Chain Binomial Models and

Binomial Autoregressive Processes

TECHNISCHE UNIVERSITAT DARMSTADT

Christian H. Weiß
Department of Mathematics,
Darmstadt University of Technology

Fachbereich Mathematik

Philip K. Pollett
Department of Mathematics,
University of Queensland

Background

This talk is based on the article

Weiß, C.H., Pollett, P.K. (2011).
Chain binomial models and binomial autoregressive processes.
Biometrics, to appear.

All references mentioned in this talk
correspond to the references in this article.

Christian H. Weiß - Darmstadt University of Technology

Binomial AR(1) Processes

Review \& New Results

Binomial AR(1) Processes

Gaussian AR(1) process:

$Z_{t+1}=\rho \cdot Z_{t}+\epsilon_{t}, \quad$ where $\left(\epsilon_{t}\right)$ i.i.d. $\mathrm{N}\left(\mu_{\epsilon}, \sigma_{\epsilon}^{2}\right)$.

Discrete-valued counterpart to multiplication:
Binomial thinning operator (Steutel \& van Harn, 1979):

$$
p \circ x:=\sum_{i=1}^{x} y_{i}, \quad \text { where } y_{i} \text { are i.i.d. } \operatorname{Bin}(1, p)
$$

i. e., $p \circ x \sim \operatorname{Bin}(x, p)$ and has range $\{0, \ldots, x\}$.

Binomial AR(1) Processes

$\operatorname{Fix} N \in \mathbb{N}$.
Parameters $\pi \in(0 ; 1), \quad \rho \in\left(\max \left\{-\frac{\pi}{1-\pi},-\frac{1-\pi}{\pi}\right\} ; 1\right)$.
Define thinning probabilities $\beta:=\pi(1-\rho)$ and $\alpha:=\beta+\rho$.

Binomial $\operatorname{AR}(1)$ process $\left(n_{t}\right)_{\mathbb{N}_{0}}$ with range $\{0, \ldots, N\}$ defined by the recursion

$$
n_{t+1}=\underbrace{\alpha \circ n_{t}}_{\text {survivors }}+\underbrace{\beta \circ\left(N-n_{t}\right)}_{\text {newly occupied }} \quad \text { for } t \geq 0
$$

thinnings performed independently, independent of $\left(n_{s}\right)_{s<t}$.
(McKenzie, 1985)

Christian H. Weiß — Darmstadt University of Technology

Binomial AR(1) Processes

Well-known properties:

Ergodic Markov chain, transition probabilities
$P(k \mid l):=P\left(n_{t+1}=k \mid n_{t}=l\right)=$
$\Sigma_{m=\max \{0, k+l-N\}}^{\min \{k, l\}}\binom{l}{m}\binom{N-l}{k-m} \alpha^{m}(1-\alpha)^{l-m} \beta^{k-m}(1-\beta)^{N-l+m-k}$,
uniquely determined stationary distribution: $\operatorname{Bin}(N, \pi)$.
Autocorrelation function: $\rho(k)=\rho^{k}$ for $k \geq 0$.
Regression properties:

$$
\begin{aligned}
\mathbb{E}\left(n_{t+1} \mid n_{t}\right) & =\rho \cdot n_{t}+N \beta \\
\operatorname{Var}\left(n_{t+1} \mid n_{t}\right) & =\rho(1-\rho)(1-2 \pi) \cdot n_{t}+N \beta(1-\beta)
\end{aligned}
$$

Christian H. Weiß — Darmstadt University of Technology

Binomial AR(1) Processes

Parameter estimation from n_{0}, \ldots, n_{T} :
Maximum Likelihood (ML) approach:

$$
\begin{aligned}
\left(\hat{\pi}_{\mathrm{ML}}, \hat{\rho}_{\mathrm{ML}}\right):= & \arg \max _{(\pi, \rho)} \ln L(\pi, \rho), & \text { where } \\
& L(\pi, \rho):=P_{\pi, \rho}\left(n_{0}\right) \cdot \prod_{t=1}^{T} & P_{\pi, \rho}\left(n_{t} \mid n_{t-1}\right) .
\end{aligned}
$$

