Chain Binomial Models and Binomial Autoregressive Processes

Christian H. Weiß

Department of Mathematics,

Darmstadt University of Technology

Philip K. Pollett

Department of Mathematics,

University of Queensland

Background

This talk is based on the article

Weiß, C.H., Pollett, P.K. (2011).

Chain binomial models and binomial autoregressive processes. *Biometrics*, to appear.

All references mentioned in this talk correspond to the references in this article.

Gaussian AR(1) process:

$$Z_{t+1} = \rho \cdot Z_t + \epsilon_t$$
, where (ϵ_t) i.i.d. $N(\mu_{\epsilon}, \sigma_{\epsilon}^2)$.

Discrete-valued counterpart to multiplication:

Binomial thinning operator (Steutel & van Harn, 1979):

$$p \circ x := \sum_{i=1}^{x} y_i$$
, where y_i are i.i.d. $Bin(1, p)$,

i. e., $p \circ x \sim Bin(x, p)$ and has range $\{0, \dots, x\}$.

Fix $N \in \mathbb{N}$.

Parameters $\pi \in (0; 1)$, $\rho \in (\max \{-\frac{\pi}{1-\pi}, -\frac{1-\pi}{\pi}\}; 1)$. Define thinning probabilities $\beta := \pi (1-\rho)$ and $\alpha := \beta + \rho$.

Binomial AR(1) process $(n_t)_{\mathbb{N}_0}$ with range $\{0,\ldots,N\}$ defined by the recursion

$$n_{t+1} = \underbrace{\alpha \circ n_t}_{\text{survivors}} + \underbrace{\beta \circ (N - n_t)}_{\text{newly occupied}}$$
 for $t \ge 0$,

thinnings performed independently, independent of $(n_s)_{s < t}$. (McKenzie, 1985)

Well-known properties:

Ergodic Markov chain, transition probabilities

$$P(k|l) := P(n_{t+1} = k \mid n_t = l) =$$

$$\sum_{m=\max\{0,k+l-N\}}^{\min\{k,l\}} {n \choose m} {n-l \choose k-m} \alpha^m (1-\alpha)^{l-m} \beta^{k-m} (1-\beta)^{N-l+m-k},$$

uniquely determined stationary distribution: Bin (N, π) .

Autocorrelation function: $\rho(k) = \rho^k$ for $k \ge 0$.

Regression properties:

$$\mathbb{E}(n_{t+1} \mid n_t) = \rho \cdot n_t + N\beta,$$

$$Var(n_{t+1} \mid n_t) = \rho(1-\rho)(1-2\pi) \cdot n_t + N\beta(1-\beta).$$

Parameter estimation from n_0, \ldots, n_T :

Maximum Likelihood (ML) approach:

$$(\widehat{\pi}_{\mathsf{ML}}, \widehat{\rho}_{\mathsf{ML}}) := \operatorname{arg\,max}_{(\pi,\rho)} \operatorname{In} L(\pi,\rho), \quad \text{where}$$

$$L(\pi,\rho) := P_{\pi,\rho}(n_0) \cdot \prod_{t=1}^T P_{\pi,\rho}(n_t|n_{t-1}).$$

Conditional Least Squares (CLS) approach:

$$(\widehat{\pi}_{\mathsf{CLS}}, \widehat{\rho}_{\mathsf{CLS}}) := \operatorname{arg\,min}_{(\pi,\rho)} S(\pi,\rho), \quad \text{where}$$

$$S(\pi,\rho) := \sum_{t=1}^{T} \left\{ n_t - \mathbb{E}_{\pi,\rho}(n_t \mid n_{t-1}) \right\}^2.$$

h-step regression properties:

Define $\beta_h = \pi(1 - \rho^h)$ and $\alpha_h = \beta_h + \rho^h$ for $h \ge 1$.

Then

$$P^{(h)}(k|l) := P(n_{t+h} = k \mid n_t = l) =$$

$$\sum_{m=\max\{0,k+l-N\}}^{\min\{k,l\}} {l \choose m} {N-l \choose k-m} \alpha_h^m (1-\alpha_h)^{l-m} \beta_h^{k-m} (1-\beta_h)^{N-l+m-k},$$

$$\mathbb{E}(n_{t+h} \mid n_t) = \rho^h \cdot n_t + N\beta_h,$$

$$Var(n_{t+h} \mid n_t) = \rho^h(1-\rho^h)(1-2\pi) \cdot n_t + N\beta_h(1-\beta_h).$$

Proof: See article, Section 2.

