Analyzing Categorical Time Series in the Presence of Missing Observations

Universität der Bundeswehr Hamburg

MATH STAT

C.H. Weiß

Department of Mathematics & Statistics, Helmut Schmidt University, Hamburg

In real applications, time series often exhibit **missing data**, so impossible to apply standard analytical tools.

For real-valued time series with "missingness",

several proposals how to adapt tools, such as sample autocorrelation function (ACF) or spectral estimators, see Scheinok (1965), Bloomfield (1970), Neave (1970), Dunsmuir & Robinson (1981), Yajima & Nishino (1999).

Use idea of Parzen (1963) to understand real-valued time series with missingness as resulting from **amplitude modulation**, where amplitude-modulating process binary.

But missingness also happens to **categorical time series**, which consist of qualitative values ordered in time. Completely different analytical tools for cat.t.s. (Weiß, 2018), so aforementioned solutions for missingness not applicable. **Main practical motivation:** collaborative project with Marina Vives-Mestres & Amparo Casanova (Curelator Inc.), on categorical time series from migraine patients.

Daily data on migraine patients from questionaire in mobile app N1-HeadacheTM. **Missing data** because patients skipped some questions, or stopped before completing questionaire.

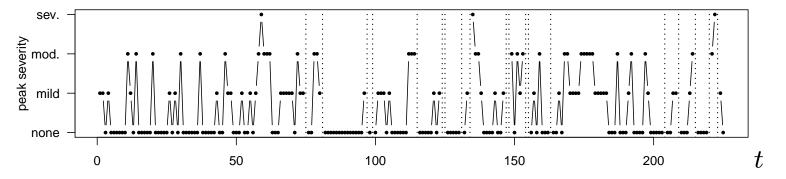
MATH STAT

Examples: (dotted lines indicate missing data)

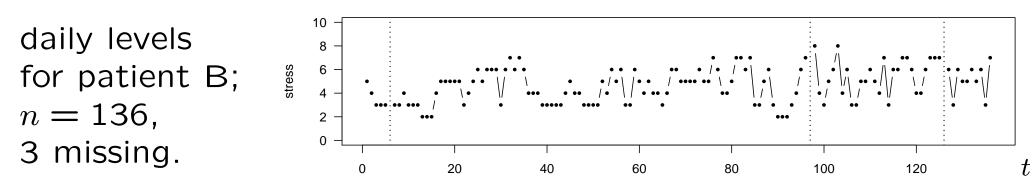
Peak severity

("none", "mild", "moderate", "severe"):

daily levels for patient A; n = 225, 19 missing.



Stress (0–10 Likert scale, "not at all" to "a lot"):



- Handle missing data in stationary categorical time series, X_1, \ldots, X_n with $n \in \mathbb{N} = \{1, 2, \ldots\}.$
- Outcomes x_t of X_t have qualitative range $S = \{s_0, s_1, \dots, s_m\}$; consider both **nominal and ordinal** case.
- Unique approach of incorporating missingness and of deriving asymptotics of proposed statistics.
- Apply novel missing-data approaches to migraine time series.

Full paper:Weiß (2021)Analyzing categorical time seriesin the presence of missing observations.

Statistics in Medicine 40(21), 4675–4690. (\rightarrow open access)

Basics of Categorical Time Series Analysis

nominal vs. ordinal

Nominal range	Ordinal range
Marginal PMF:	Marginal CDF:
(probability mass function)	(cumulative distribution fct.)
$p=(p_0,\ldots,p_m)^{ op}\in [0;1]^{m+1}$ with $p_i=P(X=s_i)$	$oldsymbol{f} = (f_0, \dots, f_{m-1})^{ op} \in [0; 1]^m$ with $f_i = P(X \leq s_i)$
Bivariate lag- h PMF:	Bivariate lag- h CDF:
$p_{ij}(h) = P(X_t = s_i, X_{t-h} = s_j)$	$f_{ij}(h) = P(X_t \le s_i, X_{t-h} \le s_j)$
Binarization $(oldsymbol{Y}_t)_{\mathbb{N}}$ with	Binarization $(oldsymbol{Z}_t)_{\mathbb{N}}$ with
$Y_{t,i} = \mathbbm{1}_{\{X_t = s_i\}}$, so $E[oldsymbol{Y}_t] = oldsymbol{p}$	$Z_{t,i} = \mathbb{1}_{\{X_t \leq s_i\}}$, so $E[oldsymbol{Z}_t] = oldsymbol{f}$
Sample PMF:	Sample CDF:
$\widehat{p} = \frac{1}{T} \sum_{t=1}^{T} Y_t$	$\widehat{f} = \frac{1}{T} \sum_{t=1}^{T} Z_t$
Bivariate (cumulative) relative frequencies	
$\widehat{p}_{ij}(h) = \frac{1}{T-h} \sum_{t=h+1}^{T} Y_{t,i} Y_{t-h,j}$	$\widehat{f}_{ij}(h) = \frac{1}{T-h} \sum_{t=h+1}^{T} Z_{t,i} Z_{t-h,j}$

