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Count data: X is (unbounded) count random variable if

X takes only values from N0 = {0,1,2, . . .}.

Example: Random number of e-mails at some day, etc.

Default choice: Poisson distribution Poi(λ),

P (X = x) = e−λ ·
λx

x!
. Equidispersion: E[X] = λ = V [X].
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Bounded counts: X with range {0, . . . , n} for given n ∈ N.

Example: occupied rooms in hotel with n rooms, etc.

Default choice: Binomial distribution Bin(n, π),

P (X = x) =
(n
x

)
· πx (1− π)n−x.

Binomial dispersion: nV [X] = E[X] (n− E[X]).
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Time series: chronolog. ordered sequence of observ. (xt)t∈T0
.

Example: stock prices, water levels, population . . .

If observations are count values, i. e.,

xt ∈ N0 = {0,1,2, . . .} ⇒ count time series.

Time series of interest in statistics if

values stem from random phenomenon → Process:

family of random variables (Xt)T , realized at times t ∈ T .

Time series: realizations (xt)T0
from process (Xt)T ,

where T0 ⊆ T .

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Example 1: Monthly counts of “major strikes” (1994–2002):

strikes and lock-outs of ≥ 1 000 workers.

Source: U. S. Bureau of Labor Statistics, Weiß (2018).
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Example 1: Descriptive statistics.

Mean 4.94,

variance 7.85,

hence overdispersion.

This contradicts
a Poisson model.
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Example 2: Monthly counts of “EA17” countries

with stable prices (i.e., inflation < 2 %), Jan. 2000 to Aug. 2012.

So upper bound n = 17. Source: Weiß & Kim (2014).
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Example 3: Weekly number of new infections with

Legionnaires’ disease in Germany, 2002–2008.

Source: Robert-Koch-Institut, Weiß (2018).
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Possible features for real-world count time series:

• typically low counts,

• overdispersion or zero inflation, and

• serial dependence;

• sometimes structural changes, or

• seasonality or trend.

How to model count time series?

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Basic approach for real-valued processes:

stationary ARMA(p,q) model.

Let innovations (εt)Z be white noise, then

Xt = α1 ·Xt−1 + . . .+ αp ·Xt−p + εt + β1 · εt−1 + . . .+ βq · εt−q,

where α1, . . . , αp, β1, . . . , βq ∈ R suitably chosen.

ACF via Yule–Walker equations.

Enumerous extensions: SARIMA, ARFIMA, GARCH, . . .

Not applicable to count processes: generally, α ·X 6∈ N0.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Tailor-made models

required for count time series, e.g.,

• thinning-based models (→ INARMA),

• regression models (→ INGARCH),

• hidden Markov models, . . . .

In the sequel: look at thinning-based and regression models

for count data-generating processes (DGPs).

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Conventional ARMA models: “multiplication problem”.

Possible solution: Use appropriate thinning operations.

Most popular:

binomial thinning operator (Steutel & van Harn, 1979):

α ◦X ∼ Bin(X,α) with α ∈ (0; 1); has range {0, . . . , X}.

In particular, E[α ◦X] = E[α ·X].

(≈ number of “survivors” from population of size X)

Christian H. Weiß — Helmut Schmidt University, Hamburg



On Models for Count Time Series MATH 

STAT 

Let (εt)Z be i. i. d. with range N0 = {0,1, . . .},

denote E[εt] = µε, V [εt] = σ2
ε . Let α ∈ (0; 1).

(Xt)Z referred to as INAR(1) process if

Xt︸︷︷︸
Population at time t

= α ◦Xt−1︸ ︷︷ ︸
Survivors of time t−1

+ εt︸︷︷︸
Immigration

,

plus appropr. independence assumptions. (McKenzie, 1985)

Mean, dispersion ratio, and ACF given by

µ =
µε

1− α
, I =

σ2

µ
=

σ2
ε
µε

+ α

1 + α
, and ρ(k) = αk.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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INAR(1) process:
Xt = α ◦Xt−1 + εt.

