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• New characterizations of Poisson distribution

• New Goodness-of-Fit (GoF) test for Poisson distribution

• Performance analysis by simulations

• Several examples of applications in Biodosimetry
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Common approach in developing GOF tests:

utilize a characterization of considered distribution family,

see Nikitin (2017) for recent survey.

Example: normal distribution characterized by equality

X
d
= a ·X + b · Y with a, b ∈ (0,1) satisfying a2 + b2 = 1,

which only holds iff the i. i. d. and centered r. v. X,Y are normally

distributed, X,Y ∼ N(0, σ2) (Nikitin, 2017, p. 13).
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Among count r. v., i. e., if X has range N0 = {0,1, . . .},

the Poisson distribution with mean λ > 0, Poi(λ),

constitutes the “discrete normal” distribution.

Idea: There should be characterization analogous to

X
d
= a ·X + b · Y for “continuous normal” distribution.

This could be utilized for constructing GoF tests.

However, multiplications in X
d
= a ·X + b · Y

would destroy the integer nature of Poisson r. v.

Thus, integer substitute to multiplication required.
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Most popular substitute:

binomial thinning operator (Steutel & van Harn, 1979):

α ◦X ∼ Bin(X,α) with α ∈ (0; 1);

has integer range {0, . . . , X}

and behaves multiplicative in mean: E[α ◦X] = E[α ·X].

Furthermore, binomial thinning preserves Poisson property:

X ∼ Poi(λ) ⇒ α ◦X ∼ Poi(α · λ).

Idea: use binomial thinning to construct Poisson identity.
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Theorem 1: Let X1 and X2 be i. i. d. count r. v.,

and let Yα = α ◦X1 + (1− α) ◦X2.

Then, Xi ∼ Poi(λ) iff any of following conditions hold:

(a) Yα has same distribution as Xi for all α ∈ (0,1);

(b) Xi has a first-order moment, and

Yα has same distribution as Xi for a certain α ∈ (0,1).

Proof: considers probability generating function (pgf)

ϕX(s) = E[sX], where ϕα◦X(s) = ϕX(1− α+ α s),

and utilizes Cauchy’s functional equation.

See details in Puig & Weiß (2020). #
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Since binomial thinning is random operator, test statistics

cannot be constructed based on X
d
= α ◦X1 + (1− α) ◦X2.

Thus, compare pgfs of left- and right-hand side, as identity

ϕ(s) = ϕ(1− α+ αs)ϕ
(
α+ (1− α)s

)
,

holds for Poisson distribution.

Tests statistics relying on discrepancies
∥∥∥∥ϕ(t) − ϕ(1− α+ αt)ϕ

(
α+ (1− α)t

)∥∥∥∥
using L1-, L2-, or L∞-norm for ∥ · ∥.
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If members of LC class as alternatives (Puig & Kokonendji,

2018), i. e., count r. v. having a log-convex pgf in [0,1],

then following refinements hold.

Theorem 2: Let ϕ(t) be pgf of r. v. from LC-class.

Then, for all t, α ∈ [0,1],

ϕ(t) ≥ ϕ(1− α+ αt)ϕ
(
α+ (1− α)t

)
.

Proposition 1: Consider g(α) = ϕ(t) − ϕ
(
1 + α(t − 1)

)
ϕ
(
t −

α(t − 1)
)
, where t ̸= 1 is fixed and ϕ(t) is pgf of non-Poisson

r. v. from LC-class. Then, g(α) is maximized for α = 1/2.
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For GoF test statistics relying on above pgf (in)equalities,

replace pgf by empirical pgf (epgf) defined as

ϕ̂(s) =
1

n

n∑
i=1

sXi =
1

n

m∑
j=0

fj s
j,

where fj = {#Xi : Xi = j} and m = max {X1, . . . , Xn};

see Gürtler & Henze (2000) for further epgf-based GoF tests.
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If testing against LC-alternatives,

consider signed discrepancy and evaluate at α = 1/2:

∆̂1 =
∫ 1

0

ϕ̂(t)− [
ϕ̂

(
t+1

2

)]2 dt ,

∆̂∞ = max
t∈[0,1]

ϕ̂(t)−
[
ϕ̂

(
t+1

2

)]2 .
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If testing against more general alternatives,

consider absolute discrepancy instead:

∆̂∗
1 =

∫ 1

0

∣∣∣∣∣∣ϕ̂(t)−
[
ϕ̂

(
t+1

2

)]2∣∣∣∣∣∣ dt ,

∆̂2 =
∫ 1

0

ϕ̂(t)− [
ϕ̂

(
t+1

2

)]22 dt ,

∆̂∗
∞ = max

t∈[0,1]


∣∣∣∣∣∣ϕ̂(t)−

[
ϕ̂

(
t+1

2

)]2∣∣∣∣∣∣
 .

If additional weighting scheme “ · ta ” as recommended by

Gürtler & Henze (2000), we denote ∆̂1,a, ∆̂∗
1,a and ∆̂2,a.
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Implementation of new GoF tests:

• Computation of test statistics ∆̂1, . . .:

Although one could explicitly solve integrals in ∆̂1, ∆̂2,

so integrals would turn to sums,

most efficient implementation in R by numerical integration

(and using numerical optimization for ∆̂∞).

• Computation of critical values: (. . . )
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Implementation of new GoF tests:

• Computation of test statistics ∆̂1, . . .: (. . . )

• Computation of critical values:

Under Poisson null, (X1, . . . , Xn)
∣∣∣S is multinomial

with parameters (S, 1/n, . . . ,1/n),

see González-Barrios et al. (2006),

where S =
∑n
i=1Xi is sufficient statistic.

Thus, percentiles of statistics’ exact distribution

by Monte–Carlo simulation

(better accuracy with more replications).
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• Comprehensive simulation study, see Puig & Weiß (2020).

Power of new tests often better than for selected competi-

tors. Particularly good performance of ∆̂(∗)
1 and ∆̂(∗)

1,5.

• Several examples from Biodosimetry, where important to

identify whether distribution of chromosome aberrations

from patient’s blood sample is Poisson or not (essential for

dose estimation and to evaluate extension of irradiation).
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• We developed GoF tests based on Poisson identity

X
d
= α ◦X1 + (1− α) ◦X2

⇔ ϕ(s) = ϕ(1− α+ αs)ϕ
(
α+ (1− α)s

)
.

Another Poisson identity (Weiß & Aleksandrov, 2020):

Stein–Chen identity E
[
X · f(X)

]
= λ · E

[
f(X +1)

]
,

see Aleksandrov et al. (2021) for GoF tests.

• Research in progress:

GoF tests based on binomial Stein identity,

see talk by B. Aleksandrov in “Time Series” section:

“Novel goodness-of-fit tests for binomial count time series”.
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