Evaluating Approximate Point Forecasting of Count Processes

A. Homburg, C.H. Weiß, G. Frahm
Department of Mathematics & Statistics, Helmut Schmidt University, Hamburg

L.C. Alwan
Sheldon B. Lubar School of Business, University of Wisconsin-Milwaukee

R. Göb
Department of Statistics, University of Würzburg
Point Forecasting of Count Processes

Introduction
Let \((X_t)_{t \in \mathbb{Z}}\) be count process,
let \(x_1, \ldots, x_T\) be count time series thereof,
i.e., \(x_t\) non-negative integer values from \(\mathbb{N}_0 = \{0, 1, \ldots\}\).

After fitting model to \(x_1, \ldots, x_T\), aim to
predict outcome of \(X_{T+h}\) for some forecast horizon \(h \geq 1\)
by computing point forecast \(\hat{x}_{T+h}\).

Since \(X_{T+h}\) will take count value,
also point forecast \(\hat{x}_{T+h}\) should be count value
\(\rightarrow\) coherent forecasting (Freeland & McCabe, 2004).
Coherent forecasting achieved by computing h-step-ahead conditional distribution of X_{T+h} (given x_T, \ldots, x_1) of actual count process model, and by deriving integer-valued quantity as forecast value.

- Coherent **central** point forecast:
 commonly **conditional median**.

- Coherent **non-central** point forecast:
 conditional (upper) quantile (Value at Risk, VaR),

\[
\text{VaR}_\rho = \min \{ x \in \mathbb{N}_0 \mid P(X \leq x) \geq \rho \},
\]

especially risk analysis (loss distribution), see Göb (2011).

Christian H. Weiß — Helmut Schmidt University, Hamburg
However, practitioners often apply Gaussian (ARIMA) approximations, and compute conditional median/quantiles thereof (with additional ceiling to ensure count values).

How well do these approximate forecasts perform compared to coherent forecasting techniques?

We analyzed approximation quality of both central and non-central point forecasts in comprehensive way by considering different types of DGP, various model parametrizations as well as different experimental designs.

Christian H. Weiß — Helmut Schmidt University, Hamburg
Full results in Homburg et al. (2019), Evaluating approximate point forecasting of count processes, *Econometrics* 7, 30. (open access)
Point Forecasting of Count Processes

Performance Evaluation
Performance of approximate forecasts evaluated based on selected inaccuracy measures, relative to forecasts computed from true count model.

Inaccuracy of central point forecasts (i.e., median):
Mean Absolute Error (MAE),

$$\text{MAE} = E\left[|X_{T+h} - \hat{x}_{T+h}| \mid x_T, \ldots, x_1 \right],$$

corresponding relative measure

$$\text{RMAE} = \frac{\text{MAE}_f}{\text{MAE}_t}. $$
Inaccuracy of non-central point forecasts (i.e., VaR$_\rho$): one may use asymmetric “lin-lin” loss function (Gneiting, 2011),

$$\rho |X_{T+h} - \hat{x}_{T+h}| \cdot 1\{X_{T+h} > \hat{x}_{T+h}\} + (1-\rho) |X_{T+h} - \hat{x}_{T+h}| \cdot 1\{X_{T+h} < \hat{x}_{T+h}\}.$$

But in risk context, only penalize exceedances (Lopez, 1998). Mean Excess Loss (MEL),

$$\text{MEL} = E[(X_{T+h} - \hat{x}_{T+h}) 1\{X_{T+h} > \hat{x}_{T+h}\} \mid x_T, \ldots, x_1],$$

corresponding relative measure

$$\text{RMEL} = \frac{\text{MEL}_f}{\text{MEL}_t}.$$
Performance Analysis: Coherent vs. Approximate Point Forecasting

Selected Results
In what follows, time series simulated according to certain count time series model, e.g., Poisson \(\text{INAR}(1) \) process

\[
X_t = \alpha \circ X_{t-1} + \epsilon_t \quad \text{with} \quad \epsilon_t \sim \text{Poi}(\mu_X (1 - \alpha)).
\]

Then either Poi-INAR\((1)\) fitted to data and coherent forecasts, or Gaussian AR\((1)\) fitted and ceiled forecasts (both \(h = 1 \)), given \(x_T \) of respective simulation run.

Analogous procedure for further types of DGP.

Homburg et al. (2019) also provide results regarding

- pure approximation error (no estimation),
- effect of \(x_T \) or \(h \), mode point forecasts, etc.
Coherent vs. Approximate Point Forecasting

Mean of simulated RMAE values for median forecast (left) and RMEL values for 95%-quantile forecast (right), Poi-INAR(1) with $\alpha = 0.55$ and $T = 250$.

Christian H. Weiß — Helmut Schmidt University, Hamburg
% of RMEL values $= 1$ (central area), < 1 (lower area) and > 1 (upper area) for different T. Grey area: Poi-INAR(1) forecasts, areas separated by black line: Gaussian AR(1) forecasts.
Mean of simulated RMEL values for NB-INAR(1) (left) and ZIP-INAR(1) (right), with $\alpha = 0.55$, $T = 250$, and $\sigma_X^2/\mu_X = 2.4$.

Christian H. Weiß — Helmut Schmidt University, Hamburg
% of RMEL values = 1, < 1 and > 1 for NB-INAR(1) (left) and ZIP-INAR(1) (right). Grey area: INAR(1) forecasts, areas separated by black line: Gaussian AR(1) forecasts.
Mean RMAE (left) and RMEL (right) for DGP Poi-INAR(2) vs. Poi-INARCH(2), with $\alpha = 0.55$, $\alpha_2 = 0.45$ and $T = 250$; solid lines smoothed values of Poi-INAR(1) or Poi-INARCH(1) case.
Coherent vs. Approximate Point Forecasting

Mean RMEL (left) and % of RMEL values = 1, < 1 and > 1 (right) for BinAR(1) with $\pi = 0.45$, $\alpha = 0.55$, and $T = 250$. Solid lines correspond to smoothed values of Poi-INAR(1) case.

Christian H. Weiß — Helmut Schmidt University, Hamburg
Conclusions

- Coherent point forecasting based on count model: estimation error nearly no effect on median forecasts; RMEL performance balanced and improves with increasing T.
- Point forecasting via Gaussian ARMA approximation: RMAE and RMEL performance considerably worse, strongly biased RMEL performance, severely affected by overdispersion or zero inflation, or by bounded counts.
- Practice of discretizing Gaussian ARIMA forecasts for count time series strongly discouraged!
- **Ongoing research:** construction and evaluation of (approximate) prediction intervals for count time series.

Christian H. Weiβ — Helmut Schmidt University, Hamburg
Thank You
for Your Interest!

Christian H. Weiß
Department of Mathematics & Statistics
Helmut Schmidt University, Hamburg
weissc@hsu-hh.de

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 394832307.