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Introduction 

The analysis and modelling of time series of counts have become 
a popular research area during the last decades, but most efforts 
concentrated on the case of the infinite range ℕ0 = {0,1, … }. 
Meanwhile, a number of real applications also demonstrated the 
relevance of models and approaches for time series of counts 
having a finite range of the form {0, … ,𝑛𝑛} with an 𝑛𝑛 ∈ ℕ.  

Real-data examples: 

 

 

 

Monthly counts of Euro countries (among 𝑛𝑛 = 17 member states) 
having stable prices [WK14]. 

 

 

 

Number of traded securities companies among 𝑛𝑛 = 22 such 
companies at Korea stock market (5-min, Feb. 8, 2011) [WK13b]. 

 

 

 

Weekly number of districts in Germany (2011, 𝑛𝑛 = 38 districts) 
with infections by hantavirus [WP14]. 

McKenzie’s Binomial AR(1) Model 

This model is based on the binomial thinning operation “∘” by 
[SvH79]: 𝛼𝛼 ∘ 𝑋𝑋 ≔ ∑ 𝑌𝑌𝑖𝑖𝑋𝑋

𝑖𝑖=1 , where the 𝑌𝑌𝑖𝑖 are i.i.d. Bernoulli random 
variables with success probability 𝛼𝛼, which are also independent 
of the count data random variable 𝑋𝑋. 

Definition: Let 𝜋𝜋 ∈ (0; 1) and 𝜌𝜌 ∈ (max {− 𝜋𝜋
1−𝜋𝜋 ,−1−𝜋𝜋

𝜋𝜋 }; 1). Define 
𝛽𝛽 ≔ 𝜋𝜋(1 − 𝜌𝜌) and 𝛼𝛼 ≔ 𝛽𝛽 + 𝜌𝜌. Fix 𝑛𝑛 ∈ ℕ. 

The process (𝑋𝑋𝑡𝑡)ℕ0, defined by the recursion  

𝑋𝑋𝑡𝑡 = 𝛼𝛼 ∘ 𝑋𝑋𝑡𝑡−1 + 𝛽𝛽 ∘ 𝑛𝑛 − 𝑋𝑋𝑡𝑡−1     for 𝑡𝑡 ≥ 1, 
where all thinnings are performed independently of each other 
and where the thinnings at time 𝑡𝑡 are independent of (𝑋𝑋𝑠𝑠)𝑠𝑠<𝑡𝑡, is 
referred to as a binomial AR(1) process. [McK85] 

Stochastic Properties 

● Stationary, ergodic Markov chain with marginal distribution 
Bin(𝑛𝑛,𝜋𝜋), transition probabilities 𝑝𝑝𝑘𝑘|𝑙𝑙 ≔ 𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑘𝑘|𝑋𝑋𝑡𝑡−1 = 𝑙𝑙) 
given by 

∑ 𝑙𝑙
𝑚𝑚

𝑛𝑛−𝑙𝑙
𝑘𝑘−𝑚𝑚 𝛼𝛼𝑚𝑚(1 − 𝛼𝛼)𝑙𝑙−𝑚𝑚𝛽𝛽𝑘𝑘−𝑚𝑚(1 − 𝛽𝛽)𝑛𝑛−𝑙𝑙−𝑘𝑘+𝑚𝑚min {𝑘𝑘,𝑙𝑙}

𝑚𝑚=max {0,𝑘𝑘+𝑙𝑙−𝑛𝑛} ; 

● autocorrelation function 𝜌𝜌 𝑘𝑘 = 𝜌𝜌𝑘𝑘 (AR(1)-like); 

● explicit formulae for conditional moments, higher-order joint 
moments and cumulants, and many more. [W09a,WK13a] 

Approaches for Parameter Estimation 

A number of approaches have been investigated (asymptotics, 
finite-sample performance): 

● maximum likelihood [WK13b, WP12, WP14]; 

● conditional least squares [CL10, WP12,WK13a]; 

● method of moments [WK13b]; 

● squared differences [WK13a,b]. 

