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Introduction

In many fields of application, we are concerned with count data
processes. Typical examples are counts of defects per produced
item in manufacturing industry, counts of new cases of an
infection per time unit in health care monitoring, or counts of
complaints by customers per time unit in service industry. Often,
it is important to detect changes in the process as soon as
possible to be able to start preventive actions or to avoid further
damages. Methods of statistical process control (SPC) are a
suitable tool for this purpose.

During the last years, there was increasing interest in SPC
methods for time-dependent processes of counts. In the sequel,
feasible models for autocorrelated counts processes are
presented, approaches for corresponding control charts are
considered, and process capability indices are discussed. More
details and full references can be found in the open access article

Weiß CH (2015) SPC methods for time-dependent processes of
counts–a literature review. Cogent Mathematics 2, 1111116.

Basic models for autocorrelated counts processes

One of the earliest approaches toward stationary count data
processes (𝑋𝑋𝑡𝑡)ℕ is the INAR(1) model by [McK85], defined by

𝑋𝑋𝑡𝑡 = 𝛼𝛼 ∘ 𝑋𝑋𝑡𝑡−1+𝜖𝜖𝑡𝑡,

where the innovations (𝜖𝜖𝑡𝑡)ℕ are i.i.d. counts, and where “𝛼𝛼 ∘”
denotes the binomial thinning operator.

Several modifications to the basic INAR(1) model have been
proposed, e.g., where the binomial thinning operator is replaced
by another type of thinning [SWG15]. As an example, [RBN09]
introduced the NGINAR(1) model, defined by

𝑋𝑋𝑡𝑡 = 𝛼𝛼 ∗ 𝑋𝑋𝑡𝑡−1+𝜖𝜖𝑡𝑡,

where “𝛼𝛼 ∗” denotes the negative binomial thinning operator.

Another popular approach is the INARCH(1) model, where 𝑋𝑋𝑡𝑡 is
conditionally Poisson distributed in the following way:

𝑋𝑋𝑡𝑡|𝑋𝑋𝑡𝑡−1, … ∼ Poi(𝛼𝛼 � 𝑋𝑋𝑡𝑡−1+𝛽𝛽).

If systematic trend and seasonality have to incorporated,
regression models like the seasonal log-linear model [HP08] can
be used, with time-dependent mean 𝑀𝑀𝑡𝑡 given by

ln(𝑀𝑀𝑡𝑡) = 𝛾𝛾0 + 𝛾𝛾1𝑡𝑡 + ∑𝑠𝑠=1𝑆𝑆 𝛾𝛾2𝑠𝑠 cos 𝑠𝑠 𝜔𝜔𝑡𝑡 + 𝛾𝛾2𝑠𝑠+1 sin 𝑠𝑠 𝜔𝜔𝑡𝑡 .

Common SPC methods

Control charts

A basic approach is to plot the counts (𝑋𝑋𝑡𝑡)ℕ directly on a chart
with appropriately chosen control limits: c chart (if counts have
full range ℕ0) or np chart (if range {0, … ,𝑛𝑛}). Applications of the c
chart to INAR(1) processes were considered by [W07,W11b], to
NGINAR(1) processes by [LWZ], and to INARCH(1) processes by
[WT12]. The chart design is usually chosen based on ARL
considerations, so it remains to ask how to compute the ARLs for
the above types of process. Certainly, ARLs can always be
approximated based on simulations with a sufficiently high
number of replications. But since the INAR(1), NGINAR(1) and
INARCH(1) model constitute a type of discrete Markov model, it is
possible to adapt the Markov chain approach as first proposed by
[BE72]. A detailed description together with corresponding
software implementations is provided by [W11b].

Fig. 1: c chart of users accessing a web server per 2-min interval [W07].

In practice, the true in-control model is hardly known, so one has
to fit a model to a set of historic in-control data. Many articles
considered the effect of estimated parameters on the charts’
performance [JJCW06], where the properties of the used
estimators or the sample size play an important role. In the
context of autocorrelated count data processes, this topic was
considered by, e.g., [ZNHH14,WT15] for the Poisson INAR(1)
model and diverse types of control charts.

Process capability indices

Only few of the works about capability indices refer to attributes
data processes. [PX05] picked up the idea of considering the
actual “proportion of conformance”: if the upper specification
limit USL describes, e.g., the maximal acceptable number of non-
conformities per produced item, then the probability 𝑃𝑃(𝑋𝑋 >
𝑈𝑈𝑈𝑈𝑈𝑈) is compared to a prespecified acceptable probability level
1 − 𝑝𝑝0. [PX05] considered an index defined by the quotient

𝐶𝐶PX ≔
1−𝑝𝑝0

𝑃𝑃 𝑋𝑋>𝑈𝑈𝑆𝑆𝑈𝑈
∈ [1 − 𝑝𝑝0;∞).

A closely related approach was proposed by [BH01]. For practice,
a relevant question is how to estimate the index from given in-
control data. While [PX05] considered this task for an underlying
i.i.d. process of Poisson counts, [W12] extended this work to an
underlying Poisson INAR(1) process, distinguishing between the
process capability for observations or innovations, respectively.