INAR(1) process constitutes Markov chain with

transition probabilities p(x|xT) = p(XT+1 = x|XT = xT) as

p(x|xT) =
min{x,xT}∑

s=0

(xT
s

)
αs(1− α)xT−s · P (εt = x− s).

Referred to as Poi-, NB-, or ZIP-INAR(1) model, respectively,

if εt Poisson, negative binomial, or zero-inflated Poisson.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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INAR(2) process by Du & Li (1991):

Xt = α1 ◦Xt−1 + α2 ◦Xt−2 + εt with α1 + α2 < 1.

INAR(2) process constitutes second-order Markov process

with transition probabilities

p(x|xT , xT−1) =
∑min {x,xT}
j1=0

∑min {x−xT ,xT−1}
j2=0(xT

j1

)
α
j1
1 (1− α1)xT−j1 ·

(xT−1
j2

)
α
j2
2 (1− α2)xT−1−j2 · P (εt = x− j1 − j2).

ACF satisfies

ρ(1) =
α1

1− α2
, ρ(k) = α1 ρ(k − 1) + α2 ρ(k − 2) for k ≥ 2.

Christian H. Weiß — Helmut Schmidt University, Hamburg



On Models for Count Time Series MATH 

STAT 

BinAR(1) model by McKenzie (1985):

AR(1)-like model for bounded range {0, . . . , n} with some n ∈ N.

Let π ∈ (0,1) and α ∈
(
max{− π

1−π,−
1−π
π },1

)
and

define β := π(1− α) and γ := β + α. Then,

Xt = γ ◦Xt−1 + β ◦ (n−Xt−1) with X0 ∼ Bin(n, π).

Markov chain with Bin(n, π)-marginal and ACF ρ(k) = αk,

and with transition probabilities p(x|xT) =

min{x,xT}∑
m=max{0,x+xT−n}

(xT
m

)(n−xT
x−m

)
γm(1−γ)xT−m βx−m(1−β)n−xT+m−x.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Regression-type models: solve “multiplication problem”

by applying ARMA-like recursion to conditional means

→ INGARCH models (Ferland et al., 2006).

Poi-INARCH(1) model: Xt|Xt−1, . . . ∼ Poi(β + αXt−1)

with β > 0 and α ∈ (0,1). Mean, variance, and ACF are

µ =
β

1− α
, σ2 =

µ

1− α2
, and ρ(k) = αk.

Markov chain with transition probabilities

p(x|xT) = exp(−β − αxT)
(β + αxT)x

x!
.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Poi-INARCH(2) model:

Xt|Xt−1, . . . ∼ Poi(β + α1Xt−1 + α2Xt−2)

with α1 + α2 < 1 and ACF like for the INAR(2) model.

Second-order Markov process with transition probabilities

p(x|xT , xT−1)

= exp(−β − α1 xT − α2 xT−1)
(β + α1 xT + α2 xT−1)x

x!
.

Christian H. Weiß — Helmut Schmidt University, Hamburg



On Models for Count Time Series MATH 

STAT 

BinARCH(1) model for bounded counts:

Xt|Xt−1, . . . ∼ Bin
(
n, β + α

Xt−1

n

)

with β, β + α ∈ (0,1) and transition probabilities

p(x|xT) =
(n
x

) (
β + α xT

n

)x (
1− β − α xT

n

)n−x
.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Log-linear ll-Poi-AR(1) model for non-stationary counts,

e. g., with linear trend and harmonic oscillation

(period p, angular frequency ω = 2π/p):

Xt|Xt−1, . . . ∼ Poi(Mt) with

lnMt =

=: lnµt︷ ︸︸ ︷
γ0 + γ1 t + γ2 cos(ωt) + γ3 sin(ωt)

+ α1
(

ln (Xt−1 + 1)− ln (µt−1 + 1)
)
.

Additional dispersion via conditional NB distribution:

ll-NB-AR(1) model assumes Xt|Xt−1, . . . ∼ NB
(
1, n
Mt+n

)
,

where parameter n > 0 controls dispersion level.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Let x1, . . . , xT be count time series

from underlying count process (Xt)t∈Z={...,−1,0,1,...}.