Diagnostic Tools 

The dispersion behavior of a count data random variable 𝑋𝑋 with 
range {0, … ,𝑛𝑛} is measured by the binomial index of dispersion, 
which is a function of 𝑛𝑛, mean 𝜇𝜇 and variance 𝜎𝜎2: 

𝐼𝐼 ≔ 𝐼𝐼 𝑛𝑛, 𝜇𝜇,𝜎𝜎2 ≔ 𝑛𝑛 𝜎𝜎2

𝜇𝜇 𝑛𝑛−𝜇𝜇
. 

𝐼𝐼 = 1 for 𝑋𝑋 ∼ Bin(𝑛𝑛,𝜋𝜋), and a distribution satisfying 𝐼𝐼 > 1 is said 
to exhibit extra-binomial variation. The empirical version of 𝐼𝐼, 
denoted as 𝐼𝐼, is used as a diagnostic tool. For an underlying 
binomial AR(1) process, it holds [WK14]: 

𝑇𝑇 𝐼𝐼 − 1  
𝐷𝐷
→  N 0, 2 1 − 1

𝑛𝑛
1+𝜌𝜌2

1−𝜌𝜌2
. 

[WK14] utilize this result for testing for extra-binomial variation 
(→ beta-binomial or density dependent binomial AR(1) model). 

To test for the whole marginal distribution, the following result is 
useful. Let 𝑁𝑁𝑖𝑖  denote the number of 𝑋𝑋𝑡𝑡  equal to 𝑖𝑖, and let 
𝑝𝑝0, … ,𝑝𝑝𝑛𝑛 be the marginal Bin(𝑛𝑛,𝜋𝜋)-probabilities. [W09a] showed 
that for Pearson’s 𝜒𝜒2-statistic X, we have 

X ≔ ∑ 𝑁𝑁𝑖𝑖−𝑇𝑇∙𝑝𝑝𝑖𝑖 2

𝑇𝑇∙𝑝𝑝𝑖𝑖
 
𝐷𝐷
→  ∑ 1+𝜌𝜌𝑗𝑗

1−𝜌𝜌𝑗𝑗
∙ 𝑍𝑍𝑗𝑗2𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=0 , 

where 𝑍𝑍1, … ,𝑍𝑍𝑛𝑛 are i.i.d. N(0,1). 

Further Thinning-based Models 

Binomial AR(p) Model 

Higher-order autoregressions are obtained through a probabilistic 
mixture approach [W09b]: 

𝑋𝑋𝑡𝑡 = ∑ 𝐷𝐷𝑡𝑡,𝑘𝑘 ∙ 𝛼𝛼 ∘ 𝑋𝑋𝑡𝑡−𝑘𝑘 + 𝛽𝛽 ∘ 𝑛𝑛 − 𝑋𝑋𝑡𝑡−𝑘𝑘
𝑝𝑝
𝑘𝑘=1   

with    𝐷𝐷𝑡𝑡,1, … ,𝐷𝐷𝑡𝑡,𝑝𝑝 ∼ Mult(1;𝜙𝜙1, … ,𝜙𝜙𝑘𝑘). 

Together with appropriate independence assumptions, the typical 
AR(𝑝𝑝) -like autocorrelation structure is observed, while the 
marginals still follow the Bin(𝑛𝑛,𝜋𝜋)-distribution. 

Beta-Binomial AR(1) Model 

[WK14] introduce an additional dispersion parameter 𝜙𝜙 ∈ (0; 1) 
and assume beta-distributed thinning parameters, i.e., beta-
binomial thinnings:  

𝑋𝑋𝑡𝑡 = 𝛼𝛼𝜙𝜙 ∘ 𝑋𝑋𝑡𝑡−1 + 𝛽𝛽𝜙𝜙 ∘ 𝑛𝑛 − 𝑋𝑋𝑡𝑡−1     for 𝑡𝑡 ≥ 1. 

Still 𝜌𝜌 𝑘𝑘 = 𝜌𝜌𝑘𝑘, but now 𝑋𝑋𝑡𝑡 exhibits extra-binomial variation: 

𝐼𝐼 = 1 + (𝑛𝑛−1) 1−2𝜋𝜋 1−𝜋𝜋 1−𝜌𝜌
1
𝜙𝜙−1 1+𝜌𝜌 + 1−2𝜋𝜋 1−𝜋𝜋 1−𝜌𝜌

    ∈ (1;𝑛𝑛). 

