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Let (Xt)t∈Z be count process,

let x1, . . . , xT be count time series thereof,

i. e., xt non-negative integer values from N0 = {0,1, . . .}.

After fitting model to x1, . . . , xT , aim to

predict outcome of XT+h for some forecast horizon h ≥ 1

by computing point forecast x̂T+h.

Since XT+h will take count value,

also point forecast x̂T+h should be count value

→ coherent forecasting (Freeland & McCabe, 2004).
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Coherent forecasting achieved by computing h-step-ahead con-

ditional distribution of XT+h (given xT , . . . , x1) of actual count

process model, and by deriving integer-valued quantity as fore-

cast value.

• Coherent central point forecast:

commonly conditional median.

• Coherent non-central point forecast:

conditional (upper) quantile (Value at Risk, VaR),

VaRρ = min
{
x ∈ N0 | P (X ≤ x) ≥ ρ

}
,

especially risk analysis (loss distribution), see Göb (2011).
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However,

practioners often apply Gaussian (ARIMA) approximations,

and compute conditional median/quantiles thereof

(with additional ceiling to ensure count values).

How well do these approximate forecasts perform

compared to coherent forecasting techniques?

We analyzed approximation quality of both central and non-

central point forecasts in comprehensive way by considering dif-

ferent types of DGP, various model parametrizations as well as

different experimental designs.
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Full results in Homburg et al. (2019),

Evaluating approximate point forecasting of count processes,

Econometrics 7, 30. (open access)

Overdispersion: Zero inflation: Bounded counts:

NB-INAR(1) ZIP-INAR(1) BinAR(1) BinARCH(1)
(Section 4.1) (Section 4.4)

Poi-INAR(1)
(Section 3)
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Higher-order autoregression: Seasonality and trend:

Poi-INAR(p) Poi-INARCH(p) ll-Poi-AR(1)
(Section 4.2) (Section 4.3) (Section 4.5)D
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Performance of approximate forecasts

evaluated based on selected inaccuracy measures,

relative to forecasts computed from true count model.

Inaccuracy of central point forecasts (i. e., median):

Mean Absolute Error (MAE),

MAE = E
[
|XT+h − x̂T+h|

∣∣∣ xT , . . . , x1],
corresponding relative measure

RMAE =
MAEf
MAEt

.
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Inaccuracy of non-central point forecasts (i. e., VaRρ):

one may use asymmetric “lin-lin” loss function (Gneiting, 2011),

ρ |XT+h−x̂T+h|·1{XT+h>x̂T+h} + (1−ρ) |XT+h−x̂T+h|·1{XT+h<x̂T+h}.

But in risk context, only penalize exceedances (Lopez, 1998).

Mean Excess Loss (MEL),

MEL = E
[
(XT+h − x̂T+h)1{XT+h>x̂T+h}

∣∣∣ xT , . . . , x1],
corresponding relative measure

RMEL =
MELf
MELt

.
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In what follows, time series simulated according to certain

count time series model, e. g., Poisson INAR(1) process

Xt = α ◦Xt−1 + εt with εt ∼ Poi
(
µX (1− α)

)
.

Then either Poi-INAR(1) fitted to data and coherent forecasts,

or Gaussian AR(1) fitted and ceiled forecasts (both h = 1),

given xT of respective simulation run.

Analogous procedure for further types of DGP.

Homburg et al. (2019) also provide results regarding

• pure approximation error (no estimation),

• effect of xT or h, mode point forecasts, etc.
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Mean of simulated RMAE values for median forecast (left)

and RMEL values for 95%-quantile forecast (right),

Poi-INAR(1) with α = 0.55 and T = 250.
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% of RMEL values = 1 (central area), < 1 (lower area) and > 1

(upper area) for different T . Grey area: Poi-INAR(1) forecasts,

areas separated by black line: Gaussian AR(1) forecasts.

R
M
E
L
<

1
,
=

1
,
>

1

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T = 75

2 4 6 8 10

T = 250

2 4 6 8 10

T = 2500

µX

Christian H. Weiß — Helmut Schmidt University, Hamburg



Coherent vs. Approximate Point Forecasting MATH 

STAT 

Mean of simulated RMEL values for NB-INAR(1) (left) and

ZIP-INAR(1) (right), with α = 0.55, T = 250, and σ2X/µX = 2.4.
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% of RMEL values = 1, < 1 and > 1 for NB-INAR(1) (left) and

ZIP-INAR(1) (right). Grey area: INAR(1) forecasts,

areas separated by black line: Gaussian AR(1) forecasts.
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Mean RMAE (left) and RMEL (right) for DGP Poi-INAR(2) vs.

Poi-INARCH(2), with α = 0.55, α2 = 0.45 and T = 250; solid

lines smoothed values of Poi-INAR(1) or Poi-INARCH(1) case.
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Mean RMEL (left) and % of RMEL values = 1, < 1 and > 1

(right) for BinAR(1) with π = 0.45, α = 0.55, and T = 250.

Solid lines correspond to smoothed values of Poi-INAR(1) case.
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• Coherent point forecasting based on count model:

estimation error nearly no effect on median forecasts;

RMEL performance balanced and improves with increasing T .

• Point forecasting via Gaussian ARMA approximation:

RMAE and RMEL performance considerably worse,

strongly biased RMEL performance, severely affected by

overdispersion or zero inflation, or by bounded counts.

• Practice of discretizing Gaussian ARIMA forecasts for

count time series strongly discouraged!

• Ongoing research: construction and evaluation of

(approximate) prediction intervals for count time series.
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