Generalized Discrete ARMA Models

Helmut schmidT universität

Universität der Bundeswehr Hamburg

Tobias A. Möller Christian H. Weiß

Department of Mathematics & Statistics, Helmut Schmidt University, Hamburg

Generalized Discrete ARMA Models

Motivation & Outline

ARMA model for stationary real-valued time series very popular in theory and applications.

Many attractive features, e.g., ACF $\rho(k) = Corr[X_t, X_{t-k}]$ determined from Yule-Walker equations.

Consequently, many attempts to adapt ARMA approach to time series with range different than \mathbb{R} , e.g., vector-valued t.s., compositional t.s., integer-valued t.s., categorical t.s., (Holan et al., 2010; Weiß, 2018).

Most ARMA-like models tailor-made for particular type of range, not possible to apply these models to different types of range.

MATH Stat

Only universal ARMA-like model:

NDARMA model by Jacobs & Lewis (1983).

For i. i. d. random vectors $D_t = (D_{t,-q}, \dots, D_{t,0}, \dots, D_{t,p})$ from Mult(1; $\phi_{-q}, \dots, \phi_0, \dots, \phi_p$), one defines

$$X_{t} = \sum_{i=1}^{p} D_{t,i} X_{t-i} + D_{t,0} \epsilon_{t} + \sum_{j=1}^{q} D_{t,-j} \epsilon_{t-j}.$$

So X_t randomly selects value of one

of either X_{t-1}, \ldots, X_{t-p} or $\epsilon_t, \ldots, \epsilon_{t-q}$.

NDARMA universally applicable, even to qualitative t.s. Furthermore, ARMA-like ACF for quantitative range.

- But again because of random selection mechanism,
- NDARMA sample paths tend to have long runs of values,
- interrupted by sudden jumps
- \Rightarrow often not appropriate for applications.

More variation in sample paths needed!

In special case of bounded counts, $X_t \in \{0, ..., n\}$, Gouveia et al. (2018) modified NDARMA model

by introducing binomial variation operator ("bvARMA").

 $\Rightarrow \dots$

Idea: To preserve NDARMA's universal applicability and its linear conditional mean,

generalized discrete ARMA (GDARMA) model,

using mean-preserving variation function for additional variation.

Outline:

- Diverse variation functions for different types of t.s. data.
- Unique computation of moments and autocovariances for GDARMA processes.
- Two real applications: integer t.s. of aggregated votes and "CoDa" t.s. concerning television market shares.

Generalized Discrete ARMA Models

Variation functions

Definition of GDARMA(p, q) model:

Let $(X_t)_{\mathbb{Z}}$ be *K*-dimensional process with state space S. $(\epsilon_t)_{\mathbb{Z}}$ i.i.d. innovations with S, ϵ_t independent of $(X_s)_{s < t}$.

$$egin{aligned} m{D}_t &= (D_{t,-\mathsf{q}},\ldots,D_{t,\mathsf{0}},\ldots,D_{t,\mathsf{p}}) \sim \mathsf{Mult}(1; \ \phi_{-\mathsf{q}},\ldots,\phi_0,\ldots,\phi_\mathsf{p}), \ m{D}_t \ ext{independent of } (m{\epsilon}_s)_{\mathbb{Z}} \ ext{and of } (m{X}_s)_{s < t}. \end{aligned}$$

 $\mathsf{GDARMA}(\mathsf{p},\mathsf{q})$ $(oldsymbol{X}_t)_{\mathbb{Z}}$ with variation functions $oldsymbol{f}_{\cdot,\cdot}:\mathcal{S}
ightarrow\mathcal{S}$ if

$$X_t = \sum_{i=1}^{p} D_{t,i} f_{t,i}(X_{t-i}) + D_{t,0} \epsilon_t + \sum_{j=1}^{q} D_{t,-j} f_{t,-j}(\epsilon_{t-j}).$$

GDARMA model very parsimonious,

only p + q dependence parameters.

Variation functions:

If $f_{\cdot,\cdot} = id$ (identity function), then GDARMA = NDARMA.

 $f_{\cdot,\cdot}$ assumed to be random,

realized independently of each other and of any other r.v.