Note that both **binarizations** lead to different range:

$$\begin{split} \boldsymbol{Y}_t &\in \left\{ \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix}, \dots, \begin{pmatrix} 0\\\vdots\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\\vdots\\0\\1 \end{pmatrix} \right\} \;=: \{\boldsymbol{e}_0, \dots, \boldsymbol{e}_m\} \;\subset [0;1]^{m+1} \\ \text{/s.} \\ \boldsymbol{Z}_t \;\in \; \left\{ \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\\vdots\\1 \end{pmatrix}, \dots, \begin{pmatrix} 0\\\vdots\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\\vdots\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\\vdots\\0\\0 \end{pmatrix} \right\} \;=: \{\boldsymbol{c}_0, \dots, \boldsymbol{c}_m\} \;\subset [0;1]^m. \end{split}$$

Dispersion concepts for qualitative random variables:

• Minimal dispersion iff one-point distribution,

i.e., $p \in \{e_0,\ldots,e_m\}$ or $f \in \{c_0,\ldots,c_m\}$, respectively.

- Max. nominal dispersion iff uniform, $p = (\frac{1}{m+1}, \dots, \frac{1}{m+1})^{\top}$.
- Max. ordinal disp. iff extreme two-point, $f = (\frac{1}{2}, \dots, \frac{1}{2})^{\top}$.

Nominal range	Ordinal range
Index of qualitative variation:	Index of ordinal variation:
$IQV = \frac{m+1}{m} \left(1 - \sum_{i=0}^{m} p_i^2\right)$	IOV = $\frac{4}{m} \sum_{i=0}^{m-1} f_i (1 - f_i)$
	Ordinal skewness:
	skew = $\frac{2}{m} \sum_{i=0}^{m-1} f_i - 1$
Nominal Cohen's κ :	Ordinal Cohen's κ :
$\kappa_{\text{nom}}(h) = \frac{\sum_{j=0}^{m} (p_{jj}(h) - p_j^2)}{1 - \sum_{i=0}^{m} p_i^2}$	$\kappa_{\text{ord}}(h) = \frac{\sum_{j=0}^{m-1} (f_{jj}(h) - f_j^2)}{\sum_{i=0}^{m-1} f_i (1 - f_i)}$

The signed κ -measures serve as substitutes of ACF, where positive (negative) values express extend of (dis)agreement between X_t and X_{t-h} , see Weiß (2018, 2020).

Aforementioned approaches assume time series to be fully observed!

Now, categorical time series with missing observations, unified framework for handling missingness in *both ordinal and nominal* time series.

Time restrictions & clarity of talk:

focus on ordinal case, but nominal case in ...

Full paper: Weiß (2021) Analyzing categorical time series in the presence of missing observations.

Statistics in Medicine 40(21), 4675–4690. (\rightarrow open access)

Ordinal Time Series with Missing Data

Amplitude Modulation

- Let (X_t) be ordinal process, corresponding binarization (Z_t) .
- **Idea:** Adapt amplitude modulation of Parzen (1963) to binarization (Z_t) .
- Define **amplitude-modulating process** (O_t) as
- $O_t = 1$ if X_t observed, and $O_t = 0$ otherwise.
- Then, amplitude modulation of (Z_t) is $(O_t \cdot Z_t)$
- (O_t) might be deterministic or i. i. d. with $E[O_0] = \pi$ or stationary with some dependence structure, $E[O_h O_0] = \pi(h)$.

But we assume that (O_t) is independent of (X_t) , (Z_t) .

