Empirical Measures of Signed Serial Dependence in Categorical Time Series

Christian H. Weiß
Department of Mathematics,
Darmstadt University of Technology
This talk is based on the article

Empirical measures of signed serial dependence in categorical time series.

All references mentioned in this talk correspond to the references in this article.
Categorical Time Series Analysis

Brief Review
Categorical process:

$$(X_t)_\mathbb{N} \text{ with } \mathbb{N} = \{1, 2, \ldots \}, \text{ where each }$$

$X_t \text{ takes one of finite number of unordered categories.}$$

Categorical time series:

Realizations $(x_t)_{t=1,\ldots,T}$ from $(X_t)_\mathbb{N}$.

To simplify notations:

Range of $(X_t)_\mathbb{N}$ is coded as $\mathcal{V} = \{0, 1, \ldots, m\}$,

i. e., $P(X_t = 0) = 1 - \sum_{j=1}^{m} P(X_t = j)$.

Christian H. Weiß — Darmstadt University of Technology
Notations for time-invariant probabilities:

If \((X_t)_N\) (strictly) stationary, then:

- marginal probabilities \(p_i := P(X_t = i) \in (0; 1)\).
 \[p := (p_0, \ldots, p_m)^\top, \text{ and} \]
 \[s_k(p) := \sum_j p_j^k \text{ for } k \in \mathbb{N}; \text{ obviously } s_1(p) = 1. \]

- bivariate probabilities \(p_{ij}(k) := P(X_t = i, X_{t-k} = j)\),
 conditional probabilities \(p_{i|j}(k) := P(X_t = i \mid X_{t-k} = j)\).
Let \((X_t)_N\) be stationary.

Measures of location:

only **mode** of \(X_t\) in use, i.e.,

value \(i \in \mathcal{V}\) such that \(p_i \geq p_j\) for all \(j \in \mathcal{V}\).

Often not uniquely determined (e.g., uniform distribution).

Measures of dispersion:

dispersion \(\approx\) quantity of uncertainty, two extremes:

maximal dispersion if all \(p_j\) equal (**uniform distribution**),

minimal disp. if \(p_j = 1\) for one \(j \in \mathcal{V}\) (**one-point distrib.**).
Most simple measure of dispersion: **Gini index** of X_t,

$$\nu_G(X_t) := \frac{m+1}{m} \cdot (1 - \sum_j p_j^2) = \frac{m+1}{m} \cdot (1 - s_2(p)).$$

- continuous and symmetric function of p_1, \ldots, p_{m+1},
- range $[0; 1]$,
- maximal value 1 iff uniform distribution,
- minimal value 0 iff one-point distribution.

Categorical Time Series Analysis

Weiß & Göb (2008): **signed serial dependence.**

Stationary categorical process \((X_t)_N\) said to be

- **serially independent** at lag \(k \in \mathbb{N}\)

 if \(p_i|j(k) = p_i\) (i.e., \(p_{ij}(k) = p_ip_j\)) for any \(i, j \in V\);

- **perfectly serially dependent** at lag \(k \in \mathbb{N}\)

 if for any \(j \in V\),

 conditional distribution \(p_{i|j}(k)\) is one-point distribution.

(\ldots)
(...)

In case of perfect serial dependence at lag $k \in \mathbb{N}$:

- **perfect positive dependence**

 if $p_{i|j}(k) = 1$ iff $i = j$ for all $i, j \in \mathcal{V}$;

- **perfect negative dependence** if all $p_{i|i}(k) = 0$.

Christian H. Weiß — Darmstadt University of Technology
Categorical Time Series Analysis

Measures of signed dependence:

(Weiβ, 2011; Weiβ & Göb, 2008)

Cohen’s κ:

$$\kappa(k) = 1 - \frac{1 - \sum_j p_{jj}(k)}{1 - s_2(p)}$$

with range \([-\frac{s_2(p)}{1-s_2(p)} ; 1]\).

Modified κ:

$$\kappa^*(k) = \frac{1}{m} \cdot (\sum_j p_{j|j}(k) - 1)$$

with range \([-\frac{1}{m} ; 1]\).

