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We analyze ordinal time series X1, . . . , Xn having

ordered categorical range S = {s0, . . . , sm} with s0 < . . . < sm.

Ordinal r.v. X closely related to rank-count variable I

with bounded range {0, . . . ,m} defined by X = sI.

Count process (It)Z generates ordinal (Xt)Z by Xt = sIt.

(Xt)Z inherits distributional properties from (It)Z like

stationarity, mixing, etc. (Weiß, 2018). In particular,

P (Xt = sk) = P (It = k), P (Xt = sk, Xt−h = sl) = P (It = k, It−h = l).

Rank-count duality related to latent-variable appr. (Agresti,

2010), but neither continuous-valued nor unobservable.
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Here: distance functions on ordinal range S, measures of

marginal or serial properties based on these distances:

• unified approach with obvious interpretation,

• great flexibility with respect to tailor-made distances,

• universal applicability, also beyond ordinal categories.

Distance-based approaches common in statistical analysis, e. g.,

Székely et al. (2007): serial dependence in real-valued processes

as distances between characteristic functions, or

Kvålseth (2011): ordinal variation via distance between CDFs.

Present work: distances defined on S itself,

not between CDFs or other stochastic properties.
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Outline:

• ordinal distances and their properties;

• distance-based analytic tools for marginal properties of

ordinal t.s. like location, dispersion, or skewness;

• serial dependence of ordinal time series;

• sample versions and their asymptotics;

• application to time series of monthly credit ratings.

Christian H. Weiß — Helmut Schmidt University, Hamburg



MATH 

STAT 

Ordinal Distances

Definition & Properties



Ordinal Distances MATH 

STAT 

Definition:

d : S × S → [0;∞) distance measure on S if for all x, y ∈ S:

(D1) If x = y, then d(x, y) = 0. (positive semi-definite)

(D2) d(x, y) = d(y, x). (symmetry)

Distance d is pseudo-metric if it even satisfies

(D3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S.

(triangular inequality)

Pseudo-metric d is metric if it even satisfies

(D1’) x = y iff d(x, y) = 0 for all x, y ∈ S. (positive definite)
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Possible Properties of Ordinal Distances:

Let d : S×S → [0;∞) be distance measure on ordinal range S =

{s0, . . . , sm}. It may satisfy:

(O1) d(s0, sm) = maxx,y∈S d(x, y). (maximization)

(O2) d is compatible with the ordering if

x < y < z implies that d(x, z) > d(x, y), d(y, z).

(O3) d is additive if for given d1, . . . , dm > 0, it holds that

d(si, si+k) = di+1 + . . .+ di+k ∀i=0,...,m−1; k=1,...,m−i.

(O4) d(si, sj) = d(sm−i, sm−j) ∀0≤i<j≤m. (centrosymmetry)
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We have (O3) ⇒ (O2) ⇒ (O1).

(O4) relevant for possible symmetry of ordinal distribution.

Examples:

Hamming distance dH(sk, sl) := 1− δk,l
metric with (O1), (O4), but not (O2).

Ordinal block distance do,1(sk, sl) := |k − l|,

so number of categories between sk and sl; all properties above.

Squared Euclidean distance do,2(sk, sl) := (k − l)2

(quadratic penalty) no metric (not (D3)), not (O3).
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Tailor-made distances possible!

Choice of weights for dissimilarities depends on application.

Successive ordinal states not necessarily “equally-spaced”:

• At HSU, grades are 1,1.3, . . . ,3.7,4 (pass), and 4.3,5 (fail).

d(4,4.3) largest among successive differences?!

• Taleb & Limam (2002): quality of porcelain products,

“standard” (S), “second choice” (SC), “third choice” (TC) or

“chipped” (C). d(C,TC) > d(TC,SC)?!
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Proposal: quantify properties of ordinal r.v.

(location, dispersion, skewness) by expected distances.

Since distance between r.v. non-negative real number,

expectation thereof well defined.

Universal and flexible approach,

covers already existing measures of marginal properties.

Notations:

• p = (p0, . . . , pm)>, where pi = P (X = si).

So p summarizes PMF.

• CDF: fk =
∑k
l=0 pl = P (X ≤ sk) and f = (f0, . . . , fm−1)>.
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Location:

Location as xloc,d := argminx∈S E
[
d(X,x)

]
.

Then xloc,d ∈ S.

Hamming distance 7→ mode(s),

block distance 7→ median.

Note that do,2 67→ mean E[I], because

E
[
do,2(X, si)

]
= E

[
(I − i)2

]
minimized for i ∈ {0, . . . ,m}.

So do,2 leads to sround(E[I]).
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Dispersion (variability) of X as expected distance between

independent copies X1, X2 of X, i. e., E
[
d(X1, X2)

]
→ diversity coefficient (DIVC) by Rao (1982). So

dispd(X) := E
[
d(X1, X2)

]
=

∑m
i,j=0 d(si, sj) pi pj = p>Dp,

If d positive definite, then dispd = 0 iff one-point distribution.

If property (O1) holds, dispd ≤ d(s0, sm).

