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Abbreviations and Acronyms

i. i. d. = independent and identically distributed
r. v. = random variable
DGP = data-generating process
PMF = probability mass function
CDF = cumulative distribution function
ACF = autocorrelation function
MSE = mean squared error
Bin = binomial
Poi = Poisson
ZIP = zero-inflated Poisson
NB = negative binomial
INAR = integer-valued autoregressive
INARCH = integer-valued autoregressive conditional heteroscedastic
BinAR = binomial autoregressive
BinARCH = binomial autoregressive conditional heteroscedastic
ll-Poi-AR = log-linear Poisson autoregressive
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S.1 Summary of Considered Count DGPs

In what follows, we summarize those models that were used as a DGP in our simulation
studies, see Section S.2 for further details. These models belong either to the group of
thinning-based models or the group of regression models. The respective definition and rel-
evant properties are briefly listed below. More details and references on these and further
count time series models can be found in the book by

Weiß, C.H. (2018) An Introduction to Discrete-Valued Time Series.
John Wiley & Sons, Inc., Chichester.

Table 1: Relevant count distributions and their PMF.

Bin(n, π) with n ∈ N, π ∈ (0, 1) P (X = x) =

(
n

x

)
· πx · (1− π)n−x for 0 ≤ x ≤ n

Poi(λ) with λ > 0 P (X = x) = e−λ
λx

x!
for x ∈ N0

NB(n, π) with n ∈ (0,∞), π ∈ (0, 1) P (X = x) =

(
n+ x− 1

x

)
· (1− π)x · πn for x ∈ N0

ZIP(λ, ω) with λ > 0, ω ∈ [0, 1) P (X = x) = 1(x = 0) · ω + (1− ω) e−λ
λx

x!
for x ∈ N0

S.1.1 Thinning-based Models

The thinning-based models have AR-like DGPs, where the AR model’s multiplications are
substituted by the integer-valued random operation of binomial thinning: For α ∈ (0, 1) and
a count r. v. X, it is defined by requiring α ◦X

∣∣X ∼ Bin(X,α), see Table 1. The following
models assume that all thinnings are executed independently of each other, of the i. i. d. count
innovations (εt), and of past observations.

INAR(1) model: Model recursion Xt = α ◦Xt−1 + εt with µε = E[εt] and σ2ε := V[εt].
Mean µ = E[Xt], variance σ2 = V[Xt], and ACF r(k) = Corr[Xt, Xt−k], respectively,
are given by

µ =
µε

1− α
, I =

σ2

µ
=

σ2
ε
µε

+ α

1 + α
, and r(k) = αk.

The model constitutes a Markov chain with transition probabilities p(x|xT ) = p(XT+1 =
x|XT = xT ) given by

p(x|xT ) =
∑min{x,xT }

s=0

(
xT
s

)
αs(1− α)xT−s · P (εt = x− s).

It is referred to as Poi-, NB-, or ZIP-INAR(1) model, respectively, if εt follows a Poisson,
negative binomial, or zero-inflated Poisson distribution (see Table 1).

INAR(2) model: Model recursion Xt = α1 ◦t Xt−1 + α2 ◦t Xt−2 + εt with α1 + α2 < 1,
constitutes a second-order Markov process with transition probabilities

p(x|xT , xT−1) =
∑min {x,xT }

j1=0

∑min {x−xT ,xT−1}
j2=0(

xT
j1

)
αj11 (1− α1)

xT−j1 ·
(xT−1

j2

)
αj22 (1− α2)

xT−1−j2 · P (εt = x− j1 − j2).

The ACF satisfies r(1) = α1/(1− α2), and r(k) = α1 r(k − 1) + α2 r(k − 2) for k ≥ 2.
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BinAR(1) model for bounded range {0, . . . , n} with some n ∈ N.

Let π ∈ (0, 1) and α ∈
(

max{− π
1−π ,−

1−π
π }, 1

)
and define β := π(1−α) and γ := β+α.

The BinAR(1) model recursion is

Xt = γ ◦Xt−1 + β ◦ (n−Xt−1) with X0 ∼ Bin(n, π).

