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Introduction

During the last years, there has been growing interest in time
series 𝑥𝑥1, … , 𝑥𝑥𝑇𝑇 with a categorical range, i.e., with a discrete non-
metric range consisting of a finite number 𝑚𝑚 + 1 of categories
with 𝑚𝑚 ∈ ℕ (state space). If the range exhibits a natural ordering,
it is referred to as an ordinal range, and as a nominal range
otherwise. Here, we shall consider this latter, most general case,
i.e., even if there would be some ordering, we would not make
use of it but assume a finite number of unordered categories. To
simplify notations, the range is coded as 𝒮𝒮 = 0, … ,𝑚𝑚 . But this
does not imply that there is any natural order between the states
in 𝒮𝒮, except a lexicographic order.

Possible applications:

● Manufacturing processes: quality inspection of produced
items, which are classified as either 𝑖𝑖 ∈ {1, … ,𝑚𝑚} if item was
non-conforming of type 𝑖𝑖, or as 0 for a conforming item;

● biological sequence analysis: genetic sequences of 𝑚𝑚 + 1 = 4
DNA bases, or of 𝑚𝑚 + 1 = 20 amino acids;

● part-of-speech tagging: each word of a text is assigned its part
of speech (out of finitely many options);

● network monitoring: time series of alarm messages signaling
one out of finitely many error types.

Analyzing Categorical Processes

If being concerned with stationary real-valued time series, then a
huge toolbox for analyzing such time series is readily available
and well-known to a broad audience. To mention a few basic
approaches, the time series may be visualized by simply plotting
the observed values against time, marginal properties such as
location and dispersion may be measured in terms of
mean/median and variance/quantiles, and serial dependence
may be quantified in terms of autocorrelation.

Things change if the available time series is categorical. In the
ordinal case, a time series plot is still feasible by arranging the
possible outcomes in their natural ordering along the Y axis, and
location could still be measured by the median. In the purely
nominal case as considered here, not even these basic analytic
tools are applicable. Therefore, tailor-made solutions are required
when analyzing a (stationary) categorical process (𝑋𝑋𝑡𝑡)ℤ with
range 𝒮𝒮 = 0, … ,𝑚𝑚 . In the sequel, we denote the time-invariant
marginal probabilities by 𝝅𝝅 ≔ 𝜋𝜋0, … ,𝜋𝜋𝑚𝑚 ⊤ with 𝜋𝜋𝑖𝑖 ≔ 𝑃𝑃(𝑋𝑋𝑡𝑡 =
𝑖𝑖) ∈ (0; 1) and 𝜋𝜋0 = 1 − 𝜋𝜋1 − … − 𝜋𝜋𝑚𝑚 . As their sample
counterpart, we consider the vector �𝝅𝝅 of relative frequencies
computed from 𝑋𝑋1, … ,𝑋𝑋𝑇𝑇 . The lagged bivariate (conditional)
probabilities are denoted by 𝑝𝑝𝑖𝑖𝑖𝑖(𝑘𝑘) ≔ 𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑖𝑖, 𝑋𝑋𝑡𝑡−𝑘𝑘 = 𝑗𝑗) and
𝑝𝑝𝑖𝑖|𝑗𝑗(𝑘𝑘) ≔ 𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑖𝑖 | 𝑋𝑋𝑡𝑡−𝑘𝑘 = 𝑗𝑗), respectively, with the empirical
counterparts 𝑝̂𝑝𝑖𝑖𝑖𝑖 𝑘𝑘 , 𝑝̂𝑝𝑖𝑖|𝑗𝑗(𝑘𝑘) being the corresponding relative
frequencies of (𝑖𝑖, 𝑗𝑗) within the pairs 𝑋𝑋𝑘𝑘+1,𝑋𝑋1 , … , (𝑋𝑋𝑇𝑇 ,𝑋𝑋𝑇𝑇−𝑘𝑘).

Although there are a few proposals for a visual analysis of a
categorical time series [W08], a reasonable substitute of the
simple time series plot is still missing. But a number of non-visual
tools are now available.

Location:

The (empirical) mode seems to be the only established solution.

Dispersion:

Categorical dispersion measures compare the actual marginal
distribution with the two possible extremes of a one-point
distribution (no dispersion; maximal concentration) and a uniform
distribution (maximal dispersion; no concentration).

