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Background

This talk is based on the article

Weill, C.H., Pollett, P.K. (2011).

Chain binomial models and binomial autoregressive processes.

Biometrics, to appear.

All references mentioned in this talk

correspond to the references in this article.
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Binomial AR(1) Processes

"o
X

Gaussian AR(1) process:
Zix1 = p-Zi+ e, where (&) i.i.d. N(ue, 02).

Discrete-valued counterpart to multiplication:

Binomial thinning operator (Steutel & van Harn, 1979):
Xr
pox = > where y; are i.i.d. Bin(1,p),
i=1

i.e.,pox ~ Bin(z,p) and has range {O,...,z}.
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Binomial AR(1) Processes
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Fix N € N.
Parameters m € (0;1), p€ (max{—7%., -7} ; 1).

7

Define thinning probabilities 8 := 7 (1 — p) and a := 8 4+ p.

Binomial AR(1) process (n;)y, with range {0,..., N}
defined by the recursion

N1 = Q0N ‘|‘@O(]\£—nt)/ for ¢t > 0,
SUrvivors newly occupied

thinnings performed independently, independent of (ng)s<t.
(McKenzie, 1985)
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Binomial AR(1) Processes
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Well-known properties:
Ergodic Markov chain, transition probabilities
P(k|l) = P(nt_|_1 =k |n=1) =

Zgién%?{@,k-#l-]\f} () (o) @™ (L—)lm g=m(1—g)N=l+m=k,

uniquely determined stationary distribution: Bin(N, w).
Autocorrelation function: p(k) = p* for k > 0.

Regression properties:

E(ngg1 | ne) = p-ne + NS,
Var(ng1 | ne) = p(1—p)(1 —=27) -ny + NB(1 - 5).
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Binomial AR(1) Processes
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Parameter estimation from nqg,...,np:

Maximum Likelihood (ML) approach:

(TmL, PML) = arg max, ) In L(m,p), where

L(Wap) L= PW,p(”O) ‘ Hle Pw,p(nt‘nt—l)-

Conditional Least Squares (CLS) approach:
(FcLs, PcLs) = argming. y S(m,p), where

2
S(m,p) = Zle {nt_EW,p(nt | nt—l)} .
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Binomial AR(1) Processes
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h-step regression properties:
Define 8;, = (1 — p") and ay, = 85, + p/* for h > 1.
Then

Pkl == Plyyp =k |ng=1) =

Zgiznrikéi}{o,k—l-l—l\f} () (o) @i (L = ap)!=™m =™ (1 — g)N=IHm=k,

E(nggp | me) = p-ne + NBp,

Var(ngyp | ne) = p"(1—p")(1—2m) -ny + NBL(1 - By).

Proof: See article, Section 2.
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Binomial AR(1) Processes
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Application:
Parameter estimation from incomplete data ny,...,n¢.:
Modified ML approach:
(AMLs AML) i= argmax, ,y In L(m, p), where
~ tp—tp_
L(7T710) = Pﬂ-ap(nto) Héle Pﬂ(-als " 1)(ntk’ntk—1)
Modified CLS approach:
(FcLsspcLs) = argming. » S(m, p), where
= 2
S(ﬂ-ap) = Z?':]_ {ntk_Eﬂ',p(ntk | ntk_l)} .
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Binomial AR(1) Processes

Normal Approximation for Large V:
Let Z}N =V N(n¢/N — 7). If Z) = 2,
(Z}) converges weakly to Gaussian AR(1) process (Z;),

defined by
Zig1 = p-Ztt &, Zo = 20,

with (e) i.i.d. N(0, m(1 —m)(1 — p?)).

Proof: See article, Section 4.
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Binomial AR(1) Processes
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Application:
Approximate (n;/N) by Gaussian AR(1) model

Xi—m = p-(Xy_1—7)+e, where ¢ ~ N(0, ML (1_p2)).
Examples:

e Simplified asymptotics of CLS estimators

(see article, Web Appendix B),

e apply tests for stationarity/unit roots
originally developed for Gaussian AR(1) model

(see article, Section 5).
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Chain Binomial Population Models

Metapopulation = “population of populations”
(Hanski & Gilpin, 1991),
consists of N habitat patches,
which are either occupied or not.

Example: N islands, occupied by certain species.
Metapopulation dynamics — behaviour over time.

We assume successive phases of inflation and deflation,

e. g., patch colonisation and extinction.
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Chain Binomial Population Models

Metapopulation structure may be hierarchical, e. g.,
large central population
surrounded by N small local populations

— mainland-island model (Hanski & Gilpin, 1991).

Mainland never suffers extinction,

iIslands may become extinct.

Mainland is source of colonists for islands.
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Chain Binomial Population Models

EC model: census after colonisation phases, i. e.,
first extinction, then (re-)colonisation, then census.
CE model: vice versa.