Aim: forecasting of XT+h given the past xT , . . . , x1.

Computing, e. g., conditional mean as point forecast (PF) value

does not make sense, because

E[XT+h|xT , . . . , x1] (positive) real number, not count value.

Coherent forecasting: computed forecasts of count process

should be count values themselves.

(Freeland & McCabe, 2004; Jung & Tremayne, 2006)

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Coherent forecasting achieved by first deriving full

h-step-ahead conditional distribution, and then computing

• median (mode) of XT+h

∣∣∣xT , . . . , x1

as central point forecast (PF);

• extreme (upper) quantile of XT+h

∣∣∣xT , . . . , x1

as non-central PF; or

• finite subset of N0 satisfying coverage requirement

as discrete prediction interval (PI) for XT+h

∣∣∣xT , . . . , x1;

see Homburg et al. (2019, 2021) for details.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Recall Example 1, counts x1, . . . , x108 of

monthly “major strikes” in U. S. (1994–2002):
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Weiß (2018) uses
Poi-INARCH(1) model.

ML estimates (s. e.)
µ̂ML ≈ 4.981 (0.593),
α̂ML ≈ 0.636 (0.081).

Out-of-sample forecasting for counts x109, . . . , x120 in 2003,

which are 2,0,2,1,1,1,1,3,2,5,3,2, by successive

1-step-ahead forecasting based on Poi-INARCH(1) model.
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Different types of coherent forecasts for 2003

based on fitted Poi-INARCH(1) model

(true values shown as line):
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PFs rarely agree with actual future observations XT+h

(for real-valued processes, agreement probability even 0,

while truly positive for discrete count processes).

PIs for discrete count processes often true coverage probability

much larger than given coverage requirement

(while in real-valued case, exact match possible).

Thus, several authors (e. g., Boylan & Synteto, 2006; Willemain,

2006; McCabe et al., 2011; Snyder et al., 2012; Kolassa, 2016)

use full predictive probability mass function as forecast value:

PMFFs to judge which outcome with which probability.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Coherent Forecasting and Risk Analysis

for Count Processes: (→ project website)

Three-years project, funded by Deutsche Forschungsgemein-

schaft (DFG) — Projektnummer 394832307.

PhD candidate: Annika Homburg

Project partners:

• Layth C. Alwan, University of Wisconsin, USA,

• Gabriel Frahm, HSU Hamburg,

• Rainer Göb, University of Würzburg.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Project aims:

Comprehensive performance analysis . . .

• of all different types of coherent forecasts

• for a multitude of models (bounded vs. unbounded counts,

stationary vs. non-stationary DGPs, different model orders,

special features such as overdispersion or zero inflation, etc.).

For this purpose, appropriate criteria for evaluation and efficient

comparison are to be specified.

(. . . )

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Project aims:

Although various models for count time series available,

practitioners often use Gaussian approximations, e. g.,

by fitting Gaussian ARIMA models to count time series.

Typical reasons are insufficient communication of count models

and ease of implementation of Gaussian ARMA models

because of readily available software solutions.

Computing forecasts based on Gaussian approximation (plus ap-

propriate discretization) may cause substantial forecast errors.

(. . . )

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Project aims:

Thus, we systematically compare coherent and approximative

forecasting: “Does model-based coherent forecasting

lead to notable added value for prediction of count data?”

Finally,

non-central PFs (extreme quantiles) also for risk analysis.

Risk prediction by quantile forecast and deduced risk measures

(e.g., expected shortfall, expectiles, mid-quantiles).

Effect of estimation uncertainty?

Evaluation of the “goodness” of risk prediction?

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Project results:

• Homburg et al. (2019): Evaluating Approximate

Point Forecasting of Count Processes.

Econometrics 7(3), 30. (→ open access)

Abstract: In forecasting count processes, practitioners often ignore the

discreteness of counts and compute forecasts based on Gaussian appro-

ximations instead. For both central and non-central point forecasts, and

for various types of count processes, the performance of such approxima-

te point forecasts is analyzed. (. . . ) We conclude that Gaussian forecast

approximations should be avoided.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Project results:

• Homburg et al. (2021a): A Performance Analysis of

Prediction Intervals for Count Time Series.