Estimation of marginal CDF f: Let $\hat{\mathfrak{f}} := \frac{1}{n} \sum_{t=1}^{n} O_t Z_t$, then $E[\hat{\mathfrak{f}}] = (\frac{1}{n} \sum_{t=1}^{n} E[O_t]) f$. Thus, estimate f by

$$\hat{f}^* := \frac{rac{1}{n} \sum_{t=1}^n O_t Z_t}{rac{1}{n} \sum_{t=1}^n O_t} =: \hat{\mathfrak{f}} / \overline{O}.$$

Estimators for IOV and skew by using \widehat{f}^* :

$$\widehat{IOV} = \frac{4}{m} \sum_{i=0}^{m-1} \widehat{f}_i^* (1 - \widehat{f}_i^*), \qquad \widehat{skew} = \frac{2}{m} \sum_{i=0}^{m-1} \widehat{f}_i^* - 1.$$

MATH Stat

Estimation of bivariate CDF $f_{ij}(h)$:

Let $\hat{\mathfrak{f}}_{ij}(h) = \frac{1}{n-h} \sum_{t=h+1}^{n} O_t O_{t-h} Z_{t,i} Z_{t-h,j}$, then $E[\hat{\mathfrak{f}}_{ij}(h)] = \left(\frac{1}{n-h} \sum_{t=h+1}^{n} E[O_t O_{t-h}]\right) f_{ij}(h)$. Thus, estimate $f_{ij}(h)$ by

$$\hat{f}_{ij}^{*}(h) = \frac{\frac{1}{n-h} \sum_{t=h+1}^{n} O_t O_{t-h} Z_{t,i} Z_{t-h,j}}{\frac{1}{n-h} \sum_{t=h+1}^{n} O_t O_{t-h}} =: \hat{f}_{ij}(h) / \overline{O_t O_{t-h}}.$$

Estimator for ordinal κ by using $\hat{f}^*, \hat{f}^*_{ij}(h)$:

$$\hat{\kappa}_{\text{ord}}(h) = \frac{\sum_{j=0}^{m-1} \left(\hat{f}_{jj}^*(h) - (\hat{f}_j^*)^2 \right)}{\sum_{i=0}^{m-1} \hat{f}_i^*(1 - \hat{f}_i^*)} \quad \text{for } h \in \mathbb{N}.$$

Ordinal Time Series with Missing Data

Theorem 1: Let (X_t) and (O_t) be α -mixing with exponentially decreasing weights. Then, the corrected CDF-estimator \hat{f}^* satisfies

$$\sqrt{n}\left(\widehat{f}^* - f\right) \stackrel{\mathrm{d}}{\to} \mathsf{N}(\mathbf{0}, \Sigma^*), \quad \text{with } \Sigma^* = (\sigma_{ij}^*)_{i,j=0,\dots,m-1}, \quad \text{where}$$

$$\sigma_{ij}^* = \frac{1}{\pi} \left(f_{\min\{i,j\}} - f_i f_j \right) + \frac{1}{\pi^2} \sum_{h=1}^{\infty} \pi(h) \left(f_{ij}(h) + f_{ji}(h) - 2 f_i f_j \right).$$

Furthermore, the bias $E[\hat{f}_j^*] - f_j$ is of order $o(n^{-1})$.

Theorem 2: Let assumptions of Theorem 1 hold. Then, corrected sample IOV and skew asymptotically normal with

$$E[\widehat{IOV}] \approx IOV\left(1 - \frac{1}{n}\left(\frac{1}{\pi} + \frac{2}{\pi^2}\sum_{h=1}^{\infty}\pi(h)\kappa_{\text{ord}}(h)\right)\right),$$
$$V[\widehat{IOV}] \approx \frac{1}{n}\frac{16}{m^2}\sum_{i,j=0}^{m-1}(1-2f_i)(1-2f_j)\sigma_{ij}^*,$$

and

$$E[s\widehat{kew}] \approx skew + o(n^{-1}), \quad V[s\widehat{kew}] \approx \frac{1}{n} \frac{4}{m^2} \sum_{i,j=0}^{m-1} \sigma_{ij}^*.$$

Theorem 3: Let assumptions of Theorem 1 hold. Denote

$$\pi(h_1, \ldots, h_r) := E[O_0 \cdot O_{h_1} \cdots O_{h_r}] \quad \text{with } 0 < h_1 < \ldots < h_r.$$

Under null hypothesis of (X_t) being i.i.d.,

distribution of $\hat{\kappa}_{ord}(h)$ at lag $h \in \mathbb{N}$ approximately normal

with mean $-\frac{1}{n\pi}$

and variance

$$\frac{1}{n} \frac{\sum_{i,j=0}^{m-1} \left(f_{\min\{i,j\}} - f_i f_j \right) \left(f_{\min\{i,j\}} - f_i f_j + 2 \left(1 + \frac{\pi(h,2h)}{\pi(h)} - 2 \frac{\pi(h)}{\pi} \right) f_i f_j \right)}{\pi(h) \left(\sum_{k=0}^{m-1} f_k (1 - f_k) \right)^2}$$

Possible applications: confidence intervals, hypothesis tests.