Conditional Least Squares (CLS) approach:

$$
\begin{aligned}
\left(\hat{\pi}_{\mathrm{CLS}}, \hat{\rho}_{\mathrm{CLS}}\right):= & \arg \min _{(\pi, \rho)} S(\pi, \rho), \quad \text { where } \\
& S(\pi, \rho):=\sum_{t=1}^{T}\left\{n_{t}-\mathbb{E}_{\pi, \rho}\left(n_{t} \mid n_{t-1}\right)\right\}^{2} .
\end{aligned}
$$

Christian H. Weiß - Darmstadt University of Technology

Binomial AR(1) Processes

h-step regression properties:

Define $\beta_{h}=\pi\left(1-\rho^{h}\right)$ and $\alpha_{h}=\beta_{h}+\rho^{h}$ for $h \geq 1$.
Then

$$
P^{(h)}(k \mid l):=P\left(n_{t+h}=k \mid n_{t}=l\right)=
$$

$$
\Sigma_{m=\max \{0, k+l-N\}}^{\min \{k, l\}}\binom{l}{m}\binom{N-l}{k-m} \alpha_{h}^{m}\left(1-\alpha_{h}\right)^{l-m} \beta_{h}^{k-m}\left(1-\beta_{h}\right)^{N-l+m-k}
$$

$$
\mathbb{E}\left(n_{t+h} \mid n_{t}\right)=\rho^{h} \cdot n_{t}+N \beta_{h},
$$

$$
\operatorname{Var}\left(n_{t+h} \mid n_{t}\right)=\rho^{h}\left(1-\rho^{h}\right)(1-2 \pi) \cdot n_{t}+N \beta_{h}\left(1-\beta_{h}\right)
$$

Proof: See article, Section 2.

Christian H. Weiß — Darmstadt University of Technology

Binomial AR(1) Processes

Application:

Parameter estimation from incomplete data $n_{t_{0}}, \ldots, n_{t_{K}}$:
Modified ML approach:

$$
\begin{aligned}
\left(\hat{\pi}_{\mathrm{ML}}, \hat{\rho}_{\mathrm{ML}}\right) & :=\arg \max _{(\pi, \rho)} \ln \tilde{L}(\pi, \rho), \quad \text { where } \\
& \tilde{L}(\pi, \rho):=P_{\pi, \rho}\left(n_{t_{0}}\right) \cdot \Pi_{k=1}^{K} P_{\pi, \rho}^{\left(t_{k}-t_{k-1}\right)}\left(n_{t_{k}} \mid n_{t_{k-1}}\right)
\end{aligned}
$$

Modified CLS approach:

$$
\begin{aligned}
\left(\hat{\pi}_{\mathrm{CLS}}, \hat{\rho}_{\mathrm{CLS}}\right) & :=\arg \min _{(\pi, \rho)} \tilde{S}(\pi, \rho), \\
& \tilde{S}(\pi, \rho):=\sum_{k=1}^{K}\left\{n_{t_{k}}-\mathbb{E}_{\pi, \rho}\left(n_{t_{k}} \mid n_{t_{k-1}}\right)\right\}^{2} .
\end{aligned}
$$

Christian H. Weiß — Darmstadt University of Technology

Binomial AR(1) Processes

Normal Approximation for Large N :
Let $Z_{t}^{N}=\sqrt{N}\left(n_{t} / N-\pi\right)$. If $Z_{0}^{N} \xrightarrow{\mathrm{D}} z_{0}$,
$\left(Z_{t}^{N}\right)$ converges weakly to Gaussian $\operatorname{AR}(1)$ process $\left(Z_{t}\right)$, defined by

$$
Z_{t+1}=\rho \cdot Z_{t}+\epsilon_{t}, \quad Z_{0}=z_{0}
$$

with $\left(\epsilon_{t}\right)$ i.i.d. $N\left(0, \pi(1-\pi)\left(1-\rho^{2}\right)\right)$.

Proof: See article, Section 4.

Christian H. Weiß - Darmstadt University of Technology

Binomial AR(1) Processes

Application:

Approximate $\left(n_{t} / N\right)$ by Gaussian AR(1) model

$$
X_{t}-\pi=\rho \cdot\left(X_{t-1}-\pi\right)+\epsilon_{t}, \quad \text { where } \epsilon_{t} \sim \mathrm{~N}\left(0, \frac{\pi(1-\pi)}{N}\left(1-\rho^{2}\right)\right) .
$$

Examples:

- Simplified asymptotics of CLS estimators (see article, Web Appendix B),
- apply tests for stationarity/unit roots originally developed for Gaussian AR(1) model (see article, Section 5).

