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Monitoring of (possibly autocorrelated) count process (Xt)t∈N,

i. e., Xt have quantitative range contained in N0 = {0,1, . . .}

(e. g., counts of defects, counts of hospital admissions, etc.).

We distinguish between

• unbounded counts having full N0 as range

(e. g., Poisson (Poi) or negative binomial (NB) counts);

• bounded counts having range {0, . . . , n} with n ∈ N

(e. g., binomial (Bin) counts).

Many control charts for monitoring count processes proposed,

see Weiß (2015), Alevizakos & Koukouvinos (2020); here: . . .
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Exponentially weighted moving-average (EWMA) chart

for counts, considered by many authors, among others by

Borror et al. (1998), Morais & Knoth (2020), Anastasopoulou

& Rakitzis (2022). Default EWMA chart plots

Z0 = µ0, Zt = λ ·Xt + (1− λ) · Zt−1 for t = 1,2, . . .

against specified lower and upper control limit (LCL and UCL),

where µ0 > 0 in-control mean of (Xt).

Smoothing parameter λ ∈ (0; 1] controls strength of memory

(the smaller λ, the stronger the memory).

Reduces to memory-less c- or np-chart if λ = 1.
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Illustrative example: (to be discussed later)

Upper-sided c-chart: Two-sided EWMA chart:

0 50 100 150

0

2

4

6

8

t

c−
ch

ar
t

t 0 50 100 150

0

1

2

3

4

5

t

E
W

M
A

 c
ha

rt

t

EWMA chart with λ = 0.1.

CLs as dashed lines, solid center line.

First alarm at dotted line (t = 23 vs. t = 171).
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Existing count EWMA charts solely designed

to detect shifts in process mean. Here,

focus on “more sophisticated” out-of-control scenarios:

• mean changes together with further distributional changes,

• or purely distributional changes (not affecting the mean).

These distributional changes might be

increases or decreases in dispersion compared to in-control mo-

del (overdispersion or underdispersion, respectively),

or excessive number of zero counts (zero inflation).
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Basic idea: Many common (count) distributions

characterized by Stein identity (Stein, 1972), i. e.,

moment identity that has to hold for large class of functions,

see Sudheesh & Tibiletti (2012) for details and references.

Recently: Stein GoF-tests for i. i. d. counts (Weiß et al., 2023)

and for count time series (Aleksandrov et al., 2022a,b).

⇒ Utilize Stein identities for control charts.

In Weiß (2022), idea tried out for i. i. d. Poisson counts,

achieved chart performance was quite appealing.

Here: Stein control charts on much broader scale, namely

various different count distributions and also time series data.
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We consider either i. i. d. Poi-, NB-, or Bin-counts, or

AR(1)-type counts with Poi-, NB-, or Bin-marginal distribution,

where thinning operator as integer substitute of multiplication:

(see Weiß, 2008)

• Poi-INAR(1) process (integer AR)

Xt = ρ ◦Xt−1 + ϵt with i. i. d. ϵt ∼ Poi
(
µ(1− ρ)

)
;

• NB-IINAR(1) process (iterated-thinning INAR)

Xt = ρ⊛πXt−1+ϵt with i. i. d. ϵt ∼ NB(ν, π), π = ν
µ(1−ρ)+ν

;

(. . . )
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(. . . )

• BinAR(1) process

Xt = α◦Xt−1+β◦(n−Xt−1) with β = (1−ρ) µ
n, α = β+ρ.

Here, binomial thinning “◦” defined by θ ◦X|X ∼ Bin(X, θ),

iterated thinning as ρ⊛πX =
∑(πρ)◦X
i=1 Yi, where Yi ∼ 1+NB(1, π).

Crucial point: all models are stationary Markov chains with

ACF ρ(h) = ρh and marginal distributions Poi(µ), NB(ν, ν
ν+µ),

or Bin(n, µ/n). Parameter ρ controls extent of serial dependence,

where ρ → 0 leads to i. i. d. counts.

