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Statistical process control (SPC): (Montgomery, 2009)

monitor quality-related processes, for example,

in manufacturing, service industries, health surveillance.

Control chart: certain statistics computed sequentially

in time and used to decide about actual state of process.

Aim: anomaly detection, “deviations from normality”.

No intervention in process if in control (IC), i. e., if monitored

statistics stationary according to specified time series model

(e. g., independent and identically distributed (i. i. d.)

with specified marginal distribution).
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By contrast, if deviations from IC-model, such as shifts or drifts

in model parameters, then process out of control (OOC).

In traditional control chart applications, we compare plotted

statistics against given control limits (CLs). If statistic beyond

CLs, then alarm triggered to indicate possible OOC-situation.

Example control chart:
(see below)

Alarms at t ≥ 25, because
upper CL violated.
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IOV chart with EWMA
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Aim: trustworthy anomaly detection, i. e.,

true alarm as soon as possible,

but avoid false alarm for as long as possible.

Common metric: mean waiting time until first alarm,

average run length (ARL) of control chart.

Should be large (low) if process IC (OOC).

In practice: choose CLs such that IC-ARL meets target value.

For these and further basics, see Montgomery (2009).

Most SPC literature about quality characteristics measured

on continuous quantitative scale (variables charts).
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Here: discrete-valued characteristics, attributes charts.

Focus on samples {Xt,i} of size n > 1 from

i. i. d. ordinal process monitored sequentially in time t.

Quality features Xt,i have finite range S = {s0, s1, . . . , sd}

of categories exhibiting natural order s0 < . . . < sd.

Data example considered below (Li et al., 2014):

manufacturing of electric toothbrush heads, sample size n = 64.

Xt,i = extent of “flash” (excess plastic) in d+1 = 4

ordinal categories s0 = “slight” , s1 = “small” , s2 = “medium”,

and s3 = “large” (degrading quality, as higher risk of injury).
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Distribution of ordinal Xt,i given by (Agresti, 2010)

probability mass function (PMF), p = (p0, . . . , pd) ∈ [0; 1]d+1

with pi = P (X = si), or cumulative distribution function (CDF),

f = (f0, . . . , fd−1) ∈ [0; 1]d with fi = P (X ≤ si).

IC-state given by p0 and f0, respectively.

Monitoring uses information provided by tth sample {Xt,i}:

raw or cumulative frequencies,

N t = (Nt,0, . . . , Nt,d) resp. Ct = (Ct,0, . . . , Ct,d−1),

where Nt,j (Ct,j) number of events “Xt,i = sj” (“Xt,i ≤ sj”).

Relative (cumulative) frequencies: p̂t =
1
nN t and f̂ t =

1
nCt.
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Shewhart charts (memory-less) compare p̂t to p0,

or f̂ t to f0, by plotting some function g(N t) at each time t.

Common approaches for memory-type charts:

cumulative sum (CUSUM) of Page (1954), and exponentially

weighted moving-average (EWMA) of Roberts (1959).

Ordinal EWMA charts with smoothing param. λ ∈ (0; 1):

N(λ)
t = λN t + (1− λ)N(λ)

t−1 for t = 1,2, . . . , N(λ)
0 = np0.

Monitored statistic is g
(
N t

(λ)
)

for t = 1,2, . . .,

see Li et al. (2014), Wang et al. (2018) for such examples.
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Pearson’s goodness-of-fit (GoF) statistic (Duncan, 1950)

X2
t = n−1

(
N t − np0

)⊤ diag(p0)
−1

(
N t − np0

)
.

Average cumulative data (ACD) chart of Wang et al. (2018):

ACDt = n−1 ∑d
j=0

(
Ct,j−1 + Ct,j − n (f0,j−1 + f0,j)

)2
.

Univ. location-scale ordinal (ULSO) chart of Bai & Li (2021):

ULSOt = n−1
(
N t − np0

)⊤V
(
N t − np0

)
, with

V = Q⊤
(
Q

(
diag(p0)− p0 p

⊤
0

)
Q⊤

)−1
Q, where Q = (qkl) by

q1j = f0,j−1 + f0,j − 1, q2j = p−1
0,j

(
η(f0,j)− η(f0,j−1)

)
,

where η(z) = z(1− z) ln
(
(1− z)/z

)
with η(0) = η(1) = 0.
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Control charts relying on type of weighted class count:

Dt = v0Nt,0 + · · ·+ vdNt,d.

