Guaranteed Conditional

 ARL Performance in the Presence of AutocorrelationChristian H. Weils, Detlef Steuer

Department of Mathematics \& Statistics, Helmut Schmidt University, Hamburg

Carsten Jentsch
Department of Economics,
University of Mannheim

Murat Caner Testik

Department of Industrial Engineering, Hacettepe University

Monitoring of
 Autocorrelated Processes

Introduction

Let $\left(X_{t}\right)$ be autocorrelated process of variables data.
Two common approaches for monitoring (Testik, 2005):

- Fit time series model and monitor residuals; or
- adjust control limits and monitor original observations $\left(X_{t}\right)$. Here, we consider second approach.

Presented approach applies to general AR processes, but for ease of presentation, focus on $\operatorname{AR}(1)$ process

$$
X_{t}=\rho \cdot X_{t-1}+\epsilon_{t}, \quad \text { where } \rho \in(-1,1)
$$

Innovations ϵ_{t} i.i.d. with $\mu_{\epsilon}=\mu(1-\rho)$ and $\sigma_{\epsilon}^{2}=\sigma^{2}\left(1-\rho^{2}\right)$,
where μ and σ^{2} are mean and variance of X_{t}.
Christian H. Weiß - Helmut Schmidt University, Hamburg

If even Gaussian AR process with normally distrib. innovations, then model fully specified by parameters μ, σ, ρ.

Abbreviation: $\quad X_{t} \sim P_{\mu, \sigma ; \rho}$.
W.I.o.g., we assume $\mu=0$ and $\sigma=1$ in analyses.

Note: $\quad \rho=0$ corresponds to i.i.d. case.
In the sequel, focus on individuals control chart, but our method could be extended
to other types of control chart as well.

Christian H. Weiß - Helmut Schmidt University, Hamburg

If true model $P_{\mu, \sigma ; \rho}$ known, and considering symmetry of normal distribution, control limits of individuals chart are

$$
\mu \pm k \cdot \sigma \quad \text { with } k:=k\left(P_{\mu, \sigma ; \rho}\right)
$$

Gaussian case: k only depends on ρ (Schmid, 1995): $k=k(\rho)$.
Choice of k
if $\mathrm{ARL}_{0}=370.4$.
i.i.d.: $3-\sigma$-limits, i.e., $k(0) \approx 3.0$.

Computation using R's spc package (Knoth, 2016).
Christian H. Weiß - Helmut Schmidt University, Hamburg

If true model $P_{\mu, \sigma ; \rho}$ not known,
then estimation from in-control data x_{1}, \ldots, x_{n} (Phase I).
For example, moment estimates \bar{x}, s and $\hat{\rho}=\hat{\rho}(1)$.
If ignoring fact that parameters estimated, then chart design

$$
\bar{x} \pm k(\widehat{\rho}) \cdot s,
$$

or according to $\bar{x} \pm k(0) \cdot s$ in i.i.d. case.

Christian H. Weiß - Helmut Schmidt University, Hamburg
box plots of $k(\hat{\rho})$ and true ARL for (a) $\rho=0.2$ and (b) $\rho=0.6$.

(b)

Actual $\mathrm{ARL}_{0} \mathrm{~s}$ most often too small!
Christian H. Weiß - Helmut Schmidt University, Hamburg

So need to replace $k(\hat{\rho})$ by corrected value $k\left(\bar{x}, s \mid P_{\mu, \sigma ; \rho}\right)$. But would require again knowledge about $P_{\mu, \sigma ; \rho}$.
Circumvent problem by not intending to reach $A R L_{0}$ exactly, only $A R L \geq \mathrm{ARL}_{0}$ with a probab. $1-\alpha$ (Gandy \& Kvaløy, 2013): guaranteed conditional performance (GCP).

So not majority of ARL values below intended $A R L_{0}$ (as before), but only $\alpha \cdot 100 \%$ of all cases.

Crucial question: how k for GCP without knowing $P_{\mu, \sigma ; \rho}$? Literature: only i.i.d. case (Gandy \& Kvaløy, 2013).

Here: novel GCP approach for time series (especially AR(1)) with bootstrap implementation.

