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In real applications, time series often exhibit missing data,

so impossible to apply standard analytical tools.

For real-valued time series with “missingness”,

several proposals how to adapt tools, such as

sample autocorrelation function (ACF) or spectral estimators,

see Scheinok (1965), Bloomfield (1970), Neave (1970), Duns-

muir & Robinson (1981), Yajima & Nishino (1999).

Use idea of Parzen (1963) to understand real-valued time series

with missingness as resulting from amplitude modulation,

where amplitude-modulating process binary.
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But missingness also happens to categorical time series,

which consist of qualitative values ordered in time.

Completely different analytical tools for cat. t. s. (Weiß, 2018),

so aforementioned solutions for missingness not applicable.

Main practical motivation: collaborative project with

Marina Vives-Mestres & Amparo Casanova (Curelator Inc.),

on categorical time series from migraine patients.

Daily data on migraine patients from questionaire in mobile app

N1-Headache™. Missing data because patients skipped

some questions, or stopped before completing questionaire.
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Examples: (dotted lines indicate missing data)

Peak severity (“none”, “mild”, “moderate”, “severe”):

daily levels
for patient A;
n = 225,
19 missing.
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Stress (0–10 Likert scale, “not at all” to “a lot”):

daily levels
for patient B;
n = 136,
3 missing.
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• Handle missing data in stationary categorical time series,

X1, . . . , Xn with n ∈ N = {1,2, . . .}.

• Outcomes xt of Xt have qualitative range S = {s0, s1, . . . , sm};

consider both nominal and ordinal case.

• Unique approach of incorporating missingness

and of deriving asymptotics of proposed statistics.

• Apply novel missing-data approaches to migraine time series.

Full paper: Weiß (2021) Analyzing categorical time series

in the presence of missing observations.

Statistics in Medicine 40(21), 4675–4690. (→ open access)
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Basics of
Categorical Time Series Analysis

nominal vs. ordinal
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Nominal range Ordinal range

Marginal PMF: Marginal CDF:
(probability mass function) (cumulative distribution fct.)

p = (p0, . . . , pm)⊤ ∈ [0; 1]m+1 f = (f0, . . . , fm−1)
⊤ ∈ [0; 1]m

with pi = P (X = si) with fi = P (X ≤ si)

Bivariate lag-h PMF: Bivariate lag-h CDF:
pij(h) = P (Xt = si, Xt−h = sj) fij(h) = P (Xt ≤ si, Xt−h ≤ sj)

Binarization (Y t)N with Binarization (Zt)N with
Yt,i = 1{Xt=si}, so E[Y t] = p Zt,i = 1{Xt≤si}, so E[Zt] = f

Sample PMF: Sample CDF:

p̂ = 1
T

∑T
t=1Y t f̂ = 1

T
∑T
t=1Zt

Bivariate (cumulative) relative frequencies

p̂ij(h) = 1
T−h

∑T
t=h+1 Yt,i Yt−h,j f̂ij(h) = 1

T−h
∑T
t=h+1Zt,iZt−h,j
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Note that both binarizations lead to different range:

Y t ∈

1
0...
0

 ,

0
1...
0

 , . . . ,

0...
1
0

 ,

0...
0
1

 =: {e0, . . . , em} ⊂ [0; 1]m+1

vs.

Zt ∈

1
1...
1

 ,

0
1...
1

 , . . . ,

0...
0
1

 ,

0...
0
0

 =: {c0, . . . , cm} ⊂ [0; 1]m.

Dispersion concepts for qualitative random variables:

• Minimal dispersion iff one-point distribution,

i. e., p ∈ {e0, . . . , em} or f ∈ {c0, . . . , cm}, respectively.

• Max. nominal dispersion iff uniform, p = ( 1
m+1, . . . ,

1
m+1)

⊤.

• Max. ordinal disp. iff extreme two-point, f = (12, . . . ,
1
2)

⊤.
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Nominal range Ordinal range

Index of qualitative variation: Index of ordinal variation:

IQV = m+1
m

(
1− ∑m

i=0 p
2
i

)
IOV = 4

m
∑m−1
i=0 fi(1− fi)

Ordinal skewness:

skew = 2
m

∑m−1
i=0 fi − 1

Nominal Cohen’s κ: Ordinal Cohen’s κ:

κnom(h) =

∑m
j=0

(
pjj(h)− p2j

)
1− ∑m

i=0 p
2
i

κord(h) =

∑m−1
j=0

(
fjj(h)− f2j

)
∑m−1
i=0 fi(1− fi)

The signed κ-measures serve as substitutes of ACF,

where positive (negative) values express extend of

(dis)agreement between Xt and Xt−h, see Weiß (2018, 2020).
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Aforementioned approaches assume time series

to be fully observed!

Now, categorical time series with missing observations,

unified framework for handling missingness

in both ordinal and nominal time series.

Time restrictions & clarity of talk:

focus on ordinal case, but nominal case in . . .

Full paper: Weiß (2021) Analyzing categorical time series

in the presence of missing observations.

Statistics in Medicine 40(21), 4675–4690. (→ open access)
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Ordinal Time Series
with Missing Data

Amplitude Modulation
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Let (Xt) be ordinal process, corresponding binarization (Zt).

Idea: Adapt amplitude modulation of Parzen (1963)

to binarization (Zt).

Define amplitude-modulating process (Ot) as

Ot = 1 if Xt observed, and Ot = 0 otherwise.

Then, amplitude modulation of (Zt) is (Ot ·Zt)

(Ot) might be deterministic or i. i. d. with E[O0] = π or

stationary with some dependence structure, E[OhO0] = π(h).

