̂w0, ˆ̂w1, . . . , ˆ̂w100 . The first one is

the minimum-variance portfolio, i.e.,

ˆ̂w0 = argmin
w∈C

w′ ̂̂Σ w ,

whereas the last one is the maximum-mean portfolio, i.e.,

ˆ̂w100 = argmax
w∈C

w′ ˆ̂µ .

Here it is assumed that C ⊆
{

w ∈ R
N : w′1 = 1, w ≥ 0

}
.9 The other 99 portfolios

maximize w′
i
ˆ̂µ such that wi ∈ C and

√
w′

i+1
̂̂
Σ wi+1 −

√
w′

i
̂̂
Σ wi =

√
w′

i
̂̂
Σ wi −

√
w′

i−1
̂̂
Σ wi−1 , i = 1, . . . ,99 .

6. Repeat Step 3 to Step 5 499 times.

7. Let ˆ̂wij be the portfolio i = 0,1, . . . ,100 of draw j = 1, . . . ,500 and calculate the

average holdings

¯̂wi =
1

500

500

∑
j=1

ˆ̂wij , i = 0,1, . . . ,100.

8. Search for the ¯̂wi that maximizes

¯̂w′
iµ̂ −

α

2
¯̂w′

iΣ̂
¯̂wi .

In the previous sections it has been shown that every noise trader with increasing

and strictly concave utility function should substitute his strategy w̃ by the associated

mean portfolio w̄ . The problem is that w̄ is not known in real life. As is shown above,

the Michaud procedure aims at approximating 101 mean portfolios w̄0, w̄1, . . . , w̄100 . In

fact, each variant of the aforementioned portfolio-resampling procedure turns out to

be just a method for approximating one or more mean portfolios.

All simulation studies mentioned in the introduction have one thing in common:

The investors are considered as noise traders. In this case Theorem 1 and Theorem

2 are applicable and so it is not surprising that the Michaud procedure does well in

the simulation studies. However, the empirical studies discussed in the introduction

show that portfolio resampling does not systematically outperform other approaches

that take estimation risk likewise into account, e.g., constraining portfolio weights,

applying Bayesian analysis, shrinkage estimation, robust portfolio optimization, etc.

These approaches are always designed to find an optimal trade off between bias and

9Hence, C belongs to the N-dimensional Euclidean simplex.
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variance and so there is no theoretical argument why portfolio resampling should

dominate any of these strategies.

There is another important drawback of the Michaud approach.10 Suppose that the

desired portfolio w ∈ C is a function of an unknown parameter θ ∈ Θ, i.e., w = f (θ) .11

Since θ is unknown, it is typically approximated by some estimate θ̂ ∈ Θ. Let G(· ;θ) be

the cumulative distribution function of θ̂ and assume that θ̂ is unbiased, i.e., E(θ̂;θ) = θ

for all θ ∈ Θ . Consider the plug-in strategy ŵ = f (θ̂) and suppose that the function f is

linear.12 Now, the Michaud player generates a large number of independent estimates
ˆ̂θ1, ˆ̂θ2, . . . , ˆ̂θm ∼ G

(
· ; θ̂
)

and calculates the corresponding portfolios ˆ̂w1, ˆ̂w2, . . . , ˆ̂wm ∼ ˆ̂w

with ˆ̂wj = f
( ˆ̂θj

)
for j = 1,2, . . . ,m . Finally, he chooses the sample mean ¯̂wm = 1

m ∑
m
j=1

ˆ̂wj .

From the Law of Large Numbers it follows that

¯̂wm
a.s.
−→ E

(
ˆ̂w; θ̂
)
= E

(
f
( ˆ̂θ
)
; θ̂
)
= f

(
E
( ˆ̂θ; θ̂

))
= f (θ̂) = ŵ , m −→ ∞ .

This means portfolio resampling can only make sense if f is nonlinear or the estimator

for θ is biased, which can be achieved by using constraints on the portfolio weights or

nonlinear estimation methods like, e.g., shrinkage estimation. Similar arguments can

be found in Scherer (2004).