Christian H. Weiß - Helmut Schmidt University, Hamburg

Guaranteed

Conditional Performance under AR Dependence

Bootstrap Approach
stat
Since $P_{\mu, \sigma ; \rho}$ not known, we estimate \bar{X}, S and $\hat{\rho}:=\hat{\rho}(1)$.
Now extend GCP approach by Gandy \& Kvaløy (2013):
We would need α-quantile $q_{\alpha ; \rho}$ of deviations
$k\left(\bar{X}, S \mid P_{\bar{X}, S ; \hat{\rho}}\right)-k\left(\bar{X}, S \mid P_{\mu, \sigma ; \rho}\right)=k(\widehat{\rho})-k\left(\bar{X}, S \mid P_{\mu, \sigma ; \rho}\right)$.
With appropriate bootstrap scheme (see below),
we compute α-quantile $q_{\alpha ; \hat{\rho}}^{*}$ of
$k\left(\bar{X}^{*}, S^{*} \mid P_{\bar{X}^{*}, S^{*} ; \hat{\rho}^{*}}\right)-k\left(\bar{X}^{*}, S^{*} \mid P_{\bar{X}, S ; \hat{\rho}}\right)=k\left(\hat{\rho}^{*}\right)-k\left(\bar{X}^{*}, S^{*} \mid P_{\bar{X}, S ; \hat{\rho}}\right)$,
and define corrected limit as

$$
k_{\text {Corr } ; \hat{\rho}}^{*}:=k\left(\bar{X}, S \mid P_{\bar{X}, S ; \hat{\rho}}\right)-q_{\alpha ; \hat{\rho}}^{*}=k(\hat{\rho})-q_{\alpha ; \hat{\rho}}^{*} .
$$

Christian H. Weiß - Helmut Schmidt University, Hamburg

$$
k_{\text {Corr } ; \hat{\rho}}^{*}:=k\left(\bar{X}, S \mid P_{\bar{X}, S ; \hat{\rho}}\right)-q_{\alpha ; \hat{\rho}}^{*}=k(\hat{\rho})-q_{\alpha ; \hat{\rho}}^{*} .
$$

This corresponds to Hall's percentile method.
Requires computation of two k-values per bootstrap sample, $k\left(\hat{\rho}^{*}\right)$ and $k\left(\bar{X}^{*}, S^{*} \mid P_{\bar{X}, S ; \hat{\rho}}\right)$.

In contrast to i.i.d. case, Hall's method differs from more simple standard percentile method, where

$$
\widetilde{k}_{\text {corr } ; \hat{\rho}}^{*}:=\tilde{q}_{1-\alpha ; \hat{\rho}}^{*}
$$

with $\tilde{q}_{1-\alpha ; \hat{\rho}}^{*}$ being $(1-\alpha)$-quantile of $k\left(\bar{X}^{*}, S^{*} \mid P_{\bar{X}, S ; \hat{\rho}}\right)$.
Requires computation of only one $k, k\left(\bar{X}^{*}, S^{*} \mid P_{\bar{X}, S ; \hat{\rho}}\right)$.
Christian H. Weiß - Helmut Schmidt University, Hamburg

We use either nonparametric or parametric $\operatorname{AR}(1)$ bootstrap, see, e.g., Kreiss \& Paparoditis (2011).

Nonparametric AR(1) bootstrap:

1. Compute the centered observations $Y_{t}=X_{t}-\bar{X}$.
2. Estimate the autoregressive parameter $\hat{\rho}:=\hat{\rho}(1)$, compute residuals $\hat{e}_{t}=Y_{t}-\hat{\rho} Y_{t-1}$ for $t=2, \ldots, n$, and center them, i.e., compute $\tilde{e}_{t}=\hat{e}_{t}-\frac{1}{n-1} \sum_{t=2}^{n} \hat{e}_{t}$.
3. Generate bootstrap observations $Y_{1}^{*}, \ldots, Y_{n}^{*}$ according to