If numerical scores V = {v0, . . . , vd} to express severity of defects,

then demerit chart. Examples:

• Dodge & Torrey (1956): d+1 = 4 and scores 1,10,50,100;

• Nembhard & Nembhard (2000): d+1 = 3 and scores 1,3,10;

• Wardell & Candia (1996): scores 1, . . . , d+1 (Likert scale).

Weights might also be derived

from probabilistic principles: (. . . )
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Simple ordinal categorical (SOC) chart of Li et al. (2014),

SOCt =
∣∣∣∣ d∑
j=0

(f0,j−1 + f0,j − 1)Nt,j

∣∣∣∣ with f0,−1 := 0.

If relevant OOC-scenario p1: log-likelihood ratio (log-LR)

ℓRt =
∑d
j=0Nt,j ln

(
p1,j

/
p0,j

)
.

Steiner et al. (1996), Ryan et al. (2011): CUSUM chart

Ct = max {0, ℓRt + Ct−1}, C0 = 0.

Shiryaev–Roberts (SR) chart: (Roberts, 1966)

Rt = (Rt−1 +1) exp
(
ℓRt

)
, R0 = 0.
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Control charts might be based on ordinal statistics, which ex-

press important properties of an ordinal X, see Weiß (2020).

• Dispersion expressed by index of ordinal variation:

IOV chart of Bashkansky & Gadrich (2011), Weiß (2021),

IOVt = 4
d

d−1∑
j=0

f̂t,j
(
1− f̂t,j

)
.

• Ordinal skewness: skewt =
(
2
d

d−1∑
j=0

f̂t,j

)
− 1,

equivalent to demerit chart with linear weighting scheme.

Further miscellaneous approaches in Ottenstreuer et al. (2023).
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Ottenstreuer et al. (2023):

comprehensive comparative simulation study,

ARL performance in medium- and high-quality settings.

Summary of main findings:

Although some charts quite sophisticated,

quality deteriorations best detected by rather basic statistics:

demerit-type chart (e. g., skew chart) with EWMA smoothing

always good performance,

(EWMA-)IOV chart for high-quality settings.

EWMA smoothing for PMF estimation generally recommended.

Christian H. Weiß — Helmut Schmidt University, Hamburg



MATH 

STAT 

Monitoring Flash on
Electric Toothbrush Heads

Illustrative Data Example



Illustrative Data Example MATH 

STAT 

Toothbrush data (Li et al., 2014),

ranging from s0 = “slight” to s3 = “large” flash.

IC-PMF p0 =

(0.8631,0.0804,0.0357,0.0208).

Frequencies Nt,1, Nt,2, Nt,3

of flash types s1, s2, s3

on toothbrush heads, where

Nt,0 = 64−Nt,1 −Nt,2 −Nt,3. 0 5 10 15 20 25 30

0
5

10
15

Nt ,1
Nt ,2
Nt ,3

All control charts with IC-ARL 370. All Shewhart charts

alarm at t = 25, where worst quality (see above)
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Some EWMA charts with λ = 0.1 rather slow,

namely Pearson, ACD, ULSO, and SOC.

Also CUSUM and SR chart give late alarm.

Fasted EWMA charts:
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Skew chart with EWMA

Here, demerit chart uses weights 1,10,50,100.
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Most surprising finding: For monitoring i. i. d. ordinal samples,

simple charts like demerit, skew, IOV EWMA

better performance than more sophisticated schemes.

Future research:

Individual
DGP \ Data Samples Observations

i. i. d. ordinal data ✓ (this talk) to be done

ordinal time series to be done to be done

→ DFG Project No. 516522977,

collaboration with Murat C. Testik.
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Work in progress:

within DFG Project No. 516522977, jointly with Osama Swidan,

novel models for ordinal time series:

• weighted discrete ARMA models (under review),

• ordinal Hidden-Markov models (under review),

• soft-clipping autoregressive models (in progress).

These and further DGPs to be used for performance analyses

of future control charts for ordinal time series data.

Memory-type control charts for individuals data.
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