Some goodness-of-fit tests for the Poisson distribution with applications in Biodosimetry

C.H. Weiß
Department of Mathematics & Statistics, Helmut Schmidt University, Hamburg

P. Puig
Departament de Matemàtiques, Universitat Autònoma de Barcelona
New characterizations of Poisson distribution

New Goodness-of-Fit (GoF) test for Poisson distribution

Performance analysis by simulations

Several examples of applications in Biodosimetry

Full paper:

Computational Statistics and Data Analysis 144, 106878.

(→ open access)
Some characterizations of Poisson distribution

Motivation & Approach
Some characterizations of Poisson distribution

Common approach in developing GOF tests:
utilize a characterization of considered distribution family,
see Nikitin (2017) for recent survey.

Example: normal distribution characterized by equality

\[X \overset{d}{=} a \cdot X + b \cdot Y \quad \text{with } a, b \in (0, 1) \text{ satisfying } a^2 + b^2 = 1, \]

which only holds iff the i. i. d. and centered r. v. \(X, Y \) are normally distributed, \(X, Y \sim \text{N}(0, \sigma^2) \) (Nikitin, 2017, p. 13).

Christian H. Weiß — Helmut Schmidt University, Hamburg
Among count r.v., i.e., if X has range $\mathbb{N}_0 = \{0, 1, \ldots\}$, the Poisson distribution with mean $\lambda > 0$, $\text{Poi}(\lambda)$, constitutes the “discrete normal” distribution.

Idea: There should be characterization analogous to $X \overset{d}{=} a \cdot X + b \cdot Y$ for “continuous normal” distribution. This could be utilized for constructing GoF tests.

However, multiplications in $X \overset{d}{=} a \cdot X + b \cdot Y$ would destroy the integer nature of Poisson r.v. Thus, integer substitute to multiplication required.
Some characterizations of Poisson distribution

Most popular substitute:

binomial thinning operator (Steutel & van Harn, 1979):

$$\alpha \circ X \sim \text{Bin}(X, \alpha) \text{ with } \alpha \in (0; 1);$$

has **integer range** $\{0, \ldots, X\}$

and behaves **multiplicative** in mean: $E[\alpha \circ X] = E[\alpha \cdot X]$.

Furthermore, binomial thinning preserves Poisson property:

$$X \sim \text{Poi}(\lambda) \implies \alpha \circ X \sim \text{Poi}(\alpha \cdot \lambda).$$

Idea: use binomial thinning to construct Poisson identity.
Some characterizations of Poisson distribution

Theorem 1: Let X_1 and X_2 be i.i.d. count r.v., and let $Y_\alpha = \alpha \circ X_1 + (1 - \alpha) \circ X_2$.

Then, $X_i \sim \text{Poi}(\lambda)$ iff any of following conditions hold:

(a) Y_α has same distribution as X_i for all $\alpha \in (0, 1)$;

(b) X_i has a first-order moment, and Y_α has same distribution as X_i for a certain $\alpha \in (0, 1)$.

Proof: considers probability generating function (pgf) $\phi_X(s) = E[s^X]$, where $\phi_{\alpha \circ X}(s) = \phi_X(1 - \alpha + \alpha s)$, and utilizes Cauchy's functional equation.

See details in [Puig & Weiß (2020)](#).
New GoF tests of Poisson distribution

Definition & Properties
New GoF tests of Poisson distribution

Since binomial thinning is random operator, test statistics cannot be constructed based on $X \overset{d}{=} \alpha \circ X_1 + (1 - \alpha) \circ X_2$.

Thus, compare pgfs of left- and right-hand side, as identity

$$\phi(s) = \phi(1 - \alpha + \alpha s) \phi(\alpha + (1 - \alpha) s),$$

holds for Poisson distribution.

Tests statistics relying on discrepancies

$$\left\| \phi(t) - \phi(1 - \alpha + \alpha t) \phi(\alpha + (1 - \alpha) t) \right\|$$

using L^1-, L^2-, or L^∞-norm for $\| \cdot \|$.

Christian H. Weiß — Helmut Schmidt University, Hamburg
New GoF tests of Poisson distribution

If members of LC class as alternatives (Puig & Kokonendji, 2018), i.e., count r. v. having a log-convex pgf in \([0, 1]\), then following refinements hold.

