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Discrete-val. (Xt)N0
is Markov chain iff “memory of length 1”:

P (Xt = xt | Xt−1 = xt−1, . . .) = P (Xt = xt | Xt−1 = xt−1).

(Xt)N0
even homogeneous MC iff

transition probabilities do not vary with time:

P (Xt = i | Xt−1 = j) = pi|j for all t ∈ N.

Transition matrix P = (pi|j)i,j

of either finite or countably infinite dimension.

In this talk: count-data MC, i. e., range ⊆ N0 = {0,1, . . .}.
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Important properties of MC can be recognized

from eigenvalues of transition matrix P.

Example 1: Pearson’s GoF-Test.

Let X1, . . . , XT stem from reversible finite MC with

range {0, . . . , n}, let Ni denote number of Xt equal to i.

Tavaré & Altham (1983): Pearson’s χ2-statistic satisfies

X2 =
n∑
i=0

(Ni − Tpi)2

Tpi

D→
m∑
k=1

1+ λk
1− λk

· Z2
k for T →∞,

where λk non-unit eigenvalues of P, and Zk i. i. d. N(0,1).
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Example 2: Forecasting.

Primitive finite MC is ergodic: Ph → π 1> for h→∞.

But how quick does Ph converge to π 1>?

Denote distinct eigenvalues of P by 1 > |λ2| ≥ . . . ≥ |λr|, where

λ2 “second largest e.v.” with maximal multiplicity (say m2).

Perron-Frobenius theorem implies (Seneta, 1983)

Ph = π1> + O
(
hm2−1 · |λ2|h

)
.

⇒ identify forecasting horizon with non-trivial forecasts

(= differing from those w. r. t. stationary marginal distribution).
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Derive relations for higher conditional (factorial) moments,

where leading coefficient turns out to be required eigenvalue.

More precisely, for common types of count-data MCs,

we have kth-order polynomial structure like

E[Xk
t | Xt−1] = γk,kX

k
t−1 +. . .+ γk,1Xt−1+γk,0 with γk,k 6= 0.

We use these to find coefficients a(k)0 , . . . , a
(k)
k such that

E
[ ∑k

r=0 a
(k)
r Xr

t | Xt−1
]

= γk,k
∑k
j=0 a

(k)
j X

j
t−1.

Then we conclude that γk,k is an eigenvalue of P.
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Grunwald et al. (2000):

Homogeneous MC (Xt)N0
has CLAR(1) structure if

E[Xt | Xt−1] = α1 ·Xt−1 + α0 for some α1, α0 ∈ R.

Count data case: α0 > 0 to ensure that Xt ≥ 0.

|α1| < 1 guarantees finite mean E[Xt] = α0/(1− α1).

If |α1| < 1 and V [Xt] <∞, then ACF of AR(1)-type: ρ(k) = αk1.

So linear coefficient α1 of conditional mean equals ρ(1).

Many famous instances: INAR(1), INARCH(1),

(beta-)binomial AR(1), binomial INARCH(1), . . .
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Theorem:

Let (Xt)N0
stationary CLAR(1) count data MC with |α1| < 1.

Then α1 is an eigenvalue of transition matrix P.

Theorem implies that second largest eigenvalue of P

has modulus not smaller than |α1|, i. e.,

α1 lower bound for second largest eigenvalue.

Proof of presents main idea for subsequent proofs:

Proof: E[Xt | Xt−1] = α1 ·Xt−1 + α0

is polynomial in Xt−1 with leading coefficient α1.
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Proof: (cont.) We find coefficients a(1)0 , a
(1)
1 such that

E
[
a
(1)
1 Xt+ a

(1)
0 | Xt−1

] !
= α1

(
a
(1)
1 Xt−1 + a

(1)
0

)
,

namely a(1)1 := 1 and a
(1)
0 = −α0/(1− α1). It follows that

(
a
(1)
1 · 0+ a

(1)
0 , a

(1)
1 · 1+ a

(1)
0 , . . . , a

(1)
1 · i+ a

(1)
0 , . . .

) (
pi|j

)
i,j=0,1,...

