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During last 30 years,

increasing research interest in count data time series.

Initially, research focussed nearly exclusively

on counts with unlimited range N0.

Only during last years, considerable interest also

in time series with fixed finite range {0,1, . . . , N}.

Examples:

• utilization of computer pools (with N workstations);

• spread of metapopulations (with N patches);

• . . .
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Data example 1: (Weiß & Kim, 2013)

Number of securities companies (among N = 22 companies)

traded in Korea stock market per 5-min period

(Feb. 8, 2011, 09:00–14:50; T = 70).
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Data example 2: (Robert-Koch-Institut, survstat.rki.de)

Number of districts in Germany (among N = 38 districts)

with new case of hantavirus infection

(weekly data, 2011; T = 52).
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Modeling of time series with fixed finite range {0,1, . . . , N}?

Popular basic approach (counterpart to AR(1) model):

binomial AR(1) model (BAR(1)) by McKenzie (1985),

which uses binomial thinning operation

α ◦X ∼ Bin(X,α) by Steutel & van Harn (1979).

Parameters π ∈ (0; 1), ρ ∈
(

max {− π
1−π,−

1−π
π } ; 1

)
,

define thinning probabilities β := π (1− ρ) and α := β + ρ.

BAR(1) recursion

Xt+1 = α ◦Xt︸ ︷︷ ︸
survivors

+ β ◦ (N −Xt)︸ ︷︷ ︸
newly occupied

,

thinnings performed independently, independent of (Xs)s≤t.
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A few well-known properties:

Ergodic Markov chain, transition probabilities

P (Xt+1 = k | Xt = l) =

∑min {k,l}
m=max {0,k+l−N}

( l
m

) (N−l
k−m

)
αm(1−α)l−m βk−m(1−β)N−l+m−k,

uniquely determined stationary distribution: Bin(N, π).

Autocorrelation function: ρX(k) = ρk for k ≥ 0.

Regression properties:

E[Xt+1 | Xt] = ρ ·Xt + Nβ,

V [Xt+1 | Xt] = ρ(1− ρ)(1− 2π) ·Xt + Nβ(1− β).
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Limitations:

• Binomial marginal distribution,

• exponentially decaying ACF (AR(1)-like),

• thinning probabilities at time t

do not depend on process up to that time, . . .

Approaches for generalization:

• pth order dependence (AR(p)-like): Weiß (2009).

• State dependence of parameters π, ρ resp. α, β at time t+ 1

– as function of Xt/N: “density dependence”;
(e.g., proportion of infectives or proportion of occupied patches)

– acc. to Xt in which regime: “SET approach” (Tong).
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Definition: (Weiß & Pollett, 2014)

Let π : [0; 1]→ (0; 1) and ρ : [0; 1]→ (0; 1), so functions

β(y) := π(y)
(
1−ρ(y)

)
and α(y) := β(y) +ρ(y) also range (0; 1).

Write πt+1 := π(Xt/N), ρt+1 := ρ(Xt/N),

and αt+1 := α(Xt/N), βt+1 := β(Xt/N).

DD-BAR(1) recursion

Xt+1 = αt+1 ◦Xt + βt+1 ◦ (N −Xt),

thinnings performed independently, independent of (Xs)s≤t.
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General properties: (Weiß & Pollett, 2014)

• time-homogeneous finite-state Markov chain

with truly positive transition probabilities

P (k|l) := P (Xt = k | Xt−1 = l) =
∑min {k,l}
m=max {0,k+l−N}( l

m

)(N−l
k−m

) (
α(l/N)

)m(
1− α(l/N)

)l−m (
β(l/N)

)k−m(
1− β(l/N)

)N−l+m−k
;

• regression properties

E[Xt | Xt−1] = ρtXt−1 +N βt,

V [Xt | Xt−1] = ρt(1− ρt) (1− 2πt)Xt−1 +N βt(1− βt);

• . . .
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General properties: (cont.)

• due to primitive transition matrix P = (P (k|l)k,l=0,...,N),

ergodic with unique stationary distribution,

obtained numerically from equation

Pp = p (eigenvalue problem)

(also allows to evaluate stationary moments);

• second-order moments with time-lag h

from P (Xt = k,Xt−h = l) as entries of Ph diag(p), etc.;

• . . .
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Large–N Approximations: Define

f(x) := α(x)x+ β(x) (1− x) = ρ(x)x+ β(x),

v(x) := α(x)
(
1− α(x)

)
x+ β(x)

(
1− β(x)

)
(1− x),

so E[Xt/N |Xt−1/N] = f(Xt−1/N), N V [Xt/N |Xt−1/N] = v(Xt−1/N).

