Anomaly Detection in Ordinal Quality-Related Processes by Control Charts

Universität der Bundeswehr Hamburg

Sebastian Ottenstreuer, C.H. Weiß

Department of Mathematics & Statistics, Helmut Schmidt University, Hamburg

Murat Caner Testik

Department of Industrial Engineering, Hacettepe University, Ankara

Funded by DFG – Projektnr. 516522977

Anomaly Detection by Control Charts

Introduction & Outline

Statistical process control (SPC): (Montgomery, 2009) monitor quality-related processes, for example, in manufacturing, service industries, health surveillance. **Control chart**: certain statistics computed sequentially in time and used to decide about actual state of process. Aim: anomaly detection, "deviations from normality". No intervention in process if **in control** (IC), i.e., if monitored statistics stationary according to specified time series model

(e.g., independent and identically distributed (i.i.d.) with specified marginal distribution).

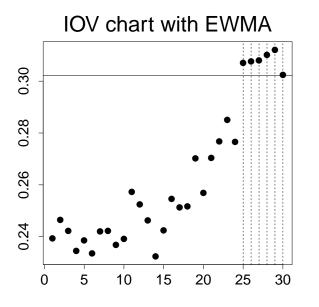
MATH Stat

By contrast, if deviations from IC-model, such as shifts or drifts in model parameters, then process **out of control** (OOC).

In traditional control chart applications, we compare plotted statistics against given control limits (CLs). If statistic beyond CLs, then alarm triggered to indicate possible OOC-situation.

Example control chart: (see below)

Alarms at $t \ge 25$, because upper CL violated.



Aim: trustworthy anomaly detection, i.e.,

true alarm as soon as possible,

but avoid false alarm for as long as possible.

Common metric: mean waiting time until first alarm,

average run length (ARL) of control chart.

Should be large (low) if process IC (OOC).

In practice: choose CLs such that IC-ARL meets target value.

For these and further basics, see Montgomery (2009).

Most SPC literature about quality characteristics measured on continuous quantitative scale (**variables charts**).

discrete-valued characteristics, **attributes charts**. Here: Focus on samples $\{X_{t,i}\}$ of size n > 1 from i. i. d. ordinal process monitored sequentially in time t. Quality features $X_{t,i}$ have finite range $S = \{s_0, s_1, \dots, s_d\}$ of categories exhibiting natural order $s_0 < \ldots < s_d$. **Data example** considered below (Li et al., 2014): manufacturing of electric toothbrush heads, sample size n = 64. $X_{t,i}$ = extent of "flash" (excess plastic) in d+1=4ordinal categories $s_0 = \text{``slight''}, s_1 = \text{``small''}, s_2 = \text{``medium''},$

and $s_3 =$ "large" (degrading quality, as higher risk of injury).

Control Charts for Ordinal Samples

Survey & Proposals

MATH STAT

Distribution of ordinal $X_{t,i}$ given by (Agresti, 2010) probability mass function (PMF), $p = (p_0, \ldots, p_d) \in [0; 1]^{d+1}$ with $p_i = P(X = s_i)$, or cumulative distribution function (CDF), $f = (f_0, \ldots, f_{d-1}) \in [0; 1]^d$ with $f_i = P(X \leq s_i)$.

IC-state given by p_0 and f_0 , respectively.

Monitoring uses information provided by *t*th sample $\{X_{t,i}\}$: raw or cumulative frequencies,

 $N_t = (N_{t,0}, \dots, N_{t,d})$ resp. $C_t = (C_{t,0}, \dots, C_{t,d-1})$, where $N_{t,j}$ $(C_{t,j})$ number of events " $X_{t,i} = s_j$ " (" $X_{t,i} \le s_j$ "). Relative (cumulative) frequencies: $\hat{p}_t = \frac{1}{n}N_t$ and $\hat{f}_t = \frac{1}{n}C_t$.

Shewhart charts (memory-less) compare \hat{p}_t to p_0 , or \hat{f}_t to f_0 , by plotting some function $g(N_t)$ at each time t. Common approaches for **memory-type charts:** cumulative sum (CUSUM) of Page (1954), and exponentially weighted moving-average (EWMA) of Roberts (1959).

Ordinal EWMA charts with smoothing param. $\lambda \in (0; 1)$:

$$N_t^{(\lambda)} = \lambda N_t + (1-\lambda) N_{t-1}^{(\lambda)} \quad \text{for } t = 1, 2, \dots, \quad N_0^{(\lambda)} = n p_0.$$

Monitored statistic is $g(N_t^{(\lambda)})$ for t = 1, 2, ...,

see Li et al. (2014), Wang et al. (2018) for such examples.

