Binomial Autoregressive Processes with Density-Dependent Thinning

MATH
STAT

Christian H. Weiß

Department of Mathematics \& Statistics, Helmut Schmidt University, Hamburg

Philip K. Pollett
Department of Mathematics,
University of Queensland

Time Series of Counts with a Finite Range

Motivation \& Outline

During last 30 years, increasing research interest in count data time series.

Initially, research focussed nearly exclusively
on counts with unlimited range \mathbb{N}_{O}.
Only during last years, considerable interest also in time series with fixed finite range $\{0,1, \ldots, N\}$.

Examples:

- utilization of computer pools (with N workstations);
- spread of metapopulations (with N patches);
- . . .

Christian H. Weiß - Helmut Schmidt University, Hamburg

Data example 1:
 (Weiß \& Kim, 2013)

Number of securities companies (among $N=22$ companies)
traded in Korea stock market per 5-min period
(Feb. 8, 2011, 09:00-14:50; $T=70$).

Christian H. Weiß - Helmut Schmidt University, Hamburg

Data example 2: (Robert-Koch-Institut, survstat.rki.de)

Number of districts in Germany (among $N=38$ districts) with new case of hantavirus infection (weekly data, 2011; $T=52$).

Christian H. Weiß - Helmut Schmidt University, Hamburg

Modeling of time series with fixed finite range $\{0,1, \ldots, N\}$?
Popular basic approach (counterpart to AR(1) model): binomial AR(1) model (BAR(1)) by McKenzie (1985), which uses binomial thinning operation $\alpha \circ X \sim \operatorname{Bin}(X, \alpha)$ by Steutel \& van Harn (1979).

Parameters $\pi \in(0 ; 1), \quad \rho \in\left(\max \left\{-\frac{\pi}{1-\pi},-\frac{1-\pi}{\pi}\right\} ; 1\right)$, define thinning probabilities $\beta:=\pi(1-\rho)$ and $\alpha:=\beta+\rho$. BAR(1) recursion

$$
X_{t+1}=\underbrace{\alpha \circ X_{t}}_{\text {survivors }}+\underbrace{\beta \circ\left(N-X_{t}\right)}_{\text {newly occupied }}
$$

thinnings performed independently, independent of $\left(X_{s}\right)_{s \leq t}$.
Christian H. Weiß - Helmut Schmidt University, Hamburg

A few well-known properties:

Ergodic Markov chain, transition probabilities
$P\left(X_{t+1}=k \mid X_{t}=l\right)=$
$\sum_{m=\max \{0, k+l-N\}}^{\min \{k, l\}}\binom{l}{m}\binom{N-l}{k-m} \alpha^{m}(1-\alpha)^{l-m} \beta^{k-m}(1-\beta)^{N-l+m-k}$,
uniquely determined stationary distribution: $\operatorname{Bin}(N, \pi)$.
Autocorrelation function: $\quad \rho_{X}(k)=\rho^{k}$ for $k \geq 0$.
Regression properties:

$$
\begin{aligned}
E\left[X_{t+1} \mid X_{t}\right] & =\rho \cdot X_{t}+N \beta \\
V\left[X_{t+1} \mid X_{t}\right] & =\rho(1-\rho)(1-2 \pi) \cdot X_{t}+N \beta(1-\beta)
\end{aligned}
$$

Christian H. Weiß - Helmut Schmidt University, Hamburg

Limitations:

- Binomial marginal distribution,
- exponentially decaying ACF (AR(1)-like),
- thinning probabilities at time t do not depend on process up to that time, ...

Approaches for generalization:

- p th order dependence ($\operatorname{AR}(p)$-like): Weiß (2009).
- State dependence of parameters π, ρ resp. α, β at time $t+1$
- as function of X_{t} / N : "density dependence";
(e.g., proportion of infectives or proportion of occupied patches)
- acc. to X_{t} in which regime: "SET approach" (Tong).

Christian H. Weiß - Helmut Schmidt University, Hamburg

MATH STAT

Density-Dependent Binomial AR(1) Processes

Definition \& Properties

Definition: (Weiß \& Pollett, 2014)

Let $\pi:[0 ; 1] \rightarrow(0 ; 1)$ and $\rho:[0 ; 1] \rightarrow(0 ; 1)$, so functions $\beta(y):=\pi(y)(1-\rho(y))$ and $\alpha(y):=\beta(y)+\rho(y)$ also range $(0 ; 1)$.

