
C
h
a
ir
fo
r
A
p
p
li
ed

S
to
ch
a
st
ic
s
a
n
d

R
is
k
M
a
n
a
g
em

en
t

A
P
2
0
1
3
�
0
2

Faculty of Economics and Social Sciences
Department of Mathematics/Statistics

Working Paper

Dependence of Stock Returns in

Bull and Bear Markets

Jadran Dobri¢, Gabriel Frahm and Friedrich Schmid January 6, 2014

Please use only the latest version of the manuscript. Distribution is unlimited.



Working Paper AP 2013�02

January 6, 2014

Dependence of Stock Returns in

Bull and Bear Markets

Jadran Dobri¢

WGZ BANK AG
Credit Risk Control
Ludwig-Erhard-Allee 20, D-40227 Düsseldorf, Germany

E-mail: jadran.dobric@wgzbank.de

Gabriel Frahm

Helmut Schmidt University
Faculty of Economics and Social Sciences
Department of Mathematics/Statistics
Chair for Applied Stochastics and Risk Management
Holstenhofweg 85, D-22043 Hamburg, Germany

URL: www.hsu-hh.de/stochastik
Phone: +49 (0)40 6541-2791
E-mail: frahm@hsu-hh.de

Friedrich Schmid

University of Cologne
Faculty for Economics and Social Sciences
Department of Economic and Social Statistics
Albertus-Magnus-Platz, D-50923 Cologne, Germany

E-mail: schmid@wiso.uni-koeln.de

Working Paper
Please use only the latest version of the manuscript. Distribution is unlimited.

Supervised by: Prof. Dr. Gabriel Frahm

Chair for Applied Stochastics and

Risk Management

URL: www.hsu-hh.de/stochastik
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Abstract

Despite of its many shortcomings, Pearson’s rho is often used as an association measure for stock

returns. A conditional version of Spearman’s rho is suggested as an alternative measure of association.

This approach is purely nonparametric and avoids any kind of model misspecification. We derive

hypothesis tests for the conditional rank-correlation coefficients particularly arising in bull and bear

markets and study their finite-sample performance by Monte Carlo simulation. Further, the daily

returns on stocks contained in the German stock index DAX 30 are analyzed. The empirical study

reveals significant differences in the dependence of stock returns in bull and bear markets.

Keywords: Bear market, bootstrapping, bull market, conditional Spearman’s rho, copulas,

Monte Carlo simulation, Pearson’s rho, stock returns.
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1. Introduction

K
arl Pearson’s linear correlation coefficient still seems to be the most commonly used

association measure for two random variables X and Y, though its many shortcom-

ings have been often documented (see, e.g., Embrechts et al., 2002). It is well-known

that Pearson’s rho is strongly affected by the marginal distributions of X and Y. Further, it

only quantifies the linear dependence of X and Y, but monotone dependence often seems to be

much more relevant. Due to these reasons its moment estimate is highly sensitive to outliers.

The random variables X and Y are said to possess a strong monotone dependence if there

exist two real-valued and strictly increasing functions f and g such that
∣∣Corr

(
f (X), g(Y)

)∣∣ is

∗E-mail: jadran.dobric@wgzbank.de. The opinions expressed in this paper are those of the authors and do not
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close to 1. It is easy to construct situations where the linear correlation coefficient of X and Y

is close to 0 but even so there exist two strictly increasing transformations f and g such that

|Corr
(

f (X), g(Y)
)| = 1. For instance, consider the random variables X = eZ and Y = eσZ with

σ > 0 and Z ∼ N (0, 1) (McNeil et al., 2005, p. 205). Since Corr
(
log X, log Y

)
= 1, X and Y

even possess a perfect monotone dependence, i.e., X and Y are comonotonic (Nelsen, 2006, p. 32).

Nevertheless, Corr
(
X, Y

)
is a function of σ which can take every value between 0 (as σ → ∞)

and 1 (σ = 1).

Copula theory and the concordance measures derived thereof are a convincing alternative

to the linear correlation coefficient. Due to Sklar’s theorem (Sklar, 1959) it is known that a joint

cumulative distribution function (c.d.f.) can be decomposed into a copula and the marginal

cumulative distribution functions. If the latter functions are continuous, the copula is unique

and represents the dependence structure of the given random variables. In the following we

assume that the random variables have a continuous c.d.f. and thus a meaningful concordance

measure should be a function of the copula. At least it should be invariant under mono-

tone transformations of the corresponding random variables. Examples of such measures are

Spearman’s rho, Kendall’s tau, Gini’s gamma, and Blomquist’s beta. In this paper we confine

ourselves to the rank-correlation coefficient or its corresponding moment estimator, i.e., Spear-

man’s rho. For surveys on copulas and concordance measures see, e.g., Cherubini et al. (2004),

Joe (1997), and Nelsen (2006).

We investigate the contemporaneous dependence of two stock returns X and Y. More

precisely, we concentrate on the question whether the dependence structure is significantly

different in case of a joint upswing or downswing in the market. This question has

been already investigated (see, e.g., Ang and Chen, 2002, Erb et al., 1994, Fortin and Kuzmics,

2002, Hong et al., 2007, Junker and May, 2005, Patton, 2004, Silvapulle and Granger, 2001,

Vaz de Melo Mendes, 2005), but we think that the statistical methods, in particular the use

of Pearson’s rho, is unsatisfactory. Hence, there is space for further contributions.

A bear market is present if a large number of stocks drop down. The exact meaning of a

“large number” must be specified in each individual case but, nonetheless, it is clear that in a

bear market many or even most pairs of stocks are affected simultaneously. More precisely, we

are interested in a situation where two stock returns X and Y fall short of the 100p% quantiles

of their corresponding cumulative distribution functions. Analogously, in a bull market it

usually happens that −X and −Y fall short of the corresponding 100q% quantiles. Here p and

q have to be pre-determined. The lower p-quantile of the c.d.f. (or its absolute value) of a stock

return is commonly known as the value-at-risk, where p is the so-called shortfall probability. The

value-at-risk is frequently used in the area of risk management and so it seems to be a natural

choice in our setting.

Our approach is purely nonparametric. Contrary to Patton (2004) and Vaz de Melo Mendes

(2005) we do not fit specific copulas to the data. Specifying the copula by some parametric

model can lead to erroneous conclusions if the chosen model is wrong. From our point of view

it is not necessary to rely on the parametric approach if the sample size is large enough. We

are interested in financial data analysis and in that context it is easy to access many thousands

of daily observations. By following the nonparametric approach we avoid any kind of model

misspecification.

2
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Some authors analyze the dependence structure of outliers in financial data by using the

so-called tail-dependence coefficient (see, e.g., Fortin and Kuzmics, 2002, Junker and May, 2005).

They come to the conclusion that stock (index) returns exhibit high tail-dependence in the

lower tail and low tail-dependence in the upper tail (Fortin and Kuzmics, 2002). Unfortunately,

tail-dependence estimation suffers from a serious bias-variance trade-off. Dobrić and Schmid

(2005) as well as Frahm et al. (2005) found that estimating the tail-dependence coefficient by

nonparametric methods can lead to huge estimation errors even if the number of observations

is large. Hence, we think that the tail-dependence coefficient is not an appropriate alternative.

By contrast, we develop conditional versions of Spearman’s rho to assess the dependence

structure of stock returns that can be observed particularly in bull and bear markets. To the

best of our knowledge, the statistical literature provides only one contribution that goes in the

same direction (Jaworski and Pitera, 2013), but unlike us the latter authors focus on parametric

methods.

