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Bandt & Pompe (2002) introduced ordinal patterns (OPs)
as complexity measures for time series characterized by
‘“simplicity, extremely fast calculation, robustness, and invariance

with respect to nonlinear monotonous transformations’ .

Basic idea in time-series case: map segments

X = (X4, Xyx1, -+, Xpg4m—1) Of length m from

continuously distrib., real-valued process (X¢);cz—¢.. —1,0,1,.}
onto permutations from symmetric group S,, of order m,
where selected 7 € Sy, = {77[1], . ,w[m!]} expresses

order among values in X in certain way (see details below).
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In this way, original process (X;) (or time series (xz;) thereof)
transformed into (symbolic) sequence (7)) of OPs that

reveals ordinal structure of (X;), see Keller et al. (2007).

Marginal distribution of OP series (m;) provides insights

into dynamic structure of original process (X;).

Expressed as m!-dimensional probability vector p

(or frequency vector p in case of time series data (x¢)),

with kth component being p, = P(m = wl¥]).
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Different (equivalent) approaches to represent OP
by permutation from S,,, see Berger et al. (2019).

We focus on rank representation, most intuitive approach.

Then, entries of m = (r1,...,rm) € Sm interpreted as
ranks within € = (x1,...,zm) € R™, i.e.,

T < T = T < x; Or (CEkZCL‘l and k < 1)
for all k,l € {1,...,m}. Here, “x;, = ;" if ties within x.

Example: (1.2,-0.7,3.4,19) — (2,1,4,3),
(1.2,-0.7,3.4,-0.7) — (3,1,4,2).
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Order m of OPs chosen by user.
If m = 2, then downward OP (2,1) and upward OP (1,2),

preserves only little information from original process.

However, range of m; quickly increases with m as |Smy| = m!,
so estimation of p quickly difficult in practice.
T herefore, in time series analysis,

convenient choice is m = 3 (Bandt, 2019):

(3,2,1) (3,1,2) (2,3,1) (1,3,2) (2,1,3) (1,2,3)

Sl N\ s ./'\. ./\. "/

= sufficiently informative and computationally feasible.
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Let (X;) be continuously distributed real-valued process,
independent and identically distributed (i.i.d.) under null.

Probability of ties = 0O, so ties at most rarely in data.

Following properties crucial for dependence tests:

1. OPs invariant w.r.t. strictly monotonically increasing trans-
formations of X;. Thus, OPs do not depend on actual mar-
ginal distribution of (X;)y (distribution-free approach).

2. (X¢)y isi.i.d. under null (— exchangeability).

Thus, 7 discrete uniform on Sy, i.e., P(m=m)=1/m!

for each 7w € S;, (Nno parameter estimation required).

Christian H. Weilf — Helmut Schmidt University, Hamburg



L Ordinal Patterns in Time Series MATH
EEEEEEEEEEEEEEEE——————————————_—__ S TAT

OP-test statistics built upon p computed from mq,...,mn,

where m; from Xy = (X4, Xy41,..., Xygm—1) fort =1,2,...,n.

Moving-window approach, affects asymptotics of \/ﬁ(fo —po)

under i.i.d.-null required, where pg = (1/ml!,...,1/m!):
Theorem: (Elsinger, 2010; Weils, 2022)
Vi (p—pg) — N(0,n) with I, = (045); j=1,...m1 9diven by
m—1 5
oij = 1/m!(6;; —1/m!) + > (pij(h)+pji(h)_2/m! )
h=1

Afterwards, distribution of OP-test statistics
by Taylor approximations (“Delta method”).
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Case m = 3:
(110020) (113636
001102 334343
1 |l120010 1 113636
P = s4l210010| P@ T 15332343
001201 66 3131
00210 1) |6 6313 1)
SO
[ 46 —23 —23 7 7 —14)
—23 28 10 —2 —-20 4
1 —-23 10 28 —-20 -2 4
3 7 360 7 -2 —-20 28 10 —-23
f =20 =2 10 28 —23

\—14 4 7 —23 —-23 46)
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Real-valued and continuously distributed spatial data
occurring in regular two-dimensional grid:  (Xt),cz2.

(random field, spatial process in plane, regular lattice structure)
Data rectangles (x¢) = (x¢,,1,) With 0 <t; <m and 0 <ty < n.
Infer dependence in (X;) via spatial OPs (SOPs),

due to Ribeiro et al. (2012) and Bandt & Wittfeld (2023).

m1 X m>-SOP computed from mq X mo-rectangle from (x:):

1. concatenate rows into vector of length mq - mo,
2. compute corresponding (mj - mp)th-order OP from Sp.mo,

3. transform back into mi1 X mo-matrix in row-wise manner.,
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AS |Smq-mo| = (M1 - mo)! quickly unfeasibly large,
Bandt & Wittfeld (2023) recommend focus on 2 x 2-SOPs:

X, — Xt1—1to—1 Xty—1tp | _. [ T1 Z2 . rLor2 )
Xiq,tp—-1 Xtq,to L3 T4 r3 T4
where (r1,ro,73,74) € S4 is OP of (x1,2o0,23,74).

