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Background

This talk is based on the article

Weiß, C.H., Testik, M.C. (2012).

Detection of Abrupt Changes in Count Data Time Series:

Cumulative Sum Derivations for INARCH(1) Models.

Journal of Quality Technology 44(3), 249–264.

All references mentioned in this talk

correspond to the references in this article.
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INARCH(1) Model
for

Serially Dependent
Counts

Motivation & Properties



INARCH(1) Model for Dependent Counts

Process monitoring often concerned with attributes data.

We consider process {Xt : t = 1,2,3, . . .} of counts,

i. e., where each Xt has range N0 = {0,1, . . .}.

Examples:

• number of nonconformities in production unit,

• number of service errors in given time interval.

Such data often exhibit serial dependence, e. g.,

Knoth & Schmid (2004): “typical pattern of data”

in medical, environmental, or financial statistics.
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INARCH(1) Model for Dependent Counts

Variables data → Gaussian AR(1) model:
Zt+1 = ρ · Zt + ϵt, where (ϵt) i.i.d. N(µϵ, σ2ϵ ).

Not applicable to counts data.

Possible discrete-valued counterpart:

INARCH(1) model, where

Xt

∣∣∣∣∣
Xt−1,Xt−2,...

∼ Pois
(
β + α ·Xt−1

)
,

i. e., Markov chain (Xt) with transition probabilities

P (Xt = i | Xt−1 = j) = exp (−β − α · j) ·
(β + α · j)i

i!
.
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INARCH(1) Model for Dependent Counts

INARCH(1) model: Xt ∼ Pois
(
β + α ·Xt−1

)
.

Properties:

• Stationary and ergodic Markov chain

(Ferland et al., 2006; Zhu and Wang, 2009);

• all moments exist (Ferland et al., 2006), in particular

• µ =
β

1− α
, σ2 =

β

(1− α)(1− α2)
(overdispersion);

• AR(1)-like autocorrelation function ρ(k) = αk.
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INARCH(1) Model for Dependent Counts

INARCH(1) model: Xt ∼ Pois
(
β + α ·Xt−1

)
.

Parameter estimation:
• Method of moments via X̄T , ρ̂(1).

• Conditional maximum likelihood via

L(β, α) := P (XT = xT , . . . , X2 = x2 | X1 = x1)

∼ e−(T−1)β · e−α·
∑T

t=2 xt−1 · ∏T
t=2 (β + α · xt−1)

xt.

Note: Simple expression for log-likelihood ratio,

ℓR(β0, α0, β1, α1) := ln L(β1,α1)
L(β0,α0)

=
∑T
t=2

(
− (β1 − β0)− (α1 − α0)xt−1 + xt · ln(

β1+α1xt−1
β0+α0xt−1

)
)
.
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INARCH(1) Model for Dependent Counts

INARCH(1) model: Xt ∼ Pois
(
β + α ·Xt−1

)
.

Interpretation:

Xt = total number of “events” at time t

= events that newly start at time t
plus events that have started earlier︸ ︷︷ ︸

also included in Xt−1,
“survivors” from time t− 1

.

α ≈ mean rate of survivors from previous period,

β ≈ mean number of new events starting at each time.
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INARCH(1) Model for Dependent Counts

INARCH(1) model: Xt ∼ Pois
(
β + α ·Xt−1

)
.

Real-data example: (Weiß, 2010)

Monthly strike counts, U.S. Bureau of Labor Statistics,

Jan. 1994 to Dec. 2002 (108 observations).

xt = total number of work stoppages

leading to ≥1000 workers being idle in effect in period t.

Mean 4.94 but variance 7.92 ⇒ overdispersed.

AR(1)-like autocorrelation structure with ρ̂(1) ≈ 0.57.
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INARCH(1) Model for Dependent Counts

c chart of strike count data:

Xt

Out[17]=

20 40 60 80 100

5
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t

ML estimates α̂ ≈ 0.64 and β̂ ≈ 1.81,

i. e., model mean ≈ 5.0 and model variance ≈ 8.5.

Interpretation: mean number of new strikes is 1.81,

about 64 % of strikes in a month continue in next month.
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CUSUM Monitoring of INARCH(1) Process

Situation:
Process (Xt)Z, monitoring starts at time t = 1.

Before change point τ ∈ Z:

. . . , Xτ−2, Xτ−1 follow in-control model,

i. e., INARCH(1) with α = α0, β = β0.

