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ARMA model for stationary real-valued time series

very popular in theory and applications.

Many attractive features, e. g., ACF ρ(k) = Corr[Xt, Xt−k]

determined from Yule-Walker equations.

Consequently, many attempts to adapt ARMA approach

to time series with range different than R, e. g.,

vector-valued t.s., compositional t.s., integer-valued t.s.,

categorical t.s., . . . (Holan et al., 2010; Weiß, 2018).

Most ARMA-like models tailor-made for particular type of range,

not possible to apply these models to different types of range.
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Only universal ARMA-like model:

NDARMA model by Jacobs & Lewis (1983).

For i. i. d. random vectors Dt = (Dt,−q, . . . , Dt,0, . . . , Dt,p)

from Mult(1; φ−q, . . . , φ0, . . . , φp), one defines

Xt =
∑p
i=1Dt,iXt−i + Dt,0 εt +

∑q
j=1Dt,−j εt−j.

So Xt randomly selects value of one

of either Xt−1, . . . , Xt−p or εt, . . . , εt−q.

NDARMA universally applicable, even to qualitative t.s.

Furthermore, ARMA-like ACF for quantitative range.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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But again because of random selection mechanism,

NDARMA sample paths tend to have long runs of values,

interrupted by sudden jumps

⇒ often not appropriate for applications.

More variation in sample paths needed!

In special case of bounded counts, Xt ∈ {0, . . . , n},

Gouveia et al. (2018) modified NDARMA model

by introducing binomial variation operator (“bvARMA”).

⇒ . . .
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Idea: To preserve NDARMA’s universal applicability

and its linear conditional mean,

generalized discrete ARMA (GDARMA) model,

using mean-preserving variation function for additional variation.

Outline:

• Diverse variation functions for different types of t.s. data.

• Unique computation of moments and autocovariances

for GDARMA processes.

• Two real applications: integer t.s. of aggregated votes

and “CoDa” t.s. concerning television market shares.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Definition of GDARMA(p, q) model:

Let (Xt)Z be K-dimensional process with state space S.

(εt)Z i. i. d. innovations with S, εt independent of (Xs)s<t.

Dt = (Dt,−q, . . . , Dt,0, . . . , Dt,p) ∼Mult(1; φ−q, . . . , φ0, . . . , φp),

Dt independent of (εs)Z and of (Xs)s<t.

GDARMA(p, q) (Xt)Z with variation functions f ·,· : S → S if

Xt =
p∑
i=1

Dt,i f t,i(Xt−i) + Dt,0 εt +
q∑

j=1
Dt,−j f t,−j(εt−j).

GDARMA model very parsimonious,

only p + q dependence parameters.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Variation functions:

If f ·,· = id (identity function), then GDARMA = NDARMA.

f ·,· assumed to be random,

realized independently of each other and of any other r.v.

To end up with ARMA-like ACF, f ·,· mean-preserving,

i. e., E
[
f(X) | X

]
= X and thus E

[
f(X)

]
= E[X].

Then V
[
fk(X)

]
= V [Xk] + E

[
V [fk(X) | X]

]
, and

Cov
[
fk(X), fl(X)

]
= Cov[Xk, Xl] + E

[
Cov[fk(X), fl(X) | X]

]
.

Also P
(
f(X) ≤ k

)
=

∑
xP

(
f(x) ≤ k

)
P (X = x).

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Variation functions for counts:

Binomial variation: f(x) = bvn(x) for S = {0, . . . , n},

where bvn(x) ∼ Bin(n, xn). We have V
[
bvn(x)

]
= x

(
1− x

n

)
.

→ bvARMA model by Gouveia et al. (2018).

Poisson variation: f(x) = Pv(x) for S = N0,

where Pv(x) ∼ Poi(x). We have V
[
Pv(x)

]
= x.

Geometric variation: f(x) = gv(x) for S = N0,

where gv(x) ∼ Geom
(

1
1+x

)
. We have V

[
gv(x)

]
= x (1 + x).