Bandt & Wittfeld (2023): further partition into types,

si = 1(3%3).(33).(33).(3%).(33).(349).(43).(43) }
1(13).(39).(33).(33).(32).31).(30).(13) |
1(33).(3%).(39).(31).31).33).(33).(413)
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Visual representation of types

s1={(32).(33).(33).(349).(3).(3%).(43).(33) }
2 = {(33).(3%).(33).(33).33).(3%).(43).(13) }
s = {(43).(3%).(33).(31).(30).(33).(31).(43)}

by arrows along increasing rank:

S = {Z?W’X’N’N’X7M7Z}a
u K N vl %2 B el X ¥
3= (M. 2. XX XX N}

8
N
|
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3 types more feasible in small data than 24 SOPs.

Type 1: monotonic behaviour both along rows and columns.
Type 2: uniquely increase/decrease only along one direction.

Type 3: lowest and highest ranks on either main or antidiagonal.

type = rank number which shares diagonal with rank 4.

Example: arthropods data from R-package agridat:
18 3 14 (18) (1) Cron
24 1
The - o igi T e o
tsl s : tl : . t:l :
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Asymptotics of SOP frequencies under null “(X;) are i.i.d.":

Theorem: (Weils & Kim, 2024)
vmn (p — po) 4 N(0,X), where ¥ equals

diag(pg) —popy + (1- A -1(D+D"+A+AT —4pp])
+@-H(H+HT —2popd) + @ - (V+VT —2pop]).

Considers different overlaps of 2 x 2-SOPs:

H: V: D: A:
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Closed-form expressions for H,V,D, A in Weill & Kim (2024),

e. g., entries of matrix 720 - H:

\711 MR T3 T4 T5 Te T7 Tg T TU1Q 7t11 712 713 TT14 T15 Tie TT17 718 7t19 Tt2Q 721 Tt22 T23 Tto4

3 3 3 4 2

3

0
0

2
0

3 3 4 2

4 3 3

2

US|

7O

73

Uz

Tts

Tts

7

7tg

Tt9

Tt10
Tt11
12
13
14
15
16
7
18
Tt19
20
21
T2
23
T4
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Above Theorem simplifies if focus on types:
D—pOpOT:A—pOpoTzO, and
1 21 20 19
H=V = —— | 20 21 19
180 | 19 19 22
Hence,
1 2 —1 —1 1 1 0O —1
>=>|-1 2 -1+ (1-5--5)-—| 0 1 -1
9\l -1 -1 2 4911 -1 2
1 11 —b —6
— — | —b 11 -6 for m,n — oo.

45| _6 _6 12
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Bandt & Wittfeld (2023) proposed following type statistics:

T = p1—1/3 and K = po—p3,

~

7 = p3—1/3 and &

p1 — D2
Asymptotics under null “(X) are i.i.d.”: (Weils & Kim, 2024)

Corollary: /mn (7,R) 4 N(0,%’), where X equals

2 (10 1 11 1 11 1
/! _ < 1 1N & ~
> _9(0 3)+<1 2m 2n) 45(1 5) 45( 135)

vmn (7, ) 4 N(0,%"), where X" equals
2 (10 2 1 0 4 30
n o _ < 1 1N, = ~
2 —9(0 3)"‘(1 S~ Bm) 45<o 1) 45(0 8)'
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Performance analysis by simulations in Weill & Kim (2024).

Brief summary:
While spatial ACF superior for linear unilateral DGPs, e. g.,

thatQ — a1 th—l,tQ + ap - Xt1,t2—1 + a3 - th—l,tQ—l =+ €t1,tos

SOP-based tests often superior in presence of outliers,

for non-linear DGPs, such as
Xty = B1- €114, + B2 €5 p—1 + B3 - €F +
t1,t0 — P1 " €t1—1,t5 2 €t to—1 3°€1-1t—1 €t1,tos

C.))
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(...) and also for bilateral spatial DGPs, among others

Xtyty = a1 Xty —1,tp T 02 Xtq 851703 Xy 41104 Xgy 41,605 €t 15
and
2 2
th,tg — bl "€ —1tr—1 + b2 "€t 41,01 + b3 ) 6tl—|—]_,t2—|—1 + b4 "1 —1to41 T €t1,t2-

7-test performs particularly welll

Weilk & Kim (2024): two agricultural data examples, e. g.,
yield of barley (in kg) in 28 x 7-grid (m = 27,n = 6) from
uniformity trial experiment (Kempton & Howes, 1981).

Yield as deviations in 0.01 kg-units from mean vield 2.63 Kkg.
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Except x, all SOP-tests
significant spatial dependence.

Type 3 too rare (7.4%),
types 1 and 2 too frequent
(46.9% resp. 45.7%).

Those SOPs too frequent, where
maximal ranks within columns.

Explanation:

“sowing, harvesting and all
intermediate farming practices
were carried out column by
column, and this could produce
intra-column correlations”
(Kempton & Howes, 1981)
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OPs are well-interpretable, robust, and
flexibly adapted to different types of dependence.

If data continuously distributed, we get non-parametric tests.

Work in progress & future research:

e SOP-based hypothesis tests,

which use a refined definition of types;

e control charts based on SOPs and types,
in analogy to Weils & Testik (2023);

e SOPs based on ‘“‘generalized OPSs"”, where ties are explicitly

accounted for, in analogy to Weils & Schnurr (2023).
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