=
(
. . . ,

∑∞
i=0 (a(1)1 · i+ a

(1)
0 ) pi|j, . . .

)
=

(
. . . , E

[
a
(1)
1 Xt+ a

(1)
0 | Xt−1 = j

]
, . . .

)
=

(
. . . , α1 (a

(1)
1 · j + a

(1)
0 ), . . .

)
= α1

(
. . . , a

(1)
1 · j + a

(1)
0 , . . .

)
,

i. e.,
(
. . . , a

(1)
1 i+ a

(1)
0 , . . .

)
left eigenvector with e.v. α1. #
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Falling factorials x(r) = x · · · (x− r+1), x(0) := 1.

Factorial moments µ(r) := E
[
(Xt)(r)

]
related to

raw moments µr := E[Xr
t ] via

µ(n) =
∑n
j=1 s

(1)
n,j · µj, µn =

∑n
j=1 s

(2)
n,j · µ(j),

where s(1)n,j , s
(2)
n,j Stirling numbers of first/second kind.

Both falling factorials x(r) and powers xr are

polynomial sequences of binomial type:

(a+ b)n =
n∑

j=0

(n
j

)
aj bn−j, (a+ b)(n) =

n∑
j=0

(n
j

)
a(j) b(n−j).
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Lemma:

Let (Xt)N0
homogeneous count-data MC such that

kth conditional raw moments, for k = 1, . . . , n with n ∈ N,

have following kth-order polynomial structure:

E[Xk
t | Xt−1] = γk,kX

k
t−1 +. . .+ γk,1Xt−1+γk,0 with γk,k 6= 0.

We set γ0,0 = 1, and assume γk,k 6= γj,j for k 6= j.

Then leading coefficients γ0,0, γ1,1, . . . , γn,n are eigenvalues of P.

Lemma holds in same way

if considering falling factorials instead of powers.
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CLAR(1) member of INARMA family:

INAR(1) model by McKenzie (1985),

Xt = α ◦Xt−1 + εt.

Provided that innovations’ mean µε exists,

conditional mean linear in previous observation: µε+ αXt−1.

Theorem: Stationary INAR(1) process (Xt)N0

with existing factorial moments µ(r),ε for (εt)N.

Then 1, α, α2, α3, . . . are eigenvalues of transition matrix P.
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CLAR(1) member of Poisson INGARCH family:

Poisson INARCH(1) model (Weiß, 2010),

Xt
∣∣∣ Xt−1, . . . ∼ Poi(β+ αXt−1).

Conditional mean linear in previous observation: β+ αXt−1.

Theorem: Stationary Poisson INARCH(1) process (Xt)N0
.

Then 1, α, α2, α3, . . . are eigenvalues of transition matrix P.

Christian H. Weiß — Helmut Schmidt University, Hamburg



Specific CLAR(1) Count Data Markov Chains MATH 

STAT 

From now on finite case,

where Markov counts Xt have range {0, . . . , n}.

Binomial AR(1) model by McKenzie (1985),

Xt = α ◦Xt−1 + β ◦ (n−Xt−1).

Conditional mean linear in previous observation: ρ ·Xt−1 + nβ,

where ρ = α− β. So again CLAR(1)-type model.

Theorem: Stationary binomial AR(1) process (Xt)N0
.

Then 1, ρ, ρ2, . . . , ρn are the eigenvalues of transition matrix P.
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According to the previous Theorems:

• general CLAR(1): eigenvalue α1; but

• special case INAR(1): eigenvalues 1, α, α2, α3, . . .

• special case INARCH(1): eigenvalues 1, α, α2, α3, . . .

• special case binomial AR(1): eigenvalues 1, ρ, ρ2, . . . , ρn

So one might conjecture that CLAR(1)-type count data model

with linear coefficient α1 (= ρ(1))

always has eigenvalues of form 1, α1, α
2
1, . . .

This conjecture, however, would not be true.
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Binomial INARCH(1) model by Weiß & Pollett (2014),

Xt
∣∣∣ Xt−1, Xt−2, . . . ∼ Bin

(
n, β+ α

Xt−1
n

)
.