Christian H. Weiß — Helmut Schmidt University, Hamburg



Count Models and Stein Identities MATH 

STAT 

Relevant Stein identities, see Sudheesh & Tibiletti (2012):

• X ∼ Poi(µ) iff E
[
X f(X)

]
= µE

[
f(X +1)

]
,

• X ∼ NB(ν, ν
ν+µ) iff

(ν + µ)E
[
X f(X)

]
= µE

[
(ν +X) f(X +1)

]
,

• X ∼ Bin(n, µ/n) iff

(n− µ)E
[
X f(X)

]
= µE

[
(n−X) f(X +1)

]
,

hold for all bounded functions f : N0 → R

(f not constant on N0, not identical zero on N).

f can be chosen arbitrarily ⇒ weight function.
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The Stein identities depend on three types of moment: mean µ,

moment E
[
X f(X)

]
, and a moment involving f(X +1).

Idea: Derive statistic by solving identities in certain way,

substitute population moments by appropriate sample moments.

Initial study by Weiß (2022): two types of EWMA chart,

where so-called “ABC-EWMA chart” clearly superior.

In what follows, we solely focus on this “ABC construction”.

Statistics ZS
t plotted against LCL < 1 < UCL, where

ZS
t expected close to 1 under in-control assumptions.
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For all three Stein EWMA charts, we compute

A0 = E0
[
X f(X)

]
, At = λ ·Xt f(Xt) + (1− λ) ·At−1,

C0 = µ0, Ct = λ ·Xt + (1− λ) · Ct−1, for t = 1,2, . . .

E0[·] expresses expectation with respect to in-control model.

Furthermore, we compute for

• Poi(µ0) in-control model:

B0 = E0
[
f(X +1)

]
, Bt = λ · f(Xt +1) + (1− λ) ·Bt−1,

ZS
0 = 1, ZS

t =
At

BtCt
, for t = 1,2, . . . ;

(. . . )
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• NB(ν, ν
ν+µ0

) in-control model:

B0 = E0
[
(ν +X) f(X +1)

]
,

Bt = λ · (ν +Xt) f(Xt +1) + (1− λ) ·Bt−1,

ZS
0 = 1, ZS

t =
(ν + Ct)At

BtCt
, for t = 1,2, . . . ;

• Bin(n, µ0/n) in-control model:

B0 = E0
[
(n−X) f(X +1)

]
,

Bt = λ · (n−Xt) f(Xt +1) + (1− λ) ·Bt−1,

ZS
0 = 1, ZS

t =
(n− Ct)At

BtCt
, for t = 1,2, . . .
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f chosen in view of the anticipated out-of-control scenario,

most weight on those regions of N0

where strongest departures from in-control model, e. g.,

• linear weights f(x) = |x− 1| for uncovering overdispersion,

• root weights f(x) = |x− 1|1/4 for zero inflation.

As we shall see, detection of underdispersion quite demanding,

possible first idea:

• inverse weights f(x) = 1/(x+1) for underdispersion.

If not single relevant out-of-control scenario,

then run multiple Stein EWMA charts in parallel.
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Design and performance evaluation of Stein EWMA charts

based on average run length (ARL) simulations (R = 104).

Although many different ARL concepts (see Knoth, 2006),

initial study by Weiß (2022) showed that Stein EWMA charts

roughly same performance for early and late process changes.

Thus, subsequent analyses restrict to zero-state ARLs.

Since not one specific out-of-control scenario

as in Morais & Knoth (2020), but broad variety:

We use symmetric CLs µ0 ∓ L for ordinary EWMA and

1∓ L for Stein EWMA charts, and unique choice λ = 0.10.
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In-control: Bin-counts with n = 10, µ0 ∈ {2,5}.

Out-of-control: mean shifts ∓0.25, BB,ZIB with IB = 5/3.