However, we must not throw out the baby with the bath water. Wolf (2007) notes

that the Michaud procedure can be considered as a special case of a statistical method

called “bagging,” which has been invented by Breiman (1996).13 Consider any method

to predict a variable on the basis of some information I . Since I is stochastic, the

prediction suffers from estimation risk. Breiman (1996) proves that it would be better

to choose the mean of all forecasts if the loss function is quadratic.

“Bagging” stands for bootstrap aggregating and means to aggregate the predictions

based on a large number of bootstrap replications of I . As is pointed out by Breiman

(1996), bagging cannot always lead to an improvement, since the bootstrap replications

come from an empirical but not the true distribution of I . The potential improvement

depends essentially on the prediction variability. More precisely, the more variability,

the more room is left for improvement.

The same conclusion can be drawn by Theorem 2, regarding the question whether

the Michaud procedure leads to an improvement or not. Consider any strategy w̃

10This point has been suggested by Christoph Memmel in a personal communication.

11In the random-walk model (see Example 4), θ is the parameter of F, i.e., the joint cumulative distribution

function of the asset returns.

12For example, it is typically assumed that the random-walk model is true, Σ is known, and C = R
N . Then

the desired portfolio corresponds to w∗ = Σ−1µ/α, which is a linear function of µ .

13I would like to thank Winfried Pohlmeier for this hint.
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and let ¯̃w be the resampled version of w̃. Moreover, suppose that A1 and A2 are

satisfied. Theorem 2 implies that the expected out-of-sample performance of ¯̃w exceeds

the expected out-of-sample performance of the actual strategy w̃ if and only if

Bα( ¯̃w)− Bα(w̃) < Vα(w̃)− Vα( ¯̃w) .

This means portfolio resampling improves a noise-trading strategy if and only if the

variance reduction is larger than the bias increment. For example, the naive Markowitz

approach does not take estimation errors into account and so this strategy suffers from

a large variance. Hence, the Michaud procedure typically beats the naive Markowitz

approach as long as C 6= R
N (Scherer, 2002, 2004). However, as already mentioned,

the Michaud strategy does not systematically outperform other investment strategies

with lower variance. It seems more reasonable to apply portfolio resampling on these

kind of strategies rather than to improve on the naive Markowitz approach.

In fact, Fletcher and Hillier (2001) compare several strategies in their “actual” and

“resampled” version. It turns out that the unconditional strategies can be improved by

resampling, whereas the conditional strategies often become worse after applying the

resampling procedure! These empirical results perfectly agree with Assumption A2,

which has been used for deriving the theorems above. This point will be clarified in

more detail in the next section.

4.2. The Noise-Trader Assumption

The random-walk model (see Example 4) was the basic assumption in finance theory

for many decades. It is often confused with the efficient-market hypothesis (Fama, 1970).

The former is only an auxiliary model for the latter. Campbell et al. (1997), LeRoy

(1973) and Lucas (1978) demonstrate that a random walk is neither necessary nor

sufficient for a “fair game,” i.e., for an efficient market according to Fama (1970).

Recent approaches to the efficient-market hypothesis only require that the market

is arbitrage free (Jarrow and Larsson, 2012, Jarrow, 2012, Ross, 2005). Let {Pt} be the

price process of any asset. A financial market with a finite number of assets and a

finite lifetime T > 0 is said to be efficient with respect to some information flow {Ft}

if and only if Pt = E(λt,TPT |Ft) for all 0 ≤ t ≤ T, where λt,T represents a stochastic

discount factor (Cochrane, 2005, Ferson, 2007).14 Hence, market efficiency does not rule

out the predictability of asset prices (Timmermann and Granger, 2004). Here {Ft} is

a superfiltration of {Ht}, i.e., the evolution of asset prices. If {Ft} represents a flow

14For a precise definition of λt,T see Back (2010) and Frahm (2013).
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of relevant information and {Ht} “fully reflects” {Ft} (Fama, 1970), it is obvious that

{Ht} is relevant, too.15

What does this mean for us? Lo et al. (2002) state that, “Among some circles, techni-

cal analysis is known as ‘vodoo finance’,” but “several academic studies suggest that

[. . . ] technical analysis may well be an effective means for extracting useful informa-

tion from market prices.” Hence, in an efficient market, an investor might improve

his expected utility by collecting price data, but he cannot expect to realize “abnormal

profits,” i.e., arbitrage, on the basis of historical asset prices.

