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Serial independence of observations is crucial assumption for

majority of control charts (Chakraborti & Sparks, 2020).

Either monitored data themselves i. i. d. (Montgomery, 2009),

or if time-series data, control charts applied to residuals, being

uncorrelated if adeq. in-control model (Knoth & Schmid, 2004).

Neglecting ser. dep. severely affects performance (Alwan, 1992).

Hence, not only monitor for changes in mean or variance,

but also in-control assumption of serial independence,

to avoid misleading chart performance.
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Several proposals to monitor for existence of serial dependencies

in real-valued and continuously distributed processes.

• Large majority refers to ARMA models,

some of these directly incorporate model structure into

monitored statistics (types of likelihood approaches).

• Other studies easier to generalise as they monitor residuals

for possible dependence, e. g.,

– autocorrelation function (ACF) charts by Yourstone &

Montgomery (1991), Atienza et al. (1997), and others;

– periodogram chart by Beneke et al. (1988).
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But aforementioned ACF and periodogram charts

rely on moving-window approach,

with typical window-length recommendation w = 50

⇒ Drawback: first collect w observations before start of

monitoring, so detection delay of ≥ w observations.

Only individuals charts for monitoring dependence is

EWMA-type monitoring of lag-1 ACF by Gardner (1983);

thus later used as competitor.

Further drawback besides delay and model dependence:

need model fit during Phase I, thus estimation uncertainty.
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Our newly proposed charts

• are fully non-parametric and distribution-free,

• do not require parameter estimation but have unique design,

• used almost instantaneously at start of monitoring,

• for any real-valued and continuously distributed process

(which is assumed serially independent in in-control state).

These appealing properties achieved by using so-called

ordinal patterns for process monitoring.

Outline: various control chart proposals, analysis of out-of-

control performance, application to chemical process data.
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Since papers Bandt & Pompe (2002), Keller et al. (2007),

ordinal patterns (OPs) widely used for

analyzing real-valued time series (Bandt, 2019).

Among others, used for hypothesis tests w.r.t. serial dependence

(Weiß, 2022) → starting point of this research.

Idea: Map segments from (Xt) of length m ∈ N on

corresponding OPs of order m (common choice: m = 2 or 3).

Based on frequency of OPs, judge null of independence.

By contrast to ACF (default tool for dependence analyses),

OP-statistics also sensitive to non-linear dependence.
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Let Sm be symmetric group of order m.

m! possible permutations π ∈ Sm represent

m! different OPs of x = (x1, . . . , xm) ∈ Rm.

Rank representation π = (r1, . . . , rm) ∈ Sm:

rk < rl ⇔ xk < xl or (xk = xl and k < l)

for all k, l ∈ {1, . . . ,m}.

Example m = 2: downward OP (2,1) and upward OP (1,2).

Example m = 3:

(3,2,1) (3,1,2) (2,3,1) (1,3,2) (2,1,3) (1,2,3)
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Let tth m-history equal Xt = (Xt, Xt+1, . . . , Xt+m−1),

denote its OP by πt.

Original process (Xt)N transformed into OP-process (πt)N.

Following properties crucial for proposed control charts:

1. OPs invariant w.r.t. strictly monotonically increasing trans-

formations of Xt. Thus, OPs do not depend on actual mar-

ginal distribution of (Xt)N (distribution-free approach).

2. (Xt)N is i. i. d. in its in-control state (→ exchangeability).

Thus, πt discrete uniform on Sm, i. e., PMF P
(
πt = π

)
= 1/m!

for each π ∈ Sm (no Phase-I analysis required).
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Denote mth-order OPs π[1], . . . , π[m!] in some arrangement

(“lexicographic order”), abbreviate pk = P (πt = π[k]),

and define PMF vector p = (. . . , pk, . . .).

If (Xt)N is i. i. d. (in-control assumption), then all pk = 1/m!;

abbreviate p0 = (1/m!, . . . ,1/m!).

For monitoring, compute estimator p̂t of p at each time t.

Our proposal:

Define m!-dim. Zt by “one-hot encoding” Zt,k = 1(πt = π[k]).

EWMA estimator with smoothing parameter λ ∈ (0; 1):

p̂0 = p0, p̂t = λZt + (1− λ) p̂t−1 for t = 1,2, . . .
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Based on (p̂t), we compute appropriate statistics,

which are plotted on EWMA OP chart.

Following Bandt & Pompe (2002), Bandt (2019), Weiß (2022),

we consider:
entropy: Ĥ = −∑m!

k=1 p̂k ln p̂k,

extropy: Ĥex = −∑m!
k=1

(
1− p̂k

)
ln

(
1− p̂k

)
,

distance to white noise: ∆̂ =
∑m!
k=1

(
p̂k − 1/m!