Several measures have been proposed for this purpose, see the
survey in Appendix A of [WG08], among others:

● (empirical) Gini index,

𝜈𝜈G ≔ 𝑚𝑚+1
𝑚𝑚 1 −∑𝑖𝑖=0𝑚𝑚 𝜋𝜋𝑖𝑖2 and   𝜈̂𝜈G ≔ 𝑚𝑚+1

𝑚𝑚
𝑇𝑇

𝑇𝑇−1 1 − ∑𝑖𝑖=0𝑚𝑚 �𝜋𝜋𝑖𝑖2 ;

● (empirical) entropy,

𝜈𝜈E ≔ −1
ln(𝑚𝑚+1)

∑𝑖𝑖=0𝑚𝑚 𝜋𝜋𝑖𝑖 ln(𝜋𝜋𝑖𝑖) and   𝜈̂𝜈E ≔ −1
ln 𝑚𝑚+1

∑𝑖𝑖=0𝑚𝑚 �𝜋𝜋𝑖𝑖 ln �𝜋𝜋𝑖𝑖 .

Both measures 𝜈𝜈G and 𝜈𝜈E have the range [0; 1], with the value 0
iff being concerned with a one-point distribution, and the value 1
iff having a uniform distribution.

If (𝑋𝑋𝑡𝑡)ℤ is i.i.d., then 𝜈̂𝜈G is an exactly unbiased estimator for 𝜈𝜈G,
which is also asymptotically normally distributed with variance
4
𝑇𝑇

𝑚𝑚+1
𝑚𝑚

2 ∑𝑗𝑗=0𝑚𝑚 𝜋𝜋𝑗𝑗3 − ∑𝑗𝑗=0𝑚𝑚 𝜋𝜋𝑗𝑗2
2

. For serially dependent data
stemming from an NDARMA model (see below), at least bias
corrections are available. In contrast, 𝜈̂𝜈E is biased even in the i.i.d.
case, and the bias becomes larger if serial dependence is present.
Therefore, 𝜈̂𝜈G appears to be the most preferable measure of
categorical dispersion. [W11,W13]

Serial Dependence:

The process (𝑋𝑋𝑡𝑡)ℤ is said to be serially independent at lag 𝑘𝑘 ∈ ℕ
iff all bivariate probabilities satisfy 𝑝𝑝𝑖𝑖𝑖𝑖 𝑘𝑘 = 𝜋𝜋𝑖𝑖 𝜋𝜋𝑗𝑗.

(𝑋𝑋𝑡𝑡)ℤ is said to be perfectly serially dependent at lag 𝑘𝑘 ∈ ℕ iff, for
any 𝑗𝑗 ∈ 𝒮𝒮 , the conditional distribution 𝑝𝑝�|𝑗𝑗(𝑘𝑘) is a one-point
distribution. More precisely, we speak of perfect positive
dependence iff 𝑝𝑝𝑖𝑖|𝑗𝑗 𝑘𝑘 = 1 exactly for 𝑖𝑖 = 𝑗𝑗 (i.e., we remain in the
state reached 𝑘𝑘 times before), while perfect negative dependence
requires all 𝑝𝑝𝑖𝑖|𝑖𝑖 𝑘𝑘 = 0 (change of state). [WG08] So like positive
autocorrelation implies that large values tend to be followed by
large values, for instance, positive dependence implies that the
process tends to stay in the state it has reached (and vice versa).

Several measures of serial dependence have been proposed, e.g.,
by [WG08,BS09,BPN12]. If such measures are not able to
distinguish between positive and negative dependence, they are
referred to as unsigned measures, and as signed measures
otherwise.

Possible measures of unsigned serial dependence [WG08,W13]:

● (empirical) Cramer’s 𝑣𝑣,

𝑣𝑣 𝑘𝑘 ≔ 1
𝑚𝑚
∑𝑖𝑖,𝑗𝑗=0𝑚𝑚 𝑝𝑝𝑖𝑖𝑖𝑖 𝑘𝑘 −𝜋𝜋𝑖𝑖𝜋𝜋𝑗𝑗

2

𝜋𝜋𝑖𝑖𝜋𝜋𝑗𝑗
,  �𝑣𝑣(𝑘𝑘) ≔ 1

𝑚𝑚
∑𝑖𝑖,𝑗𝑗=0𝑚𝑚 �𝑝𝑝𝑖𝑖𝑖𝑖 𝑘𝑘 −�𝜋𝜋𝑖𝑖�𝜋𝜋𝑗𝑗

2

�𝜋𝜋𝑖𝑖�𝜋𝜋𝑗𝑗
;

● (empirical) Goodman and Kruskal’s 𝜏𝜏,

𝜏𝜏 𝑘𝑘 ≔ ∑𝑖𝑖,𝑗𝑗=0𝑚𝑚 𝑝𝑝𝑖𝑖𝑖𝑖 𝑘𝑘 −𝜋𝜋𝑖𝑖𝜋𝜋𝑗𝑗
2

𝜋𝜋𝑗𝑗 1−∑𝑟𝑟=0𝑚𝑚 𝜋𝜋𝑟𝑟2
,   𝜏̂𝜏(𝑘𝑘) ≔ ∑𝑖𝑖,𝑗𝑗=0𝑚𝑚 �𝑝𝑝𝑖𝑖𝑖𝑖 𝑘𝑘 −�𝜋𝜋𝑖𝑖�𝜋𝜋𝑗𝑗

2

�𝜋𝜋𝑗𝑗 1−∑𝑟𝑟=0𝑚𝑚 �𝜋𝜋𝑟𝑟2
.