But we assume that (Ot) is independent of (Xt), (Zt).
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Estimation of marginal CDF f :

Let f̂ := 1
n

∑n
t=1OtZt, then E

[̂
f
]

=
(
1
n

∑n
t=1E[Ot]

)
f .

Thus, estimate f by

f̂∗ :=
1
n

∑n
t=1OtZt

1
n

∑n
t=1Ot

=: f̂
/
O.

Estimators for IOV and skew by using f̂∗:

̂IOV =
4

m

m−1∑
i=0

f̂∗i (1− f̂∗i ),
̂skew =

2

m

m−1∑
i=0

f̂∗i − 1.
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Estimation of bivariate CDF fij(h):

Let f̂ij(h) = 1
n−h

∑n
t=h+1OtOt−hZt,iZt−h,j,

then E
[̂
fij(h)

]
=

(
1

n−h
∑n
t=h+1E[OtOt−h]

)
fij(h).

Thus, estimate fij(h) by

f̂∗ij(h) =
1

n−h
∑n
t=h+1OtOt−hZt,iZt−h,j
1

n−h
∑n
t=h+1OtOt−h

=: f̂ij(h)
/
OtOt−h.

Estimator for ordinal κ by using f̂∗, f̂∗ij(h):

κ̂ord(h) =

∑m−1
j=0

(
f̂∗jj(h)− (f̂∗j )

2
)

∑m−1
i=0 f̂∗i (1− f̂∗i )

for h ∈ N.

Christian H. Weiß — Helmut Schmidt University, Hamburg



MATH 

STAT 

Ordinal Time Series
with Missing Data

Asymptotics
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Theorem 1: Let (Xt) and (Ot) be α-mixing

with exponentially decreasing weights.

Then, the corrected CDF-estimator f̂∗ satisfies

√
n

(
f̂∗ − f

)
d→ N

(
0, Σ∗), with Σ∗ = (σ∗ij)i,j=0,...,m−1, where

σ∗ij = 1
π

(
fmin {i,j} − fifj

)
+ 1

π2
∑∞
h=1 π(h)

(
fij(h) + fji(h)− 2 fifj

)
.

Furthermore, the bias E[f̂∗j ]− fj is of order o(n−1).
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Theorem 2: Let assumptions of Theorem 1 hold. Then,

corrected sample IOV and skew asymptotically normal with

E
[ ̂IOV

]
≈ IOV

(
1 − 1

n

(
1
π + 2

π2
∑∞
h=1 π(h)κord(h)

))
,

V
[ ̂IOV

]
≈

1

n

16

m2

m−1∑
i,j=0

(1− 2fi)(1− 2fj)σ
∗
ij,

and

E
[ ̂skew

]
≈ skew + o(n−1), V

[ ̂skew
]

≈ 1
n

4
m2

∑m−1
i,j=0 σ

∗
ij.
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Theorem 3: Let assumptions of Theorem 1 hold. Denote

π(h1, . . . , hr) := E
[
O0 ·Oh1 · · ·Ohr

]
with 0 < h1 < . . . < hr.

Under null hypothesis of (Xt) being i. i. d.,

distribution of κ̂ord(h) at lag h ∈ N approximately normal

with mean −
1

nπ

and variance

1

n

m−1∑
i,j=0

(
fmin {i,j} − fifj

) (
fmin {i,j} − fifj + 2

(
1+ π(h,2h)

π(h) − 2 π(h)
π

)
fifj

)
π(h)

(∑m−1
k=0 fk(1− fk)

)2 .
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Possible applications: confidence intervals, hypothesis tests.

Example: Theorem 3 to test for serial independence at lag h.

Let (Ot) be i. i. d. (“missing at random”), then simplification

V
[
κ̂ord(h)

]
≈

1

n

1

π2

∑m−1
i,j=0

(
fmin {i,j} − fifj

)2
(∑m−1

k=0 fk(1− fk)
)2 +

2

n

1− π

π2

∑m−1
i,j=0 fifj

(
fmin {i,j} − fifj

)
(∑m−1

k=0 fk(1− fk)
)2 .

Plug-in estimated probabilities π̂, f̂∗.

Then critical values −1/(nπ̂) ∓ z1−α/2 σ̂κ,

where z1−α/2 denotes (1− α/2)-quantile of N(0,1).
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Simulations & Data Example
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Simulation study in full paper, Weiß (2021), confirms

good finite-sample performance of asymptotic approximations.

Illustrative examples for models . . .

(m, p, r) = (3,0.20,0.35) (m, p, r) = (3,0.20,0 vs. 0.35)
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Mean ∓ std. dev. for IOV Rej. rate based on κ̂ord(1)
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Data application: migraine patients

Estimates and tests accounting for missingness for

peak-severity time series of patient A (n = 225, 19 missing):

peak severity

P
M

F

none mild mod. sev.

0.
0

0.
2

0.
4

0.
6

x

Median:
“none”

̂IOV
≈ 0.540

̂skew
≈ 0.592 2 4 6 8 10

−
0.

2
0.

2
0.

6
1.

0

h

κ o
rd
(h

)

h
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Data application: migraine patients

Estimates and tests accounting for missingness for

stress time series of patient B (n = 136, 3 missing):

0 2 4 6 8 10

stress
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What would happen if just ignore (skip) missing data?

Then complete time series of reduced lengths

ñ = 206 (peak severity) and ñ = 133 (stress).

κ̂ord(h) changes from 0.341,0.213, . . . to 0.258,0.138, . . .

(approximate SE from 0.072 to 0.055)

for peak-severity series (19 out of 225),

and from 0.392,0.203, . . . to 0.370,0.195, . . .

(approximate SE from 0.060 to 0.057)

for stress series (3 out of 136).

⇒ carefully consider missingness for time series analysis!
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