Chain-binomial models:

EC model:
(] %ﬁt—I—Bin(N—ﬁt,c) ﬁt%nt— Bin(nt,e);

CE model:
n11 = iy — Bin(fig, e) iy = ng 4+ Bin(N — ng, c).

Patches go extinct independently, probability O <e < 1.

Patches are colonised independently,
with same probability O < ¢ < 1 because of mainland.
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Chain Binomial Population Models

Relation to binomial AR(1) models:

D

nit+1 = aong+ Bo(N—ng) fort>0,

where o and £ are given by
EC model: a=1-—e(1—0), B =c.
CE model: a=1 —e, B=(1-e)c.

Proof: See article, Section 2.

For both models, p = (1 —-¢e)(1 —-¢) € (0;1).

EC model: m = c¢/(c+ e — ec),

CE model: t=(1—¢)-¢/(c+e—ec) (— reduced ).
For both models, (c,e) = (0,0) is essential singularity.
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stay colonized

with <

probability a

become colonized

with <

probability [3

\ Mainland

EC model:

with

probability e

!

P

Chain Binomial Population Models
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Overall

colonization rate: Tt

(re-)colonized

>\A

with

probability ¢
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Chain Binomial Population Models

In a nutshell:

Both chain-binomial models

(with state-independent

colonisation and extinction probabilities)

are distributed like particular binomial AR(1) models.

= Stochastic properties known,
we can apply established methods,

e. g., for parameter estimation.
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Approaches for
Parameter Estimation

. and a Real-Data Example



Chain Binomial Models: Parameter Estimation
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ML estimation: likelihood function

L(c,e) = Fee(no) ngl Pee(ngng—1), where

EC model: c=n(1—-p), e=(1-—m)(1-— p)/{l — (1l — p)},
CE model: c=n(1—p)/(r+p—mp), e=(1—m)(1—p).
Theorem: (Proof: See article, Section 3.1)
ML estimators cp,epm eXxist and are consistent.

IfI1(c,e) := E|J1(c, e)| denotes expected Fisher information,
then

VT (e —c, emL —e) > N(O, Ifl(c,e)) for T' — oo.
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Chain Binomial Models: Parameter Estimation

CLS estimation:

In Section 3.2 of article,

we derive closed-form expressions for the
estimators and their asymptotic covariance matrix.

(not shown here due to complexity)

For both models, the
estimators are consistent and

asymptotically normally distributed.
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Chain Binomial Models: Parameter Estimation

Performance of estimators:

Simulation study in Section 3.3 of article:

CLS performes worse than ML, especially for

small T (such as T'=50) or large p (such as p = 0.75).

Approximate normal distributions work rather well.

Section 6 of article:

Robustness of estimators w.r.t. inhomogeneous patches,
i. e., where patch 7 has probabilities (¢;,e;),

i. e., (c,e) = "effective’” colonization/extinction rates.
— CLS more robust than ML.
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Chain Binomial Models: Data Example

Ragwort population data
of Van der Meijden & van der Veen-van Wijk (1997).
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(Source: Christian Fischer resp. Kurt Stueber, Wikimedia Commons)
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Chain Binomial Models: Data Example
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Ragwort population data
of Van der Meijden & van der Veen-van Wijk (1997).

Ragwort occupies spatially separated sand dune patches

in coastal areas of The Netherlands.

Occupancy recorded from 1974 to 1994 (i. e., T = 21)

for particular patch network comprising N = 102 patches.

LLocal population declared extinct in year ¢

if no living plants during census period (May to August).
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Chain Binomial Models: Data Example
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Ragwort population data:

Possibly extinction during winter,
possibly recolonisation during spring, then census

= EC transition structure seems most appropriate.

Recolonisation mainly due to presence of

effective seed bank (= mainland),

sO state-independent colonisation mechanism reasonable.
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Chain Binomial Models: Data Example

Ragwort population data:
Yearly number n; of extant ragwort populations (N = 102)
from 1974 to 1994.

iy 100+
90
80
707
60 -
50

/4 76 /8 80 82 84 386 83 90 92 94 ¢

Mean value ~ 78.0, p(1) ~ 0.395.
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Chain Binomial Models: Data Example

0
X

Ragwort population data:

ML-calibrated EC model:
emL ~ 0.455 (0.081), ¢pmp ~ 0.598 (0.044).

So local population of ragwort on a sand dune

becomes extinct with probability ~ 45 %,

empty patches available after extinction phase

recolonized with probability ~ 60 %,

confirming its ‘'spectacular powers of regeneration”

(Van der Meijden and van der Veen-van Wijk, 1997, p. 395).

Limiting proportion of patches occupied about 77 %.
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Future Work

e \WoOrk in progress:.
Generalized binomial AR(1) models
by allowing for density-dependent parameters

— binomial overdispersion or underdispersion.

e Further research issue:
Adapt framework to the Poisson INAR(1) model

with its infinite range of counts.
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