)2 for m ≥ 2;

up-down balance: β̂ = p̂6 − p̂1,

persistence: τ̂ = p̂6 + p̂1 − 1
3,

up-down scaling: δ̂ = p̂4 + p̂5 − p̂3 − p̂2 for m = 3.
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This gives three one-sided EWMA charts,

H-chart: plot Ĥt with LCL lH ∈ (0; lnm!);

Hex-chart: plot Ĥex,t with LCL lHex ∈
(
0; (m!− 1) ln( m!

m!−1)
)
;

∆-chart: plot ∆̂t with UCL l∆ > 0;

and three two-sided EWMA charts (symmetric limits):

β-chart: plot β̂t with UCL lβ > 0 and LCL − lβ;

τ-chart: plot τ̂t with UCL lτ > 0 and LCL − lτ ;

δ-chart: plot δ̂t with UCL lδ > 0 and LCL − lδ.
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ARLs approximated by simulations (we use 105 replications).

Highly attractive feature: in-control design

for each setting (m,λ) and ARL0 determined only once,

independent of distribution of (Xt)N and without estimation,

as OPs are distribution-free.

Some in-control designs with m = 3 and target ARL0 ≈ 370:

H-chart Hex-chart ∆-chart β-chart τ-chart δ-chart
λ LCL ARL LCL ARL UCL ARL CL ARL CL ARL CL ARL

0.25 1.014 367.8 0.6621 369.6 0.3338 369.3 0.6437 369.7 0.4253 368.6 0.7656 368.4
0.10 1.4601 369.8 0.8405 369.9 0.1115 369.5 0.3638 369.9 0.2529 369.8 0.4876 370.4
0.05 1.6356 370.0 0.88017 369.3 0.05125 370.3 0.233 370.0 0.16775 369.4 0.3246 369.5
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Out-of-control models:

DGP 1: AR(1) process Xt = α ·Xt−1 + ϵt with ϵt ∼ N(0,1)

(linear and time-reversible process);

DGP 2: TEAR(1) process Xt = B
(α)
t · Xt−1 + (1 − α) · ϵt with

ϵt ∼ Exp(1), where i. i. d. Bernoulli B(α)
t with P

(
B

(α)
t = 1

)
= α

(AR(1)-like ACF, but asymmetric in time);

DGP 3: AAR(1) process Xt = α · |Xt−1|+ ϵt with ϵt ∼ N(0,1),

DGP 4: QAR(1) process Xt = α ·X2
t−1 + ϵt with ϵt ∼ N(0,1)

(both with positive shocks and thus asymmetry).
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Some conclusions from simulated (zero-state) ARLs:

• AR(1) with α > 0: τ-chart superior, better if λ = 0.25;

• AR(1) with α < 0: τ-chart superior, clearly best if λ = 0.05.

• TEAR(1) generates long-lasting rises followed by abrupt

falls, so upward OP (1,2,3) dominant. Thus, β-chart su-

perior, improves with decreasing λ. τ-chart visibly worse.

• AAR(1) and QAR(1): If low α, β-chart with λ = 0.05 recom-

mended. For larger α, τ-chart with λ = 0.25 superior.

• In all cases, Hex- and ∆-chart not optimal but reasonable.

Note: conditional expected delays

do not differ much from zero-state ARLs.
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Only reasonable competitor:

EWMA-type ACF(1) chart by Gardner (1983).

Design requires fully specified in-control model!

Example: If Xt are i. i. d. N(0,1), then

C0 = 0, Ct = λXtXt+1 + (1− λ)Ct−1,

S0 = 1, St = λX2
t + (1− λ)St−1,

 ⇒ At =
Ct

St
.

ACF-chart does better than τ-chart if AR(1),

reasonable as ACF designed for linear dependence.

But for non-linear TEAR(1), Hex-, ∆-, and β-charts with λ ≤ 0.1

uniquely outperform any ACF-chart.

Christian H. Weiß — Helmut Schmidt University, Hamburg



MATH 

STAT 

Application:
Chemical Process Data

Illustration



Application: Chemical Process Data MATH 

STAT 

Chemical process data x1, . . . , x70, used (among others)

by Beneke et al. (1988) to illustrate periodogram chart

(w = 50 ⇒ alarm not before x50; first alarm at t = 67).

Data express consecutive batch yields. Negative dependence

between adjacent batches reasonable as residues

of high-yielding batch could reduce yield of subsequent batch.
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Design of parametric charts not clear, because

non-standard distribution (see histogram of Phase-II data) and

no Phase-I data available (Beneke et al. (1988): normality).

Novel OP-charts immediately applicable to Phase-II data!

As we anticipate possibly negative dependence:

H-, Hex-, ∆-, and τ-charts appropriate, esp. with λ = 0.05.

Results: If λ = 0.25, alarm by none chart.

Charts get more sensitive with decreasing λ: . . .
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Novel EWMA OP-charts with λ = 0.10:
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Novel EWMA OP-charts with λ = 0.05:
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Chakraborti & Sparks (2020, pp. 137–138):

“Most statistical process monitoring begins with an assumed

model (. . . ) and further assumptions about the components of

the model. (. . . ) two of the important and common assumptions

[are] normality and independence. (. . . ) Violations of one or

more of the assumptions might render the decisions invalid and

hence useless even though there would seem nothing wrong in

terms of crunching the numbers.”

⇒ These issues solved by novel EWMA OP-charts,

which monitor assumption of serial independence

by distribution-free approach!
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