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Statistical process control (SPC): (Montgomery, 2009)

monitor quality-related processes, for example,

in manufacturing, service industries, health surveillance.

Control chart: certain statistics computed sequentially

in time and used to decide about actual state of process.

No intervention in process if in control, i. e., if monitored

statistics stationary according to specified time series model

(e. g., independent and identically distributed (i. i. d.)

with specified marginal distribution).
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By contrast, if deviations from in-control model, such as shifts

or drifts in model parameters, then process out of control.

In traditional control chart applications, we compare plotted sta-

tistics against given control limits. If statistic beyond limits, then

alarm triggered to indicate possible out-of-control situation.

Example control chart:
(see below)

Alarm at t = 25, because
upper control limit violated.
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Aim: true alarm as soon as possible,

but avoid false alarm for as long as possible.

Here, waiting time until first alarm is

run length of control chart.

Should be large (low) if process in control (out of control).

For these and further basics on SPC and control charts,

see textbook by Montgomery (2009).

Most SPC literature about quality characteristics measured

on continuous quantitative scale (variables charts).

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Here: discrete-valued characteristics, attributes charts.

Focus on qualitative data monitored sequentially in time,

thus categorical event series (Xt)t∈N={1,2,...}.

Quality features Xt have finite range S of either

• unordered but distinguishable categories (nominal data)

• or categories exhibiting natural order (ordinal data).

Unique notation: S = {s0, s1, . . . , sd} with some d ∈ N,

arranged in lexicographical order (nominal case)

or natural order (ordinal case).

Special case d = 1 (Xt binary): 0–1 coding s0 := 0, s1 := 1.

Christian H. Weiß — Helmut Schmidt University, Hamburg



Monitoring Categorical Event Series MATH 

STAT 

Many manufacturing applications, for example:

• six nominal types of paint defect

on manufactured ceiling fan covers (Mukhopadhyay, 2008);

• four ordinal categories of flash

on head of electric toothbrushes (Li et al., 2014).

Further examples & references in main paper for this talk,

Weiß (2021) On approaches for monitoring categorical event

series. In K.P. Tran (ed.): Control Charts and Machine Lear-

ning for Anomaly Detection in Manufacturing, Springer Series

in Reliability Engineering; 105–129.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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In Weiß (2021), survey of three approaches for

monitoring categorical event series:

1. Monitor counts of events for successive time intervals,

i. e., categorical data transformed into count time series,

use control charts for count data.

2. Control charts directly for categorical event series.

Different solutions required for nominal vs. ordinal data.

3. Rule-based machine learning procedures to categorical

event series (scalability w. r.ṫ. amount/complexity of data).

Because of time limitations: sketches for Approaches 1 & 3,

detailed discussion and data examples for Approach 2.
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Different ways of transforming categorical event series (Xt)N

into count process (Yt)N:

• count categorical events (e. g., malfunctions) within fixed

time intervals ⇒ counts Yt might become arbitrarily large,

i. e., unbounded counts with range N0 = {0,1, . . .};

• count non-conforming items in samples of size n ∈ N

⇒ bounded counts Yt with range {0, . . . , n};

• determine discrete waiting time until certain event happens

(e. g., number of manufactured items until next defective)

⇒ unbounded counts Yt with range N or N0.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Stochastic properties of (Yt)N implied by (Xt)N.

Example: binary process (Xt)N (“defect— yes or no”),

take segments of length n ∈ N from (Xt)N

at (distant) inspection times t1, t2, . . . ∈ N,

event counts per segment, i. e., Yr = Xtr + . . .+Xtr+n−1.

• If (Xt)N i. i. d., then (Yr)N i. i. d., binomial distribution.

• If (Xt)N stationary Markov chain, i. e.,

P (Xt = x | Xt−1 = x1, Xt−2 = x2, . . .) = p(x|x1),

then Yr = Xtr + . . .+Xtr+n−1 Markov-binomial distr.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Phase-I analysis: For count time series y1, . . . , yT ,

standard tools from time series analysis can be applied,

such as time series plot or (partial) autocorrelation function.

But for modeling underlying count process (Yt)N,

tailor-made models required, such as

• integer-valued autoregressive moving-average (INARMA),

• int.-val. generalized AR conditional heterosced. (INGARCH),

• non-linear regression models, and many more.

