Binomial Autoregressive Processes with Density-Dependent Thinning

Helmut schmidT universität

Universität der Bundeswehr Hamburg

Christian H. Weiß

Department of Mathematics & Statistics, Helmut Schmidt University, Hamburg

Philip K. Pollett Department of Mathematics, University of Queensland

Time Series of Counts with a Finite Range

Motivation & Outline

During last 30 years,

- increasing research interest in count data time series.
- Initially, research focussed nearly exclusively
- on counts with unlimited range \mathbb{N}_0 .
- Only during last years, considerable interest also in time series with **fixed finite range** $\{0, 1, ..., N\}$.

Examples:

- utilization of computer pools (with N workstations);
- spread of metapopulations (with N patches);
- . . .

Data example 1: (Weiß & Kim, 2013)

Number of securities companies (among N = 22 companies) traded in Korea stock market per 5-min period (Feb. 8, 2011, 09:00–14:50; T = 70).

Data example 2: (Robert-Koch-Institut, survstat.rki.de)

Number of districts in Germany (among N = 38 districts) with new case of hantavirus infection

(weekly data, 2011; T = 52).

Modeling of time series with fixed finite range $\{0, 1, \ldots, N\}$? Popular **basic approach** (counterpart to AR(1) model): **binomial AR(1) model** (BAR(1)) by McKenzie (1985), which uses **binomial thinning** operation $\alpha \circ X \sim Bin(X, \alpha)$ by Steutel & van Harn (1979). Parameters $\pi \in (0; 1)$, $\rho \in (\max\{-\frac{\pi}{1-\pi}, -\frac{1-\pi}{\pi}\}; 1)$, define thinning probabilities $\beta := \pi (1 - \rho)$ and $\alpha := \beta + \rho$. BAR(1) recursion $X_{t+1} = \underbrace{\alpha \circ X_t}_{\text{survivors}} + \underbrace{\beta \circ (N - X_t)}_{\text{newly occupied}},$

thinnings performed independently, independent of $(X_s)_{s \leq t}$.

A few well-known properties:

Ergodic Markov chain, transition probabilities

$$P(X_{t+1} = k \mid X_t = l) =$$

$$\sum_{m=\max\{0,k+l-N\}}^{\min\{k,l\}} {\binom{l}{m}} {\binom{N-l}{k-m}} \alpha^m (1-\alpha)^{l-m} \beta^{k-m} (1-\beta)^{N-l+m-k},$$

uniquely determined stationary distribution: $Bin(N, \pi)$. Autocorrelation function: $\rho_X(k) = \rho^k$ for $k \ge 0$. Regression properties:

$$E[X_{t+1} | X_t] = \rho \cdot X_t + N\beta,$$

$$V[X_{t+1} | X_t] = \rho(1-\rho)(1-2\pi) \cdot X_t + N\beta(1-\beta).$$

Limitations:

- Binomial marginal distribution,
- exponentially decaying ACF (AR(1)-like),
- thinning probabilities at time t

do not depend on process up to that time, ...

Approaches for generalization:

- pth order dependence (AR(p)-like): Weiß (2009).
- State dependence of parameters π, ρ resp. α, β at time t + 1
 - as function of X_t/N : "density dependence"; (e.g., proportion of infectives or proportion of occupied patches)
 - acc. to X_t in which regime: "SET approach" (Tong).

Density-Dependent Binomial AR(1) Processes

Definition & Properties

Definition: (Weiß & Pollett, 2014) Let $\pi : [0; 1] \rightarrow (0; 1)$ and $\rho : [0; 1] \rightarrow (0; 1)$, so functions $\beta(y) := \pi(y) (1 - \rho(y))$ and $\alpha(y) := \beta(y) + \rho(y)$ also range (0; 1). Write $\pi_{t+1} := \pi(X_t/N), \quad \rho_{t+1} := \rho(X_t/N),$ and $\alpha_{t+1} := \alpha(X_t/N), \quad \beta_{t+1} := \beta(X_t/N).$ DD-BAR(1) recursion $X_{t+1} = \alpha_{t+1} \circ X_t + \beta_{t+1} \circ (N - X_t),$

thinnings performed independently, independent of $(X_s)_{s \leq t}$.