Nevertheless, Black (1986) writes that, “people sometimes trade on noise as if it were

information. If they expect to make profits from noise trading, they are incorrect.” This

is an essential point. If asset prices are predictable, why should people act as noise

traders? More precisely, if R depends on some information I , why is it not simply

possible to create a strategy w̃, that is determined by I , such that w̃ and R depend on

each other? The answer is simple: Because we are living in a world of uncertainty. We

would have to search for a suitable information I and calculate the true conditional

probability distribution of the asset returns, i.e., P(R ≤ x | I) . These steps cannot be

accomplished in a world of uncertainty.

Black’s statement can be formalized as follows: The general objective function (1)

can be written as E
(
φα(w̃)

)
with

φα(w̃) = w̃′R −
α

2
(w̃′R)2 .

In fact, the expected return on any strategy w̃ amounts to

E(w̃′R) = w̄′µ +
N

∑
i=1

Cov(w̃i, Ri) .

Hence, a noise trader can only earn w̄′µ , i.e., the expected return on the mean portfolio.

By contrast, a signal trader is able to produce the (additional) profit ∑
N
i=1 Cov(w̃i, Ri).

This can be done only by using relevant information and this is what all people try to

achieve in a financial market.

Theorem 3. For every strategy w̃ we have that

E
(
φα(w̃)

)
= w̄′µ +

N

∑
i=1

Cov(w̃i, Ri)−
α

2

(
E
(
w̃′Σ w̃

)
+

N

∑
i,j=1

Cov
(
w̃iw̃j, RiRj

)
)

.

If the investor acts on irrelevant information or if he is simply unable to separate

signal from noise, we obtain

N

∑
i=1

Cov(w̃i, Ri) =
N

∑
i,j=1

Cov
(
w̃iw̃j, RiRj

)
= 0.

15More details on this subject can be found in Frahm (2013).
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By Jensen’s inequality, it holds that E
(
w̃′Σ w̃

)
≥ E

(
w̄′Σ w̄

)
and so w̄ is more favorable

than w̃. By contrast, a signal trader should not favor the mean portfolio if and only if

N

∑
i=1

Cov(w̃i, Ri)−
α

2

N

∑
i,j=1

Cov
(
w̃iw̃j, RiRj

)
> Vα(w̃) . (2)

Here ∑
N
i=1 Cov(w̃i, Ri) quantifies his prediction power, whereas ∑

N
i,j=1 Cov

(
w̃iw̃j, RiRj

)

reflects the quality of his risk management (where a negative value is preferable).

Prediction: Whenever the trader expects that the asset return Ri is large, he will

choose a large portfolio weight w̃i and vice versa. If his expectations are valid, there

will be a positive correlation between w̃i and Ri . This means ∑
N
i=1 Cov(w̃i, Ri) measures

his overall prediction power. The better his forecasts, the larger ceteris paribus the

expected return on his strategy.

Risk management: By choosing a low exposure, i.e., w̃2
i , in case R2

i is expected to

be large and a high exposure whenever it is presumably small, the trader can try to

reduce the overall variance of his strategy. Similarly, he could use each pair of assets

i and j (i 6= j) for diversification by choosing a large cross exposure w̃iw̃j whenever he

expects that RiRj is small and vice versa. Hence, ∑
N
i,j=1 Cov

(
w̃iw̃j, RiRj

)
measures the

investor’s capability to control the variance of the return on the strategy by placing

appropriate orders according to his own expectations. This is nothing else than risk

management.

Hence, for a noise trader it can be better to renounce his strategy altogether and to

approximate the mean portfolio by portfolio resampling. By contrast, the fluctuation

of a strategy applied by a signal trader comes from relevant information and reflects his

prediction power as well as his risk-management capabilities (see Theorem 3). This

fluctuation possibly makes his strategy profitable and then portfolio resampling could

be self-defeating.