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Variation functions for counts

. . . with an additional dispersion parameter :

Beta-binomial variation: f(x) = bbvn,τ(x) for S = {0, . . . , n},

where bbvn,τ(x) ∼ BBin
(
n; n−ττ−1

x
n,
n−τ
τ−1 (1− x

n)
)

with dispersion parameter τ ∈ (0;n).

We have V
[
bbvn,τ(x)

]
= τ x (1− x

n).

Limit τ → 1 leads to binomial variation.

Negative-binomial variation: f(x) = nbvτ(x) for S = N0,

where nbvτ(x) ∼ NB
(
τ, τ
τ+x

)
with dispersion parameter τ > 0.

We have V
[
nbvτ(x)

]
= x (τ+x)

τ .

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Variation functions for integers:

Signed bin. var.: f(x) = sbvn(x) for S = {−n, . . . ,0, . . . , n},

where sbvn(x) ∼ sgn(x)Bin
(
n,
|x|
n

)
; V

[
sbvn(x)

]
= |x|

(
1− |x|n

)
.

Signed beta-bin. var.: f(x) = sbbvn,τ(x) for S = {−n, . . . , n},

where sbbvn,τ(x) ∼ sgn(x)BBin
(
n, n−ττ−1

|x|
n ,

n−τ
τ−1 (1− |x|n )

)
with τ ∈ (1;n). We have V

[
sbbvn,τ(x)

]
= τ |x|

(
1− |x|n

)
.

Limit τ → 1 leads to signed binomial variation.

Signed Poisson variation: f(x) = sPv(x) for S = Z,

where sPv(x) ∼ sgn(x)Poi
(
|x|

)
. We have V

[
sPv(x)

]
= |x|.

Skellam variation: (. . . )

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Variation functions for reals:

Normal variation: f(x) = nvτ(x) for S = R,

where nvτ(x) ∼ N(x, τ) with dispersion parameter τ > 0.

We have V
[
nvτ(x)

]
= τ .

Exponential variation: f(x) = ev(x) for S = (0;∞),

where ev(x) ∼ Exp(1/x) without further parameter.

We have V
[
ev(x)

]
= x2.

Beta variation: f(x) = btvτ(x) for S = (0; 1),

where btvτ(x) ∼ Beta
(
n; 1−τ

τ x, 1−τ
τ (1− x)

)
with τ > 0.

We have V
[
btvτ(x)

]
= τx(1− x).

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Variation functions for categorized data

. . . if counting units falling into K + 1 categories:

Multinomial var.: f(x) = mvn(x) ∼Mult(n; x0
n , . . . ,

xK
n ).

mvn(x) generalizes binomial variation.

We have Cov
[(
mvn(x)

)
k
,
(
mvn(x)

)
l

]
= δk,l xk − 1

n xkxl.

. . . if “CoDa” t.s. (Pawlowsky-Glahn & Buccianti, 2011):

Dirichlet variation: f(x) = Dvτ(x)

for S =
{
x ∈ (0; 1)K+1 | x0 + . . .+ xK = 1

}
,

where Dvτ(x) ∼ Dir(τ x0, . . . , τ xK) with disp. par. τ > 0.

We have Cov
[(
Dvτ(x)

)
k
,
(
Dvτ(x)

)
l

]
=

δk,l xk−xkxl
1+τ .

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Because of mean-preserving property, linear conditional mean

E[Xt |Xt−1, . . . , εt−1, . . .] = φ0·µε +
∑p
i=1 φiXt−i +

∑q
j=1 φ−j εt−j,

where µε := E[εt]. Thus, equality

µ := E[Xt] = E[εt] = µε.

Yule-Walker-like equations for univariate GDARMA process:

γ(k)− ∑p
i=1 φi γ(|k − i|) = σ2

ε
∑q
u=k φ−u bu−k,

where

bk = 0 for k < 0, b0 = φ0, bk =
∑p
i=1 φi bk−i+φ−k for k > 0.

Christian H. Weiß — Helmut Schmidt University, Hamburg



Generalized Discrete ARMA Models MATH 

STAT 

Yule-Walker-like equations for multivariate GDARMA:

Γ(k)− ∑p
i=1 φiΓ(k − i) =

∑q
u=k φ−uA

(u−k),

where

A(0) = φ0 Γε, A(k) =
∑p
i=1 φiA

(k−i) + φ−k Γε for k > 0.