General properties: (Weiß & Pollett, 2014)

 time-homogeneous finite-state Markov chain with truly positive transition probabilities

$$P(k|l) := P(X_{t} = k \mid X_{t-1} = l) = \sum_{m=\max\{0,k+l-N\}}^{\min\{k,l\}} {\binom{l}{m}\binom{N-l}{k-m} (\alpha(l/N))^{m} (1 - \alpha(l/N))^{l-m} (\beta(l/N))^{k-m} (1 - \beta(l/N))^{N-l+m-k};}$$

• regression properties

$$E[X_t | X_{t-1}] = \rho_t X_{t-1} + N \beta_t,$$

$$V[X_t | X_{t-1}] = \rho_t (1 - \rho_t) (1 - 2\pi_t) X_{t-1} + N \beta_t (1 - \beta_t);$$

General properties: (cont.)

• due to primitive transition matrix $\mathbf{P} = (P(k|l)_{k,l=0,...,N})$, ergodic with unique stationary distribution, obtained numerically from equation

 $\mathbf{P} p = p$ (eigenvalue problem)

(also allows to evaluate stationary moments);

- second-order moments with time-lag hfrom $P(X_t = k, X_{t-h} = l)$ as entries of $\mathbf{P}^h \operatorname{diag}(p)$, etc.;
 - Christian H. Weiß Helmut Schmidt University, Hamburg

Large-N Approximations: Define $f(x) := \alpha(x) x + \beta(x) (1 - x) = \rho(x) x + \beta(x),$ $v(x) := \alpha(x) (1 - \alpha(x)) x + \beta(x) (1 - \beta(x)) (1 - x),$ So $E[X_t/N | X_{t-1}/N] = f(X_{t-1}/N), \quad NV[X_t/N | X_{t-1}/N] = v(X_{t-1}/N).$

Several large–N results, among others

- law of large numbers $X_t/N \xrightarrow[N \to \infty]{P} y_t$, where $y_{t+1} = f(y_t)$;
- central limit law for scaled fluctuations $\sqrt{N} (X_t/N y_t);$
- if y^* stable fixed point of f, and $\kappa = f'(y^*)$, then

$$\mu_X \approx N y^*, \qquad \sigma_X^2 \approx N \frac{v(y^*)}{1 - \kappa^2}, \qquad \rho_X(k) \approx \kappa^k.$$
(Buckley & Pollett, 2010; Weiß & Pollett, 2014)

Density-Dependent Binomial AR(1) Processes

Binomial index of dispersion for r.v. with support $\{0, ..., N\}$, and with mean μ and variance σ^2 :

$$I_{\mathsf{d}} := \frac{N\sigma^2}{\mu(N-\mu)} \in (0;\infty).$$

For Bin (N, π) -distributed r.v., we have $I_d = 1$ for any $\pi \in (0; 1)$.

If $I_d > 1$, then **overdispersion** w.r.t. binomial distribution ("extra-binomial variation"),

while **underdispersion** refers to $I_d < 1$.

Definition: Let $\rho(y) = \rho \in (0; 1)$ be constant,

and $\pi(y) = a + by$ be linear, where $a, a + b \in (0; 1)$. So

$$\beta_t = (1 - \rho) (a + b X_{t-1}/N), \qquad \alpha_t = (1 - \rho) (a + b X_{t-1}/N) + \rho.$$

also linear, and depending on sign of b, these probabilities increase or decrease with increasing density.

Properties: ACF $\rho_X(k) = (\rho + (1 - \rho)b)^k$, and

$$\mu = \frac{Na}{1-b}, \qquad I_{d} = \frac{1-\rho^{2}}{1-\frac{\rho^{2}}{N}-(1-\frac{1}{N})\left(\rho+(1-\rho)b\right)^{2}}.$$

Properties:

Attainable range of b depending on a in (a)

dispersion determined by b and ρ in (b).

Data example 1: securities counts, N = 22.

Analyzing empirical (partial) autocorrelations,

first-order autoregressive dependence structure apparent.

Sample mean and variance are $\bar{x} \approx 9.529$ and $s^2 \approx 4.253$.

Empirical index of dispersion $\hat{I}_{d} = s^2/(\bar{x}(1 - \bar{x}/N)) \approx 0.787$ indicates slight degree of binomial underdispersion.

ML-fitted model:

$$\widehat{a}_{\mathsf{ML}} \approx 0.693, \qquad \widehat{b}_{\mathsf{ML}} \approx -0.619, \qquad \widehat{\rho}_{\mathsf{ML}} \approx 0.630.$$

Boundary case $\rho \rightarrow 0$ leads to

$$X_t \stackrel{\mathsf{D}}{=} \operatorname{Bin}(N, a + b X_{t-1}/N).$$

Motivated by analogy to (Poisson) INARCH(1) model (Ferland et al., 2006): **binomial INARCH(1) model** (BINARCH(1)).

