Controlling Jumps in Poisson INAR(1) Processes.

Christian H. Weiß
University of Würzburg
Institute of Mathematics
Department of Statistics
For references in this talk, see

Poisson INAR(1) Processes

Definition & Properties
Definition of INAR(1) process:

Let \((\epsilon_t)^\mathbb{N}\) be i.i.d. process with marginal distribution \(Po(\mu)\), let \(\alpha \in (0; 1)\). Let \(N_0 \sim Po(\frac{\mu}{1-\alpha})\). If the process \((N_t)^{N_0}_{N_0}\) satisfies

\[N_t = \alpha \circ N_{t-1} + \epsilon_t, \quad t \geq 1, \]

plus sufficient independence conditions, then it follows a stationary \(Poisson\ INAR(1)\ model\) with marginal distribution \(Po(\frac{\mu}{1-\alpha})\).

Binomial thinning, due to Steutel & van Harn (1979):

N discrete random variable with range $\{0, \ldots, n\}$ or \mathbb{N}_0.

Binomial thinning

$$\alpha \circ N := \sum_{i=1}^{N} X_i,$$

where X_i are independent Bernoulli trials $\sim B(1, \alpha)$.

Guarantees that right-hand side always integer-valued:

$$N_t = \alpha \circ N_{t-1} + \epsilon_t.$$
Interpretation of INAR(1) process:

\[
\begin{align*}
N_t & = \alpha \circ N_{t-1} + \epsilon_t \\
\text{Population at time } t & \quad \text{Survivors of time } t - 1 \quad \text{Immigration}
\end{align*}
\]

Interpretation applies well to many real-world problems:

- \(N_t \): number of users accessing web server, \(\epsilon_t \): number of new users, \(\alpha \circ N_{t-1} \): number of previous users still active.

- \ldots and many more, see Weiß (2007).
The INAR(1) model . . .

- is of simple structure,
- essential properties known explicitly,
- is easy to fit to data,
- is easy to interpret,
- applies well to real-world problems, . . .

In a nutshell: A simple model for autocorrelated counts, which is well-suited for SPC!

Christian H. Weiß — University of Würzburg
Poisson INAR(1) Processes

Dependence and Jumps
Basic properties concerning the serial dependence structure of Poisson INAR(1) processes:

• autocorrelation $\rho(k) := \text{Corr}[N_t, N_{t-k}] = \alpha^k$,

$$p_{k|l} := P(N_t = k \mid N_{t-1} = l) = \sum_{j=0}^{\min(k,l)} \binom{l}{j} \alpha^j (1 - \alpha)^{l-j} \cdot P(\epsilon_t = k - j).$$
Explicit expression for

bivariate probability generating function (pgf):

\[
P_{N_t,N_{t-k}}(z_1, z_2) = \exp \left(\frac{\mu}{1-\alpha} (z_1 - 1) \right) \cdot \exp \left(\frac{\mu}{1-\alpha} (z_2 - 1) \right) \cdot \exp \left(\frac{\mu}{1-\alpha} (z_1 - 1)(z_2 - 1) \cdot \alpha^k \right),
\]

which is essentially a function of \(\rho(k) \).

\(\Rightarrow \) Particular type of bivariate Poisson distribution.

Christian H. Weiß — University of Würzburg
Taking partial derivatives, one obtains from $p_{N_t, N_{t-k}}(z_1, z_2)$ that

$$E[N_t \mid N_{t-k} = x] = \frac{\mu}{1-\alpha} \cdot (1 - \alpha^k) + \alpha^k \cdot x,$$

$$V[N_t \mid N_{t-k} = x] = (1 - \alpha^k) \cdot \left(\frac{\mu}{1-\alpha} + \alpha^k \cdot x\right),$$

also see Freeland (1998).
From $p_{N_t,N_{t-k}}(z_1,z_2)$, one can derive the explicit expression

$$P(N_t = N_{t-k} \pm j) = \exp\left(-2 \frac{\mu}{1-\alpha} (1 - \alpha^k)\right) \cdot I_j(2 \frac{\mu}{1-\alpha} (1 - \alpha^k)), \quad j \in \mathbb{N}_0,$$

where

$$I_j(z) := \sum_{k=0}^{\infty} \frac{(z/2)^k \cdot (z/2)^{k+j}}{k! \cdot (k+j)!}$$

denotes the modified Bessel function of the first kind.
Distribution of jumps $J_t := N_t - N_{t-1}$:

$$P(J_t = \pm j) = \exp(-2\mu) \cdot I_j(2\mu), \quad j \in \mathbb{N}_0.$$
Important properties of the distribution of jumps:

Mean and skewness of J_t are equal to 0,

its variance equals 2μ, and

the excess of J_t is given by $\frac{1}{2\mu}$.
Final remark:

Similar results are also derived for higher-order jumps $J_t^{(k)} := N_t - N_{t-k}$.

Also INMA(q) models show a similar dependence structure and a similar distribution of jumps.

For further details, see Weiß (2008a).
Controlling Poisson INAR(1) Processes

Control Concepts
Poisson INAR(1) model:

\((N_t)_{N_0}^{N} \) is stationary Poisson INAR(1) process with innovations \((\epsilon_t)_N \sim Po(\mu)\). So \(N_t \sim Po\left(\frac{\mu}{1-\alpha}\right)\).

State of statistical control: \(\mu = \mu_0\) and \(\alpha = \alpha_0\).
Weiß (2007) proposed the following control charts:

- c-Chart for Poisson INAR(1),
- Residual control chart,
- Conditional control chart,
- Moving average control chart.