To end up with ARMA-like ACF, $f_{\cdot,\cdot}$ mean-preserving, i. e., E[f(X) | X] = X and thus E[f(X)] = E[X]. Then $V[f_k(X)] = V[X_k] + E[V[f_k(X) | X]]$, and $Cov[f_k(X), f_l(X)] = Cov[X_k, X_l] + E[Cov[f_k(X), f_l(X) | X]]$. Also $P(f(X) \le k) = \sum_x P(f(x) \le k) P(X = x)$.

Variation functions for counts:

Binomial variation: $f(x) = bv_n(x)$ for $S = \{0, ..., n\}$, where $bv_n(x) \sim Bin(n, \frac{x}{n})$. We have $V[bv_n(x)] = x(1 - \frac{x}{n})$.

 \rightarrow **bvARMA model** by Gouveia et al. (2018).

Poisson variation: f(x) = Pv(x) for $S = \mathbb{N}_0$,

where $Pv(x) \sim Poi(x)$. We have V[Pv(x)] = x.

Geometric variation: f(x) = gv(x) for $S = \mathbb{N}_0$,

where $gv(x) \sim Geom(\frac{1}{1+x})$. We have V[gv(x)] = x(1+x).

MATH STAT

Variation functions for counts

... with an additional *dispersion parameter*:

Beta-binomial variation: $f(x) = bbv_{n,\tau}(x)$ for $S = \{0, ..., n\}$,

where $bbv_{n,\tau}(x) \sim BBin(n; \frac{n-\tau}{\tau-1}\frac{x}{n}, \frac{n-\tau}{\tau-1}(1-\frac{x}{n}))$

with dispersion parameter $\tau \in (0; n)$.

We have
$$V[bbv_{n,\tau}(x)] = \tau x (1 - \frac{x}{n}).$$

Limit $\tau \rightarrow 1$ leads to binomial variation.

Negative-binomial variation: $f(x) = nbv_{\tau}(x)$ for $S = \mathbb{N}_0$,

where $nbv_{\tau}(x) \sim NB(\tau, \frac{\tau}{\tau+x})$ with dispersion parameter $\tau > 0$. We have $V[nbv_{\tau}(x)] = \frac{x(\tau+x)}{\tau}$.

MATH STAT

Variation functions for integers:

Signed bin. var.:
$$f(x) = \operatorname{sbv}_n(x)$$
 for $S = \{-n, \dots, 0, \dots, n\}$,
where $\operatorname{sbv}_n(x) \sim \operatorname{sgn}(x) \operatorname{Bin}\left(n, \frac{|x|}{n}\right)$; $V[\operatorname{sbv}_n(x)] = |x| \left(1 - \frac{|x|}{n}\right)$.
Signed beta-bin. var.: $f(x) = \operatorname{sbbv}_{n,\tau}(x)$ for $S = \{-n, \dots, n\}$,
where $\operatorname{sbbv}_{n,\tau}(x) \sim \operatorname{sgn}(x) \operatorname{BBin}\left(n, \frac{n-\tau}{\tau-1} \frac{|x|}{n}, \frac{n-\tau}{\tau-1} \left(1 - \frac{|x|}{n}\right)\right)$
with $\tau \in (1; n)$. We have $V[\operatorname{sbbv}_{n,\tau}(x)] = \tau |x| \left(1 - \frac{|x|}{n}\right)$.

Limit $\tau \rightarrow 1$ leads to signed binomial variation.

Signed Poisson variation: f(x) = sPv(x) for $S = \mathbb{Z}$, where $sPv(x) \sim sgn(x) Poi(|x|)$. We have V[sPv(x)] = |x|. **Skellam variation:** (...)

Variation functions for reals:

Normal variation: $f(x) = nv_{\tau}(x)$ for $S = \mathbb{R}$,

- where $nv_{\tau}(x) \sim N(x, \tau)$ with dispersion parameter $\tau > 0$. We have $V[nv_{\tau}(x)] = \tau$.
- **Exponential variation:** f(x) = ev(x) for $S = (0; \infty)$,
 - where $ev(x) \sim Exp(1/x)$ without further parameter. We have $V[ev(x)] = x^2$.

Beta variation: $f(x) = btv_{\tau}(x)$ for S = (0; 1),

where $btv_{\tau}(x) \sim Beta(n; \frac{1-\tau}{\tau}x, \frac{1-\tau}{\tau}(1-x))$ with $\tau > 0$. We have $V[btv_{\tau}(x)] = \tau x(1-x)$.