Properties: ACF $\rho_X(k) = b^k$, and

$$\mu = \frac{Na}{1-b}, \qquad I_{d} = \frac{1}{1-(1-\frac{1}{N})b^{2}} \in [1; N).$$

Consequently, only overdispersion is possible.

Data example 2: hanta counts, N = 38.

Sample mean and variance are $\bar{x} \approx 4.173$ and $s^2 \approx 7.793$. Empirical index of dispersion $\hat{I}_d \approx 2.098$

indicates considerable degree of binomial overdispersion.

	$\widehat{\pi}_{ML}$		$\widehat{ ho}_{ML}$	AIC	BIC
BAR(1)	0.115		0.535	222.8	226.7
	(0.013)		(0.071)		
	\widehat{a}_{ML}	\widehat{b}_{ML}	$\widehat{ ho}_{\sf ML}$	AIC	BIC
DD-BAR(1)	0.030	0.748	0.000	213.4	219.2
	(0.016)	(0.143)	(0.367)		
	\widehat{a}_{ML}	\widehat{b}_{ML}		AIC	BIC
BINARCH(1)	0.030	0.748		211.4	215.3
	(0.011)	(0.108)			

Definition: Let $\alpha(y) = \alpha \in (0; 1)$ be constant,

and $\beta(y) = \alpha (a + by)$ be linear, where $a, a + b \in (0; 1]$.

Epidemic context: If b > 0,

prob. for susceptible becoming infected increases

if number of infectives already large (infection is spreading),

while recovery from infection independent of other infectives.

Properties:

 $E[X_t \mid X_{t-1}] = (\alpha - \beta_t) X_{t-1} + N \beta_t \text{ quadratic in } X_{t-1},$

 $V[X_t \mid X_{t-1}]$ cubic polynomial in X_{t-1} .

Explicit large-N approximation for marginal moments and ACF.

Self-Exciting Threshold Binomial AR(1) Processes

(jointly with T.A. Möller, M.E. Silva, M.G. Scotto, I. Pereira)

"Work in Progress"

Idea: Like in Monteiro et al. (2012), fix threshold value $0 \le R < N$, which separates range into two regimes: lower regime $\{0, 1, 2, ..., R\}$, upper regime $\{R+1, R+2, ..., N\}$.

Depending if previous observation in lower regime $(X_{t-1} \le R)$ or in upper regime $(X_{t-1} > R)$,

parameters of BAR(1) recursion at time t chosen differently.

Note: Possible generalizations include

- more than two regimes;
- increased delay $X_{t-d} \leq R$ vs. $X_{t-d} > R$ with d > 1;
- more complex criteria, e.g., $\max \{X_{t-1}, \ldots, X_{t-d}\} \leq R$.

Definition: Define $\pi_i \in (0; 1)$, $\rho_i \in \left(\max\{-\frac{\pi_i}{1-\pi_i}, -\frac{1-\pi_i}{\pi_i}\}; 1\right)$, and $\beta_i := \pi_i \cdot (1 - \rho_i) \in (0; 1)$ and $\alpha_i := \beta_i + \rho_i \in (0; 1)$.

SET-BAR(1) process $X_t = \phi_t \circ X_{t-1} + \eta_t \circ (N - X_{t-1}),$ where $\phi_t := \alpha_1 I_{t-1} + \alpha_2 (1 - I_{t-1})$ and $\eta_t := \beta_1 I_{t-1} + \beta_2 (1 - I_{t-1})$ with indicator $I_{t-1} := \mathbb{1}_{\{X_{t-1} < R\}}.$

Note: If R = 0, then α_1 no influence (can be chosen arbitrarly). $\Rightarrow \alpha_1$ unidentifiable during parameter estimation. Same issue with β_2 and R = N - 1. Therefore, we set $\rho_1 = \rho_2$ for R = 0, N - 1 (\rightarrow LSET model from below).

Properties:

- SET-BAR(1) model instance of
- DD-BAR(1) models by Weiß & Pollett (2014)
- \Rightarrow adapt results concerning transition probabilities, ergodicity, existence of unique stationary marginal distribution p.
- Since finite range, always possible to compute p numerically by solving eigenvalue problem $\mathbf{P} p = p$.
- We derived closed-form formulae for mean and variance, but very complex.

Data example 3: (Robert-Koch-Institut)

Weekly No. of districts with new measles case (G., 2004/05).