µ0 µ = µ0 − 0.25 µ0 µ0 +0.25 µ0 − 0.25 µ0 µ0 +0.25 µ0 − 0.25 µ0 µ0 +0.25

(a) i. i. d. counts CL L in italic font.

EWMA 0.7805 EWMAS |x− 1| 0.534 EWMAS |x− 1|1/4 0.4235

2 ZIB 69.2 87.9 51.6 22.7 26.1 29.2 16.6 19.1 21.9
Bin 171.5 370.2 99.3 240.2 369.5 550.6 191.5 370.6 671.0
BB 71.5 90.0 51.8 25.9 29.2 33.3 30.8 40.5 55.6

EWMA 0.974 EWMAS |x− 1| 0.2115 EWMAS |x− 1|1/4 0.0511

5 ZIB 69.2 87.9 51.6 18.9 19.9 20.6 12.9 14.0 15.5
Bin 162.5 369.5 164.1 307.2 370.1 443.4 311.5 369.5 417.2
BB 66.7 88.2 66.3 25.1 26.9 29.0 27.4 28.9 30.3

pure zero inflation
sole mean change distrib.

change overdispersion
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In-control: Bin-counts with n = 10, µ0 ∈ {2,5}.

Out-of-control: mean shifts ∓0.25, BB,ZIB with IB = 5/3.

µ0 µ = µ0 − 0.25 µ0 µ0 +0.25 µ0 − 0.25 µ0 µ0 +0.25 µ0 − 0.25 µ0 µ0 +0.25

(b) AR(1) counts with ρ = 0.5 CL L in italic font.

EWMA 1.191 EWMAS |x− 1| 0.639 EWMAS |x− 1|1/4 0.568

2 ZIB 77.9 73.8 55.8 22.9 24.3 25.3 23.8 26.9 30.0
Bin 384.8 370.1 158.0 247.1 369.7 554.4 211.9 371.2 634.3
BB 105.0 105.7 77.2 33.0 39.5 47.0 44.7 58.9 77.1

EWMA 1.493 EWMAS |x− 1| 0.225 EWMAS |x− 1|1/4 0.0528

5 ZIB 30.8 29.9 28.0 7.9 7.7 7.3 7.1 6.9 6.5
Bin 258.0 369.1 257.3 316.7 370.9 424.1 293.9 370.9 421.8
BB 86.3 96.1 85.9 35.3 37.6 39.5 37.9 39.4 40.7

pure zero inflation
sole mean change distrib.

change overdispersion
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In-control: NB-counts with µ0 ∈ {2,5}, IP = 5/3.

Out-of-control: mean shifts ∓0.25, ZIP with IP = 5/3,

overdispersed NB (“oNB”) with IP = 5/2.

µ0 µ = µ0 − 0.25 µ0 µ0 +0.25 µ0 − 0.25 µ0 µ0 +0.25 µ0 − 0.25 µ0 µ0 +0.25

(a) i. i. d. counts CL L in italic font.

EWMA 1.156 EWMAS |x− 1| 0.349 EWMAS |x− 1|1/4 0.3146

2 ZIP 506.6 462.0 149.7 139.4 257.2 481.5 54.2 81.0 124.9
NB 605.8 370.7 133.1 172.1 370.9 892.2 154.0 369.9 1001.2
oNB 171.9 135.1 75.6 45.2 67.2 103.8 52.2 86.9 163.2

EWMA 1.805 EWMAS |x− 1| 0.1554 EWMAS |x− 1|1/4 0.0883

5 ZIP 342.6 407.5 261.9 116.2 143.9 170.2 22.7 24.7 26.8
NB 444.7 370.8 205.3 267.3 369.8 522.7 260.0 370.1 537.2
oNB 130.2 124.7 94.8 42.9 51.3 59.1 55.5 68.7 87.3

pure zero inflation
sole mean change distrib.

change overdispersion
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In-control: Poi-counts with µ0 ∈ {2,5}.