For t ≥ τ : parameters shifted to out-of-control values α1, β1.

Benchmark chart: conventional (upper-sided) CUSUM

C0 = 0, Ct = max (0; Xt − k + Ct−1) for t = 1,2, . . . ,

where upper limit h adjusted for serial dependence and over-

dispersion. (Weiß & Testik, 2009)
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CUSUM Monitoring of INARCH(1) Process

CUSUM Charts based on Likelihood Ratio:

Log-likelihood ratio ℓR(β0, α0, β1, α1) =
∑T
t=1 ℓRt, where

ℓRt := −(β1 − β0)− (α1 − α0)xt−1 + xt · ln(
β1+α1xt−1
β0+α0xt−1

),

with ℓR1 := 0 (see above).

Given a certain out-of-control parametrization (β1, α1),

we can derive related CUSUM chart for this purpose.

Plotting always starts with time t = 2.

Approach exemplified for three cases: . . .
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CUSUM Monitoring of INARCH(1) Process

Case 1: β1 = (1+ δ)β0 and α1 = (1+ δ)α0, i. e.,

simultaneous change by same relative amount.

Then
ℓRt = −δ · (β0 + α0xt−1) + ln(1 + δ) · xt

leads to CUSUM

C
(1)
t = max

(
0; C

(1)
t−1 − k · (β0 + α0Xt−1) + ln(1 + k) ·Xt

)
.

Note: For δ → 0, we obtain residuals CUSUM,

ℓRt ≈ δ · (xt − β0 − α0xt−1).
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CUSUM Monitoring of INARCH(1) Process

Case 2: β1 = (1+ δ)β0 and α1 = α0, i. e.,

change only in β.

Then
ℓRt = −δβ0 + xt · ln(1 + δβ0

β0+α0xt−1
)

leads to CUSUM

C
(2)
t = max

(
0; C

(2)
t−1 − kβ0 +Xt · ln(1 + kβ0

β0+α0Xt−1
)
)
.
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CUSUM Monitoring of INARCH(1) Process

Case 3: β1 = β0 and α1 = (1+ δ)α0, i. e.,

change only in α.

Then
ℓRt = −δα0xt−1 + xt · ln(1 +

δα0xt−1
β0+α0xt−1

)

leads to CUSUM

C
(3)
t = max

(
0; C

(3)
t−1 − kα0 ·Xt−1 +Xt · ln(1 +

kα0Xt−1
β0+α0Xt−1

)
)
.
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Performance of CUSUMs for INARCH(1)

Performance metrics:

zero-state ARL, i. e., ARL(1) := E[L | τ = 1],

steady-state ARL, i. e., ARL(∞) := limτ→∞ ARL(τ),

where ARL(τ) := E[L− τ +1 | L ≥ τ, τ ] for τ ≥ 1.

Chart design always such that ARL
(1)
0 ≈ 370.

Out-of-control behavior in terms of ARL(1) and ARL(∞).

Computation of ARLs:

For benchmark CUSUM exactly via MC approach,

for LR-CUSUMs via simulations using ÂRL
(200)

(1 mio. replications; details in Appendix of article).
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Performance of CUSUMs for INARCH(1)

Performance evaluation: Detailed tables in article.

In-control par.: β0 = 2, α0 = 0.6 and β0 = 3.5, α0 = 0.3.

Considered δ values 0, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 1.5.

Chart design for LR-CUSUMs with k = 0.1,0.25,0.5,1.0.

Besides above out-of-control cases (used for design),

also situation considered, where

β, α shifted by different relative amounts (→ robustness).
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Performance of CUSUMs for INARCH(1)

Performance evaluation: Detailed tables in article.

Main findings:

• Benchmark CUSUM is good choice

if relative shifts ≥ 50% in α or β to be detected

(advantage: simple, exact ARL computation).

• Otherwise: LR-CUSUM chart recommended,

with k close to relevant shift level δ.

Note: Choice of k has large effect on performance.

• Appropriate choice of k with regard to α

more important than with regard to β.
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Future Work

• Work in progress:

Poisson INAR(1) model: complex likelihood,

but effective process monitoring

by considering specialized residuals?

• Further research issues:

Monitoring of higher order or

non-stationary INGARCH processes.

Extend INARCH(1) model and related charts

to situation of varying sample size.
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for Your Interest!
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