Theorem 2: Let \(\phi(t)\) be pgf of r. v. from LC-class. Then, for all \(t, \alpha \in [0, 1]\),

\[
\phi(t) \geq \phi(1 - \alpha + \alpha t) \phi(\alpha + (1 - \alpha)t).
\]

Proposition 1: Consider \(g(\alpha) = \phi(t) - \phi(1 + \alpha(t - 1)) \phi(t - \alpha(t - 1))\), where \(t \neq 1\) is fixed and \(\phi(t)\) is pgf of non-Poisson r. v. from LC-class. Then, \(g(\alpha)\) is maximized for \(\alpha = 1/2\).
For GoF test statistics relying on above pgf (in)equalities, replace pgf by empirical pgf (epgf) defined as

\[\hat{\phi}(s) = \frac{1}{n} \sum_{i=1}^{n} s^{X_i} = \frac{1}{n} \sum_{j=0}^{m} f_j s^j, \]

where \(f_j = \{ \#X_i : X_i = j \} \) and \(m = \max \{ X_1, \ldots, X_n \} \);

see Gürtler & Henze (2000) for further epgf-based GoF tests.
New GoF tests of Poisson distribution

If testing against LC-alternatives, consider signed discrepancy and evaluate at $\alpha = 1/2$:

$$\hat{\Delta}_1 = \int_0^1 \left(\hat{\phi}(t) - \left[\hat{\phi} \left(\frac{t + 1}{2} \right) \right]^2 \right) dt,$$

$$\hat{\Delta}_\infty = \max_{t \in [0,1]} \left\{ \hat{\phi}(t) - \left[\hat{\phi} \left(\frac{t + 1}{2} \right) \right]^2 \right\}.$$
New GoF tests of Poisson distribution

If testing against more general alternatives, consider absolute discrepancy instead:

\[\hat{\Delta}_1^* = \int_0^1 \left| \hat{\phi}(t) - \left[\hat{\phi}\left(\frac{t + 1}{2}\right) \right]^2 \right| dt , \]

\[\hat{\Delta}_2 = \int_0^1 \left(\hat{\phi}(t) - \left[\hat{\phi}\left(\frac{t + 1}{2}\right) \right]^2 \right)^2 dt , \]

\[\hat{\Delta}_\infty^* = \max_{t \in [0,1]} \left\{ \left| \hat{\phi}(t) - \left[\hat{\phi}\left(\frac{t + 1}{2}\right) \right]^2 \right| \right\} . \]

If additional weighting scheme \(\cdot t^a \) as recommended by Gürtler & Henze (2000), we denote \(\hat{\Delta}_{1,a}, \hat{\Delta}_{1,a}^* \) and \(\hat{\Delta}_{2,a} \).

Christian H. Weiß — Helmut Schmidt University, Hamburg
Implementation of new GoF tests:

• Computation of test statistics $\hat{\Delta}_1, \ldots$:
 Although one could explicitly solve integrals in $\hat{\Delta}_1, \hat{\Delta}_2$, so integrals would turn to sums, most efficient implementation in R by numerical integration (and using numerical optimization for $\hat{\Delta}_\infty$).

• Computation of critical values: (\ldots)
New GoF tests of Poisson distribution

Implementation of new GoF tests:

- **Computation of test statistics** $\widehat{\Delta}_1, \ldots:$ (…)

- **Computation of critical values:**

 Under Poisson null, $(X_1, \ldots, X_n) \mid S$ is multinomial with parameters $(S, 1/n, \ldots, 1/n)$, see González-Barrios et al. (2006), where $S = \sum_{i=1}^{n} X_i$ is sufficient statistic.

 Thus, percentiles of statistics’ exact distribution by Monte–Carlo simulation (better accuracy with more replications).

Christian H. Weiß — Helmut Schmidt University, Hamburg
Conclusions

- Comprehensive simulation study, see Puig & Weiß (2020). Power of new tests often better than for selected competitors. Particularly good performance of $\hat{\Delta}_1^{(*)}$ and $\hat{\Delta}_{1,5}^{(*)}$.

- Several examples from Biodosimetry, where important to identify whether distribution of chromosome aberrations from patient’s blood sample is Poisson or not (essential for dose estimation and to evaluate extension of irradiation).
Outlook

• We developed GoF tests based on Poisson identity

\[X \overset{d}{=} \alpha \circ X_1 + (1 - \alpha) \circ X_2 \]

\[\Leftrightarrow \phi(s) = \phi(1 - \alpha + \alpha s) \phi(\alpha + (1 - \alpha)s). \]

Another Poisson identity (Weiß & Aleksandrov, 2020):

Stein–Chen identity \[E[X \cdot f(X)] = \lambda \cdot E[f(X + 1)], \]
see Aleksandrov et al. (2021) for GoF tests.

• Research in progress:

GoF tests based on binomial Stein identity,
see talk by B. Aleksandrov in “Time Series” section:

“Novel goodness-of-fit tests for binomial count time series”.

Christian H. Weiß — Helmut Schmidt University, Hamburg
Thank You
for Your Interest!

Christian H. Weiß
Department of Mathematics & Statistics
Helmut Schmidt University, Hamburg
weissc@hsu-hh.de