Christian H. Weiß - Darmstadt University of Technology

Chain Binomial Population Models

Background \& Relations

Chain Binomial Population Models

Metapopulation $=$ "population of populations" (Hanski \& Gilpin, 1991), consists of N habitat patches, which are either occupied or not.

Example: N islands, occupied by certain species.
Metapopulation dynamics $=$ behaviour over time.
We assume successive phases of inflation and deflation,
e. g., patch colonisation and extinction.

Christian H. Weiß — Darmstadt University of Technology

Chain Binomial Population Models

Metapopulation structure may be hierarchical, e. g., large central population
surrounded by N small local populations
\rightarrow mainland-island model (Hanski \& Gilpin, 1991).
Mainland never suffers extinction, islands may become extinct.

Mainland is source of colonists for islands.

Chain Binomial Population Models

EC model: census after colonisation phases, i. e., first extinction, then (re-)colonisation, then census.
CE model: vice versa.
Chain-binomial models:
EC model:

$$
n_{t+1} \xlongequal{\unrhd} \tilde{n}_{t}+\operatorname{Bin}\left(N-\tilde{n}_{t}, c\right) \quad \tilde{n}_{t} \xlongequal{\unrhd} n_{t}-\operatorname{Bin}\left(n_{t}, e\right) ;
$$

CE model:

$$
n_{t+1} \xlongequal{\perp} \tilde{n}_{t}-\operatorname{Bin}\left(\tilde{n}_{t}, e\right) \quad \tilde{n}_{t} \xlongequal{D} n_{t}+\operatorname{Bin}\left(N-n_{t}, c\right) .
$$

Patches go extinct independently, probability $0<e<1$.
Patches are colonised independently,
with same probability $0<c<1$ because of mainland.
Christian H. Weiß - Darmstadt University of Technology

Chain Binomial Population Models

Relation to binomial AR(1) models:

$$
n_{t+1} \xlongequal{D} \alpha \circ n_{t}+\beta \circ\left(N-n_{t}\right) \quad \text { for } t \geq 0
$$

where α and β are given by

$$
\begin{array}{ll}
\text { EC model: } \alpha=1-e(1-c), & \beta=c . \\
\text { CE model: } \alpha=1-e, & \beta=(1-e) c .
\end{array}
$$

Proof: See article, Section 2.
For both models, $\rho=(1-e)(1-c) \in(0 ; 1)$.
EC model: $\pi=c /(c+e-e c)$,
CE model: $\pi=(1-e) \cdot c /(c+e-e c)(\rightarrow$ reduced $\pi)$.
For both models, $(c, e)=(0,0)$ is essential singularity.
Christian H. Weiß — Darmstadt University of Technology

Chain Binomial Population Models

Mainland

Christian H. Weiß - Darmstadt University of Technology

Chain Binomial Population Models

In a nutshell:

Both chain-binomial models
(with state-independent
colonisation and extinction probabilities)
are distributed like particular binomial $\operatorname{AR}(1)$ models.
\Rightarrow Stochastic properties known,
we can apply established methods,
e. g., for parameter estimation.

Approaches for Parameter Estimation

Chain Binomial Models: Parameter Estimation

ML estimation: likelihood function

$$
L(c, e)=P_{c, e}\left(n_{0}\right) \Pi_{t=1}^{T} P_{c, e}\left(n_{t} \mid n_{t-1}\right), \quad \text { where }
$$

$$
\text { EC model: } c=\pi(1-\rho), \quad e=(1-\pi)(1-\rho) /\{1-\pi(1-\rho)\}
$$

$$
\text { CE model: } c=\pi(1-\rho) /(\pi+\rho-\pi \rho), \quad e=(1-\pi)(1-\rho)
$$

Theorem:

(Proof: See article, Section 3.1)
ML estimators $\hat{c}_{\mathrm{ML}}, \hat{e}_{\mathrm{ML}}$ exist and are consistent.
If $\mathbf{I}_{1}(c, e):=E\left[\mathbf{J}_{1}(c, e)\right]$ denotes expected Fisher information, then

$$
\sqrt{T}\left(\hat{c}_{\mathrm{ML}}-c, \hat{e}_{\mathrm{ML}}-e\right)^{\top} \quad \xrightarrow{\mathrm{D}} N\left(\mathbf{0}, \mathbf{I}_{1}^{-1}(c, e)\right) \quad \text { for } T \rightarrow \infty .
$$

Christian H. Weiß - Darmstadt University of Technology

Chain Binomial Models: Parameter Estimation

CLS estimation:

In Section 3.2 of article, we derive closed-form expressions for the estimators and their asymptotic covariance matrix. (not shown here due to complexity)

For both models, the
estimators are consistent and
asymptotically normally distributed.

Christian H. Weiß — Darmstadt University of Technology

Chain Binomial Models: Parameter Estimation

Performance of estimators:

Simulation study in Section 3.3 of article:
CLS performes worse than ML, especially for
small T (such as $T=50$) or large ρ (such as $\rho=0.75$).
Approximate normal distributions work rather well.
Section 6 of article:
Robustness of estimators w.r.t. inhomogeneous patches,
i. e., where patch i has probabilities $\left(c_{i}, e_{i}\right)$,
i. e., $(c, e) \approx$ "effective" colonization/extinction rates.
\rightarrow CLS more robust than ML.
Christian H. Weiß — Darmstadt University of Technology

Chain Binomial Models: Data Example

Ragwort population data

of Van der Meijden \& van der Veen-van Wijk (1997).

Chain Binomial Models: Data Example

Ragwort (Senecio jacobaea, "Jakobs-Greiskraut")

(Source: Christian Fischer resp. Kurt Stueber, Wikimedia Commons)

Christian H. Weiß - Darmstadt University of Technology

Chain Binomial Models: Data Example

Ragwort population data

of Van der Meijden \& van der Veen-van Wijk (1997).
Ragwort occupies spatially separated sand dune patches in coastal areas of The Netherlands.

Occupancy recorded from 1974 to 1994 (i. e., $T=21$)
for particular patch network comprising $N=102$ patches.
Local population declared extinct in year t
if no living plants during census period (May to August).

Christian H. Weiß — Darmstadt University of Technology

Chain Binomial Models: Data Example

Ragwort population data:

Possibly extinction during winter,
possibly recolonisation during spring, then census
\Rightarrow EC transition structure seems most appropriate.
Recolonisation mainly due to presence of
effective seed bank (\approx mainland),
so state-independent colonisation mechanism reasonable.

Christian H. Weiß - Darmstadt University of Technology

Chain Binomial Models: Data Example

Ragwort population data:

Yearly number n_{t} of extant ragwort populations ($N=102$) from 1974 to 1994.

Mean value $\approx 78.0, \quad \hat{\rho}(1) \approx 0.395$.

Christian H. Weiß — Darmstadt University of Technology

Chain Binomial Models: Data Example

Ragwort population data:

ML-calibrated EC model:
$\hat{e}_{\mathrm{ML}} \approx 0.455$ (0.081), $\hat{c}_{\mathrm{ML}} \approx 0.598$ (0.044).
So local population of ragwort on a sand dune becomes extinct with probability $\approx 45 \%$, empty patches available after extinction phase recolonized with probability $\approx 60 \%$, confirming its "spectacular powers of regeneration" (Van der Meijden and van der Veen-van Wijk, 1997, p. 395).

Limiting proportion of patches occupied about 77%.

Christian H. Weiß - Darmstadt University of Technology

Future Work

- Work in progress:

Generalized binomial AR(1) models
by allowing for density-dependent parameters
\rightarrow binomial overdispersion or underdispersion.

- Further research issue:

Adapt framework to the Poisson INAR(1) model with its infinite range of counts.

Christian H. Weiß - Darmstadt University of Technology

Thank You

for Your Interest!

TECHNISCHE UNIVERSITATT DARMSTADT
Christian H. Weiß
Department of Mathematics

Fachbereich Mathematik

Darmstadt University of Technology
weiss@mathematik.tu-darmstadt.de