Write $\quad \pi_{t+1}:=\pi\left(X_{t} / N\right), \quad \rho_{t+1}:=\rho\left(X_{t} / N\right)$, and $\alpha_{t+1}:=\alpha\left(X_{t} / N\right), \quad \beta_{t+1}:=\beta\left(X_{t} / N\right)$.

DD-BAR(1) recursion

$$
X_{t+1}=\alpha_{t+1} \circ X_{t}+\beta_{t+1} \circ\left(N-X_{t}\right)
$$

thinnings performed independently, independent of $\left(X_{s}\right)_{s \leq t}$.

General properties: (Weiß \& Pollett, 2014)

- time-homogeneous finite-state Markov chain with truly positive transition probabilities
$P(k \mid l):=P\left(X_{t}=k \mid X_{t-1}=l\right)=\Sigma_{m=\max \{0, k+l-N\}}^{\min \{k, l\}}$
$\binom{l}{m}\binom{N-l}{k-m}(\alpha(l / N))^{m}(1-\alpha(l / N))^{l-m}(\beta(l / N))^{k-m}(1-\beta(l / N))^{N-l+m-k}$;
- regression properties

$$
\begin{aligned}
E\left[X_{t} \mid X_{t-1}\right] & =\rho_{t} X_{t-1}+N \beta_{t} \\
V\left[X_{t} \mid X_{t-1}\right] & =\rho_{t}\left(1-\rho_{t}\right)\left(1-2 \pi_{t}\right) X_{t-1}+N \beta_{t}\left(1-\beta_{t}\right)
\end{aligned}
$$

Christian H. Weiß - Helmut Schmidt University, Hamburg

General properties: (cont.)

- due to primitive transition matrix $\mathbf{P}=\left(P(k \mid l)_{k, l=0, \ldots, N}\right)$, ergodic with unique stationary distribution, obtained numerically from equation

$$
\mathbf{P} \boldsymbol{p}=\boldsymbol{p} \quad \text { (eigenvalue problem) }
$$

(also allows to evaluate stationary moments);

- second-order moments with time-lag h from $P\left(X_{t}=k, X_{t-h}=l\right)$ as entries of $\mathbf{P}^{h} \operatorname{diag}(\boldsymbol{p})$, etc.;

Christian H. Weiß - Helmut Schmidt University, Hamburg

Large $-N$ Approximations: Define

$$
\begin{aligned}
& f(x):=\alpha(x) x+\beta(x)(1-x)=\rho(x) x+\beta(x) \\
& v(x):=\alpha(x)(1-\alpha(x)) x+\beta(x)(1-\beta(x))(1-x),
\end{aligned}
$$

so $E\left[X_{t} / N \mid X_{t-1} / N\right]=f\left(X_{t-1} / N\right), \quad N V\left[X_{t} / N \mid X_{t-1} / N\right]=v\left(X_{t-1 / N}\right)$.
Several large $-N$ results, among others

- law of large numbers $\quad X_{t} / N \underset{N \rightarrow \infty}{\xrightarrow{P}} y_{t}$, where $y_{t+1}=f\left(y_{t}\right)$;
- central limit law for scaled fluctuations $\sqrt{N}\left(X_{t} / N-y_{t}\right)$;
- if y^{*} stable fixed point of f, and $\kappa=f^{\prime}\left(y^{*}\right)$, then

$$
\mu_{X} \approx N y^{*}, \quad \sigma_{X}^{2} \approx N \frac{v\left(y^{*}\right)}{1-\kappa^{2}}, \quad \rho_{X}(k) \approx \kappa^{k}
$$

(Buckley \& Pollett, 2010; Weiß \& Pollett, 2014)
Christian H. Weiß - Helmut Schmidt University, Hamburg

Density-Dependent Binomial AR(1) Processes

Special Cases

Binomial index of dispersion for r.v. with support $\{0, \ldots, N\}$, and with mean μ and variance σ^{2} :

$$
I_{\mathrm{d}}:=\frac{N \sigma^{2}}{\mu(N-\mu)} \quad \in(0 ; \infty)
$$

For $\operatorname{Bin}(N, \pi)$-distributed r.v., we have $I_{\mathrm{d}}=1$ for any $\pi \in(0 ; 1)$.
If $I_{\mathrm{d}}>1$, then overdispersion w.r.t. binomial distribution ("extra-binomial variation"),
while underdispersion refers to $I_{\mathrm{d}}<1$.