Density Dependent Binomial AR(1) Models 

[WP14] suggest the model parameters (𝜋𝜋,𝜌𝜌) and (𝛼𝛼,𝛽𝛽) at time 𝑡𝑡 
to depend on the process up to that time 𝑡𝑡 through the density 
𝑋𝑋𝑡𝑡−1 𝑛𝑛⁄ . If, e.g., 

𝜌𝜌 is fixed but 𝜋𝜋𝑡𝑡 ≔ 𝑎𝑎 + 𝑏𝑏 ∙ 𝑋𝑋𝑡𝑡−1 𝑛𝑛⁄     with 𝑎𝑎,𝑎𝑎 + 𝑏𝑏 ∈ (0; 1), 

then 

𝐼𝐼 = 1+𝜌𝜌
1+𝜌𝜌−2 1−1𝑛𝑛 𝜌𝜌𝜌𝜌− 1−1𝑛𝑛 1−𝜌𝜌 𝜌𝜌2

, 

which might be both <1 or >1. This includes the binomial 
INARCH(1) model (see below) as the boundary case 𝜌𝜌 → 0. 

Bivariate Binomial AR(1) Model 

Defining the thinning operation “⊗” based on the bivariate 
binomial distribution of type II [MO85], [SWSP14] propose a 
model for bivariate and cross-correlated binomial counts: 

𝑿𝑿𝑡𝑡 = (𝛼𝛼1,𝛼𝛼2,𝜙𝜙𝛼𝛼) ⊗𝑿𝑿𝑡𝑡−1 + (𝛽𝛽1,𝛽𝛽2,𝜙𝜙𝛽𝛽) ⊗ 𝒏𝒏−𝑿𝑿𝑡𝑡−1 , 

where the cross-dependence parameters 𝜙𝜙𝛼𝛼 ,𝜙𝜙𝛽𝛽 might also be 
negative, i.e., both positive and negative cross-correlation can  
be generated. The marginals behave like univariate 
binomial AR(1) models. 

Binomial INGARCH Models 

These models are motivated by the standard INGARCH models 
[FLO06], which constitute an integer-valued counterpart to the 
continuous GARCH models. 

Binomial INARCH(1) Model 

Conditioned on the previous count 𝑋𝑋𝑡𝑡−1, [WK14] assume 

𝑋𝑋𝑡𝑡 ∼ Bin(𝑛𝑛,𝑎𝑎 + 𝑏𝑏 ∙ 𝑋𝑋𝑡𝑡−1 𝑛𝑛⁄ )    with 𝑎𝑎,𝑎𝑎 + 𝑏𝑏 ∈ (0; 1), 

leading to 𝜌𝜌 𝑘𝑘 = 𝑏𝑏𝑘𝑘  and extra-binomial variation: 𝐼𝐼 = 1
1− 1−1𝑛𝑛 𝜌𝜌2

. 

Bivariate Binomial INARCH(1) Model 

[SWSP14] extended the binomial INARCH(1) model to the 
bivariate case by assuming 

𝑿𝑿𝑡𝑡 ∼ BVBII (𝑛𝑛1,𝑛𝑛2; 𝑎𝑎1 + 𝑏𝑏1 ∙ 𝑋𝑋𝑡𝑡−1,1 𝑛𝑛1⁄ ,𝑎𝑎2 + 𝑏𝑏2 ∙ 𝑋𝑋𝑡𝑡−1,2 𝑛𝑛2⁄ ,𝜙𝜙). 

Again, both positive and negative cross-correlation (𝜙𝜙 >
<⁄ 0) can 

be generated. The marginals behave like univariate binomial 
INARCH (1) models. 

Ongoing Research Activities 

 Diagnostic tools concerning the marginal distribution and the 
autocorrelation structure; 

 binomial AR(1) Model with self-exciting threshold; 

 higher-order binomial INGARCH models. 
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