Several large–N results, among others

• law of large numbers Xt/N
P→

N→∞
yt, where yt+1 = f(yt);

• central limit law for scaled fluctuations
√
N (Xt/N − yt);

• if y∗ stable fixed point of f , and κ = f ′(y∗), then

µX ≈ N y∗, σ2
X ≈ N

v(y∗)

1− κ2
, ρX(k) ≈ κk.

(Buckley & Pollett, 2010; Weiß & Pollett, 2014)
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Binomial index of dispersion for r.v. with support {0, . . . , N},

and with mean µ and variance σ2:

Id :=
Nσ2

µ(N − µ)
∈ (0;∞).

For Bin(N, π)-distributed r.v., we have Id = 1 for any π ∈ (0; 1).

If Id > 1, then overdispersion w.r.t. binomial distribution

(“extra-binomial variation”),

while underdispersion refers to Id < 1.
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Definition: Let ρ(y) = ρ ∈ (0; 1) be constant,

and π(y) = a+ by be linear, where a, a+ b ∈ (0; 1). So

βt = (1− ρ) (a+ bXt−1/N), αt = (1− ρ) (a+ bXt−1/N) + ρ.

also linear, and depending on sign of b, these probabilities

increase or decrease with increasing density.

Properties: ACF ρX(k) =
(
ρ+ (1− ρ)b

)k, and
µ =

Na

1− b
, Id =

1− ρ2

1− ρ2

N − (1− 1
N)

(
ρ+ (1− ρ)b

)2.
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Properties:
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1

3

2

3
1

a

-1

-0.5

0.5

1
b

0

Possible
Range of b

(b)

1

3

2

3
1
Ρ

-1

-0.5

0.5

1
b

0

Underdispersion

Overdispersion

Over-
dispersion

Attainable range of b depending on a in (a)

dispersion determined by b and ρ in (b).

Christian H. Weiß — Helmut Schmidt University, Hamburg



Special Case 1: Binomial Over- or Underdispersion MATH 

STAT 

Data example 1: securities counts, N = 22.

Analyzing empirical (partial) autocorrelations,

first-order autoregressive dependence structure apparent.

Sample mean and variance are x̄ ≈ 9.529 and s2 ≈ 4.253.

Empirical index of dispersion Îd = s2/
(
x̄(1− x̄/N)

)
≈ 0.787

indicates slight degree of binomial underdispersion.

ML-fitted model:

âML ≈ 0.693, b̂ML ≈ −0.619, ρ̂ML ≈ 0.630.
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Boundary case ρ→ 0 leads to

Xt
D
= Bin

(
N, a+ bXt−1/N

)
.

Motivated by analogy to (Poisson) INARCH(1) model (Ferland

et al., 2006): binomial INARCH(1) model (BINARCH(1)).

Properties: ACF ρX(k) = bk, and

µ =
Na

1− b
, Id =

1

1− (1− 1
N)b2

∈ [1;N).

Consequently, only overdispersion is possible.
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Data example 2: hanta counts, N = 38.

Sample mean and variance are x̄ ≈ 4.173 and s2 ≈ 7.793.

Empirical index of dispersion Îd ≈ 2.098

indicates considerable degree of binomial overdispersion.

π̂ML ρ̂ML AIC BIC
BAR(1) 0.115 0.535 222.8 226.7

(0.013) (0.071)

âML b̂ML ρ̂ML AIC BIC
DD-BAR(1) 0.030 0.748 0.000 213.4 219.2

(0.016) (0.143) (0.367)

âML b̂ML AIC BIC
BINARCH(1) 0.030 0.748 211.4 215.3

(0.011) (0.108)
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Definition: Let α(y) = α ∈ (0; 1) be constant,

and β(y) = α (a+ by) be linear, where a, a+ b ∈ (0; 1].

Epidemic context: If b > 0,

prob. for susceptible becoming infected increases

if number of infectives already large (infection is spreading),

while recovery from infection independent of other infectives.

Properties:

E[Xt | Xt−1] = (α− βt)Xt−1 +N βt quadratic in Xt−1,

V [Xt | Xt−1] cubic polynomial in Xt−1.

Explicit large-N approximation for marginal moments and ACF.

Christian H. Weiß — Helmut Schmidt University, Hamburg



MATH 

STAT 

Self-Exciting Threshold
Binomial AR(1) Processes

(jointly with T.A. Möller, M.E. Silva, M.G. Scotto, I. Pereira)

“Work in Progress”
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Idea: Like in Monteiro et al. (2012), fix threshold value

0 ≤ R < N , which separates range into two regimes:

lower regime {0,1,2, . . . , R}, upper regime {R+ 1, R+ 2, . . . , N}.

Depending if previous observation in lower regime (Xt−1 ≤ R)

or in upper regime (Xt−1 > R),

parameters of BAR(1) recursion at time t chosen differently.