See introductory textbook by Weiß (2018a) for overview.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Most basic chart for bounded counts: np-chart

(for unbounded counts: c-chart), see Montgomery (2009).

Shewhart-type chart, where counts Y1, Y2, . . . directly plotted

on chart and compared to given control limits 0 ≤ l < u.

Alarm triggered for rth count if Yr > u or Yr < l.

(analogous to control chart plotted before)

Limits l, u such that certain ARL performance (average RL).

Here, ARL expresses mean waiting time until first alarm.

Choose l, u such that in-control ARL close to given target value.

But: memory-less, insensitive to small deteriorations.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Popular charts with inherent memory:

CUSUM chart (cumulative sum) dating back to Page (1954),

C0 = c0, Cr = max
{
0, Yr − k + Cr−1

}
for r = 1,2, . . .

withe reference value k > 0 and (upper) control limit h > 0;

EWMA chart (exponentially weighted moving-average)

by Roberts (1959), Zr = λ · Yr + (1− λ) · Zr−1

with smoothing parameter λ ∈ (0; 1] and control limits 0 ≤ l < u.

Example: Rakitzis et al. (2017) investigate np- and CUSUM

charts for binomial AR(1) process (count Markov chain).

Christian H. Weiß — Helmut Schmidt University, Hamburg
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As data are qualitative, standard tools from time series analysis

cannot be used. Instead, tailor-made solutions are required for

both analysis and modeling, where ordinal case to be distinguis-

hed from nominal one.

• Arithmetic operations not applicable to S = {s0, s1, . . . , sd},

hence moments not defined for (Xt)N,

e. g., no mean, variance, ACF for categorical event series.

• If (Xt)N ordinal, at least quantiles and time series plot.

• If (Xt)N nominal, location by mode, rate evolution graph.

See Weiß (2018a) for a discussion.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Nominal range Ordinal range

Marginal PMF: Marginal CDF:
(probability mass function) (cumulative distribution fct.)

p = (p0, . . . , pd)
⊤ ∈ [0; 1]d+1 f = (f0, . . . , fd−1)

⊤ ∈ [0; 1]d

with pi = P (X = si) with fi = P (X ≤ si)

Bivariate lag-h PMF: Bivariate lag-h CDF:
pij(h) = P (Xt = si, Xt−h = sj) fij(h) = P (Xt ≤ si, Xt−h ≤ sj)

Binarization (Y t)N with Binarization (Zt)N with
Yt,i = 1{Xt=si}, so E[Y t] = p Zt,i = 1{Xt≤si}, so E[Zt] = f

Sample PMF: Sample CDF:

p̂ = 1
T

∑T
t=1Y t f̂ = 1

T
∑T
t=1Zt

Bivariate (cumulative) relative frequencies

p̂ij(h) = 1
T−h

∑T
t=h+1 Yt,i Yt−h,j f̂ij(h) = 1

T−h
∑T
t=h+1Zt,iZt−h,j

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Note that both binarizations lead to different range:

Y t ∈

1
0...
0

 ,

0
1...
0

 , . . . ,

0...
1
0

 ,

0...
0
1

 =: {e0, . . . , ed} ⊂ [0; 1]d+1

vs.

Zt ∈

1
1...
1

 ,

0
1...
1

 , . . . ,

0...
0
1

 ,

0...
0
0

 =: {c0, . . . , cd} ⊂ [0; 1]d.

Dispersion concepts for qualitative random variables:

• Minimal dispersion iff one-point distribution,

i. e., p ∈ {e0, . . . , ed} or f ∈ {c0, . . . , cd}, respectively.

• Maximal nominal dispersion iff uniform, p = ( 1
d+1, . . . ,

1
d+1)

⊤.

• Max. ordinal disp. iff extreme two-point, f = (12, . . . ,
1
2)

⊤.
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Nominal range Ordinal range

Index of qualitative variation: Index of ordinal variation:

IQV = d+1
d

(
1− ∑d

i=0 p
2
i

)
IOV = 4

d
∑d−1
i=0 fi(1− fi)

Ordinal skewness:

skew = 2
d

∑d−1
i=0 fi − 1

Nominal Cohen’s κ: Ordinal Cohen’s κ:

κnom(h) =

∑d
j=0

(
pjj(h)− p2j

)
1− ∑d

i=0 p
2
i

κord(h) =

∑d−1
j=0

(
fjj(h)− f2j

)
∑d−1
i=0 fi(1− fi)

The signed κ-measures serve as substitutes of ACF,

where positive (negative) values express extend of

(dis)agreement between Xt and Xt−h, see Weiß (2018a, 2020).

