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Let x1, . . . , xT be count time series,

i. e., xt from N0 = {0,1, . . .}, and T ∈ N = {1,2, . . .}.

Underlying count process (Xt)t∈Z={...,−1,0,1,...}. (Weiß, 2018)

Coherent forecasting: computed forecasts of count process

should be count values themselves. (Freeland & McCabe, 2004)

Achieved for forecast horizon h ∈ N by first deriving

full h-step-ahead conditional distribution

of XT+h (given the past xT , . . . , x1),

and by then computing (. . . )

Christian H. Weiß — Helmut Schmidt University, Hamburg



Coherent Forecasting of Count Processes MATH 

STAT 

Coherent forecasting: (. . . )

• median (mode) of XT+h
∣∣∣xT , . . . , x1

as central point forecast (PF);

• extreme (upper) quantile of XT+h
∣∣∣xT , . . . , x1

as non-central PF; or

• finite subset of N0 satisfying coverage requirement

as discrete prediction interval (PI) for XT+h
∣∣∣xT , . . . , x1;

see Homburg et al. (2019, 2020) for details.

Some authors (e. g., Kolassa, 2016) use full predictive probabi-

lity mass function (PMF) as forecast value: PMF forecasts.
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In practice, true predictive distribution of XT+h
∣∣∣xT , . . . , x1

unknown, so forecasts relying on fitted model.

But computed forecasts (using estimated model) might deviate

from true forecasts (from true model in same situation).

Comprehensive study by Homburg et al. (2019, 2020):

especially non-central PFs and PIs suffer a lot from estimation.

Since impossible to suppress estimation uncertainty in practice:

Is it possible to account for it in appropriate way?
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Inspired by proposals of Freeland & McCabe (2004), Jung &

Tremayne (2006), we suggest resampling approach

to approximate distribution of coherent forecast value

(random due to randomness of sample X1, . . . , XT).

Instead of single forecast value or forecast interval,

ensemble of forecast values (resulting from resampling)

presented to practitioner in feasible way,

to express effect of estimation uncertainty.
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Proposed solution:

1. Fit model to data x1, . . . , xT , compute parameter estimate θ̂.

2. Resampling approach to assess variability of θ̂, by

(a) parametric bootstrap scheme, or

(b) asymptotic resampling scheme; see details below.

3. Use resampled fitted models for coherent forecasts (PFs, PIs,

PMFs) ⇒ discrete frequency distribution of forecast values.

4. Use whole forecast’s distribution to incorporate parameter

uncertainty (“ensemble forecasting”, see Palmer (2002)).
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Step 2, resampling approach for θ̂:

Option (a): parametric bootstrap scheme.

Generate B times count time series from fitted model,

estimate model parameters θ again for each replicate:

B bootstrap replicates θ̂
∗
1, . . . , θ̂

∗
B of θ̂.

Example: INAR bootstrap of Jentsch & Weiß (2019).

Disadvantages:

• individual bootstrap code for each type of DGP;

• computationally demanding, because estimation procedure

for each bootstrap replication anew.
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Step 2, resampling approach for θ̂:

Option (b): asymptotic resampling scheme.

For common count DGPs, ML estimator θ̂ML behaves uniquely,

namely
√
T (θ̂ML − θ) ∼ N

(
0, I−1(θ)

)
.

Mean observed Fisher information 1
T J(θ) approximates I(θ),

where J(θ) Hessian of log-likelihood function.

We sample replicates θ̂
?
ML,1, . . . , θ̂

?
ML,B from N

(
θ̂ML, J−1(θ̂ML)

)
,

used to compute corresponding B forecast replicates.

Note: neither required to generate B count time series,

nor to apply estimation to them. Saves lot of computing time.
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For different types of DGP and several scenarios per DGP,

M = 1000 count t. s. of various lengths T were simulated.

For each of these Monte–Carlo replicates, θ̂ML computed.

Then, different types of coherent forecasts either using true θ,

or estimate θ̂ML ⇒ evaluate estimation uncertainty.

Next, for each Monte–Carlo t. s. and corresponding θ̂ML,

resampling with B = 500 replicates, leading to either

estimates θ̂
?
ML,1, . . . , θ̂

?
ML,B (if asymptotic resampling)

or θ̂
∗
ML,1, . . . , θ̂

∗
ML,B (if parametric bootstrap). Then,

ensemble of replicated forecast values for Monte–Carlo t. s.
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Detailed simulation results in Weiß et al. (2021, open access).

Summary of main findings:

Both resampling approaches nearly same performance in

coherent forecasting, but big difference in computing time.

While simulations for one scenario of asymptotic resampling

only few minutes, between 7–72 hours for parametric bootstrap.

Therefore, asymptotic resampling clearly preferable for practice.

Ensemble forecasting leads to “blurred” forecasts.

But resampled forecasts’ distribution (“blurredness”) matches

true forecast’s distribution (estimation uncertainty) quite well.
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Example:

Poi-INAR(1)
with µ = 5
and α = 0.50.

True distrib.
as gray dots,

boxplots of
resampled
forecasts.
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T = 250:
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T = 500:
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Real-world example: monthly numbers of “work stoppages”

(strikes and lock-outs) of ≥ 1000 workers in the U.S.

T = 108 counts from period 1994–2002 used for model fitting:
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Weiß (2018) uses
Poi-INARCH(1) model
for learning sample.

ML estimates (s. e.)
µ̂ML ≈ 4.981 (0.593),
α̂ML ≈ 0.636 (0.081).

Out-of-sample forecasting for counts t = 109, . . . ,120 in 2003.
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Numerical optimization routine optim in R leads to approximate

bivariate normal distribution for (µ̂ML, α̂ML), namely

N
 4.981

0.636

 ,
 0.352 0.016
0.016 0.007

 .
Using mvrnorm in R’s MASS package, we simulate

B = 500 replicates (µ̂?ML,b, α̂
?
ML,b) with b = 1, . . . , B.

Then, forecasts for xt with t = 109, . . . ,120

once based on sample fit (µ̂ML, α̂ML),

and B = 500 times based on replicates (µ̂?ML,b, α̂
?
ML,b).
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Example: forecasts for x109 = 2, given x108 = 1, are

(absolute frequencies in parentheses)

• PF50: 2 if using fitted model,

but 1 (6), 2 (382), 3 (112) under resampling;

• PF95: 5 if using fitted model,

but 4 (44), 5 (311), 6 (141), 7 (4) under resampling;

• PI90: {0, . . . ,5} if using fitted model,

but {0, . . . ,3} (12), {0, . . . ,4} (254), {0, . . . ,5} (207),

{1, . . . ,6} (27) under resampling.

So instead of unique forecast value, we get 3–4 values together

with frequencies, expressing effect of estimation uncertainty.
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Proposed visual solution for central point forecasting:

PF50 using fitted model resampling
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Proposed visual solution for non-central point forecasting:

PF95 using fitted model resampling
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Proposed visual solution for interval forecasting:

PI90 using fitted model resampling
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• Account for estimation uncertainty in coherent forecasting

by resampling approach.

• Asymptotic resampling performs equally well as parametric

bootstrap, but computationally much more efficient.

• Visual representation of resampled ensemble of forecasts

using gray levels to simplify interpretation by practitioner.

• Future research:

Types of coherent forecasting for ordinal processes,

resampling approaches to account for estimation uncertainty.
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