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CoDa = “proportions of some whole” (Aitchison, 1986).

x = (x0, . . . , xd)
⊤ normalized (d+1)-part composition

with d ∈ N = {1,2, . . .} if x from (d+1)-part unit simplex

S :=
{
x ∈ (0; 1)d+1

∣∣∣ x0 + . . .+ xd = 1
}
.

Connection to categorical data (Agresti, 2002):

CoDa vectors p ∈ S might serve as PMF of

categorical RV Q with qualitative range S = {s0, . . . , sd}.

In many applications, categories behind CoDa unordered,

so S is nominal range and Q nominal RV,

notation “s0, . . . , sd” just uses some lexicographic order.
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For such nominal CoDa, reasonable to require that

“applying a compositional analysis, the information due to the

order of the different classes, plays no role”,

see Pawlowsky-Glahn & Buccianti (2011).

But as conceded by Pawlowsky-Glahn & Buccianti (2011),

“in some cases the parts can be assumed to be ordered”,

so S exhibits natural order s0 < . . . < sd and Q is ordinal RV

(Agresti, 2010). Then, x ∈ S called ordinal composition.

Example: x = (x0, x1, x2)
⊤expressing proportions of people in

ordered age categories < 15 (x0), 15–60 (x1), and > 60 (x2).
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If concerned with ordinal CoDa, certainly still justified to apply

well-established CoDa approaches, although ignoring “informa-

tion due to the order of the different classes”.

However, gain additional insights if existing CoDa approaches

complemented by new ones accounting for order within S.

Such new ordinal CoDa approaches derived by adapting

well-established concepts from ordinal data analysis.

Benefits illustrated for descriptive analysis of ordinal CoDa,

statistical inference from ordinal CoDa,

monitoring of ordinal CoDa process, and

ordinal compositional time series (CoTS).
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For ordinal RV Q, one does not focus on PMF p ∈ S,

but on d-dimensional CDF vector f = (f0, . . . , fd−1)
⊤ ∈ [0; 1]d,

where fj = P (Q ≤ sj) (note that fd = 1), because

accumulation accounts for natural order in range S.

Formally: f = Tp, where T =
(
1 0 ··· 0... ... ... ...
1 ··· 1 0

)
.

Dispersion of Q, e. g., by IOV(f) = 4
d
∑d−1
i=0 fi(1− fi).

(one-point vs. extreme two-point distribution)

Skewness of Q, e. g., by skew(f) = 2
d
∑d−1
i=0 fi − 1.

(extreme left (right) one-point vs. symmetric distribution)
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Examples of IOV and skew:
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These ordinal measures can be applied to ordinal CoDa x ∈ S:

First, accumulate CoDa vectors to c := Tx, then evaluate

ordinal dispersion and skewness via IOV(c) and skew(c).

Example: ageCatWorld data from R-package robCompositions.

Age proportions xi = (xi,0, xi,1, xi,2)
⊤ in n = 195 countries,

people with age < 15 (xi,0), 15–60 (xi,1), and > 60 (xi,2).

Location measures not much discriminative power:

median category s1 in 191 out of 195 cases,

mode category s1 in 163 out of 195 cases.
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IOV-skew diagram and ternary diagram:
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(b)

Age 0−14 Age 15−60

Age >60IOV

< 0.6
∈ [0.6;0.7)
≥ 0.7

(c)

Age 0−14 Age 15−60

Age >60skew < 0
skew ≥ 0

IOV-skew diagram easy to interpret. In the present example,

similar insights into data as ternary diagram.

But IOV-skew diagram also for higher-dimensional CoDa!
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Let X1, . . . ,Xn be i. i. d. ordinal CoDa with mean p,

then standard CLT implies

√
n
(
X−p

)
∼ N(0,Σ), Σ = (σij)i,j=0,...,d, σij = Cov[Xi, Xj].

Accumulate Ck = TXk with E[Ck] = f = Tp, then

√
n
(
C−f

)
∼ N(0,Σ′) with Σ′ = TΣT⊤, σ′ij =

i∑
r=0

j∑
s=0

σrs.

Asymptotics of IOV(C) and skew(C)

via Taylor expansions (“Delta method”) . . .
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Theorem 1: IOV(C) and skew(C) asymptotically normally

distributed with

E
[
IOV(C)

]
≈ IOV(f) − 1

n
4
d

d−1∑
i=0

σ′ii,

V
[
IOV(C)

]
≈ 1

n
16
d2

d−1∑
i,j=0

(1− 2fi)(1− 2fj)σ
′
ij,

and

E
[
skew(C)

]
= skew(f), V

[
skew(C)

]
≈ 1

n
4
d2

d−1∑
i,j=0

σ′ij.

Example: closed-form formulae for Dirichlet distribution.

Simulation study: good finite-sample performance.
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Example: educFM data from R-package robCompositions.

Proportions of low (s0), medium (s1), and high (s2) education

levels of father (xf;i) and mother (xm;i)

in n = 31 European countries.