It constitutes a Markov chain with marginal distribution Bin(n, π), and with ACF
r(k) = αk, and with transition probabilities

p(x|xT ) =
min{x,xT }∑

m=max{0,x+xT−n}

(
xT
m

)(
n−xT
x−m

)
γm(1− γ)xT−m βx−m(1− β)n−xT+m−x.

S.1.2 Regression Models

We consider the following AR-type INARCH models.

Poi-INARCH(1) model: Model recursion Xt|Xt−1, . . . ∼ Poi(β + αXt−1)
with β > 0 and α ∈ (0, 1). Mean, variance, and ACF, respectively, are given by

µ =
β

1− α
, σ2 =

µ

1− α2
, and r(k) = αk.

This model constitutes a Markov chain with transition probabilities

p(x|xT ) = exp(−β − αxT )
(β + αxT )x

x!
.

Poi-INARCH(2) model: Model recursion Xt|Xt−1, . . . ∼ Poi(β + α1Xt−1 + α2Xt−2)
with α1 +α2 < 1 and ACF like for the INAR(2) model. The transition probabilities are

p(x|xT , xT−1) = exp(−β − α1 xT − α2 xT−1)
(β + α1 xT + α2 xT−1)

x

x!
.

BinARCH(1) model: Model recursion Xt|Xt−1, . . . ∼ Bin
(
n, β + α Xt−1

n

)
with β, β + α ∈ (0, 1) and transition probabilities

p(x|xT ) =

(
n

x

)(
β + α xT

n

)x (
1− β − α xT

n

)n−x
.
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S.2 Simulation Study

For the DGPs described in Section S.1 and for each corresponding scenario according to
Table 2, we simulated 1,000 time series and fitted the respective model to the data. Here, we
used the method of moments together with the moment formulae provided by Section S.1.
Then, the PMF forecasts (or CDF forecasts, respectively) were computed according to the
formulae for the transition probabilities in Section S.1. These PMF or CDF forecasts were
used to compute the different types of MSE described in Section 3:

• global MSEs
∥∥p̂−p̂0

∥∥2 =
∑∞

x=0(p̂x− p̂0,x)2 (coherent PMF),
∥∥f̂− f̂0

∥∥2 (coherent CDF),∥∥p̂a − p̂0

∥∥2 (approximate PMF), and
∥∥f̂a − f̂0

∥∥2 (approximate CDF);

• local MSEs
∑∞

x=0(p̂x − p̂0,x)2 1(f̂0,x ≤ 0.25) (lower-25% tail MSE for coherent PMF)

and
∑∞

x=0(p̂x − p̂0,x)2 1(f̂0,x ≥ 0.90) (upper-10% tail MSE for coherent PMF), and the
respective tail versions for approximate and CDF forecasts.

Besides looking at the MSE values for the coherent and approximate forecasting, respectively,
we computed also the difference between the approximate and coherent MSE, such as

∥∥p̂a −
p̂0

∥∥2 − ∥∥p̂− p̂0

∥∥2, where a value > 0 implies that the approximate MSE was larger than the
coherent one.

Table 2: Scenarios for different DGPs of simulation study, with 1,000 replications each.

Means µ ∈ {1, 1.075, . . . , 9.925, 10} for unbounded counts,
upper bounds n ∈ {10, . . . , 130} and probability π ∈ {0.15, 0.45} for bounded counts.

Dispersion ratios I ∈ {1.4, 2.4} if considering overdispersion.

Dependence parameter α in {0.33, 0.55, 0.8} (ACF at lag 1),
and α2 ∈ {0.25, 0.35, 0.45} as well as α1 = α (1− α2) for AR(2)-like models.

Sample sizes T ∈ {75, 250, 2500}.

Either the 1,000 MSE values per scenario themselves, or the 1,000 MSE differences, were
analyzed by using a lean type of boxplot:

• The median is plotted as a black dot,

• the quartiles are connected by a thick grey line, and

• the 10%- and 90%-quantiles are connected by a thin black line.

These boxplots are then plotted against increasing mean µ. The results are summarized
as pdf-files in the folder Full Results. There, we distinguish between subfolders for PMF
and CDF forecasting, between the simple normal approximation (i. e., without continuity
correction) and the continuity-corrected one, and between boxplots for the MSE values and
for the MSE differences.
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