Pearson's goodness-of-fit (GoF) statistic (Duncan, 1950) $X_t^2 = n^{-1} (N_t - n p_0)^{\top} \operatorname{diag}(p_0)^{-1} (N_t - n p_0).$

Average cumulative data (ACD) chart of Wang et al. (2018):

$$\mathsf{ACD}_t = n^{-1} \sum_{j=0}^d \left(C_{t,j-1} + C_{t,j} - n \left(f_{0,j-1} + f_{0,j} \right) \right)^2.$$

Univ. location-scale ordinal (ULSO) chart of Bai & Li (2021): ULSO_t = $n^{-1} (N_t - n p_0)^{\top} \mathbf{V} (N_t - n p_0)$, with $\mathbf{V} = \mathbf{Q}^{\top} (\mathbf{Q} (\text{diag}(p_0) - p_0 p_0^{\top}) \mathbf{Q}^{\top})^{-1} \mathbf{Q}$, where $\mathbf{Q} = (q_{kl})$ by $q_{1j} = f_{0,j-1} + f_{0,j} - 1$, $q_{2j} = p_{0,j}^{-1} (\eta(f_{0,j}) - \eta(f_{0,j-1}))$, where $\eta(z) = z(1-z) \ln ((1-z)/z)$ with $\eta(0) = \eta(1) = 0$.

Control charts relying on type of weighted class count:

$$D_t = v_0 N_{t,0} + \dots + v_d N_{t,d}.$$

If numerical scores $\mathcal{V} = \{v_0, \dots, v_d\}$ to express severity of defects, then **demerit chart**. Examples:

- Dodge & Torrey (1956): d + 1 = 4 and scores 1, 10, 50, 100;
- Nembhard & Nembhard (2000): d+1 = 3 and scores 1, 3, 10;
- Wardell & Candia (1996): scores $1, \ldots, d+1$ (Likert scale).

Weights might also be derived

from **probabilistic principles:** (...)

MATH STAT

Simple ordinal categorical (SOC) chart of Li et al. (2014),

SOC_t =
$$\left| \sum_{j=0}^{d} (f_{0,j-1} + f_{0,j} - 1) N_{t,j} \right|$$
 with $f_{0,-1} := 0$.

If relevant OOC-scenario p_1 : log-likelihood ratio (log-LR)

$$\ell R_t = \sum_{j=0}^d N_{t,j} \ln(p_{1,j}/p_{0,j}).$$

Steiner et al. (1996), Ryan et al. (2011): CUSUM chart

$$C_t = \max\{0, \ell R_t + C_{t-1}\}, \quad C_0 = 0.$$

Shiryaev–Roberts (SR) chart: (Roberts, 1966)

$$R_t = (R_{t-1} + 1) \exp(\ell R_t), \quad R_0 = 0.$$

MATH Stat

Control charts might be based on ordinal statistics, which express important properties of an ordinal X, see Weiß (2020).

• **Dispersion** expressed by index of ordinal variation:

IOV chart of Bashkansky & Gadrich (2011), Weiß (2021),

$$IOV_t = \frac{4}{d} \sum_{j=0}^{d-1} \widehat{f}_{t,j} \left(1 - \widehat{f}_{t,j}\right).$$

• Ordinal skewness: skew_t = $\left(\frac{2}{d}\sum_{j=0}^{d-1} \widehat{f}_{t,j}\right) - 1$,

equivalent to demerit chart with linear weighting scheme.

Further miscellaneous approaches in Ottenstreuer et al. (2023).

Control Charts for Ordinal Samples

Performance Analysis

Ottenstreuer et al. (2023):

comprehensive comparative **simulation study**,

ARL performance in medium- and high-quality settings.

Summary of main findings:

Although some charts quite sophisticated,

quality deteriorations best detected by rather basic statistics:

demerit-type chart (e.g., skew chart) with EWMA smoothing

always good performance,

(EWMA-)IOV chart for high-quality settings.

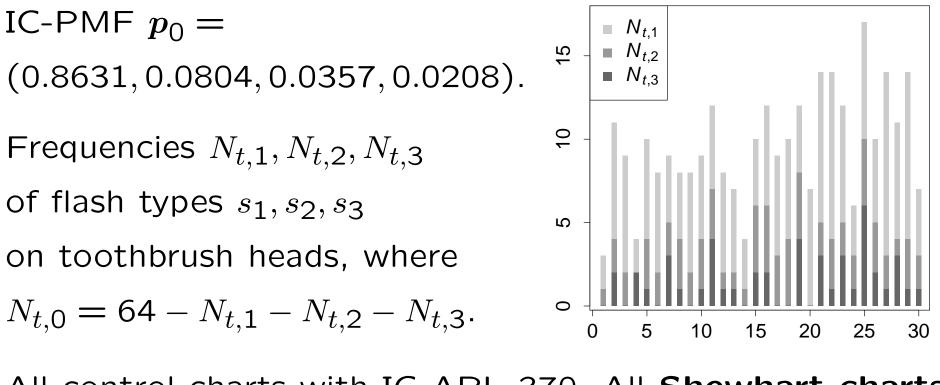
EWMA smoothing for PMF estimation generally recommended.