Category s0 (“low”) is median (mode) of xf;i in 19 (22) cases,

and of xm;i in 22 (25) cases; otherwise, it is s1.

Ternary plot: concentration in low-to-medium corner.

IOV-skew diagram: low dispersion if strong positive skewness.

Hardly any differences between father and mother visible.
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(c)

Father Estim. Bias SE

IOV(C) 0.731 -0.003 0.022
skew(C) 0.414 0.000 0.043

Mother

IOV(C) 0.652 -0.002 0.033
skew(C) 0.516 0.000 0.041

Fit logistic normal distributions (Aitchison, 1986) to CoDa,

approximate bias and standard error (SE):

Significantly (5%-level) less dispersion and stronger positive

skewness for mothers ⇒ unequal opportunities for education.
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Default control chart for i. i. d. CoDa process: χ2-chart

X2
t = (Y t − µ0)

⊤Σ−1
0 (Y t − µ0) for t = 1,2, . . .

Proposal: Complement by IOV- and skew-chart,

preferably with additonal EWMA smoothing, i. e.,

Ct,λ = λCt + (1− λ)Ct−1,λ with C0,λ = f0 and λ ∈ (0; 1).

Plot IOV(Ct,λ)

or skew(Ct,λ)

for t = 1,2, . . .

against control limits:
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Existing models for CoTS do not account for ordering.

Example: conditional Dirichlet model (Zheng & Chen, 2017),

Xt | Ft−1 ∼ Dir(pt, ν) with E[Xt | Ft−1] = pt and ν > 0.

“ARMA recursion” for pt = ϕ(Xt−1, . . . ,Xt−p, pt−1, . . . ,pt−q),

with AR-order p and feedback terms pt−1, . . . ,pt−q.

Idea: To account for natural order, combine with cumulative

logit approach in Pruscha (1993), Fokianos & Kedem (2003).

Proposal: Let F0,1(x) = [1 + exp(−x)]−1 be inverse logit.

Define X̃t = (Xt,0, . . . , Xt,d−1)
⊤ and p̃t = (pt,0, . . . , pt,d−1)

⊤,

let f t = (ft,0, . . . , ft,d−1)
⊤ be conditional CDF vector.
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Full ARMA-type model for ordinal CoTS by

ft,i = F0,1

(
ηi+

∑p
k=1α

⊤
k X̃t−k+

∑q
l=1β

⊤
l p̃t−l

)
for i = 0, . . . , d−1,

with d(p + q +1) parameters and −∞ < η0 < . . . < ηd−1 < +∞.

More parsimonious model with d+ p + q parameters:

ft,i = F0,1

(
ηi +

∑p
k=1αk 1

⊤X̃t−k +
∑q
l=1 βl 1

⊤p̃t−l

)
.

Include possible covariate zt by summand “+γ⊤zt”.

Dirichlet model with additional scale parameter ν:

Xt | Ft−1 ∼ Dir(pt, ν), where pt from f t by discrete differences.
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Example: Yearly proportions of categories “not overweight”

(BMI < 25), “overweight” (BMI in [25; 30)), and “obese” (BMI

≥ 30) in Germany for period 1975–2016 (data from WHO).

Partition: x1, . . . ,x36 (1975–2010) for model fitting,

x37, . . . ,x42 (2011–2016) for out-of-sample forecasting.

For similar data set, Mills (2010) proposed linear alr-model:

(1) E
[
alr(xt)i

]
= ai + bi t for i = 1, . . . , d.

(2) ft,i = F0,1(ηi + γi t) for i = 0, . . . , d− 1.

(3) ft,i = F0,1(ηi + γi t+α⊤
1 X̃t−1) for i = 0, . . . , d− 1.

Christian H. Weiß — Helmut Schmidt University, Hamburg



Ordinal Compositional Time Series MATH 

STAT 

Plot of proportions and table with model fits and CSS values:
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(b)

Model i ηi−1 or ai γi−1 or bi α1,i−1 CSSin CSSout

(1) 1 1.957 -0.032 1.135 2.119
2 1.230 -0.018

(2) 1 0.480 -0.019 0.698 1.269
2 2.350 -0.027

(3) 1 0.469 -0.016 0.322 0.410 0.379
2 2.354 -0.025 -0.651

Novel (logistic-)linear model, especially with AR(1)-component,

clearly superior in conditional sum of squares (CSS, times 103):

CSS(θ) :=
∑
t
∥Xt − pt∥2.
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• Beneficial to consider natural order of ordinal CoDa:

– (visual) descriptive analysis of ordinal CoDa,

– statistical inference from i. i. d. CoDa samples,

– EWMA control charts for i. i. d. CoDa processes,

– conditional regression models for ordinal CoTS.

• Future research: Among others, . . .

– performance of ordinal CoDa control charts for

serially dependent CoDa (i. e., monitoring of CoTS);

– analysis of ordinal CoTS by adapting

methods from ordinal time series analysis (Weiß, 2020).
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