Some properties:

- X_t, X_{t-k} independent \Rightarrow $\kappa(k) = \kappa^*(k) = 0$.
- X_t, X_{t-k} perf. positively dep. \Leftrightarrow $\kappa(k) = \kappa^*(k) = 1$.
- X_t, X_{t-k} perf. negatively dep. \Rightarrow $\kappa(k), \kappa^*(k)$ minimal.
Just to remember . . .

Cohen’s κ:

$$\kappa(k) = 1 - \frac{1 - \sum_j p_{jj}(k)}{1 - s_2(p)}$$

with range $[-\frac{s_2(p)}{1-s_2(p)}; 1]$.

Modified κ:

$$\kappa^*(k) = \frac{1}{m} \cdot (\sum_j p_{j|j}(k) - 1)$$

with range $[-\frac{1}{m}; 1]$.

Gini index ν_G:

$$\nu_G(X_t) = \frac{m+1}{m} \cdot (1 - s_2(p))$$

with range $[0; 1]$.

Christian H. Weiß — Darmstadt University of Technology
Let \((X_t)_N\) be stationary, we have segment \(X_1, \ldots, X_T\) of \((X_t)_N\).

\[N_i(T) \text{ number of variables } X_t = i \text{ in segment,} \]
\[N_{ij}(k, T) \text{ number of pairs } (X_t, X_{t-k}) = (i, j) \text{ in segment.} \]

Simple unbiased estimators for \(p_i\) and \(p_{ij}(k)\):

\[\hat{p}_i(T) := \frac{1}{T} \cdot N_i(T) \quad \text{and} \quad \hat{p}_{ij}(k, T) := \frac{1}{T-k} \cdot N_{ij}(k, T). \]
Lemma:
Let X_1, \ldots, X_T be i.i.d.
Estimator $1 - \sum_j \hat{p}_j(T)^2$ of $1 - s_2(p)$ satisfies

$$E[1 - \sum_j \hat{p}_j(T)^2] = 1 - s_2(p) - \frac{1}{T} \cdot (1 - s_2(p)),$$

$$V[1 - \sum_j \hat{p}_j(T)^2] = \frac{4}{T} \cdot (s_3(p) - s_2^2(p)) + O(T^{-2}).$$

\Rightarrow Define exactly unbiased empirical Gini index via

$$\hat{\nu}_G := \frac{m+1}{m} \cdot \frac{T}{T-1} \cdot (1 - \sum_j \hat{p}_j(T)^2).$$

Christian H. Weiß — Darmstadt University of Technology
Lemma:

Let X_1, \ldots, X_T be \textbf{i.i.d.}

Enumerator $1 - \sum_i p_{ii}(k)$ of Cohen's κ:

\[
E\left[1 - \sum_i \hat{p}_{ii}(k, T)\right] = 1 - s_2(p),
\]

\[
V\left[1 - \sum_i \hat{p}_{ii}(k, T)\right] = \frac{1}{T-k} \cdot \left(s_2(p)(1 - s_2(p)) + 2(s_3(p) - s_2^2(p)) \right) + O(T^{-2}).
\]
Theorem: Define empirical Cohen’s κ as

$$\hat{\kappa}(k) := 1 + \frac{1}{T} - \frac{1 - \sum_j \hat{p}_{jj}(k, T)}{1 - \sum_j \hat{p}_j(T)^2}.$$

If X_1, \ldots, X_T is i.i.d., then

$\hat{\kappa}(k)$ asymptotically normally distributed with

$$E[\hat{\kappa}(k)] = 0 + O(T^{-2}),$$

$$V[\hat{\kappa}(k)] = \frac{1}{T} \cdot \left(1 - \frac{1 + 2s_3(p) - 3s_2(p)}{(1-s_2(p))^2} \right) + O(T^{-2}).$$
Theorem: Define empirical modified κ as

$$\hat{\kappa}^*(k) := \frac{1}{m} \cdot \left(\sum_j \frac{\hat{p}_{jj}(k,T)}{\hat{p}_j(T)} - 1 \right) + \frac{1}{T}. $$

If X_1, \ldots, X_T is i.i.d., then $\hat{\kappa}^*(k)$ asymptotically normally distributed with

$$E[\hat{\kappa}^*(k)] = 0 + O(T^{-2}),$$

$$V[\hat{\kappa}^*(k)] = \frac{1}{mT} + O(T^{-2}).$$
Empirical Measures of Signed Serial Dependence

An Application
Measured serial dependence at lag \(k \) called **significantly different** from 0 if

\[
|\hat{\kappa}(k)| > c \cdot \sqrt{\frac{1}{T} \cdot \left(1 - \frac{1+2s_3(\hat{p})-3s_2(\hat{p})}{(1-s_2(\hat{p}))^2}\right)}, \quad \text{or}
\]

\[
|\hat{\kappa}^*(k)| > c \cdot \sqrt{\frac{1}{m \cdot T}}.
\]

Common choice: \(c = 1.96 \quad (\approx \text{significance level } 5\%) \).