Conditional mean linear in previous observation: α ·Xt−1 + nβ.

So again CLAR(1)-type model.

Theorem: Stationary binomial INARCH(1) process (Xt)N0
.

Then the eigenvalues of transition matrix P

are
n(k)
nk

αk for k = 0, . . . , n.

Eigenvalues decay even more quickly than in previous examples,

with (unique) second largest eigenvalue α.
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Although we realized that CLAR(1)’s eigenvalues

not necessarily of form 1, α1, α
2
1, . . .,

common feature of previous examples that

second largest eigenvalue uniquely α1.

But also this property not true for any CLAR(1)-type model.

Beta-binomial thinning: (Weiß & Kim, 2014)

Let thinning parameter αφ follow BETA
(1−φ
φ α, 1−φ

φ (1− α)
)
,

then conditional distribution of αφ ◦X given X is beta-binomial.
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Beta-binomial AR(1) model by Weiß & Kim (2014),

Xt = αφ ◦Xt−1 + βφ ◦ (n−Xt−1).

Conditional mean linear in previous observation: ρ ·Xt−1 + nβ,

where ρ = α− β. So again CLAR(1)-type model.

Theorem: Stationary beta-binomial AR(1) process (Xt)N0
.

Then eigenvalues of transition matrix P are (k = 0, . . . , n)

k∑
r=0

(−1)k−r
(k
r

) (1−φφ α+ r − 1)(r)

(1−φφ + r − 1)(r)

(1−φφ β+ k − r − 1)(k−r)

(1−φφ + k − r − 1)(k−r)
.

Note that values of eigenvalues do not depend on n.
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Beta-binomial AR(1)’s eigenvalues for π = 0.3, ρ = 0.5, graphs

for k = 1 (black) and k = 2, . . . ,5 (dark gray to light gray):
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φ

⇒ Eigenvalue ρ not always second largest one,

and second largest eigenvalue may have multiplicity > 1.
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In a nutshell:

Linear coefficient of conditional mean of CLAR(1) model

(which equals ρ(1) if variance exists)

always an eigenvalue of transition matrix,

but not necessarily second largest one

(only lower bound for second largest eigenvalue),

and its multiplicity does not need to be 1.

Perhaps ρ(1) also eigenvalue for non-CLAR(1) models?
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Binomial AR(1) model with density-dependent

colonization by Weiß & Pollett (2014),

Xt = α ◦Xt−1 + βt ◦ (n−Xt−1),

with α, a, b satisfying α, a, a+b ∈ (0; 1) and βt := α (a+bXt−1/n).

Conditional mean quadratic function in Xt−1:

E[Xt | Xt−1] = −1
n α b ·X

2
t−1 + α (1− a+ b) ·Xt−1 + nαa.

So no CLAR(1)-type model.
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DDC-binomial AR(1)’s eigenvalues for n = 5, α = 0.7, a = 0.5

(gray dots), corresponding value of ρ(1) as black line:
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Second largest eigenvalue (lightest gray) close to ρ(1),

but usually different.

Christian H. Weiß — Helmut Schmidt University, Hamburg



Specific CLAR(1) Count Data Markov Chains MATH 

STAT 

DDC-binomial AR(1)’s eigenvalues for n = 5, α = 0.5, a = 0.5

(gray dots), corresponding value of ρ(1) as black line:
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● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

b

So second largest eigenvalue may also be smaller than ρ(1).

⇒ For non-CLAR(1), ρ(1) limited insight into eigenstructure.
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• General approach based on conditional moments to derive

eigenstructure of count-data MCs. Especially second-largest

eigenvalue relevant for applications.

• For CLAR(1) models, linear coefficient of conditional mean

(= ρ(1)) always eigenvalue and hence lower bound for

second-largest eigenvalue.

Although ρ(1) often equals second-largest eigenvalue, of mul-

tiplicity one, and remaining eigenvalues are powers of it,

all these rules do not generally hold.

• For non-CLAR(1) models, ρ(1) generally not an eigenvalue.
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