Out-of-control: mean shifts ∓0.25,

Good with IP = 3/4 (first row) and IP = 1/2 (second row).

µ0 µ = µ0 − 0.25 µ0 µ0 +0.25 µ0 − 0.25 µ0 µ0 +0.25 µ0 − 0.25 µ0 µ0 +0.25

(a) i. i. d. counts CL L in italic font.

EWMA 0.877 EWMAS 1/(x+1) 0.223 EWMAS pP(x+2) 0.608

2 Poi 252.6 369.1 106.1 274.6 368.9 470.8 538.9 370.3 271.7
Good 622.4 948.9 158.5 96.9 142.3 249.5 90.7 71.4 60.5
Good 3611.8 6346.9 380.6 32.3 42.2 63.0 29.1 26.2 24.3

EWMA 1.388 EWMAS 1/(x+1) 0.1775 EWMAS pP(x+2) 0.293

5 Poi 309.9 371.4 185.1 352.9 370.5 398.1 526.1 368.7 268.9
Good 1006.0 1015.9 327.2 > 104 > 104 > 104 228.4 149.3 106.4
Good 8154.5 7882.4 1168.9 > 104 > 104 > 104 52.5 40.1 33.2

sole mean change pure
distrib. increasing
change underdispersion
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Plots of probability mass function (PMF)

for Good with IP = 0.5 vs. Poi,

for (a) µ0 = 2 and (b) µ0 = 5.

Dotted line proportional to 1/(x+1).
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Weiß & Testik (2015) analyze large set of daily counts (per

5-min interval from 08:00:00 to 23:59:59) on registrations in

emergency department of children’s hospital. Full set of time

series covers period from February 13 to August 13, 2009.

Phase-I analysis: sixteen time series from February 13 to 28

⇒ in-control model: Poi-INAR(1) with µ0 = 2.1, ρ0 = 0.78.

Weiß & Testik (2015) recognized that most Phase-II series

do not contradict in-control model, but few unusual days.

Now Phase-II analysis using novel Stein EWMA charts.
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Chart designs: c-chart only one-sided, LCL = 0 and UCL =

6 with ARL0 ≈ 326.2 (so Xt > 6 causes alarm).

EWMA charts (λ = 0.1) truly two-sided:

• EWMA with L = 1.851 and ARL0 ≈ 370.3;

• Stein EWMA with f(x) = |x− 1|, L = 0.848, ARL0 ≈ 370.5,

• with f(x) = |x− 1|1/4, L = 0.829, ARL0 ≈ 370.5,

• with f(x) = 1/(x+1), L = 0.2994, ARL0 ≈ 370.5,

• with f(x) = pP(x+2), L = 0.9594, ARL0 ≈ 370.2.
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Emergency counts from March 28, 2009:

c-chart and ordinary EWMA on Slide 5. No alarm for Stein

EWMA with f(x) = 1/(x+1) and f(x) = pP(x+2).

S-EWMA, f(x) = |x− 1|: S-EWMA, f(x) = |x− 1|1/4:
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⇒ very early alarm at t = 6, so overdispersion and zero inflation.
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Emergency counts from July 16, 2009:

No alarm for c-chart, ordinary EWMA, also no alarm for

Stein EWMA with f(x) = |x− 1| and f(x) = |x− 1|1/4.

S-EWMA, f(x) = 1/(x+1): S-EWMA, f(x) = pP(x+2):
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⇒ early alarms at t = 35 and 74, resp., so underdispersion.
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• EWMA-type control charts derived from Stein identities.

• Stein EWMA charts flexibly adapted to various out-of-control

scenarios, where underdispersion most demanding.

• Appealing ARL performance if adequate weight function.

• If running multiple Stein EWMA charts in parallel,

targeted diagnosis possible (like in data example).

• Future research:

– Stein CUSUM charts for count processes?

– Stein charts for continuously distributed data?

– . . . ?
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