Variation functions for categorized data

... if counting units falling into K + 1 categories:

Multinomial var.: $f(x) = mv_n(x) \sim Mult(n; \frac{x_0}{n}, \dots, \frac{x_K}{n})$.

 $\mathbf{mv}_n(x)$ generalizes binomial variation.

We have $Cov[(\mathbf{mv}_n(\mathbf{x}))_k, (\mathbf{mv}_n(\mathbf{x}))_l] = \delta_{k,l} x_k - \frac{1}{n} x_k x_l.$

... if "CoDa" t.s. (Pawlowsky-Glahn & Buccianti, 2011): Dirichlet variation: $f(x) = Dv_{\tau}(x)$

for
$$S = \{x \in (0; 1)^{K+1} \mid x_0 + \ldots + x_K = 1\}$$
,
where $\mathbf{D}\mathbf{v}_{\tau}(x) \sim \operatorname{Dir}(\tau x_0, \ldots, \tau x_K)$ with disp. par. $\tau > 0$
We have $Cov[(\mathbf{D}\mathbf{v}_{\tau}(x))_k, (\mathbf{D}\mathbf{v}_{\tau}(x))_l] = \frac{\delta_{k,l} x_k - x_k x_l}{1 + \tau}$.

Generalized Discrete ARMA Models

Moment properties

MATH Stat

Because of mean-preserving property, linear conditional mean $E[X_t \mid X_{t-1}, \dots, \epsilon_{t-1}, \dots] = \phi_0 \cdot \mu_{\epsilon} + \sum_{i=1}^{p} \phi_i X_{t-i} + \sum_{j=1}^{q} \phi_{-j} \epsilon_{t-j},$

where $\mu_{\epsilon} := E[\epsilon_t]$. Thus, equality

$$\boldsymbol{\mu} := E[\boldsymbol{X}_t] = E[\boldsymbol{\epsilon}_t] = \boldsymbol{\mu}_{\boldsymbol{\epsilon}}.$$

Yule-Walker-like equations for univariate GDARMA process:

$$\gamma(k) - \sum_{i=1}^{\mathsf{p}} \phi_i \gamma(|k-i|) = \sigma_{\epsilon}^2 \sum_{u=k}^{\mathsf{q}} \phi_{-u} b_{u-k},$$

where

$$b_k = 0$$
 for $k < 0$, $b_0 = \phi_0$, $b_k = \sum_{i=1}^{p} \phi_i b_{k-i} + \phi_{-k}$ for $k > 0$.

Yule-Walker-like equations for multivariate GDARMA:

$$\Gamma(k) - \sum_{i=1}^{\mathsf{p}} \phi_i \Gamma(k-i) = \sum_{u=k}^{\mathsf{q}} \phi_{-u} \mathbf{A}^{(u-k)},$$

where

$$\mathbf{A}^{(0)} = \phi_0 \Gamma_{\epsilon}, \quad \mathbf{A}^{(k)} = \sum_{i=1}^{p} \phi_i \mathbf{A}^{(k-i)} + \phi_{-k} \Gamma_{\epsilon} \quad \text{for } k > 0.$$

Marginal (co-)variances:

$$V[X] = \phi_0 V[\epsilon] + \phi^{(\mathsf{p})} V[f(X)] + \phi^{(\mathsf{q})} V[f(\epsilon)],$$

$$\gamma_{l,m}(0) = \phi_0 \gamma_{\epsilon; l,m} + \phi^{(\mathsf{p})} Cov[(f(X))_l, (f(X))_m] + \phi^{(\mathsf{q})} Cov[(f(\epsilon))_l, (f(\epsilon))_m],$$

where $\phi^{(p)} := \sum_{i=1}^{p} \phi_i$, $\phi^{(q)} := \sum_{j=1}^{q} \phi_{-j}$.

Generalized Discrete ARMA Models

Real applications

Application to bounded counts t.s.:

2565 t.s. with counts of rainy days per week, $S = \{0, ..., 7\}$, at stations in Europe and Russia, see Gouveia et al. (2018).

Used bvARMA(p, q) models with $p,q \le 1$ plus type of ''seasonal'' bvARMA model. Outperform NDARMA models.

Means of rainy days t.s.

Application to integer t.s.:

Consecutive meetings of Monetary Policy Council (MPC)

of the Narodowy Bank Polski (NBP)

from 2002 to 2013 (roughly once a month).

n = 10 MPC members, may vote for raise of interest rate (+1), or for cut (-1), or for no change (0).