Journal of Forecasting 40(4), 603–625. (→ open access)

Abstract: (. . . ) The use of interval forecasts instead of point forecasts

allows us to incorporate the apparent forecast uncertainty. When forecas-

ting count time series, one also has to account for the discreteness of the

range, which is done by using coherent prediction intervals (PIs) relying

on a count model. We provide a comprehensive performance analysis of

coherent PIs for diverse types of count processes. (. . . )

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Project results:

• Weiß et al. (2021): Efficient Accounting for Estimation

Uncertainty in Coherent Forecasting of Count Processes.

Journal of Applied Statistics, in press. (→ open access)

Abstract: (. . . ) In practice, forecasting always relies on a fitted model

and so the obtained forecast values are affected by estimation uncertainty.

(. . . ) We propose a computationally efficient resampling scheme that

allows to express the uncertainty in common types of coherent forecasts

for count processes. (. . . ) the obtained ensembles of forecast values can

be presented in a visual way that allows for an intuitive interpretation.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Project results:

• Homburg et al. (2021b): Analysis and Forecasting

of Risk in Count Processes. (→ open access)

Journal of Risk and Financial Management 14(4), 182.

Abstract: Risk measures are commonly used to prepare for a prospecti-

ve occurrence of an adverse event. (. . . ) It becomes clear that Gaussian

approximate risk forecasts substantially distort risk assessment and, thus,

should be avoided. In order to account for the apparent estimation un-

certainty in risk forecasting, we use bootstrap approaches for count time

series. (. . . )

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Project results:

• Homburg et al. (2021c): On PMF-Forecasting for Count

Processes.

In Proceedings of ITISE 2021, in press.

. . . this is the topic of the remaining talk!

Christian H. Weiß — Helmut Schmidt University, Hamburg
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PMF-forecasts (PMFFs) provide full predictive PMF as

forecast value itself, to judge “plausibility” of future outcomes.

In analogy to Weiß et al. (2021), PMFF at time t

plotted as vertical band of gray levels, where intensity

proportional to probability (white = zero probability).

Example of
strikes counts
for year 2003,

PMFFs based on fitted
Poi-INARCH(1) model:
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Research questions:

• How evaluate performance of PMF forecasting?

• Performance of coherent PMFFs (relying on count model)

under estimation uncertainty?

• Performance of approximate PMFFs (reyling on Gaussian

ARIMA approximation) under estimation uncertainty?

• Application of PMFFs in practice?

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Notations:

Count DGP (Xt) follows model with parameter vector θ.

If parameter vector estimated, we write θ̂.

If fitting Gaussian ARMA model to x1, . . . , xT ,

then ARMA parameters ϑ with estimate ϑ̂.

True PMFF of XT+h given xT , . . . , x1: p̂T+h(θ),

where xth component p̂T+h,x(θ) = P (XT+h = x
∣∣∣xT , . . . , x1).

Coherent PMFF of XT+h using estimates: p̂T+h

(
θ̂
)
.

Approximate PMFF of XT+h: p̂T+h,a
(
ϑ̂
)
.
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Equivalently, use cumulative distribution function (CDF),

denoted as f̂T+h(θ), f̂T+h

(
θ̂
)
, and f̂T+h,a

(
ϑ̂
)
, respectively.

Here, xth component f̂T+h,x(θ) = P (XT+h ≤ x
∣∣∣xT , . . . , x1).

Approximate PMFF p̂T+h,a
(
ϑ̂
)
derived from conditional nor-

mal distribution of ARMA approximation, say N
(
µ̂T+h, σ̂

2
T+h

)
.

Let Φ be CDF of N(0,1), then for x ∈ N0,

• simple normal appr.: f̂T+h,a,x
(
ϑ̂
)

:= Φ
(x− µ̂T+h

σ̂T+h

)
,

• continuity-corr. n.a.: f̂T+h,a,x
(
ϑ̂
)

:= Φ
(x− µ̂T+h + 0.5

σ̂T+h

)
.