Monitoring Flash on Electric Toothbrush Heads

MATH STAT

Toothbrush data (Li et al., 2014),

ranging from $s_0 =$ "slight" to $s_3 =$ "large" flash.



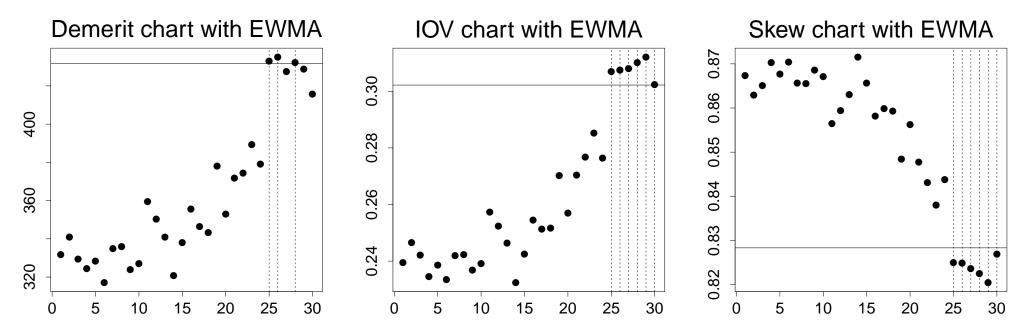
All control charts with IC-ARL 370. All **Shewhart charts** alarm at t = 25, where worst quality (see above)

Some EWMA charts with $\lambda = 0.1$ rather slow,

namely Pearson, ACD, ULSO, and SOC.

Also CUSUM and SR chart give late alarm.

Fasted EWMA charts:



Here, demerit chart uses weights 1, 10, 50, 100.

Most surprising finding: For monitoring i. i. d. ordinal samples,

simple charts like demerit, skew, IOV EWMA

better performance than more sophisticated schemes.

Future research:

DGP \ Data	Samples	Individual Observations
i.i.d. ordinal data	<pre>✓ (this talk)</pre>	to be done
ordinal time series	to be done	to be done

 \rightarrow DFG Project No. 516522977,

collaboration with Murat C. Testik.

Work in progress:

within DFG Project No. 516522977, jointly with Osama Swidan, novel models for ordinal time series:

- weighted discrete ARMA models (under review),
- ordinal Hidden-Markov models (under review),
- soft-clipping autoregressive models (in progress).

These and further DGPs to be used for performance analyses of future control charts for ordinal time series data.

Memory-type control charts for individuals data.

Thank You for Your Interest!

HELMUT SCHMIDT UNIVERSITÄT

Christian H. Weiß

Department of Mathematics & Statistics Helmut Schmidt University, Hamburg weissc@hsu-hh.de

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Projektnummer 516522977.

MATH Stat

 (\ldots)

Ottenstreuer et al. (2023)

A review and comparison of control charts for ordinal samples. Journal of Quality Technology 55(4), 422-441. (\rightarrow open access)

Agresti (2010) *Analysis of Ordinal Categorical Data*. 2nd ed., Wiley. Bai & Li (2021) Location-scale monitoring ... *NRL* **68**, 937–950. Bashkansky & Gadrich (2011) Statistical quality ... *ASMBI* **27**, 586–599. Dodge & Torrey (1956) A check inspection and demerit ... *IQC* **13**, 5–12. Duncan (1950) A chi-square chart for ... *IQC* **7**, 11–15. Li et al. (2014) A simple categorical chart ... *IJPR* **52**, 550–562. Montgomery (2009) *Introduction to Statistical Quality* ... 6th ed., Wiley. Nembhard & Nembhard (2000) A demerits control ... *QE* **13**, 179–190. Page (1954) Continuous inspection schemes. *Biometrika* **41**, 100–115.

(\dots)

Roberts (1959) Control chart tests ... Technometrics 1, 239–250.
Roberts (1966) A comparison of some control ... Technom. 8, 411–430.
Ryan et al. (2011) Methods for monitoring ... JQT 43, 237–248.
Steiner et al. (1996) Grouped data-sequential ... Technom. 38, 230–237.
Wang et al. (2018) A univariate procedure for ... CSSC 47, 115–128.
Wardell & Candia (1996) Statistical process monitoring ... QMJ 3, 36–50.
Weiß (2020) Distance-based analysis ... JASA 115, 1189–1200.
Weiß (2021) On approaches for monitoring ... Control Charts ..., 105–129.