Marginal (co-)variances:

V [X] = φ0 V [ε] + φ(p) V
[
f(X)

]
+ φ(q) V

[
f(ε)

]
,

γl,m(0) = φ0 γε; l,m + φ(p)Cov
[(
f(X)

)
l
,
(
f(X)

)
m

]
+ φ(q)Cov

[(
f(ε)

)
l
,
(
f(ε)

)
m

]
,

where φ(p) :=
∑p
i=1 φi, φ(q) :=

∑q
j=1 φ−j.

Christian H. Weiß — Helmut Schmidt University, Hamburg
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Application to bounded counts t.s.:

2565 t.s. with counts of rainy days per week, S = {0, . . . ,7},

at stations in Europe and Russia, see Gouveia et al. (2018).

Used bvARMA(p, q) models

with p,q ≤ 1 plus type of

“seasonal” bvARMA model.

Outperform NDARMA models.
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Application to integer t.s.:

Consecutive meetings of Monetary Policy Council (MPC)

of the Narodowy Bank Polski (NBP)

from 2002 to 2013 (roughly once a month).

n = 10 MPC members, may vote for raise of interest rate (+1),

or for cut (−1), or for no change (0).

Thus t.s. of length T = 139 with range {−10, . . . ,0, . . . ,10}.

Raw data and background information in Sirchenko (2013).
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PACF indicates AR-DGP of order ≤ 2.

Sample PMF approx. symmetric, very high zero frequency.
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GDARMA candidate models of order p ≤ 2 and q ≤ 1,

having signed-ZIB innovations,

either signed binomial or signed beta-binomial variation.

GDARMA(p,q) models using signed binomial variation:

(p,q) φ−1 φ0 φ1 φ2 π ω AIC BIC
(. . . )
(2,1) 0.443 0.013 0.342 0.202 0.634 0.422 584.36 599.03

(0.078) - (0.089) (0.059) (0.041) (0.077)

GDARMA(p,q) models using signed beta-binomial variation:

(p,q) φ−1 φ0 φ1 φ2 π ω τ AIC BIC
(. . . )
(2,1) 0.230 0.180 0.366 0.224 0.535 0.413 3.076 577.57 595.17

(0.119) - (0.089) (0.069) (0.066) (0.097) (0.829)
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Properties of data and fitted GDARMA(p,q) models:
signed binomial variation signed beta-binomial variation

E
[
|X|

]
σ2
X ρ(1) ρ(2) E

[
|X|

]
σ2
X ρ(1) ρ(2)

data 3.50 25.11 0.69 0.62 3.50 25.11 0.69 0.62
GDAR(1) 3.64 24.54 0.44 0.20 3.49 25.68 0.53 0.28

GDARMA(1,1) 3.77 27.05 0.43 0.19 3.20 23.44 0.49 0.21
GDAR(2) 3.55 24.70 0.44 0.36 3.26 24.81 0.55 0.47

GDARMA(2,1) 3.67 26.93 0.44 0.35 3.14 23.90 0.51 0.41

Interpretation of preferred GDARMA(2,1) model:

With prob. φ2 = 22.4 %, aggregated votes Xt based on Xt−2,
with prob. φ1 = 36.6 % based on Xt−1.

New information at time t (innovation εt) determines
voting behavior at same time t with prob. φ0 = 18.0 %,
and with delay of one with prob. φ−1 = 23.0 %.
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Application to CoDa t.s.:

Daily shares among ≥ 3-year-old viewers in German TV market,

http://www.quotenmeter.de/c/28/tagesmarktanteile.

We consider K = 5 market participants:

“Das Erste” and “ZDF” (public-sector broadcasts),

“RTL Group”, “ProSiebenSat.1 Group” and “Rest”,

for period from Jan. 1, 2009 to May 15, 2010 (T = 500).
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We fit GDAR(p) models of various orders p,

using Dirichlet variation Dvτ(x) and Dirichlet innovations.