Concerning \(\hat{\kappa}(k) \), we used \(\hat{p} := \hat{p}(T) \) instead of true \(p \), since latter hardly known in practice.
Data Example:
Genome of Bovine Leukemia Virus, as in Weiß & Göb (2008).

Range of size 4 (⇒ m = 3),
coding a ⇔ 0, c ⇔ 1, g ⇔ 2, t ⇔ 3,
length $T = 8419$.

Estimated marginal probabilities:
$\hat{p}_0 = 0.220$, $\hat{p}_1 = 0.331$, $\hat{p}_2 = 0.210$, $\hat{p}_3 = 0.239$
⇒ Gini index $\hat{\nu}_G \approx 0.988$ (strong dispersion).
Data Example: (continued)

(Approximate) asymptotic standard error for $\hat{\kappa}(k)$: 0.00636.
Data Example: (continued)

Asymptotic standard error for $\hat{\kappa}^*(k)$: 0.00629.
Empirical Measures of Signed Serial Dependence

Finite-Sample Properties
Selected results of simulation study,
detailed tables in Weiß (2011).

Models with range of size 4 (i. e., $m = 3$).

Study of true **significance level**:

‘i.i.d.-1’: \[p_1 = (0.20, 0.20, 0.25, 0.35)^\top, \nu_G(X) = 0.98 \]

‘i.i.d.-2’: \[p_2 = (0.05, 0.10, 0.15, 0.70)^\top, \nu_G(X) = 0.633. \]
Design of simulation study (continued):

Study of true power:

‘DAR(1)’: \(p_1 \) and \(\phi = 0.25 \) \(\Rightarrow \kappa(k) = \kappa^*(k) = 0.25^k \).

‘DMA(1)’: \(p_1 \) and \(\varphi = 0.25 \) \(\Rightarrow \kappa(1) = \kappa^*(1) = 0.1875, \kappa(k) = \kappa^*(k) = 0 \text{ for } k \geq 2 \).

‘NegMarkov’: \(p_1 \) and \(\alpha = 0.5 \) \(\Rightarrow \kappa(1) = -0.2678, \kappa(2) = 0.0818, \kappa(3) = -0.0276, \ldots \)
\kappa^*(1) = -0.2500, \kappa^*(2) = 0.0719, \kappa^*(3) = -0.0232, \ldots
Empirical rejection rates for $\hat{\kappa}(k)$:

<table>
<thead>
<tr>
<th>k \ T</th>
<th>i.i.d.-1</th>
<th>i.i.d.-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>5.1</td>
<td>4.7</td>
</tr>
<tr>
<td>2</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>3</td>
<td>5.1</td>
<td>4.9</td>
</tr>
<tr>
<td>4</td>
<td>5.1</td>
<td>5.0</td>
</tr>
<tr>
<td>5</td>
<td>5.2</td>
<td>5.1</td>
</tr>
</tbody>
</table>

\Rightarrow always close to nominal level of 5 %.
Empirical rejection rates for $\widehat{\kappa}^*(k)$:

<table>
<thead>
<tr>
<th>k \ T</th>
<th>i.i.d.-1</th>
<th></th>
<th></th>
<th></th>
<th>i.i.d.-2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>5.1</td>
<td>4.6</td>
<td>4.8</td>
<td>4.9</td>
<td>3.7</td>
<td>4.4</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>4.8</td>
<td>4.9</td>
<td>5.0</td>
<td>5.5</td>
<td>3.9</td>
<td>4.2</td>
<td>4.6</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>4.8</td>
<td>5.0</td>
<td>5.0</td>
<td>4.9</td>
<td>3.8</td>
<td>4.0</td>
<td>4.7</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
<td>5.1</td>
<td>4.9</td>
<td>5.0</td>
<td>5.2</td>
<td>3.9</td>
<td>4.3</td>
<td>5.1</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>5.2</td>
<td>4.9</td>
<td>4.9</td>
<td>5.0</td>
<td>3.5</td>
<td>4.0</td>
<td>4.6</td>
</tr>
</tbody>
</table>

\Rightarrow for medium dispersion and $T \leq 200$, even below nominal level of 5 %.