Though we focus on computational statistics and the empirical analysis of stock returns,

we have to introduce some statistical theory in order to have a formal basis for our testing

procedure. This is done in Section 2, where some copula theory is presented. It allows a

precise formulation of the null hypotheses to be tested. The testing procedure is described

in Section 3. Further, a Monte Carlo (MC) simulation is presented in Section 4, which shows

that the procedure works well for sample sizes typically available in practice. In particular,

it is demonstrated that the hypothesis tests keep the prescribed error probabilities of the first

kind and have sufficient power to detect violations of the null hypotheses. In Section 5 we

investigate the daily returns on stocks from the German stock index DAX 30 between 1973-01-

02 and 2008-11-14 and Section 6 concludes.

2. Some Copula Theory

In this section we introduce some notions from copula theory (Joe, 1997, Nelsen, 2006) which

are required for understanding the testing procedure to be described below. Let X and Y be

two random variables with joint c.d.f. F(x, y) = P(X ≤ x, Y ≤ y) and marginal cumulative

distribution functions G(x) = P(X ≤ x) and H(y) = P(Y ≤ y) for all x, y ∈ R . The quantile

functions with respect to G and H are given by G−1(p) = inf{x : G(x) ≥ p} and H−1(p) =

inf{y : H(y) ≥ p} for 0 < p < 1.

Throughout this paper we assume that G and H are continuous. Therefore, according to

Sklar’s theorem (Sklar, 1959), there exists a unique copula C : [0, 1]2 → [0, 1] such that

F(x, y) = C
(
G(x), H(y)

)
, ∀ x, y ∈ R .

The function C is the joint c.d.f. of U = G(X) and V = H(Y). The rank-correlation coefficient

of X and Y is given by

ρ := Corr
(
U, V

)
= 12

∫

[0,1]2

uv dC(u, v)− 3 = 12

1∫

0

1∫

0

C(u, v) du dv − 3 . (1)

See Nelsen (2006, p. 167) for the latter representation of ρ .
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For every fixed p with 0 < p < 1 we define

AL :=
{
(x, y) : x ≤ G−1(p), y ≤ H−1(p)

}
.

In the following we assume that P{(X, Y) ∈ AL} = C(p, p) > 0 . Consider the conditional joint

c.d.f.

FL(x, y) := P
(

X ≤ x, Y ≤ y | (X, Y) ∈ AL

)
=

F
(
x ∧ G−1(p), y ∧ H−1(p)

)

F
(
G−1(p), H−1(p)

)

=
C
[
G
(
x ∧ G−1(p)

)
, H
(
y ∧ H−1(p)

)]

C(p, p)
, ∀ x, y ∈ R .

The corresponding conditional marginal distribution functions are given by

GL(x) := P
(
X ≤ x | (X, Y) ∈ AL

)
= FL

(
x, H−1(p)

)

=
C
[
G
(
x ∧ G−1(p)

)
, p
]

C(p, p)
, ∀ x ∈ R ,

and HL(y) respectively. Since GL and HL are continuous, according to Sklar’s theorem there

also exists a unique copula CL : [0, 1]2 → [0, 1] such that

FL(x, y) = CL

(
GL(x), HL(y)

)
, ∀ x, y ∈ R .

Indeed, Jaworski and Pitera (2013) call

CL(u, v) = FL

(
G−1

L (u), H−1
L (v)

)
, ∀ u, v ∈ [0, 1] ,

a tail conditional copula. Similarly, in Juri and Wüthrich (2002) CL is referred to as the extreme

tail dependence copula relative to C at the level p . We will simply call it the lower tail-copula and

the phrase “relative to C at the level p” will be usually dropped for convenience.

Now, we can define the lower conditional rank-correlation coefficient by using the lower

tail-copula, i.e.,

ρL := 12
∫

[0,1]2

uv dCL(u, v)− 3 = 12

1∫

0

1∫

0

CL(u, v) du dv − 3 . (2)

An analogue definition can be found for the upper tail-copula CU . This is the lower tail-

copula relative to the survival copula according to C (Nelsen, 2006, Section 2.6), i.e.,

C(u, v) := u + v − 1 + C(1 − u, 1 − v) , ∀ u, v ∈ [0, 1] ,

at the level q (0 < q < 1). The survival copula simply corresponds to the copula of (−X,−Y)

and thus CU is the copula of (−X,−Y) under the condition that (−X,−Y) ∈ AU . Here the

area AU is calculated similarly to AL just by using the quantile functions of −X and −Y at

q rather than the quantile functions of X and Y at p . Hence, the upper conditional rank-

correlation coefficient ρU measures the monotone dependence of two stock returns conditional

on AU . This is a situation typically arising in a bull market. In the following we will have to

guarantee that AL ∩ AU = ∅ which is equivalent to p + q ≤ 1.

In most cases it is not possible to derive the conditional copulas CL or CU in closed form.

Therefore ρL and ρU cannot be calculated explicitly, but MC simulation is a convenient tool
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for obtaining numerical approximations of ρL and ρU with sufficient precision. We apply this

method to calculate the conditional rank-correlation coefficients for the Gauss-, t3-, Clayton-,

and Gumbel-copula (see Table 1 and Table 2). The Gauss- and t3-copula are given by

CGauss(u, v ; θ) = Φθ

(
Φ−1(u), Φ−1(v)

)
, ∀ u, v ∈ [0, 1] ,

where

Φθ(x, y) :=

x∫

−∞

y∫

−∞

1

2π
√

1 − θ2
· exp

(
− s2 − 2θst + t2

2 (1− θ2)

)
ds dt

as well as

Ct3(u, v ; θ) = t3,θ

(
t−1
3 (u), t−1

3 (v)
)

, ∀ u, v ∈ [0, 1] ,

with

t3,θ(x, y) =

x∫

−∞

y∫

−∞

1

2π
√

1 − θ2
·
(

1 +
s2 − 2θst + t2

3 (1− θ2)

)− 5
2

ds dt .

Here t3 denotes Student’s univariate t-distribution with 3 degrees of freedom and −1 < θ < 1.

Note that the linear correlation coefficient is symbolized by the parameter θ rather than ρ .

This is because to avoid any possibility of confusion with the (unconditional) rank-correlation

coefficient of CGauss or Ct3 . The unconditional rank-correlation coefficient of the Gauss-copula

corresponds to ρ = 6/π · arcsin(θ/2) (Hult and Lindskog, 2002). To the best of our knowledge

there exists no such closed-form expression for the t3-copula.

The Clayton-copula is given by

CClayton(u, v ; θ) =
(
u−θ + v−θ − 1

)−1/θ
, ∀ u, v ∈ [0, 1] ,

with θ ≥ 0 . In the limiting case θ = 0 , the Clayton-copula corresponds to the independence or

product copula Π(u, v) := uv (Nelsen, 2006, p. 11).

The Gumbel-copula can be written as

CGumbel(u, v ; θ) = exp

{
−
[
(− log u)θ + (− log v)θ

]1/θ
}

, ∀ u, v ∈ [0, 1],

with θ ≥ 1. Note that for θ = 1 once again the independence copula evolves. The values of

θ in Table 2 are chosen such that the unconditional rank-correlation coefficient corresponds to

ρ = 0.3, 0.5, 0.7. The relationship between θ and ρ can be obtained by numerical integration or

MC simulation (see Joe, 1997, p. 147).