Advanced control charts

The basic c chart allows for a continuous monitoring of a serially
dependent count data process, but the statistic plotted on the
chart at time 𝑡𝑡 (= 𝑡𝑡th observation) does not comprise information
about past values of the process (not beyond the mere effect of
autocorrelation). Therefore, the c chart (any Shewhart-type chart)
is not particularly sensitive to small or moderate changes in the
process. For this reason, several types of advanced control charts
have been proposed, where the plotted statistic at time 𝑡𝑡 also
uses past observations of the process and hence accumulates
information about the process for a longer period of time.

CUSUM charts

The traditional cumulative sum (CUSUM) control chart [P54],
applied directly to the observations 𝑋𝑋𝑡𝑡 , is perhaps the most
natural advanced candidate for monitoring autocorrelated
processes of counts, because it preserves the discrete nature of
the process by only using additions (but no multiplications). The
upper-sided CUSUM is defined by

𝐶𝐶𝑡𝑡+ = max(0; 𝑋𝑋𝑡𝑡 − 𝑘𝑘+ + 𝐶𝐶𝑡𝑡−1+ ) with 𝐶𝐶0+: = 𝑐𝑐0+ ≥ 0,

where an alarm is triggered if 𝐶𝐶𝑡𝑡+ > ℎ+ (control limit). While the
upper-sided CUSUM is mainly designed to detect increases in the
process mean, the lower-sided CUSUM aims at uncovering
decreases in the mean:

𝐶𝐶𝑡𝑡− = max(0; 𝑘𝑘− − 𝑋𝑋𝑡𝑡 + 𝐶𝐶𝑡𝑡−1− ) with 𝐶𝐶0−: = 𝑐𝑐0− ≥ 0.

If (𝐶𝐶𝑡𝑡+,𝐶𝐶𝑡𝑡−) are monitored simultaneously, then this chart
combination is referred to as a two-sided CUSUM chart.

In the context of monitoring autocorrelated counts processes, the
upper-sided CUSUM was applied to INAR(1) processes by [WT09],
to NGINAR(1) processes by [LWZ], and to INARCH(1) processes by
[WT12]. The lower-sided and the two-sided version were applied
to INAR(1) processes by [YWTB13]. For performance evaluation, it
is important that the CUSUM preserves the discrete range.
Therefore, exact run length computations are possible with a type
of MC approach [W11b]: the one-sided CUSUM requires to
consider the bivariate Markov chain (𝑋𝑋𝑡𝑡 ,𝐶𝐶𝑡𝑡

±) [WT09], the two-
sided CUSUM the trivariate Markov chain (𝑋𝑋𝑡𝑡 ,𝐶𝐶𝑡𝑡+,𝐶𝐶𝑡𝑡−) [YWTB13].

Fig. 2: Upper-sided CUSUM chart with (ℎ+,𝑘𝑘+, 𝑐𝑐0+) = (8,2,7) applied to
simulated INAR(1) data with change point at time 21 (mean shift).

Besides applying the standard CUSUM scheme, one may also look
at the log-likelihood ratio (log-LR) related to the model for (𝑋𝑋𝑡𝑡)ℕ;
the statistic plotted at time 𝑡𝑡 is defined as the contribution to the
log-LR by the 𝑡𝑡th observation. For i.i.d. Poisson counts, we obtain
again the standard CUSUM chart [HO98]. For a Markov model,
this approach will lead to a useful LR-CUSUM scheme as long as
the transition probabilities for (𝑋𝑋𝑡𝑡)ℕ are of a feasible form, as
exemplified by [WT12] for the case of the INARCH(1) model. The
log-LR approach can also be used for non-Markovian types of
count data processes. As an example, [HP08] derived such a log-
LR CUSUM chart for counts stemming from the seasonal
log-linear model, which proved to be useful for the
surveillance of epidemic counts.

EWMA charts

Another advanced approach for process monitoring is the
exponentially weighted moving average (EWMA) control chart
dating back to [R59]. The standard EWMA recursion defined by

𝑍𝑍𝑡𝑡 = 𝜆𝜆 � 𝑋𝑋𝑡𝑡 + 1 − 𝜆𝜆 ⋅ 𝑍𝑍𝑡𝑡−1 with 𝜆𝜆 ∈ (0; 1],

however, has an important drawback if applied to count data
processes: it does not preserve the discrete range. Therefore,
[G90] suggests to plot rounded values of the EWMA statistic:

𝑄𝑄𝑡𝑡 = round 𝜆𝜆 � 𝑋𝑋𝑡𝑡 + 1 − 𝜆𝜆 ⋅ 𝑄𝑄𝑡𝑡−1 with 𝜆𝜆 ∈ (0; 1].

A possible disadvantage of the rounded EWMA approach was
presented in [W11a]: especially for small values of 𝜆𝜆, which are
generally recommended if small mean shifts are to be detected,
one may observe some kind of “oversmoothing”, i.e., 𝑄𝑄𝑡𝑡 becomes
piecewise constant in time 𝑡𝑡 and rather insensitive to process
changes. Therefore, [W11a] proposed a modification, where a
refined rounding operation is used: For 𝑠𝑠 ∈ ℕ, the operation 𝑠𝑠-
round maps 𝑥𝑥 onto the nearest fraction with denominator 𝑠𝑠. ARLs
can be computed again exactly by adapting the MC approach.
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