## Multiplicative Error Models

## for Count Time Series



Helmut schmidT UNIVERSITAT

Universität der Bundeswehr Hamburg

MATHSTAT

## Christian H. Weiß

Department of Mathematics \& Statistics, Helmut Schmidt University, Hamburg

Fukang Zhu
School of Mathematics, Jilin University,
Changchun, China

MATH STAT

## Multiplicative Error Models for Count Time Series

Introduction

Multiplicative error models (MEMs), see Engle (2002),
Brownlees et al. (2012), Cipollini \& Gallo (2023)
for positively real-valued process $\left(Y_{t}\right)_{t \in \mathbb{Z}}=\{\ldots,-1,0,1, \ldots\}$ :

$$
Y_{t}=\mu_{t} \cdot \varepsilon_{t}
$$

where $\mu_{t} \mid \mathcal{F}_{t-1}$ deterministic, truly positive number, $\varepsilon_{t}$ positively real-valued RV with $E\left[\varepsilon_{t} \mid \mathcal{F}_{t-1}\right]=E\left[\varepsilon_{t}\right]=1$ and $\sigma_{t}^{2}:=V\left[\varepsilon_{t} \mid \mathcal{F}_{t-1}\right]=V\left[\varepsilon_{t}\right] \in(0, \infty)$.
Observations $\left(Y_{t}\right)$ satisfy

$$
E\left[Y_{t} \mid \mathcal{F}_{t-1}\right]=\mu_{t}, \quad V\left[Y_{t} \mid \mathcal{F}_{t-1}\right]=\sigma_{t}^{2} \mu_{t}^{2}
$$

Christian H. Weiß - Helmut Schmidt University, Hamburg

Special case, see Engle \& Russell (1998):
If $\left(\varepsilon_{t}\right)$ i. i. d. with mean 1 and variance $\sigma^{2}$,
and if linear recursive scheme

$$
\mu_{t}=a_{0}+\underbrace{\sum_{i=1}^{p} a_{i} Y_{t-i}}_{\text {autoregression }}+\underbrace{\sum_{j=1}^{q} b_{j} \mu_{t-j}}_{\text {feedback }}
$$

with $a_{0}>0, a_{1}, \ldots, b_{q} \geq 0$, and $\sum_{i=1}^{p} a_{i}+\sum_{j=1}^{q} b_{j}<1$,
then autoregressive conditional duration (ACD) model.
Here: not positively real-valued process $\left(Y_{t}\right)$, but (positively integer-valued) count process $\left(X_{t}\right)$.

[^0]Integer counterpart: INGARCH models by Heinen (2003),
Ferland et al. (2006) for count process $\left(X_{t}\right)$ with range $\mathbb{N}_{0}=$
$\{0,1, \ldots\}$. With $M_{t}=E\left[X_{t} \mid \mathcal{F}_{t-1}\right]$, model equation

$$
M_{t}=a_{0}+\sum_{i=1}^{p} a_{i} X_{t-i}+\sum_{j=1}^{q} b_{j} M_{t-j}
$$

$X_{t} \mid \mathcal{F}_{t-1}$ from conditional count distribution with mean $M_{t}$.
Default model: $\quad X_{t} \mid \mathcal{F}_{t-1} \sim \operatorname{Poi}\left(M_{t}\right)$,
but many further conditional distributions, see Weiß (2018).

## Crucial difference to ACD-MEM:

no explicit multiplicative structure.
Christian H. Weiß - Helmut Schmidt University, Hamburg

Absence of multiplicative structure because of "multiplication problem", see Weiß (2018): multiplication $M \cdot \epsilon$ of count RV $\epsilon$ by real scalar $M \in(0, \infty)$ does not lead to count value anymore.

In context of INARMA models, so-called
"thinning operators" as integer substitutes of multiplication: random operator "thinn" from $\mathbb{N}_{0}$ to $\mathbb{N}_{0}$, where $E[\operatorname{thinn}(\epsilon) \mid \epsilon] \leq \epsilon$.

