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This talk is based on the article

Weill, C.H., Testik, M.C. (2012).

Detection of Abrupt Changes in Count Data Time Series:
Cumulative Sum Derivations for INARCH(1) Models.
Journal of Quality Technology 44(3), 249—264.

All references mentioned in this talk

correspond to the references in this article.
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INARCH(1) Model for Dependent Counts

Process monitoring often concerned with attributes data.
We consider process {X;: t=1,2,3,...} of counts,
i. e., where each X; has range Nog ={0,1,...}.

Examples:
e humber of nhonconformities in production unit,

e number of service errors in given time interval.

Such data often exhibit serial dependence, e. g.,
Knoth & Schmid (2004): “typical pattern of data”

in medical, environmental, or financial statistics.
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INARCH(1) Model for Dependent Counts
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Variables data — Gaussian AR(1) model:
Zia1 = p-Zi+ e, where (&) i.i.d. N(ue, 02).
Not applicable to counts data.

Possible discrete-valued counterpart:
INARCH(1) model, where

X¢ ~ Pois(ﬁ -+ oz-Xt_1>,
Xi—1,X¢—2;--.

i. e., Markov chain (X;) with transition probabilities

P(X¢=i| X1 =j) = exp(—ﬁ—a-j>-<5+if"]).
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INARCH(1) Model for Dependent Counts

INARCH(1) model:  X; ~ Pois(8 + a-X;_1).

Properties:.
e Stationary and ergodic Markov chain
(Ferland et al., 2006; Zhu and Wang, 2009);

e all moments exist (Ferland et al., 2006), in particular

B 2 B

: = overdispersion);
o T Ao _a P )

o ’Ll, —
e AR(1)-like autocorrelation function p(k) = a*.
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INARCH(1) Model for Dependent Counts
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INARCH(1) model: X; ~ Pois(8 + a-Xi_1).

Parameter estimation:
e Method of moments via X7, p(1).
e Conditional maximum likelihood via

L(B,Oé) = P(XT = X7, ..., X2 = T2 | X1 =CI31)

Note: Simple expression for log-likelihood ratio,

— 1 L(B1,01)

= v, (— (81— Bo) — (1 —ag)xp—1 + xt - 'Mgéiiéiij )
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INARCH(1) Model for Dependent Counts

INARCH(1) model: X; ~ Pois(8 + a-Xi_1).

Interpretation:

Xy = total number of “events’ at time ¢

— events that newly start at time ¢
plus events that havve started earlier.

also included in X;_1,
“survivors’ from time t — 1

~ mean rate of survivors from previous period,

(87
8 =~ mean number of new events starting at each time.
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INARCH(1) Model for Dependent Counts

INARCH(1) model:  X; ~ Pois(8 + a-X;_1).

Real-data example: (Weils, 2010)
Monthly strike counts, U.S. Bureau of Labor Statistics,
Jan. 1994 to Dec. 2002 (108 observations).

xry = total number of work stoppages

leading to >1000 workers being idle in effect in period t.

Mean 4.94 but variance 7.92 = overdispersed.

AR(1)-like autocorrelation structure with p(1) =~ 0.57.
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INARCH(1) Model for Dependent Counts

"o
X

¢ chart of strike count data:

20 40 60 80 100 ¢

ML estimates a ~ 0.64 and 5 ~ 1.81,

. e., model mean =~ 5.0 and model variance = 8.5.

Interpretation: mean number of new strikes is 1.81,

about 64 % of strikes in a month continue in next month.
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CUSUM Monitoring of INARCH(1) Process

Situation:

Process (X:)7, monitoring starts at time t = 1.

Before change point 7 € Z:

o, X0, X1 follow in-control model,

i. e.,, INARCH(1) with aa = ap, 8 = Bp.

For t > 7: parameters shifted to out-of-control values a1, 3.

Benchmark chart: conventional (upper-sided) CUSUM
Co =0, Cy = max(0; X¢y—k+Ci_q) fort=1,2,...,

where upper limit h adjusted for serial dependence and over-
dispersion. (Weils & Testik, 2009)
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CUSUM Monitoring of INARCH(1) Process
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CUSUM Charts based on Likelihood Ratio:
Log-likelihood ratio £R(Bg, aq, B1, 1) = X}_; £R;, where

(Ry = —(B1— Po) — (a1 — ag)we_1 + z - In(GEEATD),

with /R, := 0 (see above).

Given a certain out-of-control parametrization (81, a1),
we can derive related CUSUM chart for this purpose.

Plotting always starts with time ¢t = 2.

Approach exemplified for three cases: ...
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CUSUM Monitoring of INARCH(1) Process

Case 1: (34 = (1 -+ 5)ﬁo and a1 = (1 + 5)040, . e.,
simultaneous change by same relative amount.

Then
(R = —6-(Bo+ agzi—1) +IN(1+9) =

leads to CUSUM

ot = max (0; Ct(i)l — k- (Bo+ apXi—1) +In(1 4+ k) - Xy).

Note: For 6 — O, we obtain residuals CUSUM,

(Rt ~ §-(xt— Bo— cpri—1).
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CUSUM Monitoring of INARCH(1) Process

Case 2: (31 =(146)8y and a1 = g, i. €.,

change only in 5.

T hen

(R, = —588g~+ z¢-In(1 A Bo+?oowt_1)

leads to CUSUM

2 _ 2 k
Cf?) = max(0; {2 — kBo+ X+ In(1 + 5250
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CUSUM Monitoring of INARCH(1) Process

Case 3: (1 =P8y and a1 = (14 6)ag, i. e.,

change only in «.

T hen

0 _
Ry = —dagri—1+ x¢-In(1 4 Boi%éxotxtl—l)

leads to CUSUM

koapgXi_1

. _
( ) — max(O C( ) —kOé0°Xt—1‘|‘Xt'm(1 | BotapXi—1
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Performance of CUSUMs for INARCH(1)

Performance metrics:

zero-state ARL, i. e., ARL() := E[L|r=1],

steady-state ARL, i. e., ARL(>®) = M+ o0 ARL(T),
where ARL() .= E[L—7+1]| L>r, 7] for > 1.

Chart design always such that ARL(()D ~ 370.
Out-of-control behavior in terms of ARL() and ARL(>).

Computation of ARLSs:
For benchmark CUSUM exactly via MC approach,
for LR-CUSUMSs via simulations using ARL°%

(1 mio. replications; details in Appendix of article).
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Performance of CUSUMs for INARCH(1)
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Performance evaluation: Detailed tables in article.

In-control par.: g =2, ag = 0.6 and By = 3.5, ag = 0.3.
Considered o values 0, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 1.5.

Chart design for LR-CUSUMs with £ = 0.1,0.25,0.5,1.0.

Besides above out-of-control cases (used for design),
also situation considered, where

B, a shifted by different relative amounts (— robustness).
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Performance of CUSUMs for INARCH(1)

Performance evaluation: Detailed tables in article.

Main findings:
e Benchmark CUSUM is good choice
if relative shifts > 50% in « or 8 to be detected

(advantage: simple, exact ARL computation).

e Otherwise: LR-CUSUM chart recommended,
with k close to relevant shift level §.

Note: Choice of k£ has large effect on performance.

e Appropriate choice of k£ with regard to «

more important than with regard to £.
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Future Work

e \WoOrk in progress:
Poisson INAR(1) model: complex likelihood,
but effective process monitoring

by considering specialized residuals?

e Further research issues:
Monitoring of higher order or

non-stationary INGARCH processes.

Extend INARCH(1) model and related charts

to situation of varying sample size.
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