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Nominal time series models, see Weiß (2018a), include

• higher-order Markov models,

• variable-length Markov models,

• mixture transition distribution models,

• Hidden-Markov models,

• generalized linear models (GLMs),

• discrete ARMA(p,q) models of Jacobs & Lewis (1983):

(. . . )

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Nominal time series models, see Weiß (2018a), include

• (. . . )

• discrete ARMA(p,q) models of Jacobs & Lewis (1983):

i. i. d. multinomial “random choice” vectors

Dt = (αt,1, . . . , αt,p, βt,0, . . . , βt,q) ∼ Mult(1; ϕ1, . . . , ϕp, φ0, . . . , φq),

i. i. d. categorical innovations (ϵt)Z with range S,

Xt = αt,1 ·Xt−1+ . . .+αt,p ·Xt−p + βt,0 · ϵt+ . . .+βt,q · ϵt−q,

where 0 · s := 0, 1 · s := s, and s+0 := s for each s ∈ S.

Leads to Yule–Walker equations for κ-measures.

Christian H. Weiß — Helmut Schmidt University, Hamburg



Analysis and Modeling of Categorical Time Series MATH 

STAT 

Modeling approaches for ordinal event series include

• rank-count approach (Weiß, 2020),

i. e., Xt = sIt with bounded rank count It ∈ {0, . . . , d},

uses count model for rank-count process (It)N;

• latent-variable approach (Agresti, 2010) with real-valued Lt,

where Xt = sj iff Lt ∈ [ηj−1; ηj) (thus fj = FL(ηj))

with thresholds −∞ = η−1 < η0 < . . . < ηd−1 < ηd = +∞;

logistic (normal) dist. for Lt gives cumulative logit (probit);

• commonly combined with regression approach (GLMs),

see Höhle (2010), Li et al. (2018).

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Continuous process monitoring

(i. e., monitored statistic updated with each new observation):

• log-LR CUSUM chart (log-likelihood ratio) based on

in-control p0 and anticipated out-of-control p1:

Ct = max {0, ℓRt + Ct−1} with ℓRt =
d∑

j=0
Yt,j ln

p1,j
p0,j

 ,

for i. i. d. data by Ryan et al. (2011), Markov processes by

Weiß (2018b), categorical logit regression by Höhle (2010);

• Ye et al. (2002): EWMA for nominal binarizations (Y t)N;

• see Weiß (2021) for further references on

approaches for continuous process monitoring.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Sample-based process monitoring

(i. e., samples taken from (Xt)N to compute plotted statistics).

Compute (absolute) sample frequencies

Nr = Y tr + . . .+ Y tr+n−1 from nominal binarizations (Y t)N,

or cumulative frequencies

Cr = Ztr + . . .+Ztr+n−1 from ordinal binarizations (Zt)N.

• Most well-known approach: χ2-chart (Duncan, 1950),

X2
r =

d∑
j=0

(
Nr,j − n p0,j

)2
n p0,j

,

measures any kind of deviation from in-control PMF p0.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Sample-based process monitoring

In quality-related applications, commonly conforming category,

say s0, much more frequent than defect categories s1, . . . , sd.

So p0 often close to one-point distribution e0 (low dispersion).

⇒ control charts monitoring categorical dispersion!

• IQV chart for nominal event series (Weiß, 2018b),

IOV chart for ordinal ones (Bashkansky & Gadrich, 2011):

IQVr = d+1
d

(
1−

d∑
j=0

N2
r,j

n2

)
, IOVr = 4

d

d−1∑
j=0

Cr,j

n

(
1−

Cr,j

n

)
.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Sample-based process monitoring

. . . for nominal event series with

inherent memory for sensitivity towards small changes:

• Sample version of log-LR CUSUM by Ryan et al. (2011):

Cr = max {0, ℓRr + Cr−1} with ℓRt =
d∑

j=0
Nr,j ln

p1,j
p0,j

 .

Considers “weighted class count” (weights ln
(
p1,j/p0,j

)
).