For our approximations of the conditional rank-correlation coefficients given in Table 1 and

Table 2 we use NMC = 1000 MC replications. Each replication consists of a sample from C with

sample size n = 106. Both for the simulation study and the empirical study, which follow later

on, we set p = q . Only the Clayton-copula allows for a closed-form representation of CL: If C is

a Clayton-copula, the lower tail-copula CL is equal to C for any 0 < p < 1 (Juri and Wüthrich,

2002). This means ρL corresponds to the unconditional rank-correlation coefficient ρ .

The null hypothesis we are going to test can be formalized as

H0 : ρL = ρU vs. H1 : ρL 6= ρU ,

where some p and q with p + q ≤ 1 are fixed. In the present framework H1 implies that the

monotone dependence of stock returns in bear markets is not the same as in bull markets.

5
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Gauss-copula

θ = 0.25 θ = 0.50 θ = 0.75

p = q lower upper lower upper lower upper

0.05 .0404
(.0004)

.0407
(.0004)

.1109
(.0003)

.1114
(.0003)

.2622
(.0002)

.2624
(.0002)

0.20 .0601
(.0001)

.0601
(.0001)

.1595
(.0001)

.1593
(.0001)

.3485
(.0001)

.3483
(.0001)

0.35 .0775
(.0001)

.0774
(.0001)

.1972
(.0001)

.1973
(.0001)

.4090
(.0001)

.4091
(.0001)

0.50 .0962
(.0001)

.0962
(.0001)

.2354
(.0001)

.2356
(.0001)

.4655
(.0000)

.4656
(.0000)

t3-copula

θ = 0.25 θ = 0.50 θ = 0.75

p = q lower upper lower upper lower upper

0.05 .3373
(.0003)

.3369
(.0003)

.4043
(.0002)

.4044
(.0002)

.5264
(.0002)

.5265
(.0002)

0.20 .3186
(.0001)

.3183
(.0001)

.3968
(.0001)

.3967
(.0001)

.5361
(.0001)

.5361
(.0001)

0.35 .2984
(.0001)

.2984
(.0001)

.3913
(.0001)

.3913
(.0001)

.5484
(.0001)

.5485
(.0001)

0.50 .2756
(.0001)

.2756
(.0001)

.3882
(.0001)

.3882
(.0001)

.5651
(.0000)

.5652
(.0000)

Table 1: MC approximations of ρL and ρU for the Gauss- and t3-copula possessing different values of θ. We use

NMC = 1000 MC replications, each one generating a sample from the corresponding copula with sample

size n = 106. The standard errors of the approximations are given in parentheses.

Instead of a two-sided hypothesis test, a one-sided test like

H0 : ρL ≤ ρU vs. H1 : ρL > ρU

is of general interest, since H1 implies that the monotone dependence is higher in bear markets

than in bull markets.

The null hypothesis H0 : ρL = ρU stated above might be also of interest in another context.

Both in theory and application of copulas it is sometimes questionable whether the random

vector (X, Y) is radially symmetric or not (Nelsen, 2006, Section 2.7). Radial symmetry is a

useful property which implies that ρL = ρU since, in case (X, Y) is radially symmetric, C and

the corresponding survival copula C coincide. Hence, in order to test the null hypothesis H′
0 :

“The random vector (X, Y) is radially symmetric,” one can apply the two-sided test mentioned

above and reject H′
0 if H0 is rejected.

3. The Testing Procedure

In this section we describe the testing procedure. The first part requires independent and

identically distributed (i.i.d.) data. It is well-known that short-term stock returns typically

exhibit strong patterns of serial dependence. However, the i.i.d. assumption may serve as an

appropriate starting point and there might exist several applications beyond financial data

analysis where this assumption is adequate. Afterwards we will drop the i.i.d. assumption

and explain how the test can be modified to account for the purpose of time series analysis.
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Clayton-copula

θ = 0.51 θ = 1.08 θ = 2.13

p = q lower upper lower upper lower upper

0.05 .3004
(.0002)

.0025
(.0005)

.5001
(.0002)

.0018
(.0004)

.7002
(.0001)

.0035
(.0004)

0.20 .3003
(.0001)

.0040
(.0001)

.4999
(.0001)

.0113
(.0001)

.7000
(.0001)

.0318
(.0001)

0.35 .3001
(.0001)

.0130
(.0001)

.4999
(.0001)

.0356
(.0001)

.7000
(.0000)

.0906
(.0001)

0.50 .3001
(.0001)

.0298
(.0001)

.5000
(.0000)

.0764
(.0001)

.7000
(.0000)

.1783
(.0001)

Gumbel-copula

θ = 1.26 θ = 1.54 θ = 2.07

p = q lower upper lower upper lower upper

0.05 .0319
(.0004)

.3499
(.0002)

.0697
(.0003)

.4504
(.0002)

.1431
(.0003)

.5849
(.0001)

0.20 .0515
(.0001)

.3158
(.0001)

.1106
(.0001)

.4392
(.0001)

.2206
(.0001)

.5871
(.0001)

0.35 .0697
(.0001)

.2906
(.0001)

.1476
(.0001)

.4314
(.0001)

.2843
(.0001)

.5916
(.0000)

0.50 .0912
(.0001)

.2744
(.0001)

.1885
(.0001)

.4276
(.0001)

.3507
(.0000)

.5990
(.0000)

Table 2: MC approximations of ρL and ρU for the Clayton- and Gumbel-copula possessing different values of θ.

We use NMC = 1000 MC replications, each one generating a sample from the corresponding copula with

sample size n = 106. The standard errors of the approximations are given in parentheses.

3.1. Independent and Identically Distributed Data

Let {(X1, Y1), . . . , (Xn, Yn)} be a sample from an i.i.d. sequence {(Xt, Yt)}t∈Z of pairs of stock

returns. We estimate the marginal cumulative distribution functions G and H by

Ĝn(x) =
1

n

n

∑
i=1

1{Xi≤ x} and Ĥn(y) =
1

n

n

∑
i=1

1{Yi≤ y} .

The corresponding estimate of the quantile function G−1 is given by

Ĝ−1
n (p) = inf

{
x : Ĝn(x) ≥ p

}

and H−1 is estimated by Ĥ−1
n (p), respectively. For every fixed p and q with p + q ≤ 1 we can

define

ÂL :=
{
(x, y) : x ≤ Ĝ−1

n (p), y ≤ Ĥ−1
n (p)

}

and ÂU in the same manner. We also define the sample sizes nL := |ÂL| with respect to the

lower left and nU := |ÂU| with respect to the upper right area of the empirical distribution of

X and Y (here | · | denotes the cardinality of a set).

The observations in ÂL and ÂU can be used for estimating ρL and ρU . More precisely, let

I
ÂL

be the set of all indices i ∈ {1, . . . , n} such that (Xi, Yi) ∈ ÂL . Further, let rL,n(Xi) and

rL,n(Yi) be the rank numbers of Xi and Yi with respect to all (Xi, Yi) ∈ ÂL . Now, according to

7
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the left-hand side of Eq. 2, we can estimate ρL by

ρ̂L,n =
12

nL
∑

i ∈ I
ÂL

rL,n(Xi)

nL
· rL,n(Yi)

nL
− 3 .

The definition of the estimator ρ̂U,n follows correspondingly, just by using the observations in

the upper right area ÂU of the empirical distribution of X and Y.