Christian H. Weiß - Helmut Schmidt University, Hamburg

Definition: Let $\rho(y)=\rho \in(0 ; 1)$ be constant, and $\pi(y)=a+b y$ be linear, where $a, a+b \in(0 ; 1)$. So

$$
\beta_{t}=(1-\rho)\left(a+b X_{t-1 / N}\right), \quad \alpha_{t}=(1-\rho)\left(a+b X_{t-1 / N}\right)+\rho
$$

also linear, and depending on sign of b, these probabilities increase or decrease with increasing density.

Properties: ACF $\rho_{X}(k)=(\rho+(1-\rho) b)^{k}$, and

$$
\mu=\frac{N a}{1-b}, \quad I_{\mathrm{d}}=\frac{1-\rho^{2}}{1-\frac{\rho^{2}}{N}-\left(1-\frac{1}{N}\right)(\rho+(1-\rho) b)^{2}}
$$

Christian H. Weiß - Helmut Schmidt University, Hamburg

Properties:

Attainable range of b depending on a in (a) dispersion determined by b and ρ in (b).

Christian H. Weiß - Helmut Schmidt University, Hamburg

Data example 1: \quad securities counts, $N=22$.

Analyzing empirical (partial) autocorrelations,
first-order autoregressive dependence structure apparent.
Sample mean and variance are $\bar{x} \approx 9.529$ and $s^{2} \approx 4.253$.
Empirical index of dispersion $\hat{I}_{\mathrm{d}}=s^{2} /(\bar{x}(1-\bar{x} / N)) \approx 0.787$ indicates slight degree of binomial underdispersion.

ML-fitted model:

$$
\hat{a}_{\mathrm{ML}} \approx 0.693, \quad \hat{b}_{\mathrm{ML}} \approx-0.619, \quad \hat{\rho}_{\mathrm{ML}} \approx 0.630
$$

Christian H. Weiß - Helmut Schmidt University, Hamburg

Boundary case $\rho \rightarrow 0$ leads to

$$
X_{t} \stackrel{\unrhd}{=} \operatorname{Bin}\left(N, a+b X_{t-1} / N\right)
$$

Motivated by analogy to (Poisson) INARCH(1) model (Ferland et al., 2006): binomial INARCH(1) model (BINARCH(1)).

Properties: ACF $\rho_{X}(k)=b^{k}$, and

$$
\mu=\frac{N a}{1-b}, \quad I_{\mathrm{d}}=\frac{1}{1-\left(1-\frac{1}{N}\right) b^{2}} \in[1 ; N)
$$

Consequently, only overdispersion is possible.

Data example 2: hanta counts, $N=38$.

Sample mean and variance are $\bar{x} \approx 4.173$ and $s^{2} \approx 7.793$.
Empirical index of dispersion $\hat{I}_{\mathrm{d}} \approx 2.098$
indicates considerable degree of binomial overdispersion.

	$\hat{\pi}_{\mathrm{ML}}$		$\hat{\rho}_{\mathrm{ML}}$	AIC	BIC
BAR(1)	0.115		0.535	222.8	226.7
	(0.013)		(0.071)		
	\hat{a}_{ML}	\hat{b}_{ML}	$\hat{\rho}_{\mathrm{ML}}$	AIC	BIC
DD-BAR(1)	0.030	0.748	0.000	213.4	219.2
	(0.016)	(0.143)	(0.367)		
	\hat{a}_{ML}	\hat{b}_{ML}		AIC	BIC
BINARCH(1)	0.030	0.748		211.4	215.3

Christian H. Weiß - Helmut Schmidt University, Hamburg

Definition: Let $\alpha(y)=\alpha \in(0 ; 1)$ be constant, and $\beta(y)=\alpha(a+b y)$ be linear, where $a, a+b \in(0 ; 1]$.

Epidemic context: If $b>0$,
prob. for susceptible becoming infected increases
if number of infectives already large (infection is spreading), while recovery from infection independent of other infectives.

Properties:

$E\left[X_{t} \mid X_{t-1}\right]=\left(\alpha-\beta_{t}\right) X_{t-1}+N \beta_{t} \quad$ quadratic in X_{t-1},
$V\left[X_{t} \mid X_{t-1}\right]$ cubic polynomial in X_{t-1}.
Explicit large- N approximation for marginal moments and ACF.