Application:

Parameter estimation from incomplete data n_{t_0}, \ldots, n_{t_K} :

Modified ML approach:

$$(\widehat{\pi}_{\mathsf{ML}}, \widehat{\rho}_{\mathsf{ML}}) := \arg\max_{(\pi, \rho)} \ln \widetilde{L}(\pi, \rho), \quad \text{where}$$

$$\widetilde{L}(\pi, \rho) := P_{\pi, \rho}(n_{t_0}) \cdot \prod_{k=1}^{K} P_{\pi, \rho}^{(t_k - t_{k-1})}(n_{t_k} | n_{t_{k-1}}).$$

Modified CLS approach:

$$(\widehat{\pi}_{\mathsf{CLS}}, \widehat{\rho}_{\mathsf{CLS}}) := \operatorname{arg\,min}_{(\pi, \rho)} \widetilde{S}(\pi, \rho), \quad \text{where}$$

$$\widetilde{S}(\pi, \rho) := \sum_{k=1}^{K} \left\{ n_{t_k} - \mathbb{E}_{\pi, \rho}(n_{t_k} \mid n_{t_{k-1}}) \right\}^2.$$

Normal Approximation for Large N:

Let $Z_t^N=\sqrt{N}(n_t/N-\pi)$. If $Z_0^N\stackrel{\rm D}{\to} z_0$, (Z_t^N) converges weakly to Gaussian AR(1) process (Z_t) , defined by

$$Z_{t+1} = \rho \cdot Z_t + \epsilon_t, \qquad Z_0 = z_0,$$

with (ϵ_t) i.i.d. $N(0, \pi(1-\pi)(1-\rho^2))$.

Proof: See article, Section 4.

Application:

Approximate (n_t/N) by Gaussian AR(1) model

$$X_t - \pi = \rho \cdot (X_{t-1} - \pi) + \epsilon_t$$
, where $\epsilon_t \sim N(0, \frac{\pi(1-\pi)}{N}(1-\rho^2))$.

Examples:

- Simplified asymptotics of CLS estimators (see article, Web Appendix B),
- apply tests for stationarity/unit roots
 originally developed for Gaussian AR(1) model
 (see article, Section 5).

Background & Relations

Example: N islands, occupied by certain species.

Metapopulation dynamics = behaviour over time.

We assume successive phases of inflation and deflation, e. g., patch colonisation and extinction.

Christian H. Weiß — Darmstadt University of Technology

Metapopulation structure may be hierarchical, e. g., large central population

surrounded by N small local populations

→ mainland-island model (Hanski & Gilpin, 1991).

Mainland never suffers extinction, islands may become extinct.

Mainland is source of colonists for islands.

EC model: census after colonisation phases, i. e., first extinction, then (re-)colonisation, then census.

CE model: vice versa.

Chain-binomial models:

EC model:

$$n_{t+1} \stackrel{\text{D}}{=} \tilde{n}_t + \text{Bin}(N - \tilde{n}_t, c)$$
 $\tilde{n}_t \stackrel{\text{D}}{=} n_t - \text{Bin}(n_t, e);$

CE model:

$$n_{t+1} \stackrel{\triangleright}{=} \tilde{n}_t - \text{Bin}(\tilde{n}_t, e)$$
 $\tilde{n}_t \stackrel{\triangleright}{=} n_t + \text{Bin}(N - n_t, c).$

Patches go extinct independently, probability 0 < e < 1.

Patches are colonised independently,

with same probability 0 < c < 1 because of mainland.

Christian H. Weiß — Darmstadt University of Technology

Relation to binomial AR(1) models:

$$n_{t+1} \stackrel{\square}{=} \alpha \circ n_t + \beta \circ (N - n_t) \quad \text{for } t \ge 0,$$

where α and β are given by

EC model: $\alpha = 1 - e(1 - c)$, $\beta = c$.

CE model: $\alpha = 1 - e$, $\beta = (1 - e)c$.

Proof: See article, Section 2.

For both models, $\rho = (1 - e)(1 - c) \in (0, 1)$.

EC model: $\pi = c/(c + e - ec)$,

CE model: $\pi = (1 - e) \cdot c/(c + e - ec) \ (\rightarrow \text{ reduced } \pi).$

For both models, (c, e) = (0, 0) is essential singularity.