Note that the number of data points that fall into ÂL , i.e., nL , is a random variable. To

clarify this point, suppose for the sake of simplicity that ÂL = AL . Every draw from the entire

distribution is i.i.d. and so the number of draws falling into AL is Bernoulli distributed with

parameter π = C(p, p) > 0 . Hence, it is clear that n−1
L = op(1) as n → ∞ . The same holds

for AU , i.e., n−1
U = op(1) as n → ∞ , provided C(q, q) > 0 . Moreover, since p + q ≤ 1, AL and

AU do not overlap and so, conditional on any realized pair tuple (nL, nU) of numbers of draws

falling into AL and AU , the data in the lower left and upper right area of F are independent

of each other. More precisely, given some fixed numbers nL and nU , every statistic based on

the data in AL is independent of any (other) statistic based on the data in AU . It is worth

emphasizing that this kind of conditional independence is implicitly assumed in almost every

application of statistical theory, since in most practical situations the number of observations

is stochastic but, nevertheless, it is treated like a real number. In the same way we will treat nL

and nU as real numbers in the subsequent analysis.

Schmid and Schmidt (2006) have already shown that Spearman’s rho is consistent and

asymptotically normally distributed. Hence, the conditional versions of Spearman’s rho share

the same property, i.e.,

√
nL

(
ρ̂L,n − ρL

) d−→ N
(

0, σ2
L

)
and

√
nU

(
ρ̂U,n − ρU

) d−→ N
(

0, σ2
U

)

as nL, nU → ∞ , provided the lower left and upper right tail-copulas exist.

Theorem 1 Let the joint c.d.f. of (X, Y) be continuous. Further, suppose that the partial derivatives

of the corresponding copula C exist and are continuous, too. Define ∆ρ̂n := ρ̂L,n − ρ̂U,n and ∆ρ :=

ρL − ρU with shortfall probabilities p, q > 0 such that p + q ≤ 1. If C(p, p), C(q, q) > 0 then

√
n
(
∆ρ̂n − ∆ρ

) d−→ N
(
0, τ2

)
, n −→ ∞ ,

with

τ2 =
σ2

L

C(p, p)
+

σ2
U

C(q, q)
.

Proof. Note that nL/n
a.s.→ C(p, p) as well as nU/n

a.s.→ C(q, q) as n → ∞ . This means

√
n
(
ρ̂L,n − ρL

)
=

√
n

nL

√
nL

(
ρ̂L,n − ρL

) d−→ N
(

0,
σ2

L

C(p, p)

)
, n −→ ∞ ,

and also
√

n
(
ρ̂U,n − ρU

) d→ N (0, σ2
U/C(q, q)

)
as n → ∞ . Since p + q ≤ 1, ρ̂L,n and ρ̂U,n are

asymptotically independent. This leads immediately to the asymptotic variance τ2 of

√
n
(
∆ρ̂n − ∆ρ

)
=

√
n
(
ρ̂L,n − ρL

)−√
n
(
ρ̂U,n − ρU

)

which is given in the theorem.
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In practical applications p and q have to be sufficiently large such that nL and nU do not

become too small. A typical rule of thumb might be given by nL, nU ≥ 40 . Suppose for the

moment that C corresponds to the product copula. In this case it is expected to meet p2n

observations in the lower left part and q2n in the upper right part of the empirical copula.

This means the shortfall probabilities should be such that p, q ≥
√

40/n . For a sample size of

n = 1000, i.e., an observation period of approximately 4 years, p and q should not be smaller

than 0.2 . In general the product copula is not appropriate to describe financial data, since in

most cases there is some sort of positive dependence between stock returns. Hence, we can

expect to have even more observations in the corresponding corners of the empirical copula.

Thus our rule of thumb guarantees that there are always enough data to make the asymptotic

results applicable.

The asymptotic variances σ2
L and σ2

U depend on the tail-copulas CL and CU. In general they

cannot be calculated explicitly (Schmid and Schmidt, 2006). The same holds for the asymptotic

variance of
√

n
(
∆ρ̂n − ∆ρ

)
, i.e., τ2. However, the latter can be approximated by a simple

bootstrap. For conducting the hypothesis tests one has to choose an appropriate significance

level α > 0 as well as the shortfall probabilities p > 0 and q > 0 such that p + q ≤ 1. Now the

test procedure reads as follows:

1. Compute ρ̂L,n and ρ̂U,n from the observations in ÂL and ÂU.

2. Compute NB bootstrap replications from the entire sample. For each replication calculate

ρ̂L,n and ρ̂U,n as well as the corresponding difference ∆ρ̂n .

3. Estimate the asymptotic variance τ2 of ∆ρ̂n from the bootstrap and calculate the test

statistic T =
√

n ∆ρ̂n/τ̂ , where τ̂2 is the bootstrap estimate of τ2.

4a. Reject H0 : ρL = ρU if
∣∣T
∣∣ > Φ−1

(
1 − α

2

)
,

where Φ denotes the standard normal c.d.f.

The one-sided hypothesis tests differ from the two-sided test only in the fourth step:

4b. Reject H0 : ρL ≤ ρU or H0 : ρL ≥ ρU if T > Φ−1(1 − α) or T < Φ−1(α), respectively.

3.2. Serially Dependent Data

Now, let {(X1, Y1), . . . , (Xn, Yn)} be a sample from a strictly stationary process {(Xt, Yt)}t∈Z . It

is assumed that this process has a weak serial dependence structure. This means the one-sided

processes {(Xt, Yt)}t ≤ 0 and {(Xt, Yt)}t ≥ l become “sufficiently fast” independent as l → ∞ ,

i.e., as the number of lags between the two processes grows to infinity (Politis, 2003). To put

it another way, {(Xt, Yt)}t∈Z satisfies a strong mixing condition and it can be shown that many

time series models frequently used in the literature are strong mixing (Doukhan et al., 2009).

It is important to account for serial dependence when analyzing financial data. Especially,

in periods of great turbulence the lower and upper conditional Spearman’s rho might be

strongly correlated and in that case the asymptotic result given in the last section is void.

9
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However, it can be assumed that ∆ρ̂n remains asymptotically normally distributed under a

weak serial dependence structure of stock returns. This means

√
n
(
∆ρ̂n − ∆ρ

) d−→ N
(

0, τ2
LR

)
, n −→ ∞ , (3)

where τ2
LR represents a long-run variance and in general we have that τ2

LR > τ2. This assumption

seems natural, since the weak convergence property of
√

n
(
∆ρ̂n − ∆ρ

)
is based on the weak

convergence of an empirical copula process (Schmid and Schmidt, 2006). By using a functional

central limit theorem for stochastic processes and applying the functional delta method one

can justify the weak convergence property under an appropriate strong mixing condition.

For example, suppose that the following strong mixing condition is satisfied: The tuple

(U, V) is η-dependent (Doukhan et al., 2009), i.e.,

sup
∣∣Cov

(
f (Xs1 , . . . , Xsm), g(Xt1 , . . . , Xtn)

)∣∣ ≤
(
m Lip f + n Lip g

)
ηl ,

where the supremum is taken over the set of all measurable functions f and g bounded by 1

such that Lip f , Lip g < ∞ and over all index sets {s1, . . . , sm} and {t1, . . . , tn} with m, n ∈ IN

such that s1 ≤ . . . ≤ sm ≤ t1 ≤ . . . ≤ tn with fixed lag l = t1 − sm ≥ 0 . Here Lip h denotes the

Lipschitz modulus of h on the Euclidean space, i.e.