Finite range $\{0, \ldots, N\}$ with N = 38 (number of districts).

level shift due to measles epidemy!

Above measles time series: level shift in first half of 2005,

but no obvious change in serial dependence structure.

Idea: Reduce number of parameters by

additional restriction $\rho_1 = \rho_2 =: \rho$.

Definition: Let $\rho \in \left(\max\left\{-\frac{\pi_1}{1-\pi_1}, -\frac{\pi_2}{1-\pi_2}, -\frac{1-\pi_1}{\pi_1}, -\frac{1-\pi_2}{\pi_2}\right\}; 1\right)$. A SET-BAR(1) process for which $\rho_1 = \rho_2 =: \rho \neq 0$ holds is called an **LSET-BAR(1)** process.

Defining $p := P(X_t \le R) = E[I_{t-1}], \ \mu_{IX} := E[I_{t-1}X_{t-1}],$ we can express unconditional mean and variance as

$$\mu_X = Np \pi_1 + N(1-p) \pi_2,$$

$$\sigma_X^2 = Np \pi_1 (1-\pi_1) + N(1-p) \pi_2 (1-\pi_2) + N^2 p (1-p) (\pi_2 - \pi_1)^2 + \frac{2\rho}{1+\rho} (N-1) (\pi_2 - \pi_1) (Np \pi_1 - \mu_{IX}).$$

LSET model able to show over- and underdispersion w.r.t. binomial distribution for appropriate parameter settings.

Forecasting distributions for model N = 40, $\rho = 0.3$, $\pi_1 = 0.15$, $\pi_2 = 0.4$ and R = 10, conditional on $X_T = 2$:

Autocorrelation function for model N = 40, $\rho = 0.3$, $\pi_1 = 0.15$, $\pi_2 = 0.4$ and R = 10 (black points):

Gray triangles show $f(k) := (\rho_X(1))^k$

 \Rightarrow longer memory than corresponding AR(1)-like model.

Data example 3: measles counts, N = 38.

	Par. 1	Par. 2	Par. 3	Par. 4	AIC	BIC
BAR(1)	0.0882	0.4158	-	-	448.2	453.5
(π, ho)	(0.0070)	(0.0550)				
$DD\operatorname{-}BAR(1)$	0.0419	0.5270	0	-	436.9	444.9
(a,b, ho)	(0.0095)	(0.1077)	(0.1765)			
BINARCH(1)	0.0419	0.5270	-	-	434.9	440.2
(a,b)	(0.0060)	(0.0682)				
SET-BAR(1)	0.0706	0.1558	0.1916	0.2904	432.5	443.1
$(\pi_1, \pi_2, \rho_1, \rho_2)$	(0.0056)	(0.0269)	(0.0884)	(0.375)		
LSET-BAR(1)	0.0707	0.1604	0.1947	-	430.6	438.5
(π_1,π_2, ho)	(0.0057)	(0.0169)	(0.0876)			

All threshold models include threshold value R = 5.

- Time series of counts with finite range $\{0, 1, \dots, N\}$ important topic in practice.
- McKenzie's basic binomial AR(1) model easily generalized in several ways.
- Density-dependent binomial AR(1) model for binomial over- or underdispersion, boundary case of binomial INARCH(1) model.
- Model with density-dependent colonization.
- SET models for counts exhibiting piecewise-type patterns.

Thank You for Your Interest!

Christian H. Weiß

Department of Mathematics & Statistics

Helmut Schmidt University, Hamburg

weissc@hsu-hh.de

Weiß & Pollett (2014): Binomial autoregressive processes with density dependent thinning. J. Time Series Anal. 35, 115–132.

Buckley & Pollett (2010): *Limit theorems for discrete-time metapopulation models*. Prob. Surveys 7, 53–83.

Ferland et al. (2006): *Integer-valued GARCH processes*. J. Time Series Anal. 27, 923–942.

McKenzie (1985): *Some simple models for discrete variate time series*. Water Res. Bull. 21, 645–650.

Monteiro et al. (2012): *Integer-valued self-exciting threshold autoregressive processes*. Comm. Stat. Theory Methods 41, 2717–2737.

Steutel & van Harn (1979): *Discrete analogues of self-decomposability and stability* Ann. Probab. 7, 893–899.

Weiß (2009): A new class of autoregressive models for time series of binomial counts. Comm. Stat. Theory Methods 38, 447–460.

Weiß & Kim (2013): Parameter estimation for binomial AR(1) models with applications in finance and industry. Stat. Papers 54, 563–590.