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Introduction

The analysis and modelling of time series of counts have become
a popular research area during the last decades, but most efforts
concentrated on the case of the infinite range Ny = {0,1, ... }.
Meanwhile, a number of real applications also demonstrated the
relevance of models and approaches for time series of counts
having a finite range of the form {0, ..., n} withann € N.

Real-data examples:
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Monthly counts of Euro countries (among n = 17 member states)
having stable prices [WK14].
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Number of traded securities companies among n = 22 such
companies at Korea stock market (5-min, Feb. 8, 2011) [WK13b].
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Weekly number of districts in Germany (2011, n = 38 districts)
with infections by hantavirus [WP14].

McKenzie’s Binomial AR(1) Model

This model is based on the binomial thinning operation “o” by
[SVH79]: @ o X := Y;, Y;, where the Y; are i.i.d. Bernoulli random
variables with success probability @, which are also independent
of the count data random variable X.

Definition: Let w € (0;1) and p € (max{—=-, —="}; 1). Define
f=n(l—p)anda =L + p.Fixn € N.

The process (X;)y,, defined by the recursion
XtZ(XOXt_l-l-,BO(n—Xt_l) fOFtZl,

where all thinnings are performed independently of each other

and where the thinnings at time t are independent of (X;)<¢, is

referred to as a binomial AR(1) process. [McK85]

Stochastic Properties

e Stationary, ergodic Markov chain with marginal distribution
Bin(n, ), transition probabilities py|; == P(X; = k|X;—1 =)
given by

in{k,1 _ _ _ _
Z?Tlfr{rla)g{o,k+l—n}(1§1)(l?—rfft)am(l —a)lTmpRTm (1 — pynTiem,

e autocorrelation function p(k) = p* (AR(1)-like);

e explicit formulae for conditional moments, higher-order joint
moments and cumulants, and many more. [W09a,WK13a]

Approaches for Parameter Estimation

A number of approaches have been investigated (asymptotics,
finite-sample performance):

e maximum likelihood [WK13b, WP12, WP14];

e conditional least squares [CL10, WP12,WK13a];
e method of moments [WK13b];
squared differences [WK13a,b].

Diagnostic Tools

The dispersion behavior of a count data random variable X with
range {0, ...,n} is measured by the binomial index of dispersion,
which is a function of n, mean u and variance ¢2:
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I =1 for X ~ Bin(n, ), and a distribution satisfying I > 1 is said

to exhibit extra-binomial variation. The empirical version of I,

denoted as I, is used as a diagnostic tool. For an underlying
binomial AR(1) process, it holds [WK14]:

VT(1-1) = N(0, 2(1 - 1) 22),

1—p?

[WK14] utilize this result for testing for extra-binomial variation
(— beta-binomial or density dependent binomial AR(1) model).

To test for the whole marginal distribution, the following result is
useful. Let N; denote the number of X; equal to i, and let
Do, ---» Pn, be the marginal Bin(n, m)-probabilities. [W09a] showed
that for Pearson’s y?-statistic X, we have

(Ni—Tp;)* 2) n 1+p) 2
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where Z4, ..., Z, are i.i.d. N(0,1).

Further Thinning-based Models

Binomial AR(p) Model

Higher-order autoregressions are obtained through a probabilistic
mixture approach [W09b]:

X = £=1 D¢y (“ oXi_x+Po(n— Xt—k))
with  (Dy1, .., Dgp) ~ Mult(L; ¢y, ..., Py).

Together with appropriate independence assumptions, the typical
AR(p) -like autocorrelation structure is observed, while the
marginals still follow the Bin(n, r)-distribution.

Beta-Binomial AR(1) Model

[WK14] introduce an additional dispersion parameter ¢ € (0; 1)
and assume beta-distributed thinning parameters, i.e., beta-
binomial thinnings:

Xe=agoXi1+PBpo(n—X,_q) fort =1.
Still p(k) = p*, but now X, exhibits extra-binomial variation:

(n-1)(1-2n(1-m)(1—p))

[=1+
(%—1)(1+p)+(1—2ﬂ(1—n)(1_P))

€ (1; n).

Density Dependent Binomial AR(1) Models

[WP14] suggest the model parameters (m, p) and (a, ) at time t
to depend on the process up to that time t through the density
Xi_1/n.If eg,

pisfixedbutm, :=a+b-X,_,/n witha,a+ b € (0;1),

then

1+p
1+p—2(1—%)pb—(1—%)(1—p)b2'
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which might be both <1 or >1. This includes the binomial
INARCH(1) model (see below) as the boundary case p — 0.

Bivariate Binomial AR(1) Model

Defining the thinning operation “®@” based on the bivariate
binomial distribution of type Il [MO85], [SWSP14] propose a
model for bivariate and cross-correlated binomial counts:

Xe = (a1, a2, ¢q) ® X1 + (B1, B2, P5) & (n—X;_1),

where the cross-dependence parameters ¢,, ¢ might also be
negative, i.e., both positive and negative cross-correlation can

be generated. The marginals behave like univariate
binomial AR(1) models.
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Binomial INGARCH Models

These models are motivated by the standard INGARCH models
[FLOO6], which constitute an integer-valued counterpart to the
continuous GARCH models.

Binomial INARCH(1) Model
Conditioned on the previous count X;_;, [WK14] assume

X; ~Bin(n,a+b-X;_{/n) witha,a+ b € (0;1),

| ok 1
— - ] = :
leading to p(k) = b" and extra-binomial variation ()

Bivariate Binomial INARCH(1) Model

[SWSP14] extended the binomial INARCH(1) model to the
bivariate case by assuming

X: ~BVByy (n,ny;a; + by Xe—q11/ny,a, + by Xe—q2/15, @).

Again, both positive and negative cross-correlation (¢ ~/- 0) can
be generated. The marginals behave like univariate binomial
INARCH (1) models.

Ongoing Research Activities

» Diagnostic tools concerning the marginal distribution and the
autocorrelation structure;

» binomial AR(1) Model with self-exciting threshold;
» higher-order binomial INGARCH models.
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