Lip h := sup
x 6=y

|h(x)− h(y)|
‖x − y‖1

.

Further, {ηl}l≥0 is a sequence of positive numbers such that ηl → 0 as l → ∞ . In the following

it is assumed that ηl = o
(

l−2−
√

5
)

.

Theorem 2 (Doukhan et al. (2009)) Suppose that the first partial derivatives of the copula C of X

and Y exist and are continuous. If the aforementioned strong mixing condition is satisfied, we have that

√
n
(
Ĉn − C

) d−→ G , n −→ ∞ ,

in the Skorohod space D([0, 1]2
)

endowed with the Skorohod metric. More precisely,

G(u, v) = B(u, v)− ∂C(u, v)

∂u
· B(u, 1)− ∂C(u, v)

∂v
· B(1, v) ,

where B is a Brownian bridge on [0, 1]2 with covariance function

Cov
(
B(u, v), B(u′, v′)

)
= ∑

t∈Z

Cov
(

1{U0≤u,V0≤v}, 1{Ut≤u′,Vt≤v′}
)

for all (u, v), (u′, v′) ∈ [0, 1]2.

Now, let f be any R2-valued function on a subset of D
(
[0, 1]2

)
and suppose that f is

Hadamard-differentiable at C tangentially to the functional space spanned by the centered

Gaussian process G given in Theorem 2. From van der Vaart (1998, Theorem 20.8) it follows

that √
n
(

f (Ĉn)− f (C)
) d−→ f ′C(G) , n −→ ∞ ,

where f ′C is the Hadamard derivative of f at C. Since f ′C is a continuous linear map and G is a

tight centered Gaussian process, it follows that f ′C(G) ∼ N2(0, Ω) (van der Vaart, 1998, p. 299).

10
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The Hadamard derivative of any continuous and linear function is the function by itself. In

particular, we can see from Eq. 2 that the conditional versions of Spearman’s rho are continuous

and linear in CL and CU , respectively. If C 7→ (CL, CU) is Hadamard differentiable, too, the

chain rule (van der Vaart, 1998, Theorem 20.9) yields the Hadamard differentiability of C 7→
(ρL, ρU) and we obtain

√
n

([
ρ̂L,n

ρ̂U,n

]
−
[

ρL

ρU

])
d−→ N2

(
0, Ω

)
, n −→ ∞ .

Now, the continuous mapping theorem immediately leads to the desired weak convergence

property of the statistic
√

n
(
∆ρ̂n − ∆ρ

)
expressed by (3).

There exist many possible techniques for estimating the long-run variance τ2
LR. Due to

the vast computational power which is available these days, we focus on sub-sampling and

block-bootstrapping (Politis, 2003). The η -mixing condition is somewhat stronger than the

strong mixing condition which can be typically found in the literature related to sub-sampling

and bootstrapping. More precisely, η-mixing implies α-mixing with mixing rate αl = o(l−1).

Hence, sub-sampling and block-bootstrapping can be used in our context to estimate τ2
LR.

However, sub-sampling is probably not the best choice in our setting. The reason is that for

getting an unbiased estimate of τ2
LR, the number of observations within each sub-sample must

be considerably small relative to the overall sample size. In our context, only a small part of

each sub-sample can be used for calculating ρ̂L,n and ρ̂U,n , but for a proper approximation of

the long-run variance it has also to be guaranteed that each sub-sample contains a sufficiently

large number of usable observations.

For this reason, we concentrate on a block-bootstrap procedure suggested by Künsch (1989).

Consider a block size b with 0 < b < n and the corresponding n − b + 1 blocks, i.e.,

Bi =
{
(Xi+1, Yi+1), . . . , (Xi+b, Yi+b)

}
, i = 0, 1, . . . , n − b .

Every bootstrap replication is given by drawing k = ⌊n/b⌋ blocks with replacement from the

entire sample and concatenating these blocks to form a new pseudo-series of stock returns.

The latter consists of kb ≈ n pseudo-observations and every bootstrap replication leads to a

pseudo-realization of ∆ρ̂n . This means we obtain NB pseudo-realizations of ∆ρ̂n which can be

used to approximate τ2
LR . Finally, the test statistic is given by T =

√
n ∆ρ̂n/τ̂LR , where τ̂2

LR

represents the approximated long-run variance. Under the regularity conditions mentioned in

Theorem 2, the estimator τ̂2
LR is consistent for τ2

LR as b → ∞ and n/b → ∞ . Hence, T can be

used in the same way as the test statistic discussed in Section 3.1.

4. Finite-Sample Properties

In this section we investigate the finite-sample properties of the testing procedure described

in Section 3.1. The results are obtained by MC simulations for various special cases which are

essentially defined by the copula under study. The testing procedure developed in Section 3.2

could have been also investigated in the same manner, but we think that this would go beyond

the scope of this paper.

First we are interested in the rejection probability of the procedure if H0 : ρL = ρU is true

and α is the prescribed error probability of the first kind. We consider the Gauss- and t3-copula

11
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Figure 1: Power of the two-sided hypothesis test for CMix1 (left-hand side) and CMix2 (right-hand side) as a function

of λ . The results are obtained by MC simulation for the sample size n = 2500, NB = 1000 bootstrap

replications, and NMC = 104 MC replications using the shortfall probability p = q = 0.5.

which belong to the class of elliptical copulas. Elliptical copulas are radially symmetric which

means that the aforementioned null hypothesis is true.

The selected values of the copula parameter are θ = 0.25, 0.5, 0.75, the values of p are given

by p = 0.2, 0.35, 0.5, and we validate the error probabilities α = 0.01, 0.05, 0.1. The simulated

sample size is n = 2500 (this means approximately 10 trading years), the number of bootstrap

replications amounts to NB = 1000 , and the number of MC replications is NMC = 1000 .

The results of the simulations are summarized in Panel 1 of Table 3. We can see that the

approximated rejection probabilities satisfactorily agree with the prescribed error probabilities.

We are also interested in the power of the testing procedure, i.e., the probability of rejection

if H0 is wrong. For that purpose we consider the Clayton- and the Gumbel-copula. It is well-

known that these copulas are not radially symmetric and thus in general ρL 6= ρU. Remember

that the parameter θ of both copula families (see p. 5) has been selected in such a way that

the unconditional rank-correlation coefficients are equal to ρ = 0.3, 0.5, 0.7 . The results of the

MC simulations are given in Panel 2 of Table 3. It can be seen that for every fixed p and α

the power is an increasing function of θ. This is because the asymmetry of the Archimedean

copulas CClayton and CGumbel increases with θ (see Nelsen, 2006, Ch. 4).

Similar results are obtained for the two one-sided tests which can be taken from Table 4 and

Table 5. The rejection probabilities become very large whenever H1 is true. By contrast, if H0

is true, our simulations produce no false rejection. For instance, consider the right-sided test

H0 : ρL ≤ ρU vs. H1 : ρL > ρU. In that case the null hypothesis is fulfilled for the Gumbel-copula.

Panel 2 of Table 4 shows that there is no rejection for any given unconditional rank-correlation

coefficient ρ , shortfall probability p , and error probability α . Given the Clayton-copula, the

alternative hypothesis is true and, consequently, the rejection probabilities are very high (for

example, roughly 90% for ρ = 0.3, p = 0.2, and α = 0.1). Moreover, for ρ = 0.5 and ρ = 0.7,

H0 is rejected for the Clayton-copula in almost every simulated case.