$$
Y_{t}^{*}=\hat{\rho} Y_{t-1}^{*}+e_{t}^{*}
$$

where e_{t}^{*} drawn from $\left\{\tilde{e}_{2}, \ldots, \tilde{e}_{n}\right\}, Y_{0}^{*}$ from prerun.
Christian H. Weiß - Helmut Schmidt University, Hamburg
4. Define bootstrap sample $X_{1}^{*}, \ldots, X_{n}^{*}$ by $X_{t}^{*}=Y_{t}^{*}+\bar{X}$, compute $k\left(\hat{\rho}^{*}\right)$ and $k\left(\bar{X}^{*}, S^{*} \mid P_{\bar{X}, S ; \hat{\rho}}\right)$.
5. Repeat steps 3 and $4 B$ times (e.g., $B=1000$), compute quantiles required for corrected limits.

Parametric AR(1) bootstrap: modify step 3 as
3'. Estimate innovations' variance σ_{ϵ}^{2} as

$$
\hat{\sigma}_{\epsilon}^{2}:=\frac{1}{n-1} \sum_{t=2}^{n} \tilde{e}_{t}^{2} .
$$

Generate bootstrap observations $Y_{1}^{*}, \ldots, Y_{n}^{*}$ via

$$
Y_{t}^{*}=\widehat{\rho} Y_{t-1}^{*}+e_{t}^{*} \text { with } e_{t}^{*} \underset{\text { i.i.d. }}{\sim} \mathrm{N}\left(0, \widehat{\sigma}_{\epsilon}^{2}\right)
$$

where Y_{0}^{*} from appropriate normal distribution.
Christian H. Weiß - Helmut Schmidt University, Hamburg

Some remarks:

- For simulation studies as below, ability to efficiently computing ARL, since done for each bootstrap replication. For AR(1), we used R's spc package (Knoth, 2016).
- In practical applications (no Monte Carlo replicates), also simulation-based ARL computation feasible.
- Above autoregressive bootstraps extends easily from order one to general order $p \in \mathbb{N}$.

Guaranteed

Conditional Performance under AR Dependence

Simulation Study

Simulation study: 10000 replications,
1000 bootstrap replications, $\alpha=0.10$, ARL $_{0}=370.4$.
Proportion of Monte-Carlo replications with ARL below $A R L_{0}$:

	Hall's percentile method					Standard percentile method						
	nonparametric, $n=$	parametric, $n=$		nonparametric, $n=$			parametric, $n=$					
ρ	100	500	1000	100	500	1000	100	500	1000	100	500	1000
-0.8	0.112	0.108	0.103	0.110	0.106	0.103	0.102	0.088	0.085	0.100	0.087	0.084
-0.6	0.108	0.103	0.103	0.104	0.103	0.100	0.103	0.095	0.095	0.100	0.096	0.093
-0.4	0.100	0.100	0.102	0.096	0.099	0.100	0.099	0.098	0.100	0.096	0.098	0.099
-0.2	0.092	0.095	0.100	0.088	0.097	0.100	0.092	0.095	0.100	0.088	0.097	0.100
0	0.093	0.095	0.100	0.087	0.093	0.099	0.094	0.096	0.100	0.087	0.093	0.099
0.2	0.097	0.096	0.097	0.094	0.094	0.096	0.096	0.095	0.097	0.094	0.093	0.096
0.4	0.109	0.099	0.100	0.106	0.096	0.098	0.108	0.097	0.097	0.105	0.094	0.096
0.6	0.126	0.101	0.104	0.123	0.101	0.102	0.122	0.094	0.094	0.120	0.094	0.094
0.8	0.160	0.115	0.107	0.159	0.114	0.107	0.150	0.095	0.088	0.147	0.093	0.086

Hall's method preferable, also nonparametric.
Christian H. Weiß - Helmut Schmidt University, Hamburg

Proportion of Monte-Carlo replications with $A R L$ below $A R L_{0}$ if using i.i.d. bootstrap approach by Gandy \& Kvaløy (2013):

	nonparametric, $n=$			parametric, $n=$		
ρ	100	500	1000	100	500	1000
-0.8	0.181	0.103	0.059	0.183	0.104	0.060
-0.6	0.138	0.117	0.097	0.142	0.119	0.100
-0.4	0.114	0.109	0.106	0.117	0.113	0.108
-0.2	0.092	0.099	0.101	0.100	0.102	0.103
0	0.093	0.096	0.099	0.100	0.098	0.101
0.2	0.111	0.105	0.104	0.118	0.108	0.107
0.4	0.155	0.127	0.113	0.163	0.132	0.119
0.6	0.232	0.148	0.117	0.238	0.151	0.119
0.8	0.351	0.149	0.084	0.351	0.151	0.085