Portfolio resampling is not suitable for a signal trader if his prediction power and

risk-management skills are “good enough.”

The problem is that unconditional strategies are not intended to make use of relevant

information. Thus even if the investor has relevant information, he should not expect

to get a satisfactory result by applying an unconditional strategy. This is confirmed by

the empirical studies mentioned in the introduction. In particular, portfolio resampling

represents an unconditional strategy.

Portfolio resampling does not turn a noise trader into a signal trader but it can

turn a signal trader into a noise trader.
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Suppose that it is possible to observe n realizations w̃1, w̃2, . . . , w̃n of some strategy w̃

and the n associated vectors R2, R3, . . . , Rn+1 of asset returns, i.e., (w̃t, Rt+1)∼ (w̃, R) for

t = 1,2, . . . ,n . More precisely, it is assumed that
{
(w̃t, Rt+1)

}
is an ergodic stationary

process, but the portfolio weights and asset returns need not be serially independent.

Now, it is reasonable to estimate the investor’s prediction power, his risk-management

capability, and the variance of his strategy by the method of moments (Hansen, 1982).

These estimates might be used to judge whether the trader has enough power to go

without portfolio resampling, i.e., whether Eq. 2 is satisfied.

4.3. The Sample-Mean Strategy

Let w̃ be a noise-trading strategy. It is clear that the mean portfolio is unknown and

approximating w̄ by portfolio resampling can be unsatisfactory, in particular if the

sample size is small. Now, an interesting question is that of whether it simply suffices

to substitute w̄ by the sample-mean strategy associated with w̃, i.e.,

ˆ̄w =
1

n

n

∑
t=1

w̃t .

In contrast to w̄, which is unknown to the investor, the sample-mean strategy is feasible

in a world of uncertainty. The key note is that w̃1, w̃2, . . . , w̃n are true observations rather

than bootstrap replications of w̃ and thus applying ˆ̄w could be always better than the

actual strategy w̃. This is confirmed by the next theorem.

Theorem 4. Let w̃ ∈ C be a mixed strategy and suppose that the assumptions A1 and A2

are satisfied. Further, let w̃1, w̃2, . . . , w̃n be a sample of n ≥ 2 irrelevant copies of w̃,16 where

w̃′
1R, w̃′

2R, . . . , w̃′
nR are not almost surely identical. Then we have that

E
(

u
(
W (1 + r + ˆ̄w′R)

))
> E

(
u
(
W (1 + r + w̃′R)

))
,

where ˆ̄w = 1
n ∑

n
t=1 w̃t ∈ C is the sample-mean strategy associated with w̃ .

This means every noise-trading strategy w̃ becomes inadmissible if it is possible to

obtain just a finite number n ≥ 2 of copies of w̃. This statement remains valid even if ˆ̄w is

“far away” from the true expectation w̄. Moreover, the observations w̃1, w̃2, . . . , w̃n need

not be independent. The essential condition of Theorem 4 is that these observations

are distributed like w̃ .

As a typical example suppose that w̃ is some technical trading strategy determined

by the past asset returns in a rolling window with fixed window length. Let the

process {Rt} of asset returns be stationary. Since each w̃t is a function of a constant

16This means R is stochastically independent of w̃t ∼ w̃ for t = 1,2, . . . ,n .
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number of asset returns up to time t , the process {w̃t} is stationary, too. Under the i.i.d.

assumption, w̃ is a noise-trading strategy. Hence, due to Theorem 4 it is better to create

a sample w̃1, w̃2, . . . , w̃n ∼ w̃ by historical simulation and to apply the corresponding

sample mean ˆ̄w of w̃1, w̃2, . . . , w̃n rather than the actual strategy w̃.

In most simulation studies, w̃ represents a statistical portfolio optimization method.

It is often assumed that practitioners use a rolling-window approach for estimating the

unknown parameters and in the vast majority of cases, the experiments are conducted

under the i.i.d. assumption. Hence, the investors are noise traders by construction and

{w̃t} is a stationary process. From Theorem 4 it follows that w̃ is inadmissible in that

context. This means applying w̃ violates the principles of rational behavior.