Now we want to investigate the relationship between asymmetry and power. For that

purpose we consider the mixed copula

CMix1(u, v ; λ, θ0, θ1) := λCClayton(u, v ; θ1) + (1 − λ)CGauss(u, v ; θ0) ,

12
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H0 : ρL = ρU vs. H1 : ρL 6= ρU

Panel 1 θ = 0.25 θ = 0.50 θ = 0.75

p = q α Gauss t3 Gauss t3 Gauss t3

0.10 .091
(.0091)

.083
(.0087)

.081
(.0086)

.085
(.0088)

.091
(.0091)

.093
(.0092)

0.20 0.05 .043
(.0064)

.047
(.0067)

.039
(.0061)

.041
(.0063)

.048
(.0068)

.048
(.0068)

0.01 .008
(.0028)

.011
(.0033)

.006
(.0024)

.007
(.0026)

.011
(.0033)

.011
(.0033)

0.10 .106
(.0097)

.081
(.0086)

.092
(.0091)

.108
(.0098)

.095
(.0093)

.087
(.0089)

0.35 0.05 .057
(.0073)

.038
(.0060)

.049
(.0068)

.053
(.0071)

.048
(.0068)

.051
(.0070)

0.01 .015
(.0038)

.009
(.0030)

.011
(.0033)

.007
(.0026)

.006
(.0024)

.013
(.0036)

0.10 .104
(.0097)

.088
(.0090)

.088
(.0090)

.113
(.0100)

.089
(.0090)

.098
(.0094)

0.50 0.05 .060
(.0075)

.043
(.0064)

.035
(.0058)

.056
(.0073)

.048
(.0068)

.049
(.0068)

0.01 .019
(.0043)

.011
(.0033)

.008
(.0028)

.008
(.0028)

.006
(.0024)

.011
(.0033)

Panel 2 ρ = 0.30 ρ = 0.50 ρ = 0.70

p = q α Clayton Gumbel Clayton Gumbel Clayton Gumbel

0.10 .815
(.0123)

.752
(.0137)

1.000
(.0000)

.965
(.0058)

1.000
(.0000)

.999
(.0010)

0.20 0.05 .715
(.0143)

.635
(.0152)

.999
(.0010)

.938
(.0076)

1.000
(.0000)

.996
(.0020)

0.01 .456
(.0158)

.371
(.0153)

.993
(.0026)

.800
(.0126)

1.000
(.0000)

.999
(.0010)

0.10 .988
(.0034)

.926
(.0083)

1.000
(.0000)

.999
(.0010)

1.000
(.0000)

1.000
(.0000)

0.35 0.05 .981
(.0043)

.876
(.0104)

1.000
(.0000)

.995
(.0022)

1.000
(.0000)

1.000
(.0000)

0.01 .928
(.0082)

.704
(.0144)

1.000
(.0000)

.980
(.0044)

1.000
(.0000)

1.000
(.0000)

0.10 .999
(.0010)

.974
(.0050)

1.000
(.0000)

1.000
(.0000)

1.000
(.0000)

1.000
(.0000)

0.50 0.05 .999
(.0010)

.945
(.0072)

1.000
(.0000)

1.000
(.0000)

1.000
(.0000)

1.000
(.0000)

0.01 .996
(.0020)

.837
(.0117)

1.000
(.0000)

.995
(.0022)

1.000
(.0000)

1.000
(.0000)

Table 3: MC approximations of the rejection probabilities for the Gauss- and t3-copula (Panel 1) and for the

Clayton- and Gumbel-copula (Panel 2) given H0 : ρL = ρU . The simulated sample size is n = 2500,

the number of bootstrap replications corresponds to NB = 1000, and the number of MC replications is

NMC = 1000. The standard errors for the approximated rejection probabilities are given in parentheses.
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H0 : ρL ≤ ρU vs. H1 : ρL > ρU

Panel 1 θ = 0.25 θ = 0.50 θ = 0.75

p = q α Gauss t3 Gauss t3 Gauss t3

0.10 .091
(.0091)

.096
(.0093)

.099
(.0094)

.095
(.0093)

.096
(.0093)

.099
(.0094)

0.20 0.05 .047
(.0067)

.041
(.0063)

.040
(.0062)

.041
(.0063)

.047
(.0067)

.049
(.0068)

0.01 .009
(.0030)

.007
(.0026)

.006
(.0024)

.007
(.0026)

.013
(.0036)

.009
(.0030)

0.10 .103
(.0096)

.093
(.0092)

.086
(.0089)

.099
(.0094)

.097
(.0094)

.094
(.0092)

0.35 0.05 .053
(.0071)

.049
(.0068)

.038
(.0060)

.044
(.0065)

.047
(.0067)

.044
(.0065)

0.01 .012
(.0034)

.010
(.0031)

.008
(.0028)

.006
(.0024)

.008
(.0028)

.011
(.0033)

0.10 .109
(.0099)

.092
(.0091)

.103
(.0096)

.110
(.0099)

.086
(.0860)

.094
(.0092)

0.50 0.05 .050
(.0069)

.046
(.0066)

.046
(.0066)

.053
(.0071)

.049
(.0068)

.054
(.0071)

0.01 .015
(.0038)

.011
(.0033)

.011
(.0033)

.011
(.0033)

.010
(.0031)

.008
(.0028)

Panel 2 ρ = 0.30 ρ = 0.50 ρ = 0.70

p = q α Clayton Gumbel Clayton Gumbel Clayton Gumbel

0.10 .899
(.0095)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.20 0.05 .815
(.0123)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.01 .574
(.0156)

.000
(.0000)

.997
(.0017)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.10 .997
(.0017)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.35 0.05 .988
(.0034)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.01 .961
(.0061)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.10 1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.50 0.05 .999
(.0010)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.01 .999
(.0010)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

Table 4: MC approximations of the rejection probabilities for the Gauss- and t3-copula (Panel 1) and for the

Clayton- and Gumbel-copula (Panel 2) given H0 : ρL ≤ ρU . The simulated sample size is n = 2500,

the number of bootstrap replications corresponds to NB = 1000, and the number of MC replications is

NMC = 1000. The standard errors for the approximated rejection probabilities are given in parentheses.
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H0 : ρL ≥ ρU vs. H1 : ρL < ρU

Panel 1 θ = 0.25 θ = 0.50 θ = 0.75

p = q α Gauss t3 Gauss t3 Gauss t3

0.10 .093
(.0092)

.097
(.0094)

.089
(.0090)

.090
(.0090)

.096
(.0093)

.096
(.0093)

0.20 0.05 .044
(.0065)

.042
(.0063)

.041
(.0063)

.044
(.0065)

.044
(.0065)

.044
(.0065)

0.01 .009
(.0030)

.011
(.0033)

.007
(.0026)

.012
(.0034)

.006
(.0024)

.013
(.0036)

0.10 .108
(.0098)

.083
(.0087)

.100
(.0095)

.111
(.0099)

.096
(.0093)

.087
(.0089)

0.35 0.05 .053
(.0071)

.032
(.0056)

.054
(.0071)

.064
(.0077)

.048
(.0068)

.043
(.0064)

0.01 .013
(.0036)

.007
(.0026)

.013
(.0036)

.012
(.0034)

.005
(.0022)

.013
(.0036)

0.10 .095
(.0093)