Example: Theorem 3 to test for serial independence at lag h. Let (O_t) be i. i. d. ("missing at random"), then simplification

$$V\left[\hat{\kappa}_{\text{ord}}(h)\right] \approx \frac{1}{2} \frac{\sum_{i,j=0}^{m-1} \left(f_{\min\{i,j\}} - f_i f_j\right)^2}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j \left(f_{\min\{i,j\}} - f_i f_j\right)^2}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j \left(f_{\min\{i,j\}} - f_i f_j\right)^2}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j \left(f_{\min\{i,j\}} - f_i f_j\right)^2}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j \left(f_{\min\{i,j\}} - f_i f_j\right)^2}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j \left(f_{\min\{i,j\}} - f_i f_j\right)^2}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j \left(f_{\min\{i,j\}} - f_i f_j\right)^2}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j \left(f_{\min\{i,j\}} - f_i f_j\right)^2}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j \left(f_{\min\{i,j\}} - f_i f_j\right)^2}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j \left(f_{\min\{i,j\}} - f_i f_j\right)^2}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j \left(f_{\min\{i,j\}} - f_i f_j\right)^2}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j \left(f_{\min\{i,j\}} - f_i f_j\right)^2}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j \left(f_{\min\{i,j\}} - f_i f_j\right)^2}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2}} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2}} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2}} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2}} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2}} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2}} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2}} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2}} + \frac{2}{2} \frac{1-\pi}{2} \frac{\sum_{i,j=0}^{m-1} f_i f_j}{\left(f_{\min\{i,j\}} - f_i f_j\right)^2}} + \frac{2}{2} \frac{2}{2} \frac{1-\pi}{2} \frac{$$

$$\frac{1}{n\pi^2} \frac{1}{\left(\sum_{k=0}^{m-1} f_k(1-f_k)\right)^2} + \frac{1}{n\pi^2} \frac{1}{\pi^2} \frac{1}{\left(\sum_{k=0}^{m-1} f_k(1-f_k)\right)^2}.$$

Plug-in estimated probabilities $\widehat{\pi}, \widehat{f}^*$.

Then critical values $-1/(n\hat{\pi}) \mp z_{1-\alpha/2}\hat{\sigma}_{\kappa}$,

where $z_{1-\alpha/2}$ denotes $(1-\alpha/2)$ -quantile of N(0,1).

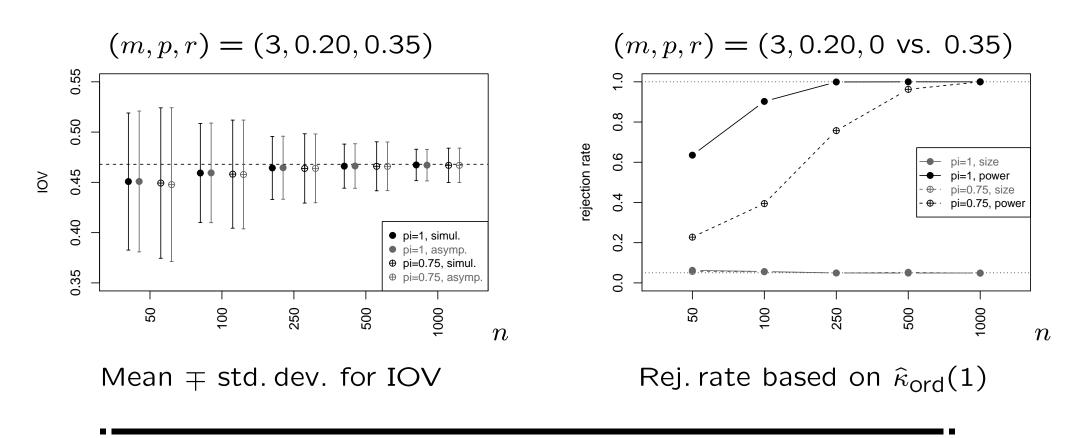
Empirical Illustrations

Simulations & Data Example

MATH Stat

Simulation study in full paper, Weiß (2021), confirms good finite-sample performance of asymptotic approximations.