Christian H. Weiß - Helmut Schmidt University, Hamburg

Decile box plots (whiskers end at 10% and 90% quantiles) of corrected limits $k_{\text {corr; }}^{*}$ (Hall's method) for $\rho=0.4$:

Christian H. Weiß - Helmut Schmidt University, Hamburg

Decile box plots (whiskers end at 10% and 90% quantiles) of corrected limits $k_{\text {corr; }}^{*}$ (Hall's method) for nonparametric $\mathrm{AR}(1)$ bootstrap with $n=100$:

Christian H. Weiß - Helmut Schmidt University, Hamburg

Decile box plots (whiskers end at 10% and 90% quantiles) of ARLs (Hall's method) for nonparametric AR(1) bootstrap with $n=100$:

Christian H. Weiß - Helmut Schmidt University, Hamburg

Decile box plots (whiskers end at 10% and 90% quantiles) of ARLs (Hall's method) for nonparametric AR(1) bootstrap with $n=500$:

Christian H. Weiß - Helmut Schmidt University, Hamburg

Decile box plots (whiskers end at 10% and 90% quantiles) of ARLs (Hall's method) against mean shift s, for nonparametric AR(1) bootstrap with $n=100$:

Christian H. Weiß - Helmut Schmidt University, Hamburg

Decile box plots (whiskers end at 10% and 90% quantiles) of ARLs (Hall's method) against mean shift s, for nonparametric AR(1) bootstrap with $n=500$:

Christian H. Weiß - Helmut Schmidt University, Hamburg

In simulations before, concerned with Gaussian $\operatorname{AR}(1)$ process. Normality was used for efficient ARL computation.

If innovations' distribution not known, combine nonparametric bootstrap scheme with simulation-based ARL computation.
We used SA algorithm (stochastic approximation) by Capizzi
\& Masarotto (2016) and R package "saControlLimits".
Idea: Use residuals from bootstrap scheme also for ARL simulations within SA algorithm.

To still manage 10000 Monte-Carlo replicates, we used warpspeed method by Giacomini et al. (2013) for simulations.

Christian H. Weiß - Helmut Schmidt University, Hamburg

Decile box plots (whiskers end at 10% and 90% quantiles) of ARLs (Hall's method) for $\rho=0.4$ and $n=1000$:

ARL computation relies on normality (index " N ") or on simulation (index " S ").

Christian H. Weiß - Helmut Schmidt University, Hamburg

- Designing control chart with guaranteed conditional ARL performance in time series context, solutions relying bootstrap schemes for time series.
- Approach exemplified for individuals chart applied to Gaussian AR(1) process, but could be adapted to different charts or data generating process.
- Simulations: Hall's percentile method leads to reliable chart designs already for moderate sample sizes if autocorrelation not excessively large, and if using appropriate scheme for ARL computation.

Christian H. Weiß - Helmut Schmidt University, Hamburg

Thank You

for Your Interest!

MATH
Christian H. Weiß
Department of Mathematics \& Statistics Helmut Schmidt University, Hamburg
weissc@hsu-hh.de

Capizzi \& Masarotto (2016) Efficient control chart ... IIE 48, 57-65.
Gandy \& Kvaløy (2013) Guaranteed condit. . . . Scand J Stat 40, 647-668.
Giacomini et al. (2013) A warp-speed method ... Econ Theo 29, 567-589.
Kreiss \& Pap. (2011) Bootstrap methods ... J Kor Stat Soc 40, 357-378. Knoth (2016) The spc package (statistical process control), Version 0.5.4. Schmid (1995) On the run length of a Shewhart ... Stat Pap 36, 111-130.
Testik (2005) Model inadequacy and residuals ... QREI 21, 115-130.

Christian H. Weiß - Helmut Schmidt University, Hamburg