PMFF p̂T+h,a
(
ϑ̂
)
as discrete differences of f̂T+h,a

(
ϑ̂
)
.
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Forecast performance by evaluating

inaccuracy of considered PMFF p̂ w.r.t. true PMFF p̂0.

Here, p̂ ∈
{
p̂T+h

(
θ̂
)
, p̂T+h,a

(
ϑ̂
)}

and p̂0 = p̂T+h(θ).

Different solutions proposed in literature yet:

• Homburg (2020) distinguishes local and global criteria.

Global comparison, e. g., by Kullback Leibler divergence,

Kolmogorov metric, or Raff’s maximum error.

• Most often, types of “squared distance” between p̂ and p̂0:

(. . . )
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Forecast performance evaluation for p̂ vs. p̂0:

• Most often, types of “squared distance” between p̂ and p̂0:

– χ2-distance by Willemain (2006),

– unweighted mean squared errors (MSEs) by McCabe et al.

(2011), such as
∥∥∥p̂− p̂0

∥∥∥2 =
∑∞
x=0(p̂x − p̂0,x)2,

– quadratic score (qs) or ranked probability score (rps) by

Snyder et al. (2012), Kolassa (2016).

Note that increase in expected score leads to

E
[
sqs

(
p̂, X

)
− sqs

(
p̂0, X

) ∣∣∣∣X ∼ p̂0

]
=

∥∥∥p̂− p̂0

∥∥∥2,
E
[
srps

(
f̂ , X

)
− srps

(
f̂0, X

) ∣∣∣∣X ∼ p̂0

]
=

∥∥∥f̂ − f̂0

∥∥∥2.
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Forecast performance evaluation for p̂ vs. p̂0:

• Most inaccuracy measures related to

∥∥∥p̂− p̂0

∥∥∥2 or
∥∥∥f̂ − f̂0

∥∥∥2.
• Boylan & Synteto (2006): global inaccuracy maybe mislea-

ding, because may not exclude poor performance in tails.

• Finally, like in McCabe et al. (2011), we use both

global MSEs and two local MSEs (w.r.t. p or f):

– lower-25% MSE
∑∞
x=0(p̂x − p̂0,x)2 1(f̂0,x ≤ 0.25),

– upper-10% MSE
∑∞
x=0(p̂x − p̂0,x)2 1(f̂0,x ≥ 0.90).
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Comprehensive simulation study (> 17,000 scenarios),
with 1,000 replications per scenario.

Main visual tool for evaluation: “ lean boxplot”,

black dot for median, thick grey line connecting quartiles,
thin black line connecting 10%- and 90%-quantiles.
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Lean boxplots of MSEs
∥∥∥p̂− p̂0

∥∥∥2, ∥∥∥f̂ − f̂0

∥∥∥2 of coherent PMFFs,

or MSE differences
∥∥∥p̂a− p̂0

∥∥∥2 − ∥∥∥p̂− p̂0

∥∥∥2, ∥∥∥f̂a− f̂0

∥∥∥2 − ∥∥∥f̂ − f̂0

∥∥∥2
between approximate and coherent PMFFs.

Full results as supplementary files (→ project website).

General findings:

• Conclusions do not differ between PMF-based MSEs and

CDF-based MSEs. Thus, focus on PMF-based MSE values.

• Simple normal approximation by far worse than continuity-

corrected one, MSEs increased by factor 5–10. Thus,

focus on approximate PMFFs with continuity correction.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Performance of Coherent Forecasting:

• Coherent PMFFs generally close to true PMFFs,

with decreasing MSEs (of all types)

for increasing mean µ and sample size T .

• Increases of dependence α lead to increased MSEs.

• Lower-tail MSE usually larger than upper-tail MSE.

(. . . )
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full MSE lower-tail MSE upper-tail MSE
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Illustration: Coherent PMFFs for Poi-INAR(1) DGP,

different types of MSE with α = 0.55, T = 250, and h = 1,

plotted against mean µ.
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full MSE lower-tail MSE upper-tail MSE
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Illustration: NB-INAR(1) DGP with dispersion ratio I = 2.4.