Illustrative examples for models . . .

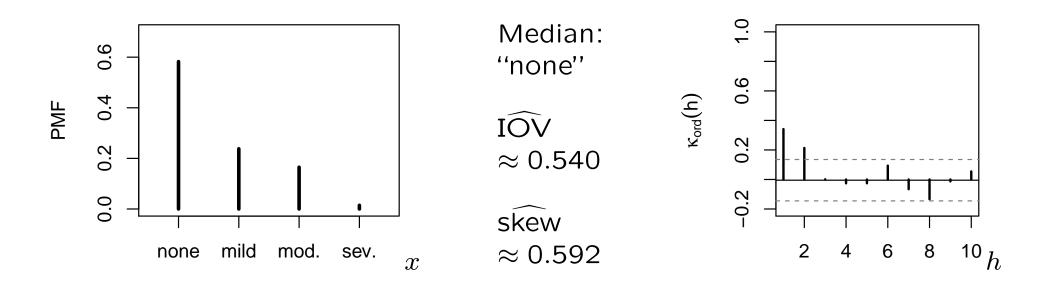


MATH Stat

Data application: migraine patients

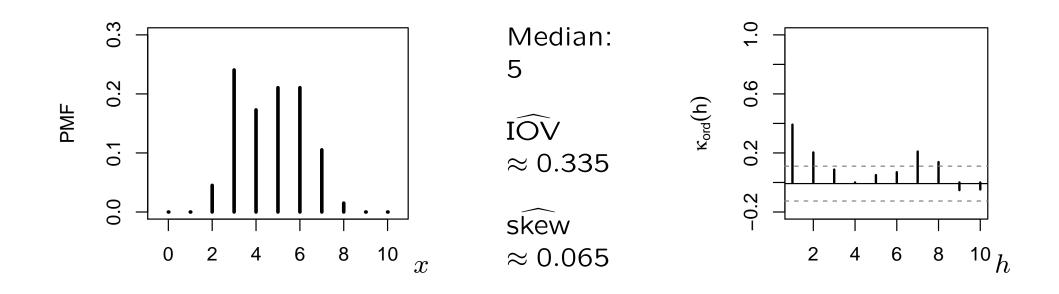
Estimates and tests accounting for missingness for

peak-severity time series of patient A (n = 225, 19 missing):



Data application: migraine patients

Estimates and tests *accounting for missingness* for **stress** time series of patient B (n = 136, 3 missing):



What would happen if just ignore (skip) missing data?

- Then complete time series of reduced lengths
- $\tilde{n} = 206$ (peak severity) and $\tilde{n} = 133$ (stress).
- $\hat{\kappa}_{ord}(h)$ changes from 0.341, 0.213, ... to 0.258, 0.138, ... (approximate SE from 0.072 to 0.055)

for peak-severity series (19 out of 225),

and from 0.392, 0.203, ... to 0.370, 0.195, ... (approximate SE from 0.060 to 0.057)

for stress series (3 out of 136).

\Rightarrow carefully consider missingness for time series analysis!

Thank You for Your Interest!

Universität der Bundeswehr Hamburg

Christian H. Weiß

Department of Mathematics & Statistics

Helmut Schmidt University, Hamburg

weissc@hsu-hh.de

MATH Stat

Weiß (2021) Analyzing categorical time series in the presence of missing observations. *Statistics in Medicine* 40(21), 4675–4690. $(\rightarrow \text{ open access})$

Bloomfield (1970) Spectral analysis with ... JRSS B 32, 369–380. Dunsmuir & Robinson (1981) Asymptotic theo... Sankhyā A 43, 260–281. Neave (1970) Spectral analysis of ... Biometrika 57, 111–122. Parzen (1963) On spectral analysis with ... Sankhyā A 25, 383–392. Scheinok (1965) Spectral analysis with ... AMS 36, 971–977. Vives-Mestres & Casanova (2021) Modelling ... Stat Med 40, 213–225. Weiß (2018) An Introduction to Discrete-Valued Time Series. Wiley. Weiß (2020) Distance-based analysis ... JASA **115**, 1189–1200. Yajima & Nishino (1999) Estimation of the \ldots Sankhyā A 61, 189–207.