Christian H. Weiß - Helmut Schmidt University, Hamburg

Self-Exciting Threshold Binomial AR(1) Processes

(jointly with T.A. Möller, M.E. Silva, M.G. Scotto, I. Pereira)
"Work in Progress"'

Idea: Like in Monteiro et al. (2012), fix threshold value
$0 \leq R<N$, which separates range into two regimes:
lower regime $\{0,1,2, \ldots, R\}$, upper regime $\{R+1, R+2, \ldots, N\}$.
Depending if previous observation in lower regime $\left(X_{t-1} \leq R\right)$
or in upper regime $\left(X_{t-1}>R\right)$,
parameters of $\operatorname{BAR}(1)$ recursion at time t chosen differently.
Note: Possible generalizations include

- more than two regimes;
- increased delay $X_{t-d} \leq R$ vs. $X_{t-d}>R$ with $d>1$;
- more complex criteria, e.g., $\max \left\{X_{t-1}, \ldots, X_{t-d}\right\} \leq R$.

Christian H. Weiß - Helmut Schmidt University, Hamburg

STAT

Definition: Define $\pi_{i} \in(0 ; 1), \rho_{i} \in\left(\max \left\{-\frac{\pi_{i}}{1-\pi_{i}},-\frac{1-\pi_{i}}{\pi_{i}}\right\} ; 1\right)$, and $\beta_{i}:=\pi_{i} \cdot\left(1-\rho_{i}\right) \in(0 ; 1)$ and $\alpha_{i}:=\beta_{i}+\rho_{i} \in(0 ; 1)$.

SET-BAR(1) process $X_{t}=\phi_{t} \circ X_{t-1}+\eta_{t} \circ\left(N-X_{t-1}\right)$,
where $\phi_{t}:=\alpha_{1} I_{t-1}+\alpha_{2}\left(1-I_{t-1}\right)$ and $\eta_{t}:=\beta_{1} I_{t-1}+\beta_{2}\left(1-I_{t-1}\right)$
with indicator $I_{t-1}:=\mathbb{1}_{\left\{X_{t-1} \leq R\right\}}$.
Note: If $R=0$, then α_{1} no influence (can be chosen arbitrarly).
$\Rightarrow \alpha_{1}$ unidentifiable during parameter estimation.
Same issue with β_{2} and $R=N-1$. Therefore, we set $\rho_{1}=\rho_{2}$ for $R=0, N-1(\rightarrow$ LSET model from below) .

Christian H. Weiß - Helmut Schmidt University, Hamburg

Properties:

SET-BAR(1) model instance of
DD-BAR(1) models by Weiß \& Pollett (2014)
\Rightarrow adapt results concerning transition probabilities, ergodicity, existence of unique stationary marginal distribution \boldsymbol{p}.

Since finite range, always possible to compute \boldsymbol{p} numerically by solving eigenvalue problem $\mathbf{P} \boldsymbol{p}=\boldsymbol{p}$.

We derived closed-form formulae for mean and variance, but very complex.

Christian H. Weiß - Helmut Schmidt University, Hamburg

Data example 3: (Robert-Koch-Institut)

Weekly No. of districts with new measles case (G., 2004/05).
Finite range $\{0, \ldots, N\}$ with $N=38$ (number of districts). But...

... level shift due to measles epidemy!
Christian H. Weiß - Helmut Schmidt University, Hamburg

Above measles time series: level shift in first half of 2005, but no obvious change in serial dependence structure.

Idea: Reduce number of parameters by additional restriction $\rho_{1}=\rho_{2}=$: ρ.

Definition: Let $\rho \in\left(\max \left\{-\frac{\pi_{1}}{1-\pi_{1}},-\frac{\pi_{2}}{1-\pi_{2}},-\frac{1-\pi_{1}}{\pi_{1}},-\frac{1-\pi_{2}}{\pi_{2}}\right\} ; 1\right)$. A SET-BAR(1) process for which $\rho_{1}=\rho_{2}=: \rho \neq 0$ holds is called an LSET-BAR(1) process.