Both 𝑣𝑣 𝑘𝑘 and 𝜏𝜏 𝑘𝑘 have range [0; 1], with 0 indicating serial
independence, and 1 for perfect serial dependence at lag 𝑘𝑘.

Possible measure of signed serial dependence [WG08,W11]:

● (empirical) Cohen’s 𝜅𝜅,

𝜅𝜅 𝑘𝑘 ≔
∑𝑗𝑗=0
𝑚𝑚 𝑝𝑝𝑗𝑗𝑗𝑗 𝑘𝑘 −𝜋𝜋𝑗𝑗

2

1−∑𝑟𝑟=0𝑚𝑚 𝜋𝜋𝑟𝑟2
,   𝜅̂𝜅 𝑘𝑘 ≔ 1

𝑇𝑇 +
∑𝑗𝑗=0
𝑚𝑚 �𝑝𝑝𝑗𝑗𝑗𝑗 𝑘𝑘 −�𝜋𝜋𝑗𝑗

2

1−∑𝑟𝑟=0𝑚𝑚 �𝜋𝜋𝑟𝑟2
.

The range of 𝜅𝜅 𝑘𝑘 also includes negative values:
− ∑𝑗𝑗=0

𝑚𝑚 𝜋𝜋𝑗𝑗
2

1−∑𝑟𝑟=0𝑚𝑚 𝜋𝜋𝑟𝑟2
; 1 .

The sign of 𝜅𝜅 𝑘𝑘 goes along with the sign of serial dependence.

The performance of the empirical measures �𝑣𝑣 𝑘𝑘 , 𝜏̂𝜏 𝑘𝑘 , 𝜅̂𝜅 𝑘𝑘 for
uncovering significant serial dependence was investigated in
[W11,W13]. If (𝑋𝑋𝑡𝑡)ℤ is i.i.d., then 𝜅̂𝜅 𝑘𝑘 is asymptotically normally
distributed with mean and variance given by

0 + 𝑂𝑂(𝑇𝑇−2) and  1𝑇𝑇 1−
1+2 ∑𝑗𝑗=0

𝑚𝑚 𝜋𝜋𝑗𝑗
3−3 ∑𝑗𝑗=0

𝑚𝑚 𝜋𝜋𝑗𝑗
2

1−∑𝑗𝑗=0
𝑚𝑚 𝜋𝜋𝑗𝑗

2 2 + 𝑂𝑂(𝑇𝑇−2), resp.

For �𝑣𝑣 𝑘𝑘 , the asymptotics 𝑇𝑇 � 𝑚𝑚 � �𝑣𝑣2 𝑘𝑘 ∼ 𝜒𝜒𝑚𝑚2
2 hold, while 𝑇𝑇 �

𝜏̂𝜏2 𝑘𝑘 follows a quadratic form distribution [W13]. Therefore,
�𝑣𝑣 𝑘𝑘 is more preferable than 𝜏̂𝜏 𝑘𝑘 from a practical point of view.
But overally, Cohen’s 𝜅̂𝜅 𝑘𝑘 seems to be the measure of choice,
having the best performance for uncovering significant serial
dependence (w.r.t. both size and power), being well-suited for
parameter estimation (see below), and showing many analogies
to the well-known (signed) autocorrelation function.

Modeling Categorical Processes

A possible application of the above tools for analyzing categorical
time series is the identification and fitting of appropriate models.
Perhaps the most obvious approach is to use a pth order Markov
model for (𝑋𝑋𝑡𝑡)ℤ. In the special case p = 1 (Markov chain), the
stochastic properties are solely determined by the (1-step)
transition probabilities 𝑝𝑝𝑖𝑖|𝑗𝑗 or the corresponding transition matrix
P = (𝑝𝑝𝑖𝑖|𝑗𝑗)𝑖𝑖,𝑗𝑗 , respectively. General p th order Markov models,
however, have the practical disadvantage of a huge number of
parameters, 𝑚𝑚 � (𝑚𝑚 + 1)p .

For this reason, more parsimonious Markov-type models for
categorical processes have been proposed in the literature, e.g.,
the variable length Markov model by [BW99], hidden Markov
models as discussed in [HM09], or the mixture transition
distribution (MTD) model by [R85]. The latter extends a Markov
chain with transition matrix Q to the MTD(p) model by assuming
that 𝑃𝑃 𝑋𝑋𝑡𝑡 = 𝑖𝑖 𝑋𝑋𝑡𝑡−1 = 𝑗𝑗1, … ,𝑋𝑋𝑡𝑡−p = 𝑗𝑗p) = ∑𝑟𝑟=1

p 𝜆𝜆𝑟𝑟 � 𝑞𝑞𝑖𝑖|𝑗𝑗𝑟𝑟 with
∑𝑟𝑟=1
p 𝜆𝜆𝑟𝑟 = 1and 𝜆𝜆𝑟𝑟 ≥ 0 (only 𝑚𝑚 𝑚𝑚 + 1 + p − 1 parameters).