Extreme scenarios for ordinal data:

minimal for one-point distribution pone (maximal consensus),

maximal for extreme two-point d. ptwo = (0.5,0, . . . ,0,0.5)>

(polarized distribution, maximal dissent), see Kiesl (2003).
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Examples:

• Block distance leads to Gini’s mean difference.

In ordinal case,

dispdo,1 =
∑m
k,l=0 |k − l| pkpl = 2

∑m−1
k=0 fk(1− fk).

To be normalized by factor 2/do,1(s0, sm) = 2/m, then

index of ordinal variation (Kvålseth, 1995; Kiesl, 2003).

• Squared Euclidean distance leads to variance:

dispdo,2 = E
[
(I1 − I2)2

]
= 2V [I],

normalized version given by 2
m2 dispdo,2 = 4

m2 V [I].
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Symmetry (brief sketch!)

If X ordinal r.v. with P (X = si) = pi,

then Xr reflected copy of X if P (X = si) = pm−i.

Symmetry reasonably defined only if d centrosymmetric.

Symmetric if X and Xr are identically distributed, i. e.,

if pi = pm−i or fi = 1− fm−1−i for all i = 0, . . . ,m.

asymd(X) = E
[
d(X,Xr)

]
− dispd(X) =

∑m
i,j=0 d(si, sj) pi(pm−j − pj).

Example:
asymdo,1 =

∑m−1
j=0 (1− fj − fm−j−1)2.
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Also more refined distinction possible,

skewness (Klein & Doll, 2018).

Maximal positive (negative) skewness iff p0 = 1 (pm = 1).

Signed skewness measure:

skewd(X) = E
[
d(X, sm)

]
− E

[
d(X, s0)

]
.

Example:

skewdo,1 = 2
∑m−1
i=0 fi −m.
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Now x1, . . . , xn time series from stationary ordinal process (Xt)Z.

DGP assumed to satisfy appropriate mixing condition

such that application of CLT possible,

e. g., α-mixing with exponentially decreasing weights.

We use bivariate probabilities (for i, j = 0, . . . ,m− 1)

f
(h)
ij = P (Xt ≤ si, Xt−h ≤ sj) = P (It ≤ i, It−h ≤ j)

and corresponding sample frequencies f̂ij(h).

We assume that (Xt)Z some kind of “short memory”:∑∞
h=1

∣∣∣f(h)ij − fi fj
∣∣∣ <∞ has to hold for all i, j = 0, . . . ,m− 1.
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Measure of serial dependence at lag h:

κd(h) =
dispd(X)− E

[
d(Xt, Xt−h)

]
dispd(X)

for h ≥ 1.

Type of weighted Cohen’s κ (Cohen, 1968).

dispd(X) as E
[
d(Xt, Xt−h)

]
under null of independence, i. e.,

κd(h) relative deviation of DIVCs for dependent and indep. r.v.

Examples:

κdH(h) =
∑m
i=0 p

(h)
ii − s2(p)

1− s2(p)
,

so serial Cohen’s κ(h) for nominal t.s. (Weiß & Göb, 2008).
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Examples:

κdo,2(h) = ρI(h), i. e., lag-h ACF of rank counts (It)Z.

Particularly relevant is d = do,1:

κdo,1(h) =

∑m−1
i=0

(
f
(h)
ii − f2i

)
∑m−1
i=0 fi(1− fi)

∈
[ −∑m−1

i=0 f2i∑m−1
i=0 fi(1− fi)

; 1
]
.

Strongest negative dependence if all fii(h) = 0,

i. e., Xt−h ≤ si necessarily followed by Xt > si.

Maximal positive dependence

if Xt−h ≤ si necessarily followed by Xt ≤ si.
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Sample versions easily obtained by replacing

expected distances by sample means of distances, e. g.,

sample version of xloc,d as x̂loc,d := argminx 1
n
∑n
t=1 d(xt, x).

DIVC-related measures lead to d̂ispd = p̂>D p̂,

âsymd = p̂> (J− I)D p̂, ̂skewd =
m∑
i=0

(
d(si, sm)− d(si, s0)

)
p̂i.

For asymptotics, we focus on ordinal block distance do,1:

d̂ispdo,1 = 2
∑m−1
i=0 f̂i(1− f̂i),

âsymdo,1 =
∑m−1
j=0 (1− f̂j − f̂m−j−1)2,

̂skewdo,1 = 2
∑m−1
i=0 f̂i −m, κ̂do,1(h) =

∑m−1
i=0

(
f̂
(h)
ii −f̂

2
i

)
∑m−1
i=0 f̂i(1−f̂i)

.
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Theorem:

(i) If (f0, . . . , fm−1) 6= (12, . . . ,
1
2) (extreme two-point),

then d̂ispdo,1 is asymptotically normally distributed with mean

(1− 1
n)dispdo,1 −

4
n
∑n−1
h=1(1−

h
n)

∑m−1
i=0

(
f
(h)
ii − f2i

)

and variance
4
n
∑m−1
i,j=0(1− 2fi)(1− 2fj)