• Perry (2020) applies EWMA approach

to weighted class counts with weights 1/(n p0,j),

i. e., no anticipated out-of-control scenario.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Sample-based process monitoring

. . . for ordinal event series often use “weighted class counts”:

• Demerit charts (Montgomery, 2009, Section 7.3.3):

use demerit weights 0 = w0 < w1 < . . . < wd

to reflect severity of defect categories

Dr = w1Nr,1 + . . .+ wdNr,d.

• Sometimes, weights by statistical reasoning, such as

log-LR CUSUM by Steiner et al. (1996) considering

latent-variable approach for out-of-control scenario.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Sample-based process monitoring

. . . for ordinal event series:

• SOC chart (simple ordinal categorical) by Li et al. (2014),

motivated by latent-variable approach (logit model):

SOCr =

∣∣∣∣∣∣∣
d∑

j=0
(f0,j−1 + f0,j − 1)Nr,j

∣∣∣∣∣∣∣ with f0,−1 := 0,

where average cumulative proportions 1
2 (f0,j−1 + f0,j)

known as “ridits” (Agresti, 2010, p. 10).

Li et al. (2014) suggest to substitute raw frequencies Nr

by EWMA frequencies: N (λ)
r = λNr + (1− λ)N (λ)

r−1.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Sample-based process monitoring

. . . for ordinal event series:

• ACD chart (average cum. data) by Wang et al. (2018):

ACDr = n−1
(
Nr − np0

)⊤V
(
Nr − np0

)
(or N (λ)

r ),

quadratic-form statistics with weight matrix V.

If V−1 = diag(p0), then χ2-chart.

Wang et al. (2018): V = L⊤ diag(w)L with weight vector

w = 1 = (1, . . . ,1)⊤ and triangular L: lower (upper) triangle

filled with 2 (0), main diagonal with 1. (. . . )

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Sample-based process monitoring

. . . for ordinal event series:

• (. . . ) Then, ACD chart has statistics

ACDr = n−1
d∑

j=0
wj

(
Cr,j−1 + Cr,j − n (f0,j−1 + f0,j)

)2
,

so again “ridits”.

• References on further charts in Weiß (2021).

Application to two real-world data examples later in talk.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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General idea: Apply rule-based procedures from

temporal data mining (Laxman & Sastry, 2006; Weiß, 2017)

to quality-related processes.

This link was first studied by Göb (2006).

Most relevant: procedures of episode mining, where rules

generated based on available categorical event sequence

(“Phase-I data”), then applied to forecasting events in ongoing

process (“Phase-II application”).

While control charts trigger alarm once limits violated,

rule-based proc. require action once critical event predicted.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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For illustration of episode mining,

see approaches by Mannila et al. (1997):

Aim: derive and apply rules such as

if “episode” (xt−2, xt−1, xt) = (s0, s1, s0) observed,

then expect Xt+1 = s2 with some “confidence”.

Notation: “a ⇒ b” with a = (s0, s1, s0) and b = (s0, s1, s0, s2).

To prevent spurious correlation,

episodes must satisfy given support requirement:

“frequency” of episodes has to exceed threshold value suppmin.

Such episodes called frequent episodes.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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For frequent episodes a, b with a sub-episode of b,

rule a ⇒ b evaluated by confidence conf(a ⇒ b) =
supp(b)
supp(a)

,

interpreted as predictive power of a ⇒ b.

Permitted episodes not only single tuples from S × S2 × . . .,

but also sets of tuples possible, using operators like

• wildcard “*” for arbitrary symbol from S, or

• parallel episode “[. . .]” for arbitrary ordering of symbols.

Example:
(
s0, ∗

)
corresponds to set

{
(s0, s0), . . . , (s0, sd)

}
,

and
(
s0, [s1, s2]

)
to

{
(s0, s1, s2), (s0, s2, s1)

}
.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Highly efficient algorithms for frequent episodes mining by

applying famous Apriori principle of Agrawal & Srikant (1994):

Episode a can only be frequent (i. e., supp(a) > suppmin)

if all its sub-episodes frequent as well.

⇒ bottom-up approach: given set Fk−1 of frequent episodes

of length k − 1, set Ck with candidate episodes of length k

constructed by combining episodes from Fk−1.

Then, their support determined to get Fk ⊆ Ck.

Further details and illustrative example in Weiß (2021).