.097
(.0094)

.103
(.0096)

.094
(.0092)

.087
(.0089)

.088
(.0090)

0.50 0.05 .054
(.0071)

.042
(.0063)

.042
(.0063)

.060
(.0075)

.040
(.0062)

.044
(.0065)

0.01 .016
(.0040)

.007
(.0026)

.004
(.0020)

.009
(.0030)

.003
(.0017)

.015
(.0038)

Panel 2 ρ = 0.30 ρ = 0.50 ρ = 0.70

p = q α Clayton Gumbel Clayton Gumbel Clayton Gumbel

0.10 .000
(.0000)

.856
(.0111)

.000
(.0000)

.986
(.0037)

.000
(.0000)

1.000
(.0000)

0.20 0.05 .000
(.0000)

.752
(.0137)

.000
(.0000)

.965
(.0058)

.000
(.0000)

.999
(.0010)

0.01 .000
(.0000)

.481
(.0158)

.000
(.0000)

.870
(.0106)

.000
(.0000)

.994
(.0024)

0.10 .000
(.0000)

.964
(.0059)

.000
(.0000)

.999
(.0010)

.000
(.0000)

1.000
(.0000)

0.35 0.05 .000
(.0000)

.926
(.0083)

.000
(.0000)

.999
(.0010)

.000
(.0000)

1.000
(.0000)

0.01 .000
(.0000)

.790
(.0129)

.000
(.0000)

.987
(.0036)

.000
(.0000)

1.000
(.0000)

0.10 .000
(.0000)

.991
(.0030)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

0.50 0.05 .000
(.0000)

.974
(.0050)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

0.01 .000
(.0000)

.892
(.0098)

.000
(.0000)

.996
(.0020)

.000
(.0000)

1.000
(.0000)

Table 5: MC approximations of the rejection probabilities for the Gauss- and t3-copula (Panel 1) and for the

Clayton- and Gumbel-copula (Panel 2) given H0 : ρL ≥ ρU . The simulated sample size is n = 2500,

the number of bootstrap replications corresponds to NB = 1000, and the number of MC replications is

NMC = 1000. The standard errors for the approximated rejection probabilities are given in parentheses.
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p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

¯̂ρL 39% 34% 34% 34% 35%

¯̂ρU 34% 27% 25% 24% 24%

ρ̂L − ρ̂U 5% 7% 9% 10% 11%

|ρ̂L − ρ̂U| 12% 10% 10% 11% 11%

Table 6: Average conditional Spearman’s rhos, differences, and absolute differences of all 435 asset combinations

for different shortfall probabilities p = q .

where 0 ≤ λ ≤ 1. Further, the copula parameters θ0, θ1 are such that the unconditional rank-

correlation coefficients of CClayton(u, v ; θ1) and CGauss(u, v ; θ0) correspond to ρ = 0.5. Hence,

the mixed copula possesses the same unconditional rank-correlation coefficient for every λ

(see the formula for ρ on p. 3).

Note that ρL = ρU is true for the Gauss-copula but for the Clayton-copula it holds that

ρL > ρU and so the mixing parameter λ determines the degree of asymmetry given by

CMix1(u, v ; λ, θ0, θ1). If one considers the two-sided hypothesis test with H0 : ρL ≤ ρU , λ = 0

means that the null hypothesis is true whereas the alternative hypothesis holds for every λ > 0 .

The larger λ the more often H0 should be rejected.

A similar result is obtained for the mixed copula

CMix2(u, v ; λ, θ0, θ2) := λCGumbel(u, v ; θ2) + (1 − λ)CGauss(u, v ; θ0) ,

where θ2 is such that the rank-correlation coefficient associated with CGumbel(u, v ; θ2) once

again amounts to ρ = 0.5 . The corresponding power functions are depicted in Figure 1. Both

graphs demonstrate that the hypothesis test always keeps the prescribed error probability of

the first kind and the rejection probability indeed is an increasing function of the mixing

parameter λ. Similar results can be obtained for other constellations of ρ and p .

5. Empirical Results for German Stock Returns

Now we consider daily returns from 1973-01-01 to 2008-11-14 of the 30 stocks of the German

stock index DAX 30. The stock prices have been adjusted for dividends, splits, etc., and our

analysis is based on the daily log-returns on the assets. The maximum number of observations

is n = 9359 (trading days). Table 6 contains the sample means of the upper and lower condi-

tional Spearman’s rhos for all (30
2 ) = 435 asset combinations. Here ¯̂ρL denotes the mean lower

and ¯̂ρU the mean upper conditional Spearman’s rho, whereas ρ̂L − ρ̂U is the mean difference

and |ρ̂L − ρ̂U| the mean absolute difference between ρ̂L and ρ̂U.

The level of the shortfall probability p essentially depends on the individual needs of the

investor, agent or institution. For example, a trader might be interested in the dependence

structure of normal profits and losses. In that case he could choose p = 0.5. By contrast,

a regulatory body usually focuses on extreme values and should choose a lower shortfall

probability like, e.g., p = 0.1. For this reason we take a broad spectrum of shortfall probabilities

into consideration, i.e., p = 0.1, 0.2, . . . , 0.5.
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Figure 2: The upper part shows the lower (left-hand side) and upper (right-hand side) conditional Spearman’s rho

as a function of p = q for BASF vs. Henkel (n = 6025). The dashed lines represent the corresponding

95%-confidence bands. In the lower left part the lower and upper conditional Spearman’s rhos are shown

together, where the bold line represents the lower conditional Spearman’s rho. The lower right part

contains the difference between the rhos and the corresponding 95%-confidence band.

It can be seen that in average the lower conditional Spearman’s rhos are up to 10 points

larger than the upper conditional Spearman’s rhos. However, without a meaningful economic

argument it is not possible to judge whether this gap is “large” or “small” and we would like

to avoid such kind of statements. Instead we will discuss how much of the empirical evidence

at least leads to statistically significant results in our hypothesis tests.

It is worth pointing out that the outcomes of the test can depend substantially on the

shortfall probability p . The upper part of Figure 2 shows the lower and upper conditional

Spearman’s rho as a function of p for BASF vs. Henkel. The differences between the rhos

(see the lower part of Figure 2) appear to be negligible if p ≤ 0.2 but it can be very large for

p > 0.2 . The lower right part of Figure 2 indicates that it is easy to find a suitable p such that

H0 : ρL ≤ ρU is spuriously rejected on a significance level of α = 0.05 . Therefore, to avoid a

selection bias, p must be chosen before examining different estimates of ρL and ρU.

It is clear that the estimates ρ̂L and ρ̂U are different from each other for every combination

of assets and we want to see whether the differences are significant in the German stock market.

For this reason we apply a block-bootstrap procedure, as described in Section 3.2, to estimate

the long-run variance. According to Hall et al. (1995), the optimal block size is given by n
1
3 . In

our case, the maximum number of observations is n = 9359 and so this rule of thumb leads

to a block size of 21. Nevertheless, in view of the stylized facts of empirical finance, we think
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that this choice is not conservative enough. Volatility clusters of daily log-returns are usually

bigger than a trading month. Hence, we choose a block size of b = 40 and the number of

bootstrap replications is NB = 1000 .

After computing the first estimate τ̂2
LR,b , a second run with block size b/2 = 20 is made.