Family of generalized thinnings by Latour (1998):

$$
\alpha \bullet_{\nu} \epsilon:=\sum_{j=1}^{\epsilon} Z_{j} \quad \text { with } E\left[Z_{j}\right]=\alpha \in(0,1) \text { and } V\left[Z_{j}\right]=\nu>0
$$

where $Z_{j}$ i. i. d. count RV (counting series).
Thus, $E\left[\alpha \bullet_{\nu} \epsilon \mid \epsilon\right]=\alpha \cdot \epsilon \leq \epsilon$,
so integer substitute of multiplication in a sense.

## Popular examples:

- binomial thinning $\alpha \circ \epsilon \mid \epsilon \sim \operatorname{Bin}(\epsilon, \alpha)$;
- negative-binomial thinning $\alpha * \epsilon \mid \epsilon \sim \operatorname{NB}(\epsilon, 1 /(1+\alpha))$;
- Poisson thinning $\alpha \bullet_{\nu} \epsilon \mid \epsilon \sim \operatorname{Poi}(\epsilon \cdot \alpha)$.


## Outline:

- multiplicative operators for counts;
- used to define count MEM (CMEM);
- two specific cases using compounding operator and binomial multiplicative operator, respectively;
- semi-parametric estimation methods;
- illustrative real-world data examples.


# Multiplicative Operators for Counts 

Definition \& Properties
" $\alpha \odot: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ " integer-valued multiplicative operator if

$$
E[\alpha \odot \epsilon \mid \epsilon]=\alpha \cdot \epsilon \quad \text { for all } \alpha>0
$$

so multiplicative in conditional mean of $\alpha \odot \epsilon$.
It follows that $\quad E[\alpha \odot \epsilon]=\alpha \cdot E[\epsilon]$.
Further assumptions for (conditional) variance of $\alpha \odot \epsilon$, e. g., if $V[\alpha \odot \epsilon \mid \epsilon]=\nu \cdot \epsilon, \quad$ then $\quad V[\alpha \odot \epsilon]=\nu E[\epsilon]+\alpha^{2} V[\epsilon]$
for some $\nu=\nu(\alpha)>0$. For likelihood calculation or simulation, necessary to fully specify conditional distribution of $\alpha \odot \epsilon \mid \epsilon$.

[^1]Special case: compounding operator

$$
\alpha \bullet_{\nu} \epsilon:=\sum_{j=1}^{\epsilon} Z_{j} \quad \text { with i.i.d. counting series }\left(Z_{j}\right)
$$

having mean $\alpha>0$ and variance $\nu>0$,
where distribution of $\alpha \bullet_{\nu} \epsilon$ is convolution

$$
P\left(\alpha \bullet_{\nu} \epsilon=k\right)=\sum_{l=0}^{\infty} P(\epsilon=l) \cdot P\left(\alpha \bullet_{\nu} l=k\right)
$$

Important examples: Poisson or geometric counting series,

$$
\alpha \bullet_{\nu} l \sim \begin{cases}\operatorname{Poi}(l \alpha) & \text { if } Z_{j} \sim \operatorname{Poi}(\alpha), \\ \operatorname{NB}(l, 1 /(1+\alpha)) & \text { if } Z_{j} \sim \operatorname{NB}(1,1 /(1+\alpha))\end{cases}
$$

Bernoulli counting series $Z_{j} \sim \operatorname{Bin}(1, \alpha)$ not suitable, because then $\alpha<1$ and $\alpha \bullet_{\nu} l \leq l$ !

Special case: binomial multiplicative operator

$$
\alpha \otimes \epsilon=\lfloor\alpha\rfloor \cdot \epsilon+\operatorname{Bin}(\epsilon, \alpha-\lfloor\alpha\rfloor) \quad \text { for any } \alpha>0
$$

where $E[\alpha \otimes \epsilon \mid \epsilon]=\alpha \cdot \epsilon$ and

$$
V[\alpha \otimes \epsilon \mid \epsilon]=(\alpha-\lfloor\alpha\rfloor)(1-\alpha+\lfloor\alpha\rfloor) \epsilon=: \nu(\alpha) \cdot \epsilon
$$

Distribution determined by

$$
\operatorname{pgf}_{\alpha \otimes \epsilon}(u)=\operatorname{pgf}_{\epsilon}\left(u^{\lfloor\alpha\rfloor}(1-(\alpha-\lfloor\alpha\rfloor)+(\alpha-\lfloor\alpha\rfloor) u)\right)
$$