In fact, it makes no sense to use a rolling window for an unconditional strategy or if

it is clear to the investor that he cannot predict future asset returns, or any function

thereof. Consider the blindfolded chimpanzee from Example 2. Why should we use

only 10 shots on the dartboard for calculating the sample mean ˆ̄w, although we know

that the chimpanzee is a noise trader and it is simple to create more observations of w̃

so as to reduce the impact of noise?

5. The Markowitz-Usmen Enigma Revisited

The classic theory of rational behavior is due to von Neumann and Morgenstern (1944).

It presumes that the decision maker lives in a world of risk. Of course, the problem is

that virtually all economic decisions have to be made under uncertainty. There exist

many alternative approaches that account for the fact that most real-world phenomena

are not risky but uncertain in the sense of Knight (1921). A very robust approach is

simply to refrain from probability distributions, e.g., by applying maximin or minimax

rules. Another approach is based on the Choquet integral (Choquet, 1953), which relies

on capacities rather than probabilities. Moreover, the Bayesian approach is based on

subjective probabilities (Ramsey, 1926, Savage, 1954).17 As Bradley (2007) points out,

“Bayesian decision theories are formal theories of rational agency: they aim

to tell us both what the properties of a rational state of mind are (the theory

of pure rationality) and what action it is rational for an agent to perform,

given the state of mind (the theory of choice).”

This means Bayesian decision theories can be decomposed into an epistemic and a

normative part.18 The same holds for every other sort of decision theory, independent

17Here I do not distinguish between theories where a rational individual act as if he maximizes the expected

utility based on his subjective probabilities and other theories implying that he actually does.

18This is also reflected by Markowitz’ two-stage portfolio optimization approach discussed in Section 2.
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of whether it is Bayesian or not. The first goal, i.e., the epistemic part of the theory,

is typically achieved by finding a set of axioms regarding the beliefs and preferences

of an individual who is to be considered as “rational.” Interestingly, these axioms

usually do not say anything about the quality of beliefs and it is not required that the

information is “true” in an objective sense, even if this information could be falsified

by evidence. Hence, a decision that is based on wrong information can be rational and

so an irrational individual can create decisions that are systematically better (from an

objective viewpoint) than those of a rational individual.

Bayesian decision theories promote an internal point of view. This means the strategy

of a rational decision maker can be always considered as optimal given the subjective

information he has, whereas the strategies of other rational subjects typically appear

to be suboptimal. Hence, it makes little sense to ask the individual himself whether

his strategy is better or worse than the strategy of another individual. This question

can be satisfactorily answered only by adopting an external point of view by applying

objective criteria.

This means for evaluating an investment strategy it is not helpful to stick to the

question whether the investor is rational or not. His strategy should be measured by

the out-of-sample performance and not by the way he comes to his conclusions. It is

no accident that in the Markowitz-Usmen experiment it is neither the rational decision

maker nor the Michaud player, who evaluates the outcomes of the strategies, but the

referee. The referee lives in a world of risk and not of uncertainty. Thus he has more

information than the investors and therefore he is able to calculate the performance

measures. This is simply done by approximating the expected utilities with Monte

Carlo simulation. Of course, this procedure is inherently frequentistic. Nevertheless,

in this context, expected utility is not wrongly considered as a normative theory for

decisions under uncertainty. It is just a way to evaluate each investment strategy.

Now, I come back to the basic questions raised by Markowitz and Usmen (2003). Q1,

Q2, and Q3 can be readily answered by using the arguments in the previous sections.

For Q4 and Q5 I rely on the previous arguments given in this section.

Q1. How does Michaud’s procedure relate to the classic theory of rational behavior according

to von Neumann and Morgenstern (1944)?

Theorem 1 shows that the Michaud procedure has a theoretical foundation in the

classic theory of rational behavior.

Q2. Why does portfolio resampling performs so good in the experiment?

The Markowitz-Usmen experiment perfectly fits into the framework developed in this

paper. The simulation study is constructed in such a way that the “Bayesian player”
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and the “Michaud player” are noise traders. The strategies are compared to each other

by the expected out-of-sample performance, i.e., the performance measure involved in

Theorem 2. Moreover, there are short-selling constraints. The Bayesian approach can

lead to boundary solutions, whereas the Michaud procedure takes the average of a

large number of points in a convex set and thus leads to better diversified portfolios.

