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Literature

This talk is based on the paper

Weiß (2010): Process Capability Analysis for Serially De-

pendent Processes of Poisson Counts. Submitted.

All references mentioned in this talk correspond to the re-

ferences in this article.
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PC Analysis for Poisson Counts

Process is in control (stable)

if stationary, following particular process model.

Even if production process in control:

Is quality of produced items sufficient for practice?

⇒ Evaluate to what extent the given (external!) target va-

lues and specification limits are met

⇒ process capability analysis (PC analysis).

Process capability indices (PC indices):

Evaluate actual process capability in a single number.
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PC Analysis for Poisson Counts

Huge amount of work concerning

continuous variates (variables data processes),

but only few articles consider

PC analysis of discrete variates (attributes data),

like count data processes.

Examples of count data processes:

• Manufacturing industry:

number of defects or nonconformities.

• Service industry:

number of complaints of customers per time unit.
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PC Analysis for Poisson Counts

Essentially, only one approach in literature for

PC analysis of attributes data:

Target value: Acceptable level of probability

for producing non-conforming/defective item.

In the following, w.l.o.g.: 0.0027.

We measure the true level of probability

for producing non-conforming/defective item.

PC analysis compares acceptable level with true level.
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PC Analysis for Poisson Counts

Particular case of Poisson counts:
– upper specification limit USL (e. g., max. number of non-

conformities per produced item, otherwise: item defective),

– acceptable probability level for defective item: 0.0027.

Two proposals in literature:
Perakis & Xekalaki (2005):

CPX :=
0.0027

P (X > USL)
∈ [0.0027;∞).

Borges & Ho (2001):

CBH :=
1

3
·Φ−1

(
1−

1

2
· P (X > USL)

)
∈ [0;∞).
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PC Analysis for Poisson Counts

Perakis & Xekalaki (2005): CPX :=
0.0027

P (X > USL)
.

Borges & Ho (2001): CBH :=
1

3
·Φ−1

(
1−

1

2
·P (X > USL)

)
.

We have:

P (X > USL) = 0.0027 ⇒ CPX = CBH = 1.

P (X > USL) < 0.0027 (desirable!) ⇒ CPX, CBH > 1.

CBH scaled like usual Cp index,

CPX easy to interpret as a fraction of two probabilities.
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PC Analysis for Poisson Counts

In practice: indices CPX, CBH not known, but

have to be estimated based on available time series data.

Perakis & Xekalaki (2005):

(Xt)N i.i.d. with Poisson marginal distribution Po(µ).

Recommendation:
1. Estimate µ by sample mean µ̂ := X̄, then

2. estimate P (X > USL) by

Poisson probability P (X > USL | µ = µ̂).

Estimates ĈPX, ĈBH obtained by inserting this probability

into formulae for CPX, CBH.
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PC Analysis for Poisson Counts

Questions:

How do estimators ĈPX, ĈBH perform?

→ Perakis & Xekalaki (2005): ĈPX for i.i.d. counts.

But: i.i.d.-assumption often violated in practice!

⇒ Performance in presence of serial dependence?

How to define and estimate such indices at all

for serially dependent Poisson counts?
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Poisson INAR(1) Processes

Definition of Poisson INAR(1) process:

Let λ > 0 and α ∈ (0; 1).

Innovations process (usually unobservable):

(ϵt)N i.i.d. with marginal distribution Po(λ).

Observations process (Xt)N0
: X0 ∼ Po( λ

1−α),

Xt = α ◦Xt−1 + ϵt, t ≥ 1,

plus sufficient independence conditions.

McKenzie (1985), Al-Osh & Alzaid (1987, 1988)
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Poisson INAR(1) Processes

Basic properties of Poisson INAR(1) processes:

• Stationary Markov chain with transition probabilities

pk|l := P (Xt = k | Xt−1 = l) =∑min (k,l)
j=0

(l
j

)
αj(1− α)l−j · e−λ λk−j

(k−j)!,

• Poisson marginal distribution Po(µ) with mean µ = λ
1−α,

• autocorrelation ρ(k) := Corr[Xt, Xt−k] = αk.
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Poisson INAR(1) Processes

Binomial thinning, due to Steutel & van Harn (1979):

X discrete random variable with range {0, . . . , n} or N0.