Christian H. Weiß - Helmut Schmidt University, Hamburg

MEMs for

## Count Time Series

Definition \& Properties
( $X_{t}$ ) with range $\mathbb{N}_{\mathrm{O}}$ is CMEM if $\quad X_{t}=M_{t} \odot \epsilon_{t}$,
where $M_{t} \mid \mathcal{F}_{t-1}$ deterministic truly positive number.
$\left(\epsilon_{t}\right)$ i. i. d. count $R V$ with $E\left[\epsilon_{t}\right]=1$ and $V\left[\epsilon_{t}\right]=\sigma^{2}$.
Operator " $\odot$ " executed independently of $\mathcal{F}_{t-1}$ and $\epsilon_{t}$.
We have $E\left[X_{t} \mid \mathcal{F}_{t-1}\right]=M_{t}$. INGARCH $(p, q)$-CMEM if

$$
M_{t}=f\left(X_{t-1}, \ldots, X_{t-p}, M_{t-1}, \ldots, M_{t-q}\right), \quad p \geq 1, q \geq 0
$$

If " $\odot$ " also satisfies $V[\alpha \odot \epsilon \mid \epsilon]=\nu(\alpha) \cdot \epsilon$, then

$$
V\left[X_{t} \mid \mathcal{F}_{t-1}\right]=\nu\left(M_{t}\right)+\sigma^{2} M_{t}^{2}
$$

Establish existence using Doukhan \& Neumann (2019).
Christian H. Weiß - Helmut Schmidt University, Hamburg

Special case: compounding CMEM $X_{t}=M_{t} \bullet_{\nu} \epsilon_{t}$, satisfying

$$
E\left[X_{t} \mid \mathcal{F}_{t-1}\right]=M_{t}, \quad V\left[X_{t} \mid \mathcal{F}_{t-1}\right]=\nu\left(M_{t}\right)+\sigma^{2} M_{t}^{2}
$$

Poi-counting series: $\nu\left(M_{t}\right)=M_{t}$; NB-c.s.: $\nu\left(M_{t}\right)=M_{t}\left(1+M_{t}\right)$.
In Weiß \& Zhu (2023), we prove:

- first-order stationary iff $\sum_{i=1}^{p} a_{i}+\sum_{j=1}^{q} b_{j}<1$;
- conditions for second-order stationarity;
- moment formulae, YW-type equations for ACF;
- CP-INGARCH process stationary and ergodic.

Christian H. Weiß - Helmut Schmidt University, Hamburg

Possible competitor by Aknouche \& Scotto (2023): multiplicative thinning-based INGARCH model ( $m \in \mathbb{N}$ specified)

$$
X_{t}=\lambda_{t} \cdot \epsilon_{t}, \quad \lambda_{t}=1+\omega \circ m+\sum_{i=1}^{q} \alpha_{i} \circ Y_{t-i}+\sum_{j=1}^{p} \beta_{j} \circ \lambda_{t-j}
$$

Relation of our INGARCH-CMEM to ordinary INGARCH:

- $X_{t}=M_{t} \bullet_{\nu} \epsilon_{t}$ with Poi-counting series:
if $\epsilon_{t} \equiv 1$, then Poi-INGARCH of Ferland et al. (2006).
- We propose semi-parametric INGARCH model:
$\epsilon_{t}$ with finite support, parameters $p_{\epsilon, 2}, p_{\epsilon, 3}, \ldots$ chosen subject to constraint $\sum_{l \geq 2} l \cdot p_{\epsilon, l}<1$, where $p_{\epsilon, 0}=\sum_{l \geq 2}(l-1) \cdot p_{\epsilon, l}$ and $p_{\epsilon, 1}=1-p_{\epsilon, 0}-\sum_{l \geq 2} p_{\epsilon, l}$.