This situation is aggravated by the fact that the prior chosen by Markowitz and Usmen

is suboptimal. This point will be detailed below.

Q3. How much does the Michaud procedure contribute to the risk-adjusted expected return

in practice? This means after taking the true distribution of asset returns, transaction costs,

etc., into account.

Theorem 3 provides an immediate solution to this question. The expected value of

φα(w̃) can be interpreted as a risk-adjusted expected return. A noise trader would

gain at most

Vα(w̃) =
α

2
E
(
(w̃ − w̄)′Σ (w̃ − w̄)

)

by switching to the mean portfolio. Taking transaction costs into account makes only

sense if we assume that w̄ is repeatedly applied after each investment period, i.e., if w̄

represents a so-called constant rebalanced portfolio. Relative to a noise-trading strategy, a

constant rebalanced portfolio produces low turnover and thus keeps transaction costs

small. Hence, things become even worse for a noise trader if the market is imperfect.

By contrast, Theorem 3 shows that portfolio resampling can have a negative impact

if the trader acts on relevant information. More precisely, a signal trader could in

principle lose
N

∑
i=1

Cov(w̃i, Ri)−
α

2

N

∑
i,j=1

Cov
(
w̃iw̃j, RiRj

)
− Vα(w̃)

by moving from the trading strategy to the mean portfolio. Hence, how much a signal

trader can gain or lose by portfolio resampling depends essentially on his prediction

power and risk-management skills.

Q4. Are Savage’s axioms of subjective probability (1954) violated by the Michaud player

and if so, do we have to blame the Michaud player or the axioms?

In the Markowitz-Usmen experiment it is not the Michaud player, who evaluates the

outcomes, but the referee. So the question is whether the referee violates the axioms.

The experimental design reveals that he is a frequentist. Hence, the problem is that

Markowitz and Usmen (2003) consider Savage’s (1954) axioms as correct but evaluate

the strategies in the original sense of von Neumann and Morgenstern (1944), i.e., in a

frequentistic way. As pointed out before, internalist and externalist theories contradict

each other, since a decision that is optimal from a “subjective” viewpoint need not be
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optimal from an “objective” point of view and vice versa.

Q5. Does the Bayesian strategy perform so bad, because the chosen priors are incorrect or

because of a poor numerical approximation of the posteriors?

Harvey et al. (2008) argue that the numerical algorithm used by Markowitz and Usmen

(2003) for calculating the predictive distribution provides only a rough approximation.

Another argument refers to the prior. Markowitz and Usmen assume that µ is uni-

formly distributed, but they indeed observe that this prior is not plausible from an

economic viewpoint (Markowitz and Usmen, 2003). If the support of a prior is too

large, it does not contribute much to the posterior and then Bayesian analysis becomes

void. Since the decision essentially depends on the chosen prior, it should be at least

valid from an economic point of view and its choice should not be (only) driven by

pure mathematical reasons (Bade et al., 2008). Of course, this is my very personal, i.e.,

subjective, opinion.

6. Conclusion

Contrary to common belief, portfolio resampling has a strong theoretical foundation

in the classic theory of rational behavior according to von Neumann and Morgenstern

(1944). If the world was risky but not uncertain in the sense of Knight (1921), nobody

would trade on irrelevant information. Without relevant information, the best choice

of a trader is a pure strategy. Unfortunately, the world is uncertain and investors

make their decisions on the basis of observation and experience. The more a strategy

is exposed to irrelevant information, the worse the position of the investor.

Every noise trader could do better by choosing the mean portfolio and the Michaud

procedure is nothing else than a computational method to approximate w̄. Hence,

portfolio resampling could be useful for a noise trader. By contrast, a signal trader with

enough prediction power and risk-management skills should refrain from portfolio

resampling. The reason is that the Michaud approach aims at eliminating the variance

of an investment strategy, but it is precisely the variability that can make the strategy

of a signal trader profitable and then portfolio resampling could be self-defeating.