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Manufacturing of ceiling fan covers (Mukhopadhyay, 2008)

with possible paint defects (among d = 6 defect categories):

s0 = “no defect”,

s1 = “poor covering”, s2 = “overflow”, s3 = “patty defect”,

s4 = “bubbles”, s5 = “paint defect”, s6 = “buffing”.

Like in Weiß (2018b), assume in-control PMF

p0 = (0.769,0.081,0.059,0.021,0.023,0.022,0.025)⊤,

i. e., if rth sample of size nr, then Nr ∼ Mult(nr,p0).

If just “defect —yes or no”, then rth defect count

Yr ∼ Bin(nr, π0) with π0 = p0,1 + . . .+ p0,d = 0.231.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Table 1 of Mukhopadhyay (2008): 24 samples with (heavi-

ly) deviating sample sizes, n1, . . . , n24 vary between 20 and 404.

For nominal events (Nr), we use χ2-chart and IQV chart,

while for aggregated defect counts (Yr), we use np-chart.

Chart design with target in-control ARL as ARL0 = 370.4.

For np-chart, as for any Shewhart chart, ARL = 1
/
P

(
Y ̸∈ [l;u]

)
,

so control limits as α/2- and (1− α/2)-quantile

of Bin(nr, π0), where α = 1/370.4 ≈ 0.00270.

For X2
r and IQVr, we use asymptotic distributions.

Christian H. Weiß — Helmut Schmidt University, Hamburg



Real Application: Nominal Event Sequence MATH 

STAT 

“Probability limits” [lr;ur] vary according to sample sizes nr,

also target ARL not met exactly because of discreteness.

For example, sample sizes n1 = 176, n2 = 160, . . .

lead to [l1;u1] = [25; 58], [l2;u2] = [22; 54], . . .

with individual in-control ARL values 444.4,526.6, . . .

χ2-chart IQV chart np-chart
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χ2-chart: alarm for 5th sample, but why? → “black box”

IQV chart: violation of lower limit for r = 5,

so dispersion decreased compared to p0,

so N5/n5 approaches one-point distrib. in s0 = “no defect”,

i. e., quality improvement (or problems in quality evaluation).

IQV chart (also np-chart): further alarms at r = 11,17

by (slight) violation of upper limit,

so quality deterioration this time.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Manufacturing of electric toothbrushes (Li et al., 2014).

In one production step, two parts of brush head welded together.

Excess plastic (“flash”) might occur, could injure users.

Thus, important quality characteristic:

extent of flash, with the d+1 = 4 ordinal levels

s0 = “slight”, s1 = “small”, s2 = “medium”, s3 = “large”.

In Phase-I analysis, Li et al. (2014) identify

p0 = (0.8631,0.0804,0.0357,0.0208)⊤, now for chart design.

For Phase-II application, 30 samples of unique size n = 64.

We apply (upper-sided) IOV, SOC, and ACD chart.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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First, charts without EWMA smoothing of frequencies Nr.

Upper control limits (target ARL0 = 370.4) by simulations,

leading to 0.4915 for IOV chart, 8.432 for SOC chart,

and 4.638 for ACD chart.
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Alarm for 25th sample, quality deterioration.
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Next, additional EWMA smoothing, N (λ)
r = λNr+(1−λ)N (λ)

r−1

with N (λ)
0 = np0 and λ = 0.1 (also see Li et al., 2014).

More narrow control limits, 0.3021 for IOV chart,

1.707 for SOC chart, 0.1777 for ACD chart.
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First alarms at r = 25 (IOV), r = 27 (SOC), r = 26 (ACD).
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Overall conclusion: problem with 25th sample.

This sudden change rather strong, so immediately detected by

Shewhart charts. Some EWMA charts react with delay as

EWMA charts more well-suited for persistent changes.

In fact, N25/n ≈ (0.7344,0.1094,0.06250.0938)⊤;

so compared to p0 = (0.8631,0.0804,0.0357,0.0208)⊤,

conforming probability for s0 = “slight” notably reduced,

while probability for worst state s3 = “large” increased.

So N25/n moved towards extreme two-point distribution,

thus good performance of IOV charts.
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• Monitoring of categorical event series demanding task.

During Phase I, appropriate methods for time series analysis

and feasible stochastic models needed,

while chart design for Phase-II application

suffers from discreteness problems.

• Future research:

Control charts for serially dependent categorical event series.

In particular, tailored methods for ordinal time-series data,

because particularly relevant for real applications.
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