Binomial thinning

α ◦X :=
X∑

i=1
Yi,

where Yi are independent Bernoulli trials ∼ B(1, α).

Guarantees that right-hand side always integer-valued:

Xt = α ◦Xt−1 + ϵt.

Interpretation: α ◦X is number of survivors.
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Poisson INAR(1) Processes

Interpretation of INAR(1) process:

Xt︸︷︷︸
Population at time t

= α ◦Xt−1︸ ︷︷ ︸
Survivors of time t− 1

+ ϵt.︸︷︷︸
Immigration

Interpretation applies well to many real-world problems, e. g.:

• Xt: number of faults, ϵt: number of new faults, α ◦Xt−1:

number of previous faults not rectified yet.

• Xt: number of unanswered complaints of customers,

ϵt new complaints, α ◦Xt−1 past complaints.
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Poisson INAR(1) Processes

Observations (Xt)N0
: marg. dist. Po(µ) with µ = λ

1−α,

Innovations (ϵt)N: marg. dist. Po(λ).

We observe X1, . . . , XT from a Poisson INAR(1) process.

If observations Xt themselves are quantity of interest:

Estimate observations’ mean µ,

then process capability in terms of CPX,X, CBH,X.

If innovations ϵt are quantity of interest:

Estimate innovations’ mean λ, (from X1, . . . , XT !)

then process capability in terms of CPX,ϵ, CBH,ϵ.
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Poisson INAR(1) Processes

Example,

where innovations ϵt may be quantity of interest:

We observe the total number of faults in system: Xt.

ϵt: number of new faults,

α ◦Xt−1: number of previous faults not rectified yet.

Then, perhaps,

not total number of unremedied faults most important,

but number of new faults may better describe capability of

production process.
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Poisson INAR(1) Processes

Observations (Xt)N0
: marg. dist. Po(µ) with µ = λ

1−α,

Innovations (ϵt)N: marg. dist. Po(λ).

We observe X1, . . . , XT from a Poisson INAR(1) process.

We consider two questions in the following:

How to estimate observations’ PC in terms of CPX,X, CBH,X,

and how do estimators perform?

How to estimate innovations’ PC in terms of CPX,ϵ, CBH,ϵ,

and how do estimators perform?
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PC Analysis for Observations

Observations (Xt)N0
: marg. dist. Po(µ) with µ = λ

1−α.

PC Indices:

CPX,X :=
0.0027

P (X > USL)
,

CBH,X :=
1

3
·Φ−1

(
1−

1

2
· P (X > USL)

)
.

Tasks:

1. Estimate observations’ mean µ: µ̂.

2. Estimate P (X > USL) by

Poisson probability P (X > USL | µ = µ̂).
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PC Analysis for Observations

Task 1: estimation of observations’ mean µ.

Moment estimator: µ̂MM = X̄T = 1
T · ∑T

t=1Xt.

Same estimator as in i.i.d. case,

but different asymptotic distribution:

(Freeland & McCabe, 2005)

√
T (µ̂MM − µ) ∼

a
N

(
0, µ · 1+α

1−α

)
.

Interval estimation for µ:

one-sided confidence intervals (0;u) particularly important,

since in practice, worst-case scenarios most relevant.
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PC Analysis for Observations

Task 1: (continued)

Point estimator: µ̂MM = X̄T = 1
T · ∑T

t=1Xt.