Most empirical studies apply unconditional rather than conditional strategies to

evaluate the impact of portfolio resampling. Unconditional strategies are not intended

to make use of relevant information and so they can be often improved by portfolio

resampling. However, the Michaud approach is not able to improve the performance

of conditional strategies. This effect cannot be understood when conducting a Monte

Carlo experiment under the widespread i.i.d. assumption. The i.i.d. assumption im-

plies that people are noise traders and this is the reason why the Michaud approach
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does well in simulation studies.

The analytical results presented in this paper demonstrate that portfolio resampling

in principle could be useful, but its potential benefit depends essentially on the quality

of information that is used by the investor and the way he processes this information.

In particular, the most nonchalant but yet unrealistic assumption in finance, i.e., the

random-walk hypothesis, is the reason why portfolio resampling performs well in

simulation studies but could be mediocre in real life.

Proofs

In the following it is implicitly assumed that the given expectations, variances, and

covariances exist and are finite. Moreover, it is assumed that Σ is positive definite, so

that the inverse Σ−1 exists.

Proposition 1. Let f be an increasing and strictly concave function from R to R . Further, let

g be a concave function from R
N to R . Then f ◦ g is strictly concave, too.

Proof: Since f is strictly concave, it holds that

π f
(

g(x1)
)
+ (1 − π) f

(
g(x2)

)
< f

(
πg(x1) + (1 − π)g(x2)

)

for every π ∈]0,1[ . Further, since g is concave,

πg(x1) + (1 − π)g(x2) ≤ g
(
πx1 + (1 − π)x2

)
.

Since f is increasing, it turns out that

π f
(

g(x1)
)
+ (1 − π) f

(
g(x2)

)
< f

(
g(πx1 + (1 − π)x2)

)

for every π ∈]0,1[ , which means that f ◦ g is strictly concave.

Theorem 1

We have that

E
(

u
(
W (1 + r + w̃′R)

))
=
∫ ∫

u
(
W (1 + r + w′r)

)
p(w,r)dr dw

and, since w̃ is independent of R , it follows that p(w,r) = p(w)p(r) . This means

E
(

u
(
W (1 + r + w̃′R)

))
=

∫ ∫
u
(
W (1 + r + w′r)

)
p(w)p(r)dr dw

=
∫ [∫

u
(
W (1 + r + w′r)

)
p(w)dw

]
p(r)dr .
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Since u is increasing and strictly concave in W (1 + r + w′r), which is linear and thus

concave in w, Proposition 1 implies that u
(
W (1 + r + w′r)

)
is strictly concave in w .

Further, since w̃ is mixed, its probability distribution is not degenerated and thus
∫

u
(
W (1 + r + w′r)

)
p(w)dw < u

(
W(1 + r + w̄′r)

)

by Jensen’s inequality. Hence, it follows that

E
(

u
(
W (1 + r + w̃′R)

))
<

∫
u
(
W(1 + r + w̄′r)

)
p(r)dr = E

(
u
(
W (1 + r + w̄′R)

))
.

Since C is convex and w̃ ∈ C, we have that w̄ = E(w̃) ∈ C .

Theorem 2

The out-of-sample performance of w∗ = Σ−1µ/α amounts to

ϕα(w
∗) =

µ′Σ−1µ

2α
.

Further, we have that

(w̃ − w∗)′Σ (w̃ − w∗) = w̃′Σ w̃ − 2w̃′Σ w∗ + w∗′Σ w∗ = w̃′Σ w̃ −
2w̃′µ

α
+

µ′Σ−1µ

α2
,

so that

α

2
(w̃ − w∗)′Σ (w̃ − w∗) =

α

2
w̃′Σ w̃ − w̃′µ +

µ′Σ−1µ

2α
= ϕα(w

∗)− ϕα(w̃) .

Hence,
α

2
E
(
(w̃ − w∗)′Σ (w̃ − w∗)

)
= E

(
ϕα(w

∗)− ϕα(w̃)
)
= Lα(w̃) .