This captures (approximately) the optimal block size according to Hall et al. (1995) and leads

to a second estimate τ̂2
LR,b/2 of the long-run variance. Finally, the linear combination

τ̂2
LR = 2τ̂2

LR,b − τ̂2
LR,b/2

is chosen as an estimate of τ2
LR . Such a linear combination typically leads to more accurate

estimates of the long-run variance (Politis, 2003).

Each rejection of the test can be interpreted as an outcome of a Bernoulli variable Ri with

expected value πi ∈ ]0, 1[ , i.e., Ri ∼ B(πi) (i = 1, . . . , 435). The considered hypothesis tests

indeed depend on each other but, nevertheless, an unbiased estimate of π̄ = 1
435 ∑

435
i=1 πi is

given by the rejection rate, i.e., ˆ̄π = 1
435 ∑

435
i=1 Ri .

We have shown that the hypothesis tests keep the prescribed error probabilities of the first

kind and are asymptotically unbiased (see Figure 1 as well as Table 4 and Table 5). This means

the chosen alternative hypothesis is true for most of the 435 asset combinations if ˆ̄π ≫ α and

in that case we say that H1 is “true in general.” Hence, the rejection rate serves as a simple

indicator for our general impression that the bivariate dependence structures of stock returns

differ in bull and bear markets. Of course, a more detailed statistical analysis would require a

multiple test, e.g., a Holm-Bonferroni test or another stepwise procedure (Romano and Wolf,

2005), but this is beyond our purposes.

5.1. Two-Sided Hypothesis Test

The first panel of Table 7 contains the rejection rates over all 435 asset combinations. For

the shortfall probability p = q = 0.1 only 12% of the asset combinations exhibit significantly

different Spearman’s rhos on a significance level of α = 0.1. However, it can be seen that

for all p that have been taken into consideration, the rejection rates exceed the corresponding

significance levels. Especially, if p increases the rejection rates become very large and so we

conclude that the lower and upper conditional rank-correlation coefficients are different from

each other in general, i.e., for most asset combinations taken into consideration.

5.2. One-Sided Hypothesis Tests

The last rows of Panel 2 and 3 of Table 7 contain the relative numbers of asset combinations

where the lower conditional Spearman’s rho exceeds the upper conditional Spearman’s rho

and vice versa. For example, 66% of the asset combinations are such that ρ̂L,n > ρ̂U,n under

the shortfall probability p = q = 0.1 but only 22% of all combinations (this means 1
3 of the

combinations where ρ̂L,n exceeds ρ̂U,n) are significant on the significance level α = 0.1.

It is clear that not every combination with ρ̂L,n > ρ̂U,n or ρ̂L,n < ρ̂U,n can be significant.

This holds in particular if the number of observations in the lower left and upper right area

of the empirical copula is small. Hence, though the number of significant asset combinations

might appear to be somewhat small, this neither implies that most of the null hypotheses are
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Panel 1 H0 : ρL = ρU vs. H1 : ρL 6= ρU

α p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

0.10 .12 .30 .50 .63 .62

0.05 .06 .23 .40 .55 .54

0.01 .02 .11 .29 .38 .39

Panel 2 H0 : ρL ≤ ρU vs. H1 : ρL > ρU

α p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

0.10 .22 .41 .61 .74 .73

0.05 .11 .29 .50 .63 .62

0.01 .03 .14 .32 .46 .44

ρ̂L,n > ρ̂U,n .66 .84 .92 .95 .98

Panel 3 H0 : ρL ≥ ρU vs. H1 : ρL < ρU

α p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

0.10 .02 .02 .00 .01 .00

0.05 .01 .01 .00 .00 .00

0.01 .00 .01 .00 .00 .00

ρ̂L,n < ρ̂U,n .34 .16 .08 .05 .02

Table 7: Rejection rates of the different hypothesis tests, shortfall probabilities, and significance levels. The relative

numbers of asset combinations where ρ̂L is larger or smaller than ρ̂U are presented in the last rows of

Panel 2 and Panel 3.

true nor that the differences of the lower and upper conditional rank-correlation coefficients

are “small” (see the last row of Table 6).

The second panel of Table 7 reveals that the rejection rates of the hypothesis tests for various

levels of p and α considerably exceed the corresponding significance levels. This effect becomes

more obvious the more p increases. Hence, we can see that the hypothesis H1 : ρL > ρU is true

in general. By contrast, the rejection rates for the opposite tests given in Panel 3 of Table 7 are

substantially smaller than the significance levels. This means there is no empirical evidence

for the contrary hypothesis H1 : ρL < ρU .

6. Conclusion

Several authors have investigated the dependencies of stock returns in bull and bear markets.

Pearson’s rho has been typically used as an association measure for stock returns although

it depends essentially on the marginal distributions of the random variables that are taken

into consideration and quantifies only the degree of linear dependence. However, one is often

interested in the degree of monotone rather than linear dependence. This holds in particular

if the joint distribution is highly non-linear, which is definitely the case when concentrating

on the tails of stock-return distributions. So it is crucial to find a reasonable measure for the

degree of monotone dependence under the condition that stock returns contemporaneously

go up or down. We believe that copula theory can serve as an appropriate toolbox and suggest
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Spearman’s rho as a concordance measure. This is in contrast to the given literature, since

most authors use conditional versions of Pearson’s rho for the same purpose. Moreover, our

approach is purely nonparametric. Since we do not fit specific copulas to the data or suggest

specific time series models, we are able to avoid any kind of model misspecification. The finite-

sample performance of the proposed hypothesis tests have been demonstrated by Monte Carlo

simulation. Further, an empirical study using daily returns on stocks contained in the DAX

30 has been conducted. We think that there is sufficient evidence to support the hypothesis of

different degrees of monotone dependence in bull and bear markets.
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J. Dobrić and F. Schmid (2005), ‘Nonparametric estimation of the lower tail dependence λL in

bivariate copulas’, Journal of Applied Statistics 32, pp. 387–407.

P. Doukhan, J.D. Fermanian, and G. Lang (2009), ‘An empirical central limit theorem with

applications to copulas under weak dependence’, Statistical Inference for Stochastic Processes

12, pp. 65–87.

P. Embrechts, A.J. McNeil, and D. Straumann (2002), ‘Correlation and dependence in risk

management: properties and pitfalls’, in: M. Dempster, ed., ‘Risk Management: Value at

Risk and Beyond’, Cambridge University Press.

C.B. Erb, C.R. Harvey, and T.E. Viskanta (1994), ‘Forecasting international equity correlations’,

Financial Analysts Journal 50, pp. 32–45.

I. Fortin and C. Kuzmics (2002), ‘Tail-dependence in stock return pairs’, International Journal of

Intelligent Systems in Accounting, Finance & Management 11, pp. 89–107.

G. Frahm, M. Junker, and R. Schmidt (2005), ‘Estimating the tail-dependence coefficient: prop-

erties and pitfalls’, Insurance: Mathematics and Economics 37, pp. 80–100.

P. Hall, J.L. Horowitz, and J. Bing-Yi (1995), ‘On blocking rules for the bootstrap with depen-

dent data’, Biometrika 82, pp. 561–574.

Y. Hong, J. Tu, and G. Zhou (2007), ‘Asymmetries in stock returns: statistical tests and eco-

nomic evaluation’, The Review of Financial Studies 20, pp. 1547–1581.

H. Hult and F. Lindskog (2002), ‘Multivariate extremes, aggregation and dependence in ellip-

tical distributions’, Advances in Applied Probability 34, pp. 587–608.

20
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