Thus t.s. of length T = 139 with range $\{-10, ..., 0, ..., 10\}$.

Raw data and background information in Sirchenko (2013).

MATH Stat

PACF indicates AR-DGP of order \leq 2.

Sample PMF approx. symmetric, very high zero frequency.

GDARMA candidate models of order $p\leq 2$ and $q\leq 1,$

```
having signed-ZIB innovations,
```

either signed binomial or signed beta-binomial variation.

GDARMA(p,q) models using signed binomial variation:													
(p,q)	ϕ_{-1}	ϕ_{0}	ϕ_1	ϕ_2	π	ω		AIC	BIC				
()								•					
(2,1)	0.443	0.013	0.342	0.202	0.634	0.422		584.36	599.03				
	(0.078)	-	(0.089)	(0.059)	(0.041)	(0.077)							

GDARMA(p,q) models using signed beta-binomial variation:

(p,q)	ϕ_{-1}	ϕ_0	ϕ_{1}	ϕ_2	π	ω	$\mid au$	AIC	BIC
()									
(2,1)	0.230	0.180	0.366	0.224	0.535	0.413	3.076	577.57	595.17
	(0.119)	-	(0.089)	(0.069)	(0.066)	(0.097)	(0.829)		

Properties of data and fitted GDARMA(p,q) models:

signed binomial variation | signed beta-binomial variation

	E[X]	σ_X^2	ho(1)	$\rho(2)$	E[X]	σ_X^2	ho(1)	ho(2)
data	3.50	25.11	0.69	0.62	3.50	25.11	0.69	0.62
GDAR(1)	3.64	24.54	0.44	0.20	3.49	25.68	0.53	0.28
GDARMA(1,1)	3.77	27.05	0.43	0.19	3.20	23.44	0.49	0.21
GDAR(2)	3.55	24.70	0.44	0.36	3.26	24.81	0.55	0.47
GDARMA(2,1)	3.67	26.93	0.44	0.35	3.14	23.90	0.51	0.41

Interpretation of preferred GDARMA(2,1) model:

With prob. $\phi_2 = 22.4 \%$, aggregated votes X_t based on X_{t-2} , with prob. $\phi_1 = 36.6 \%$ based on X_{t-1} .

New information at time t (innovation ϵ_t) determines voting behavior at same time t with prob. $\phi_0 = 18.0\%$, and with delay of one with prob. $\phi_{-1} = 23.0\%$.

MATH Stat

Application to CoDa t.s.:

Daily shares among \geq 3-year-old viewers in German TV market,

http://www.quotenmeter.de/c/28/tagesmarktanteile.

We consider K = 5 market participants:

"Das Erste" and "ZDF" (public-sector broadcasts),

"RTL Group", "ProSiebenSat.1 Group" and "Rest",

for period from Jan. 1, 2009 to May 15, 2010 (T = 500).

We fit GDAR(p) models of various orders p, using Dirichlet variation $\mathbf{Dv}_{\tau}(x)$ and Dirichlet innovations.

For $\hat{\Gamma}(k)$ at lags k = 1, ..., 20, we calculate $\bar{\rho}(k) = \operatorname{tr}(\hat{\Gamma}(k))/\operatorname{tr}(\hat{\Gamma}(0))$, as type of weighted mean of individual ACFs.

 \rightarrow Serves as overall measure of dependence,

to determine most relevant lags for estimation.

We obtain most relevant lags 7, 14, 1, 6, 13, 20, ...