An even more parsimonious model class, which also allows for
non-Markovian forms of serial dependence, are the new discrete
ARMA (NDARMA) models by [JL83], which are motivated by the
standard ARMA models for real-valued processes (and which are
equivalent to the ARMA model discussed by [BS09]).

Definition. [WG08] Let (𝜖𝜖𝑡𝑡)ℤ be i.i.d. with marginal distribution 𝝅𝝅
and, independently, let 𝑫𝑫𝑡𝑡 = 𝛼𝛼𝑡𝑡,1, … ,𝛼𝛼𝑡𝑡,p,𝛽𝛽𝑡𝑡,0, … ,𝛽𝛽𝑡𝑡,q

⊤
be a

(p + q + 1) -dimensional vector, where exactly one of the
components takes the value 1 (either an 𝛼𝛼𝑡𝑡,𝑖𝑖 with probability 𝜙𝜙𝑖𝑖
or a 𝛽𝛽𝑡𝑡,𝑗𝑗 with probability 𝜑𝜑𝑗𝑗; 𝜙𝜙1 + … + 𝜑𝜑q = 1) and all others are
equal to 0. Both 𝜖𝜖𝑡𝑡 and 𝑫𝑫𝑡𝑡 are assumed to be independent of
(𝑋𝑋𝑠𝑠)𝑠𝑠<𝑡𝑡. Then (𝑋𝑋𝑡𝑡)ℤ defined by the random mixture

𝑋𝑋𝑡𝑡 = 𝛼𝛼𝑡𝑡,1 � 𝑋𝑋𝑡𝑡−1 + … + 𝛼𝛼𝑡𝑡,p � 𝑋𝑋𝑡𝑡−p + 𝛽𝛽𝑡𝑡,0 � 𝜖𝜖𝑡𝑡 + … + 𝛽𝛽𝑡𝑡,q � 𝜖𝜖𝑡𝑡−q

is said to be an NDARMA process of order (p, q).

Although written down in an ARMA-like manner, 𝑋𝑋𝑡𝑡 simply
chooses either one of 𝑋𝑋𝑡𝑡−1, …,𝑋𝑋𝑡𝑡−p or 𝜖𝜖𝑡𝑡 , …, 𝜖𝜖𝑡𝑡−q. Therefore, this
approach is applicable to categorical processes. If q > 0, then
(𝑋𝑋𝑡𝑡)ℤ is not Markovian, while the model order (p, 0) leads to a
special type of pth order Markov process, the DAR(p) process.

Generally, the NDARMA process is stationary with marginal
distribution 𝝅𝝅, and if serial dependence is measured in terms of
Cohen’s 𝜅𝜅, then 𝜅𝜅 𝑘𝑘 satisfies a set of Yule-Walker-type equations
in analogy to the standard ARMA case [WG08; same relations also
hold for 𝑣𝑣 𝑘𝑘 , 𝜏𝜏 𝑘𝑘 ]:

𝜅𝜅 𝑘𝑘 = ∑𝑗𝑗=1
p 𝜙𝜙𝑗𝑗 � 𝜅𝜅 𝑘𝑘 − 𝑗𝑗 + ∑𝑖𝑖=0

q−𝑘𝑘 𝜑𝜑𝑖𝑖+𝑘𝑘 � 𝑟𝑟(𝑖𝑖) for 𝑘𝑘 ≥ 1,

where the 𝑟𝑟(𝑖𝑖) are determined by 𝑟𝑟 𝑖𝑖 = 0 for 𝑖𝑖 < 0, 𝑟𝑟 0 = 𝜑𝜑0,
and 𝑟𝑟 𝑖𝑖 = ∑𝑗𝑗=max{0,𝑖𝑖−p}

𝑖𝑖−1 𝜙𝜙𝑖𝑖−𝑗𝑗 � 𝑟𝑟(𝑗𝑗) + ∑𝑗𝑗=0
q 𝛿𝛿𝑖𝑖,𝑗𝑗 � 𝜑𝜑𝑗𝑗 for 𝑖𝑖 > 0.

This implies to use the empirical version, 𝜅̂𝜅 𝑘𝑘 , not only for
uncovering significant serial dependence, but also for identifying
the model order of an NDARMA process, and for estimating the
model parameters in analogy to the method of moments. The
asymptotic distribution of 𝜅̂𝜅 𝑘𝑘 for general NDARMA processes
was derived in [W13].
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