Mainland

In a nutshell:

Both chain-binomial models (with state-independent colonisation and extinction probabilities) are distributed like particular binomial AR(1) models.

⇒ Stochastic properties known,
 we can apply established methods,
 e. g., for parameter estimation.

Approaches for Parameter Estimation

... and a Real-Data Example

Chain Binomial Models: Parameter Estimation

ML estimation: likelihood function

$$L(c,e) = P_{c,e}(n_0) \prod_{t=1}^{T} P_{c,e}(n_t|n_{t-1}),$$
 where

EC model:
$$c = \pi(1-\rho), \quad e = (1-\pi)(1-\rho)/\{1-\pi(1-\rho)\},$$

CE model:
$$c = \pi(1 - \rho)/(\pi + \rho - \pi \rho), \quad e = (1 - \pi)(1 - \rho).$$

Theorem:

(Proof: See article, Section 3.1)

ML estimators $\hat{c}_{\text{ML}}, \hat{e}_{\text{ML}}$ exist and are consistent.

If $\mathbf{I}_1(c,e) := E[\mathbf{J}_1(c,e)]$ denotes expected Fisher information, then

$$\sqrt{T}(\widehat{c}_{\mathsf{ML}} - c, \ \widehat{e}_{\mathsf{ML}} - e)^{\top} \stackrel{\mathsf{D}}{\to} N(\mathbf{0}, \ \mathbf{I}_{1}^{-1}(c, e)) \quad \text{for } T \to \infty.$$

Chain Binomial Models: Parameter Estimation

CLS estimation:

In Section 3.2 of article, we derive closed-form expressions for the estimators and their asymptotic covariance matrix. (not shown here due to complexity)

For both models, the estimators are consistent and asymptotically normally distributed.

Chain Binomial Models: Parameter Estimation

Performance of estimators:

Simulation study in Section 3.3 of article:

CLS performes worse than ML, especially for

small T (such as T = 50) or large ρ (such as $\rho = 0.75$).

Approximate normal distributions work rather well.

Section 6 of article:

Robustness of estimators w.r.t. inhomogeneous patches,

i. e., where patch i has probabilities (c_i, e_i) ,

i. e., $(c,e) \approx$ "effective" colonization/extinction rates.

 \rightarrow CLS more robust than ML.

Christian H. Weiß — Darmstadt University of Technology

Ragwort population data

of Van der Meijden & van der Veen-van Wijk (1997).

Ragwort (Senecio jacobaea, "Jakobs-Greiskraut")

(Source: Christian Fischer resp. Kurt Stueber, Wikimedia Commons)

Ragwort population data

of Van der Meijden & van der Veen-van Wijk (1997).

Ragwort occupies spatially separated sand dune patches in coastal areas of The Netherlands.

Occupancy recorded from 1974 to 1994 (i. e., T=21) for particular patch network comprising N=102 patches.

Local population declared extinct in year t if no living plants during census period (May to August).

Ragwort population data:

Possibly extinction during winter,

possibly recolonisation during spring, then census

⇒ EC transition structure seems most appropriate.

Recolonisation mainly due to presence of effective seed bank (\approx mainland), so state-independent colonisation mechanism reasonable.

Ragwort population data:

Yearly number n_t of extant ragwort populations (N = 102) from 1974 to 1994.

Mean value ≈ 78.0 , $\hat{\rho}(1) \approx 0.395$.

Ragwort population data:

ML-calibrated EC model:

 $\hat{e}_{\text{ML}} \approx 0.455$ (0.081), $\hat{c}_{\text{ML}} \approx 0.598$ (0.044).

So local population of ragwort on a sand dune becomes extinct with probability \approx 45 %, empty patches available after extinction phase recolonized with probability \approx 60 %, confirming its "spectacular powers of regeneration" (Van der Meijden and van der Veen-van Wijk, 1997, p. 395).

Limiting proportion of patches occupied about 77 %.

Future Work

Work in progress:

Generalized binomial AR(1) models by allowing for density-dependent parameters

 \rightarrow binomial overdispersion or underdispersion.

• Further research issue:

Adapt framework to the Poisson INAR(1) model with its infinite range of counts.

Thank You for Your Interest!

Christian H. Weiß

Department of Mathematics

Darmstadt University of Technology

weiss@mathematik.tu-darmstadt.de