Overdispersion causes increasing MSEs, mainly for low µ.

Increase stronger for lower- than for upper-tail MSE.
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Performance of Coherent Forecasting:

• (. . . )

• MSE increase even more pronounced for ZIP model,

i. e., where overdispersion caused by zero inflation.

• Further increase of model order also further increases MSEs.

• MSEs larger for INAR- than for INARCH-type DGPs.

• Analogous results for bounded counts DGPs,

but for π = 0.45 (nearly symmetric PMF),

all types of MSE values get by far smaller.
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Performance of Approximate Forecasting:

Now MSE differences
∥∥∥p̂a − p̂0

∥∥∥2 − ∥∥∥p̂− p̂0

∥∥∥2,
with positive values if approximation causes increased MSEs.

• In large majority, approximate PMFFs clearly larger MSEs.

Particularly clear if T increases.

• Discrepancy approximate vs. coherent particularly large for

low means, performs rather well only for nearly symmetric

bounded counts with π = 0.45.

• Larger discrepancy also for increasing overdispersion

or dependence. (. . . )

Christian H. Weiß — Helmut Schmidt University, Hamburg



On PMF-Forecasting for Count Processes MATH 

STAT 

full MSE lower-tail MSE upper-tail MSE
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Illustration: MSE differences for Poi-INARCH(2) DGP,

with α = 0.55, α2 = 0.45, T = 250, and h = 1.

Approximation especially increases lower-tail MSE.
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• For coherent PMFFs, effect of estimation generally low:

deteriorations mainly for low sample size T and

strong dependence α. More pronounced

for low means µ and for overdispersion I > 1.

• Strong performance deterioration if approximate PMFFs,

even if using continuity correction or increased T .

Although approximations tempting w.r.t. implementation

benefits, their use in practice strongly discouraged!

• Future (ongoing) research:

PMF forecasting under model misspecification.
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Real-world data application:

Count time series about transaction numbers per trading day,

on structured products from on-market and off-market trading,

offered by Cascade-Turnoverdata of Deutsche Börse AG.

For illustration,

two exemplary time series are considered: (. . . )
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Data set 1:

T1 = 381 counts (Feb. 2017–July 2018) for model fitting,

23 counts from Aug. 2018 left for out-of-sample forecasting.

Time series plot and sample PACF of learning sample:
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AR(1)-like autocorrelation with overdispersion (Î ≈ 1.518)

⇒ fit NB-INAR(1) model.
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Data set 2 with one additional year of data:

T2 = 636 counts (Feb. 2017–July 2019) for model fitting,

22 counts from Aug. 2019 left for out-of-sample forecasting.

Time series plot and sample PACF of learning sample:
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AR(2)-like autocorrelation, nearly equidispersion (Î ≈ 0.913)

⇒ fit Poi-INAR(2) model.
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PMF forecasting of respective out-of-sample data (black dots)

based on fitted models:
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PMFFs for data set 1 cover larger area → overdispersion.

For data set 2, in turn, some dots in “white area”: (. . . )
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Possible application of obtained PMFFs:

integration into “risk alert” system.

Achieved transaction counts could be compared to PMFFs

to judge their plausibility. Previous figures indicate

possibly “unusual order book behavior” for data set 2,

namely for counts at t = 12,17.

This could give rise to inform traders on these days.

Real-time risk alerts relevant topic for market infrastructure

providers such as Deutsche Börse AG (→ website).

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Possible direction for future research:

For risk alerts based on PMFFs,

also take estimation/model uncertainty into account.

PMFFs for data set 2 rely on T2 = 636 observations,

while those for data set 1 only use T1 = 381.

Probably not much estimation effect for data set 2,

but for data set 1 (less data plus overdispersion).

Since risk alerts generated based on tails of PMFF,

careful investigation recommended.

Possible solution: parametric bootstrap approach

in analogy to Weiß et al. (2021).
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