Note: Possible generalizations include

• more than two regimes;

• increased delay Xt−d ≤ R vs. Xt−d > R with d > 1;

• more complex criteria, e.g., max {Xt−1, . . . , Xt−d} ≤ R.
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Definition: Define πi ∈ (0; 1), ρi ∈
(

max {− πi
1−πi, −

1−πi
πi
}; 1

)
,

and βi := πi · (1− ρi) ∈ (0; 1) and αi := βi + ρi ∈ (0; 1).

SET-BAR(1) process Xt = φt ◦Xt−1 + ηt ◦ (N −Xt−1),

where φt := α1It−1 +α2(1− It−1) and ηt := β1It−1 +β2(1− It−1)

with indicator It−1 := 1{Xt−1≤R}.

Note: If R = 0, then α1 no influence (can be chosen arbitrarly).

⇒ α1 unidentifiable during parameter estimation.

Same issue with β2 and R = N − 1. Therefore, we set

ρ1 = ρ2 for R = 0, N − 1 (→ LSET model from below).
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Properties:

SET-BAR(1) model instance of

DD-BAR(1) models by Weiß & Pollett (2014)

⇒ adapt results concerning transition probabilities, ergodicity,

existence of unique stationary marginal distribution p.

Since finite range, always possible to compute p numerically

by solving eigenvalue problem Pp = p.

We derived closed-form formulae for mean and variance,

but very complex.
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Data example 3: (Robert-Koch-Institut)

Weekly No. of districts with new measles case (G., 2004/05).

Finite range {0, . . . , N} with N = 38 (number of districts).

But . . .
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. . . level shift due to measles epidemy!
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Above measles time series: level shift in first half of 2005,

but no obvious change in serial dependence structure.

Idea: Reduce number of parameters by

additional restriction ρ1 = ρ2 =: ρ.

Definition: Let ρ ∈
(

max {− π1
1−π1

, − π2
1−π2

, −1−π1
π1

, −1−π2
π2
}; 1

)
.

A SET-BAR(1) process for which ρ1 = ρ2 =: ρ 6= 0 holds

is called an LSET-BAR(1) process.
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Defining p := P (Xt ≤ R) = E[It−1], µIX := E[It−1Xt−1],

we can express unconditional mean and variance as

µX = Npπ1 + N(1− p)π2,

σ2
X = Npπ1(1− π1) + N(1− p)π2(1− π2)

+ N2p(1− p) (π2 − π1)2

+
2ρ

1 + ρ
(N − 1) (π2 − π1)

(
Npπ1 − µIX

)
.

LSET model able to show over- and underdispersion

w.r.t. binomial distribution for appropriate parameter settings.

Christian H. Weiß — Helmut Schmidt University, Hamburg



LSET Binomial AR(1) Processes MATH 

STAT 

Forecasting distributions for model N = 40, ρ = 0.3,

π1 = 0.15, π2 = 0.4 and R = 10, conditional on XT = 2:
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Autocorrelation function for model N = 40, ρ = 0.3, π1 = 0.15,

π2 = 0.4 and R = 10 (black points):
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Gray triangles show f(k) :=
(
ρX(1)

)k
⇒ longer memory than corresponding AR(1)-like model.

Christian H. Weiß — Helmut Schmidt University, Hamburg



LSET Binomial AR(1) Processes MATH 

STAT 

Data example 3: measles counts, N = 38.

Par. 1 Par. 2 Par. 3 Par. 4 AIC BIC
BAR(1) 0.0882 0.4158 - - 448.2 453.5
(π, ρ) (0.0070) (0.0550)

DD-BAR(1) 0.0419 0.5270 0 - 436.9 444.9
(a, b, ρ) (0.0095) (0.1077) (0.1765)
BINARCH(1) 0.0419 0.5270 - - 434.9 440.2
(a, b) (0.0060) (0.0682)

SET-BAR(1) 0.0706 0.1558 0.1916 0.2904 432.5 443.1
(π1, π2, ρ1, ρ2) (0.0056) (0.0269) (0.0884) (0.375)
LSET-BAR(1) 0.0707 0.1604 0.1947 - 430.6 438.5
(π1, π2, ρ) (0.0057) (0.0169) (0.0876)

All threshold models include threshold value R = 5.
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• Time series of counts with finite range {0,1, . . . , N}

important topic in practice.

• McKenzie’s basic binomial AR(1) model

easily generalized in several ways.

• Density-dependent binomial AR(1) model

for binomial over- or underdispersion,

boundary case of binomial INARCH(1) model.

• Model with density-dependent colonization.

• SET models for counts exhibiting piecewise-type patterns.
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