The decomposition of Lα(w̃) into Bα(w̃) and Vα(w̃) follows immediately from

Lα(w̃) =
α

2
E
([

(w̃ − w̄) + (w̄ − w∗)
]′

Σ
[
(w̃ − w̄) + (w̄ − w∗)

])

=
α

2
E
(
(w̃ − w̄)′Σ (w̃ − w̄)

)
+

α

2
(w̄ − w∗)′Σ (w̄ − w∗) = Vα(w̃) + Bα(w̃) .

Since Σ is positive definite we have that

Vα(w̃) =
α

2
E
(
(w̃ − w̄)′Σ (w̃ − w̄)

)
≥ 0

and from

Bα(w̃) =
α

2
(w̄ − w∗)′Σ (w̄ − w∗) = Lα(w̄)

it follows that Lα(w̃) ≥ Lα(w̄) . Moreover, since w̃ ∈ C and C is a convex set, it holds

that w̄ = E(w̃) ∈ C. If w̃ is a mixed strategy, Jensen’s inequality implies that Vα(w̃)> 0,

i.e., the inequality is strict. Vice versa, if the inequality is strict, it must hold that

Vα(w̃) > 0. This is only possible if w̃ is mixed.
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Theorem 3

First of all, we have that

E
(
φα(w̃)

)
= E(w̃′R)−

α

2
E
(
(w̃′R)2

)
,

where

E(w̃′R) =
N

∑
i=1

E(w̃iRi) =
N

∑
i=1

w̄iµi +
N

∑
i=1

Cov(w̃i, Ri) = w̄′µ +
N

∑
i=1

Cov(w̃i, Ri) .

Moreover, it follows that

E
(
(w̃′R)2

)
= E

(
w̃′RR′w̃

)
= E

(
w̃′Σ w̃

)
+ E

(
w̃′
(

RR′ − Σ
)
w̃
)

,

where

E
(

w̃′
(

RR′ − Σ
)
w̃
)
=

N

∑
i,j=1

E
(

w̃iw̃j

(
RiRj − E(RiRj)

))
=

N

∑
i,j=1

Cov
(
w̃iw̃j, RiRj

)
.

This means

E
(
φα(w̃)

)
= w̄′µ +

N

∑
i=1

Cov(w̃i, Ri)−
α

2

(
E
(
w̃′Σ w̃

)
+

N

∑
i,j=1

Cov
(
w̃iw̃j, RiRj

)
)

.

Theorem 4

Since w̃ and its copies w̃1, w̃2, . . . , w̃n are irrelevant, it follows that

p(wt,r) = p(wt)p(r) = p(w)p(r) = p(w,r)

and thus

E
(

u
(
W (1 + r + w̃′

tR)
))

=
∫ ∫

u
(
W (1 + r + w′

tr)
)

p(wt,r)dr dwt

=
∫ ∫

u
(
W (1 + r + w′r)

)
p(w,r)dr dw

= E
(

u
(
W (1 + r + w̃′R)

))
, t = 1,2, . . . ,n ,

i.e.,

E
(

u
(
W (1 + r + w̃′R)

))
= E

(
1

n

n

∑
t=1

u
(
W (1 + r + w̃′

tR)
)
)

.

Since u
(
W (1 + r + x)

)
is strictly concave in x, we have that

1

n

n

∑
t=1

u
(
W (1 + r + w̃′

tR)
)
≤ u

(
W

(
1 + r +

1

n

n

∑
t=1

w̃′
tR

))
= u

(
W (1 + r + ˆ̄w′R)

)

26



Frahm, 2014 • A Theoretical Foundation of Portfolio Resampling

with probability one, but since w̃′
1R, w̃′

2R, . . . , w̃′
nR are not almost surely identical, it

follows that
1

n

n

∑
t=1

u
(
W (1 + r + w̃′

tR)
)
< u

(
W (1 + r + ˆ̄w′R)

)

with positive probability. This means

E
(

u
(
W (1 + r + w̃′R)

))
< E

(
u
(
W (1 + r + ˆ̄w′R)

))
.

Finally, since C is convex and w̃t ∈ C for t = 1,2, . . . ,n, we have that ˆ̄w = 1
n ∑

n
t=1 w̃t ∈ C.
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