Christian H. Weiß - Helmut Schmidt University, Hamburg

Defining $p:=P\left(X_{t} \leq R\right)=E\left[I_{t-1}\right], \mu_{I X}:=E\left[I_{t-1} X_{t-1}\right]$, we can express unconditional mean and variance as

$$
\begin{aligned}
\mu_{X} & =N p \pi_{1}+N(1-p) \pi_{2} \\
\sigma_{X}^{2} & =N p \pi_{1}\left(1-\pi_{1}\right)+N(1-p) \pi_{2}\left(1-\pi_{2}\right) \\
& +N^{2} p(1-p)\left(\pi_{2}-\pi_{1}\right)^{2} \\
& +\frac{2 \rho}{1+\rho}(N-1)\left(\pi_{2}-\pi_{1}\right)\left(N p \pi_{1}-\mu_{I X}\right) .
\end{aligned}
$$

LSET model able to show over- and underdispersion
w.r.t. binomial distribution for appropriate parameter settings.

Christian H. Weiß - Helmut Schmidt University, Hamburg

Forecasting distributions for model $N=40, \rho=0.3$, $\pi_{1}=0.15, \pi_{2}=0.4$ and $R=10$, conditional on $X_{T}=2$:

Christian H. Weiß - Helmut Schmidt University, Hamburg

Autocorrelation function for model $N=40, \rho=0.3, \pi_{1}=0.15$, $\pi_{2}=0.4$ and $R=10$ (black points):

Gray triangles show $f(k):=\left(\rho_{X}(1)\right)^{k}$
\Rightarrow longer memory than corresponding $\operatorname{AR}(1)$-like model.

Christian H. Weiß - Helmut Schmidt University, Hamburg

Data example 3: measles counts, $N=38$.

	Par. 1	Par. 2	Par. 3	Par. 4	AIC	BIC
$\operatorname{BAR}(1)$	0.0882	0.4158	-	-	448.2	453.5
(π, ρ)	(0.0070)	(0.0550)				
DD-BAR (1)	0.0419	0.5270	0	-	436.9	444.9
(a, b, ρ)	(0.0095)	(0.1077)	(0.1765)			
BINARCH (1)	0.0419	0.5270	-	-	434.9	440.2
(a, b)	(0.0060)	(0.0682)				
SET-BAR(1)	0.0706	0.1558	0.1916	0.2904	432.5	443.1
$\left(\pi_{1}, \pi_{2}, \rho_{1}, \rho_{2}\right)$	(0.0056)	(0.0269)	(0.0884)	(0.375)		
LSET-BAR(1)	0.0707	0.1604	0.1947	-	430.6	438.5
$\left(\pi_{1}, \pi_{2}, \rho\right)$	(0.0057)	(0.0169)	(0.0876)			

All threshold models include threshold value $R=5$.

Christian H. Weiß - Helmut Schmidt University, Hamburg

- Time series of counts with finite range $\{0,1, \ldots, N\}$ important topic in practice.
- McKenzie's basic binomial AR(1) model easily generalized in several ways.
- Density-dependent binomial AR(1) model for binomial over- or underdispersion, boundary case of binomial INARCH(1) model.
- Model with density-dependent colonization.
- SET models for counts exhibiting piecewise-type patterns.

Christian H. Weiß - Helmut Schmidt University, Hamburg

Thank You

for Your Interest!

MATH
Christian H. Weiß
Department of Mathematics \& Statistics
Helmut Schmidt University, Hamburg
weissc@hsu-hh.de

Weiß \& Pollett (2014): Binomial autoregressive processes with density dependent thinning. J. Time Series Anal. 35, 115-132.

Buckley \& Pollett (2010): Limit theorems for discrete-time metapopulation models. Prob. Surveys 7, 53-83.
Ferland et al. (2006): Integer-valued GARCH processes. J. Time Series Anal. 27, 923-942.
McKenzie (1985): Some simple models for discrete variate time series. Water Res. Bull. 21, 645-650.
Monteiro et al. (2012): Integer-valued self-exciting threshold autoregressive processes. Comm. Stat. Theory Methods 41, 2717-2737.
Steutel \& van Harn (1979): Discrete analogues of self-decomposability and stability Ann. Probab. 7, 893-899.
Weiß (2009): A new class of autoregressive models for time series of binomial counts. Comm. Stat. Theory Methods 38, 447-460.
Weiß \& Kim (2013): Parameter estimation for binomial AR(1) models with applications in finance and industry. Stat. Papers 54, 563-590.

Christian H. Weiß - Helmut Schmidt University, Hamburg