Christian H. Weiß — Darmstadt University of Technology
Empirical rejection rates for DAR(1) model:

<table>
<thead>
<tr>
<th>k</th>
<th>$\hat{\kappa}(k)$</th>
<th>$\hat{\kappa}^*(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>97.4</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>18.3</td>
<td>31.5</td>
</tr>
<tr>
<td>3</td>
<td>7.1</td>
<td>7.9</td>
</tr>
<tr>
<td>4</td>
<td>6.3</td>
<td>6.5</td>
</tr>
<tr>
<td>5</td>
<td>6.4</td>
<td>6.6</td>
</tr>
</tbody>
</table>

⇒ similar performance for both measures,

at least 1st order dependence nearly always detected.
Empirical rejection rates for DMA(1) model:

<table>
<thead>
<tr>
<th>k \ T</th>
<th>$\hat{\kappa}(k)$</th>
<th>$\hat{\kappa}^*(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 200 500 1000</td>
<td>100 200 500 1000</td>
</tr>
<tr>
<td>1</td>
<td>86.7 99.3 100.0 100.0</td>
<td>87.4 99.3 100.0 100.0</td>
</tr>
<tr>
<td>2</td>
<td>5.4 5.7 5.6 5.7</td>
<td>5.3 5.5 5.6 5.6</td>
</tr>
<tr>
<td>3</td>
<td>5.9 5.8 5.9 5.6</td>
<td>5.7 5.5 5.9 5.5</td>
</tr>
<tr>
<td>4</td>
<td>5.9 5.8 5.7 5.4</td>
<td>5.5 5.7 6.0 5.6</td>
</tr>
<tr>
<td>5</td>
<td>6.3 6.1 5.6 5.7</td>
<td>5.9 6.0 5.7 5.8</td>
</tr>
</tbody>
</table>

⇒ similar performance for both measures.
For $T \geq 200$, 1^{st} order dependence nearly always detected.
For $k \geq 2$, slightly larger than 5%.

Christian H. Weiß — Darmstadt University of Technology
Empirical rejection rates for NegMarkov model:

<table>
<thead>
<tr>
<th>k</th>
<th>$\hat{\kappa}(k)$ \ T</th>
<th>$\hat{\kappa}^*(k)$ \ T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0 100.0 100.0 100.0</td>
<td>100.0 100.0 100.0 100.0</td>
</tr>
<tr>
<td>2</td>
<td>32.3 52.6 86.1 98.8</td>
<td>26.0 43.7 78.2 96.7</td>
</tr>
<tr>
<td>3</td>
<td>9.7 11.9 19.6 32.1</td>
<td>8.2 9.9 15.3 24.7</td>
</tr>
<tr>
<td>4</td>
<td>8.3 8.7 8.7 11.7</td>
<td>7.0 7.7 8.0 10.3</td>
</tr>
<tr>
<td>5</td>
<td>7.7 7.5 7.4 8.5</td>
<td>7.0 6.7 7.0 7.7</td>
</tr>
</tbody>
</table>

$\Rightarrow \hat{\kappa}^*(k)$ worse than $\hat{\kappa}(k)$,

at least 1st order dependence nearly always detected.
Conclusions

- Empirical measures of signed serial dependence, effective for identifying significant dependence.

- Finite-sample study shows that overall, $\hat{\kappa}(k)$ is best choice.
 For $T \geq 500$, both measures perform equivalently.

- **Work in progress:**
 $\hat{\kappa}(k)$, $\hat{\kappa}^*(k)$ and also empirical measures of unsigned dependence for NDARMA processes.
 Empirical dispersion measures for NDARMA processes.

Christian H. Weiβ — Darmstadt University of Technology
Thank You
for Your Interest!

Christian H. Weiß
Department of Mathematics
Darmstadt University of Technology
weiss@mathematik.tu-darmstadt.de