(
fmin {i,j} − fi fj

)
+ 8

n
∑n−1
h=1(1−

h
n)

∑m−1
i,j=0(1− 2fi)(1− 2fj)

(
f
(h)
ij − fi fj

)
.
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Theorem:

(ii) If distribution of Xi not symmetric, then âsymdo,1

asymptotically normally distributed with mean

asymdo,1 + 1
n dispdo,1 + 2

n
∑m−1
j=0

(
fmin {m−j−1,j} − fj fm−j−1

)
+ 4

n
∑n−1
h=1(1−

h
n)

∑m−1
j=0

(
f
(h)
jj − f2j + f

(h)
j,m−j−1 − fj fm−j−1

)
and variance

16
n

∑m−1
i,j=0(1− fi − fm−i−1)(1− fj − fm−j−1)

(
fmin {i,j} − fi fj

)
+

32
n

∑n−1
h=1(1−

h
n)

∑m−1
i,j=0(1− fi − fm−i−1)(1− fj − fm−j−1)

(
f
(h)
ij − fi fj

)
.
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Theorem:

(iii) ̂skewdo,1 asympt. normal with mean skewdo,1 and variance

4
n
∑m−1
i,j=0

(
fmin {i,j}−fi fj

)
+ 8

n
∑n−1
h=1(1−

h
n)

∑m−1
i,j=0

(
f
(h)
ij −fi fj

)
.

Modifications necessary for boundary cases,

leads to asymptotic quadratic-form distributions.

Finite-sample performance confirmed with simulations.
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Testing for significant dependence:

Let X1, . . . , Xn be time series from i. i. d. ordinal process (Xt)Z,

let h ≥ 1.

Then asymptotic approximation for κ̂do,1(h) is

normal distribution with mean −1/n and variance

1
n

4
disp2do,1

∑m−1
k,l=0

(
fmin {k,l} − fk fl

)2
.

Finite-sample performance confirmed with simulations.
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S&P ratings for 28 EU countries, taken from

Trading Economics platform tradingeconomics.com.

Possible outcomes from ‘D’ (worst) to ‘AAA’ (best),

commonly refined to m+1 = 23 states s0, . . . , s22 given by ‘D’,

‘SD’, ‘R’, ‘CC’, ‘CCC–’, ‘CCC’, ‘CCC+’, . . . , ‘AA+’, ‘AAA’.

Motivated by Trading Economics rating,

we treat s0, . . . , s22 as equidistant, so do,1.

Unique time range for all EU countries:

n = 216 months from January 2000 to December 2017.
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Monthly S&P credit rating of Latvia:

time series plot (left), κ̂do,1(k) (right).
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Marginal properties of S&P time series of 28 EU countries:
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Marginal properties of S&P time series of 28 EU countries:
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Would also be reasonable to consider reduced range

with m̃+1 = 10 states s̃0, . . . , s̃9 given by

‘D’, ‘R’, ‘CC’, ‘CCC’, ‘B’, ‘BB’, ‘BBB’, ‘A’, ‘AA’, ‘AAA’.

To make results comparable, equidistance not appropriate.

Following (additive) distance matrix used for reduced range:

D =
(
d(s̃i, s̃j)

)
i,j=0,...,9

=



0 2 3 5 8 11 14 17 20 22
2 0 1 3 6 9 12 15 18 20
3 1 0 2 5 8 11 14 17 19
5 3 2 0 3 6 9 12 15 17
8 6 5 3 0 3 6 9 12 14

11 9 8 6 3 0 3 6 9 11
14 12 11 9 6 3 0 3 6 8
17 15 14 12 9 6 3 0 3 5
20 18 17 15 12 9 6 3 0 2
22 20 19 17 14 11 8 5 2 0


.

Not centrosymmetric (e. g., d(s̃0, s̃2) = 3 6= 5 = d(s̃9, s̃7)).
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Location, dispersion and serial dependence computed w.r.t. d:

x̂loc,d = argminx 1
n
∑n
t=1 d(xt, x) instead of median x̂loc,do,1,

similarly d̂ispd = p̂>D p̂ (normalizing factor 2/d(s̃0, s̃9) = 1/11)

and κ̂d(h) =
(
d̂ispd − 1

n−h
∑n
t=h+1 d(xt, xt−h)

)/
d̂ispd.

Crucial question: how do location, dispersion and serial depen-

dence change if using reduced range instead of full one? (. . . )

Location and dispersion robust against this change in range.

Serial dependence stronger affected, mainly larger values:

reduction of states causes less variation,

i. e., longer runs and thus increased positive dependence.
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Comparison of properties of S&P time series of 28 EU countries

if using either full range or reduced range.
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• Location, dispersion, symmetry and serial dependence for

ordinal time series based on expected distances.

Well interpretable, can deal with many types of distance

function, asymptotics available.

• Distance-based approach also for r.v. and processes having

other types of range, e. g., compositional data.

Thus allows for novel analytic tools for such data types,

and offers opportunity to treat different data types

with unique approach and unique interpretation.
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