Approximate confidence interval for µ on level γ:

(0; ûµ,γ) with

ûµ,γ := µ̂MM +
z2γ
2T · 1+α̂MM

1−α̂MM

+ zγ√
T
·
√
µ̂MM · 1+α̂MM

1−α̂MM
+

z2γ
4T ·

(
1+α̂MM
1−α̂MM

)2
,

where zγ = Φ−1(γ) is γ-quantile of N(0,1)-distribution.
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PC Analysis for Observations

Task 1: (continued)

Finite-sample performance of µ̂MM and (0; ûµ,γ):

• Asymptotic variance µ
T · 1+α

1−α for µ̂MM

very good approximation already for T ≥ 25;

• asymptotic distribution N
(
µ, µ

T · 1+α
1−α

)
for µ̂MM

very good approximation for T ≥ 100;

• true coverage probability of (0; ûµ,γ) close to nominal

level γ for T ≥ 100.
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PC Analysis for Observations

Task 2: estimation of observations’ capability.

Given: estimators µ̂MM and (0; ûµ,γ).

Point estimates of CPX,X and CBH,X:

ĈPX,X := 0.0027
/
P (X > USL | µ = µ̂),

ĈBH,X := 1
3 ·Φ−1

(
1− 1

2 · P (X > USL | µ = µ̂)
)
.

Interval estimates of CPX,X and CBH,X:

ÎCPX,X
:=

(
0.0027

/
P (X > USL | µ = ûµ,γ); ∞

)
,

ÎCBH,X
:=

(
1
3 ·Φ−1

(
1− 1

2 · P (X > USL | µ = ûµ,γ)
)
; ∞

)
.
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PC Analysis for Observations

Task 2: (continued)

Finite-sample performance: Good coverage for T ≥ 100,

but (USL = 11)

CPX,X mean of ĈPX,X CBH,X mean of ĈBH,X
µ α \ T 25 100 400 25 100 400
3 0 37.82 81.92 44.93 39.44 1.324 1.328 1.325 1.324

0.25 143.79 50.57 40.47 1.330 1.326 1.324
0.5 628.01 64.28 42.91 1.334 1.327 1.325

4 0 2.950 4.731 3.285 3.027 1.105 1.108 1.106 1.105
0.25 6.540 3.519 3.074 1.110 1.106 1.105
0.5 14.935 4.088 3.170 1.114 1.107 1.105

4.57 0 1.000 1.435 1.087 1.021 1.000 1.003 1.001 1.000
0.25 1.832 1.146 1.031 1.005 1.001 1.000
0.5 3.268 1.279 1.057 1.007 1.001 1.000
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PC Analysis for Observations

Task 2: (continued)

Huge bias of ĈPX,X

also clear from large-sample approximation:

Applying Delta theorem with Taylor expansion up to order 2,

we obtain bias approximations (USL = 11, µ = 3)

618.7
T · 1+α

1−α for ĈPX,X, 0.096
T · 1+α

1−α for ĈBH,X.

⇒ CPX,X easy to interpret (quotient between nominal and

actual defect probability), but

scaled in uncommon way and difficult to estimate

⇒ CBH,X better choice for PC analysis of attributes data.
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PC Analysis for Innovations

Innovations (ϵt)N: marg. dist. Po(λ).

PC Indices:

CPX,ϵ :=
0.0027

P (ϵ > USL)
,

CBH,ϵ :=
1

3
·Φ−1

(
1−

1

2
· P (ϵ > USL)

)
.

Tasks:

1. Estimate innovations’ mean λ: λ̂.

2. Estimate P (ϵ > USL) by

Poisson probability P (ϵ > USL | λ = λ̂).
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PC Analysis for Innovations

Task 1: estimation of innovations’ mean λ.

Moment estimator: λ̂MM = X̄T · (1− α̂MM)

where α̂MM := ρ̂(1), with asymptotic distribution

(Freeland & McCabe, 2005)

√
T (λ̂MM − λ) ∼

a
N

(
0, λ(1 + λ1+α

1−α)
)
.

Disadvantages:

generally biased (also see simulation study below!),

no exact properties known.
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PC Analysis for Innovations

Task 1: (continued)

New jumps estimator: λ̂J := 1
2(T−1)·

∑T
t=2 (Xt−Xt−1)

2

with asymptotic distribution

√
T − 1(λ̂J − λ) ∼

a
N

(
0, λ(1 + λ3+α

1+α)
)
.