For Γ̂(k) at lags k = 1, . . . ,20,

we calculate ρ̄(k) = tr
(
Γ̂(k)

)
/tr

(
Γ̂(0)

)
,

as type of weighted mean of individual ACFs.

→ Serves as overall measure of dependence,

to determine most relevant lags for estimation.

We obtain most relevant lags 7, 14, 1, 6, 13, 20, . . .
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Model φ0 φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ14 α1 α2 α3 α4 α5 τ AIC BIC
I 0.60 0.40 40.01 38.90 67.71 63.64 99.55 1333.72 −10724 −10694

(0.03) (1.79) (1.74) (3.04) (2.87) (4.42) (101.85)

II 0.43 0.32 0.25 36.84 35.68 61.52 57.59 91.50 1328.10 −10930 −10896
(0.03) (0.03) (2.05) (1.99) (3.45) (3.26) (5.07) (99.86)

III 0.35 0.10 0.31 0.24 33.28 32.29 55.20 51.95 83.08 1306.33 −10972 −10934
(0.02) (0.03) (0.03) (2.20) (2.12) (3.69) (3.49) (5.46) (91.95)

IV 0.32 0.10 0.03 0.31 0.24 32.78 31.68 54.05 50.85 81.74 1261.25 −10978 −10936
(0.02) (0.01) (0.03) (0.03) (2.35) (2.27) (3.94) (3.72) (5.84) (88.24)

V 0.32 0.09 0.02 0.01 0.00 0.00 0.02 0.31 0.23 35.09 34.33 58.48 55.14 88.46 1309.42 −10979 −10920
(0.03) (0.02) (0.01) (0.01) (0.01) (0.02) (0.03) (0.03) (39.35) (36.79) (70.21) (65.75) (90.71) (28.39)

µ σ ρ̄(1) ρ̄(6) ρ̄(7) ρ̄(8) ρ̄(13) ρ̄(14) ρ̄(15)
Das Erste ZDF RTL Pro7Sat.1 Das Erste ZDF RTL Pro7Sat.1 Rest

Data 0.128 0.125 0.221 0.209 0.018 0.018 0.022 0.020 0.028 0.318 0.210 0.436 0.168 0.180 0.413 0.154
I 0.129 0.126 0.219 0.205 0.020 0.020 0.025 0.025 0.028 0.000 0.000 0.398 0.000 0.000 0.158 0.000
II 0.130 0.126 0.217 0.203 0.023 0.022 0.028 0.027 0.031 0.000 0.000 0.421 0.000 0.000 0.383 0.000
III 0.130 0.126 0.216 0.203 0.025 0.024 0.030 0.029 0.034 0.133 0.066 0.416 0.099 0.054 0.377 0.101
IV 0.131 0.126 0.215 0.202 0.025 0.025 0.031 0.030 0.035 0.159 0.110 0.430 0.121 0.087 0.388 0.116
V 0.129 0.126 0.215 0.203 0.024 0.024 0.030 0.029 0.034 0.140 0.095 0.416 0.106 0.075 0.372 0.101

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

k

M
ea

n 
A

C
F

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

k

T
he

or
et

ic
al

 A
C

F

of fitted model IV
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Interpretation of fitted model IV:

With prob. φ7 = 31 %, viewers again program from week before,

with φ14 = 24 % the one from two weeks before.

Program of previous day relevant with φ1 = 10 %,

completely new program decision with φ0 = 32 %.

Mean preference for “RTL Group” and “ProSiebenSat.1 Group”

twice than for “Das Erste” and “ZDF”.

Model IV only uses 4 + 5 + 1 = 10 model parameters,

very parsimonious multivariate time series model.

Certainly, not perfect fit to data, e. g., cannot capture

heterogeneity among component-wise ACFs.
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• GDARMA offers universal modeling approach

that maintains linear conditional mean and ARMA-like ACF.

• Applicable to all kinds of data

by incorporating data-specific variation function.

• GDARMA uses small number of model parameters,

has unique moment properties.

• Real applications concerning counts, integers and CoDa

demonstrated wide applicability of GDARMA model.
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