Simulation study for ARL performance.
Disadvantages of the charts proposed by Weiβ (2007):

- charts cannot be applied universally,
- often insensitive towards a change only in the serial dependence structure, i.e., where mean unaffected,
- exact ARLs are extremely difficult to obtain.

Therefore, . . .
The Combined Jumps Chart

Control Concept
The standard c-chart:

Observed counts N_t plotted on chart with control region

$$C_c(l, u) := \{l, \ldots, u\}, \quad l, u \in \mathbb{N}_0, \quad 0 \leq l < \mu_{N,0} < u.$$

Process considered as being in control unless $N_t \notin C_c(l, u)$.

Christian H. Weiß — University of Würzburg
The new jumps chart:

Observed jumps $J_t := N_t - N_{t-1}$ plotted on chart with control region

$$C_j(k) := \{-k, \ldots, k\}, \quad k \in \mathbb{N}.$$

Process considered as being in control unless $J_t \not\in C_j(k)$.

Possible choice of k: $k := \lfloor 3 \cdot \sqrt{2\mu_0} \rfloor$.

Christian H. Weiß — University of Würzburg
Proposition: (Weiß, 2008b)

Let \((N_t)_{N_0}\) be stationary Poisson INAR(1) process. Then \((N_t, J_t)_{N}\) is bivariate Markov chain, range \(\mathbb{N}_0 \times \mathbb{Z}\).

Transition probabilities

\[
p(n, j \mid m, i) := P(N_t = n, J_t = j \mid N_{t-1} = m, J_{t-1} = i) = \delta_{j,n-m} \cdot p_{n|m}.
\]

Marginal probabilities

\[
p(n, j) := P(N_t = n, J_t = j) = p_{n,n-j}.
\]
Idea: Combine c- and jumps chart, i. e., monitor both N_t and J_t simultaneously.

Advantages:

- c-part sensitive to changes in the mean, jumps-part sensitive to changes in the dependence structure (decreased dependence \Rightarrow larger jumps).

- $(N_t, J_t)_N$ Markov chain \Rightarrow exact ARL computation with approach of Brook & Evans (1972).
Combined Jumps Chart:

Let $l, u, k \in \mathbb{N}_0$ with $l < u$ and $k \leq u - l$.

Observed pairs (N_t, J_t) plotted simultaneously on c-chart with control region $C_c(l, u)$ and jumps chart with control region $C_j(k)$.

Process considered as being in control unless $N_t \notin C_c(l, u)$ or $J_t \notin C_j(k)$.
Combined Jumps Chart: \textit{ARL} computation.

Exact \textit{ARL} computation through solving appropriate system of linear equations

\[(I - Q) \cdot \mu = 1.\]

Dimension of matrix determined by number of reachable in-control states.

For details and proofs, see Weiß (2008b).
Real-data example:

CJ chart, design

\((l, u, k) = (2, 19, 10)\),

applied to

claims count data

(Freeland, 1998).

In-control model:

\(\mu_0 = 5.2\)

and \(\alpha_0 = 0.40\).
ARL performance

of above CJ chart

with design

\((l, u, k) = (2, 19, 10)\):

\[\text{ARL}(\mu) \text{ for Design } (2, 19, 10)\]

\[\text{ARL}(\alpha) \text{ for Design } (2, 19, 10)\]

Christian H. Weiß — University of Würzburg
The Combined Jumps Chart

ARL Performance
We study three types of out-of-control situations:

• $\alpha = \alpha_0$ is fixed, but μ varies,

• $\mu = \mu_0$ is fixed, but α varies,

\Rightarrow Marginal process mean $\frac{\mu}{1-\alpha}$ is affected.

• Marginal process mean $\mu_N = \frac{\mu}{1-\alpha} = \frac{\mu_0}{1-\alpha_0}$ is fixed, but α varies, and therefore also $\mu = \mu_N \cdot (1 - \alpha)$.

Christian H. Weiß — University of Würzburg
\[\Delta \mu := \mu - \mu_0. \]

\(\alpha = \alpha_0 \) fixed, but \(\mu \) varies.
\(\alpha = 0.3 \) fixed, but \(\mu \) varies compared to \(\mu_0 = 9.8 \).
\[\mu = \mu_0 \text{ fixed, but } \alpha \text{ varies: } \Delta \alpha := \alpha - \alpha_0. \]

Christian H. Weiß — University of Würzburg
\[\mu = 9.8 \text{ fixed, but } \alpha \text{ varies compared to } \alpha_0 = 0.3. \]
(a) \(\frac{\mu}{1-\alpha} = \frac{\mu_0}{1-\alpha_0} \) fixed, but \(\alpha \) varies: \(\Delta \alpha := \alpha - \alpha_0 \).

(b) \(\frac{\mu}{1-\alpha} = 14 \) fixed, but \(\alpha \) varies compared to \(\alpha_0 = 0.3 \).

Christian H. Weiß — University of Würzburg
Conclusions

• **INAR(1) model:**
 Simple, easily interpretable model, well-suited for real-world problems from SPC.
 New results concerning serial dependence structure and distribution of jumps.

• **Combined Jumps chart:**
 Exact *ARL* computation with Markov chain approach, sensitive to various types of out-of-control situations, only three design parameters.
 But design has to be selected carefully!

Christian H. Weiß — University of Würzburg
Thank You for Your Interest!

Christian H. Weiß
University of Würzburg
Institute of Mathematics
Department of Statistics