Christian H. Weiß - Helmut Schmidt University, Hamburg

Special case: binomial-multiplic. CMEM $X_{t}=M_{t} \otimes \epsilon_{t}$, satisfying $E\left[X_{t} \mid \mathcal{F}_{t-1}\right]=M_{t}$ and

$$
V\left[X_{t} \mid \mathcal{F}_{t-1}\right]=\left(M_{t}-\left\lfloor M_{t}\right\rfloor\right)\left(1-M_{t}+\left\lfloor M_{t}\right\rfloor\right)+\sigma^{2} M_{t}^{2}
$$

In Weiß \& Zhu (2023), we prove:

- inequality for variance:
$\mu^{2} \sigma^{2}+\left(\sigma^{2}+1\right) V\left[M_{t}\right] \leq V\left[X_{t}\right] \leq 0.25+\mu^{2} \sigma^{2}+\left(\sigma^{2}+1\right) V\left[M_{t}\right]$,
where $V\left[M_{t}\right]=\sum_{i=1}^{p} a_{i} \gamma_{X}(i)+\sum_{j=1}^{q} b_{j} \gamma_{M}(j)$;
- if $\sum_{i=1}^{p} a_{i}+\sum_{j=1}^{q} b_{j}<1$,
then weakly dependent stationary and ergodic solution.
Christian H. Weiß - Helmut Schmidt University, Hamburg


# Parameter Estimation and Model Diagnostics 

Approaches \& Simulations

In Weiß \& Zhu (2023), we derive
several semi-parametric estimation approaches:

- quasi-maximum likelihood estimation (QMLE), namely Poi-QMLE, NB-QMLE, and exponential QMLE,
- two-stage weighted least squares estimation (2SWLSE).

QMLE relies only on conditional mean $M_{t}$,
estimation of $\sigma^{2}$ by utilizing conditional variance.
2SWLSE uses both conditional mean and variance.
We use residual-based model diagnostics.
Simulations for finite-sample performance (also misspecific.).

Estimation of $a_{0}=2.8$


Estimation of $b_{1}=0.2$


Estimation of $a_{1}=0.4$


Estimation of $\sigma^{2}=1$


Christian H. Weiß - Helmut Schmidt University, Hamburg

## Real-World <br> Data Examples

Illustration

For illustration, we discuss two data examples from literature:

- Escherichia coli (Ecoli) disease counts from Aknouche \& Scotto (2023),
- Wausau Paper Corporation (WPP) transaction counts from Aknouche et al. (2022).
Fit INGARCH $(1,1)$-CMEM with Poi- and Bin-counting series.
Both in-sample performance and predictive performance superior to competing models.

PQ-fitted CMEMs show best predictive performance.
Detailed discussion in Weiß \& Zhu (2023).

- Novel framework for transferring well-established MEMs for real-valued time series to case of count time series.
- Proposed CMEMs use multiplicative operator for counts.
- Existence of stationary and ergodic solutions, moment properties, semi-parametric model estimation.


## Future research:

- CMEMs using other multiplicative operator (e.g., ZIP), or non-linear model specifications (logit, softplus, ... ).
- Semi-parametric ML estimation for INGARCH models, like semi-parametric INAR approach of Drost et al. (2009).


## Thank You for Your Interest!



Christian H. Weiß
Department of Mathematics \& Statistics Helmut Schmidt University, Hamburg weissc@hsu-hh.de

## Weiß \& Zhu (2023) Conditional-mean multiplicative operator models for count time series. CSDA, under review (arXiv:2212.05831).

Aknouche \& Scotto (2023) A multiplicative thinning-based . . . JTSA, forthc. Aknouche et al. (2022) Forecasting trans. . . St Nonl D Econ 26, 529-539. Brownlees et al. (2012) Mult. error models. Handb Vola. .., Wiley, 223-247. Cipollini \& Gallo (2023) Multiplicative error models. Econ Stat, forthc. Drost et al. (2009) Efficient estimation of ... JRSS-B 71, 467-485.
Doukhan \& Neumann (2019) Absolute regularity of . . JAP 56, 91-115. Engle (2002) New frontiers for ARCH models. J Appl Econ 17, 425-446. Engle \& Russell (1998) Autoregr. cond... Econometrica 66, 1127-1162. Ferland et al. (2006) Integer-valued GARCH processes. JTSA 27, 923-942. Heinen (2003) Modelling time series count . . . CORE Disc Paper 2003/62. Latour (1998) Existence and stochastic structure ... JTSA 19, 439-455. Weiß (2018) An Introduction to Discrete-Valued Time Series. Wiley.

Christian H. Weiß - Helmut Schmidt University, Hamburg


[^0]:    Christian H. Weiß - Helmut Schmidt University, Hamburg

[^1]:    Christian H. Weiß - Helmut Schmidt University, Hamburg