Advantages:

exactly unbiased, expression for exact variance available.

More details and proofs in Weiß (2010).
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PC Analysis for Innovations

Task 1: (continued)

Point estimator: λ̂MM = X̄T · (1− α̂MM).

Approximate confidence interval for λ on level γ:

(0; ûλ,γ) with

ûλ,γ := λ̂MM + zγ√
T
·
√
λ̂MM(1 + λ̂MM

1+α̂MM
1−α̂MM

),

where zγ = Φ−1(γ) is γ-quantile of N(0,1)-distribution.
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PC Analysis for Innovations

Task 1: (continued)

Point estimator: λ̂J := 1
2(T−1) ·

∑T
t=2 (Xt −Xt−1)

2.

Approximate confidence interval for λ on level γ:

(0; ûλ,γ) with

ûλ,γ := (1− z2γ
T−1 · 3+α̂MM

1+α̂MM
)−1 ·

(
λ̂J +

z2γ
2(T−1)

+ zγ√
T−1

·
√
λ̂J(1 + λ̂J

3+α̂MM
1+α̂MM

) +
z2γ

4(T−1)

)
,

where zγ = Φ−1(γ) is γ-quantile of N(0,1)-distribution.
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PC Analysis for Innovations

Task 1: (continued)

Finite-sample performance of λ̂MM, λ̂J and resulting (0; ûλ,γ):

• λ̂MM shows a large bias, variance and skewness for small T

and especially for large α;

• also asymptotic variance of λ̂MM is much smaller than

empirically observed variance in these cases;

• for small α, λ̂MM has less variance and skewness than λ̂J,

also clear from asymptotic variances:
3+α
1+α < 1+α

1−α iff α >
√
2− 1 ≈ 0.4142;
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PC Analysis for Innovations

Task 1: (continued)

Finite-sample performance of λ̂MM, λ̂J and resulting (0; ûλ,γ):

• for T ≤ 50, all intervals (0; ûλ,γ) very conservative;

• λ̂MM-interval conservative even for T = 200 if α large;

• λ̂J-interval only moderately conservative for T ≥ 100,

independent of α.

Summary:

λ̂J (and corresponding interval) in general preferable,

λ̂MM only good for small α.
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PC Analysis for Innovations

Task 2: estimation of innovations’ capability.

Given: estimators λ̂MM, λ̂J and resulting (0; ûλ,γ).

Point estimates of CPX,ϵ and CBH,ϵ:

ĈPX,ϵ := 0.0027
/
P (ϵ > USL | λ = λ̂),

ĈBH,ϵ := 1
3 ·Φ−1

(
1− 1

2 · P (ϵ > USL | λ = λ̂)
)
.

Interval estimates of CPX,ϵ and CBH,ϵ:

ÎCPX,ϵ
:=

(
0.0027

/
P (ϵ > USL | λ = ûλ,γ); ∞

)
,

ÎCBH,ϵ
:=

(
1
3 ·Φ−1

(
1− 1

2 · P (ϵ > USL | λ = ûλ,γ)
)
; ∞

)
.
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PC Analysis for Innovations

Task 2: (continued)

Finite-sample performance:

• coverage of ÎCPX,ϵ
, ÎCBH,ϵ

determined by that of (0; ûλ,γ),

see above;

• again very large bias for ĈPX,ϵ,

especially if based on λ̂J (!) for small T ;

• ĈBH,ϵ shows a small bias for T ≥ 50 if based on λ̂J

(or if based on λ̂MM for α ≤ 0.25).
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Conclusions

• PC indices CPX, CBH for processes with Poisson marg.;

• Poisson INAR(1) model: capability expressed for obser-

vation or innovation process;

• interval estimation possible for both situations and for

both indices in satisfactory way (based on new estimator

λ̂J if innovation process), but:

• point estimation of CPX problematic due to huge bias

(with dangerous tendency to overestimation!)

⇒ CBH seems to be preferable for practice!
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