MATH STAT

Mode	$ \phi_0$	ϕ_1	ϕ_2	фз	ϕ_{4}	ϕ_5	ϕ_6	ϕ_7	ϕ_{14}	α_1	α2	α_{3}	3	α_4	α_{Ξ}	5	au	AIC	2	BIC
Ι	0.60							0.40 (0.03)		40.01 (1.79)	38.90) 67 . (3.0	71 6 4) (3.64 ^{2.87)}	99.5	55 1 ₂₎	1333.72 (101.85)	-107	24	-10694
II	0.43							0.32 (0.03)	0.25	36.84 (2.05)	35.68 (1.99)	3 61. (3.4	52 5 5) (7.59 3.26)	91. (5.0	50 1 7)	1328.10 (99.86)	-109	30	-10896
III	0.35	0.10						0.31	0.24	33.28 (2.20)	32.29 (2.12)) 55.1 (3.6	20 5 9) (1.95 3.49)	83.0 (5.4)	08 1 ₆₎	1306.33 (91.95)	-109	72	-10934
IV	0.32	0.10					0.03	0.31	0.24	32.78 (2.35)	31.68	3 54 .0 (3.9	05 5 4) (0.85	81.7 (5.8	7 4 1	1261.25 (88.24)	-109	78	-10936
V	0.32	0.09 (0.03)	0.02	0.01	L 0.00) (0.01)	0.00 (0.01)	0.02	0.31 (0.03)	0.23	35.09 (39.35)	34.33 (36.79)	3 58. 4	48 5 21) (5.14	88.4 (90.7	46 1 71)	1309.42 (28.39)	-109	979	-10920
	Das Er			דו נ	Dro7Sat	1 ∥ רס	c Ersta		σ ρti	Pro7	Sat 1	Post	$\bar{ ho}(1$) $\bar{\rho}$	(6)	$\bar{\rho}(7)$	$\overline{ ho}(8)$	$\bar{ ho}(13)$	$\bar{ ho}(14$) $\bar{\rho}(15)$
Data			25 0	221			$\frac{5}{018}$			2 00	3at.1)20	$\frac{1}{0.028}$	0 31	8 0	210 (1 436	0 168	0 180	0 41	3 0 1 5 4
I	0.129	0.1	26 0.	219	0.205		0.020	0.020	0.025	5 0.0)25	0.028	0.00	0 0.	000 (0.398	0.000 0.100	0.000	0.15	8 0.000
II	0.130	0.1	26 0.	217	0.203	(0.023	0.022	0.028	3 0.0)27	0.031	0.00	0 0.	000 (0.421	0.000	0.000	0.38	3 0.000
III	0.130	0.1	26 0.	216	0.203	(0.025	0.024	0.030	0.0)29	0.034	0.13	3 0.	066 (0.416	6 0.099	0.054	0.37	7 0.101
IV	0.131	0.1	26 0.	215	0.202	(0.025	0.025	0.03	1 0.0	030	0.035	0.15	9 0.	110 (0.430	0.121	0.087	0.38	8 0.116
V	0.129	0.1	26 0.	215	0.203	(0.024	0.024	0.030	0.0)29	0.034	0.14	0 0.	095 (0.416	6 0.106	0.075	0.37	2 0.101
Mean ACF -0.2 0.2 0.6 1.0		5	10	 15	20		Theoretical ACF	-0.2 0.2 0.6 1.0		5		15		0	f fi	tte	ed n	nod	lel	IV
I																				

MATH Stat

Interpretation of fitted model IV:

With prob. $\phi_7 = 31$ %, viewers again program from week before, with $\phi_{14} = 24$ % the one from two weeks before. Program of previous day relevant with $\phi_1 = 10$ %, completely new program decision with $\phi_0 = 32$ %. Mean preference for "RTL Group" and "ProSiebenSat.1 Group" twice than for "Das Erste" and "ZDF".

Model IV only uses 4 + 5 + 1 = 10 model parameters,

very parsimonious multivariate time series model.

Certainly, not perfect fit to data, e.g., cannot capture

heterogeneity among component-wise ACFs.

MATH Stat

- GDARMA offers universal modeling approach that maintains linear conditional mean and ARMA-like ACF.
- Applicable to all kinds of data by incorporating data-specific variation function.
- GDARMA uses small number of model parameters, has unique moment properties.
- Real applications concerning counts, integers and CoDa demonstrated wide applicability of GDARMA model.

Thank You for Your Interest!

Christian H. Weiß

Department of Mathematics & Statistics

Helmut Schmidt University, Hamburg

weissc@hsu-hh.de

Gouveia et al. (2018) A full ARMA model ... SERRA 32, 2495–2514. Holan et al. (2010) ARMA alphabet soup: ... Stat. Surveys 4, 232–274. Jacobs & Lewis (1983) Stat. discrete autoregressive. ... JTSA 4, 19–36. Pawlowsky-Glahn & Buccianti (2011) Comp. Data Analysis: ... Wiley. Sirchenko (2013) Modeling status quo decisions: ... NBP Working p. 148. Weiß (2018) An Introduction to Discrete-Valued Time Series. Wiley.