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Poisson INAR(1) Processes

Definition of INAR(1) process:

Let (εt)N be i.i.d. process with marginal distribution Po(µ),

let α ∈ (0; 1). Let N0 ∼ Po( µ
1−α). If the process (Nt)N0

satisfies

Nt = α ◦Nt−1 + εt, t ≥ 1,

plus sufficient independence conditions, then it follows a

stationary Poisson INAR(1) model with marginal distributi-

on Po( µ
1−α).

McKenzie (1985), Al-Osh & Alzaid (1987, 1988)
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Poisson INAR(1) Processes

Binomial thinning, due to Steutel & van Harn (1979):

N discrete random variable with range {0, . . . , n} or N0.

Binomial thinning

α ◦N :=
N∑

i=1
Xi,

where Xi are independent Bernoulli trials ∼ B(1, α).

Guarantees that right-hand side always integer-valued:

Nt = α ◦Nt−1 + εt.
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Poisson INAR(1) Processes

Interpretation of INAR(1) process:

Nt︸︷︷︸
Population at time t

= α ◦Nt−1︸ ︷︷ ︸
Survivors of time t− 1

+ εt.︸︷︷︸
Immigration

Interpretation applies well to many real-world problems:

• Nt: number of users accessing web server, εt: number of

new users, α◦Nt−1: number of previous users still active.

• . . . and many more, see Weiß (2007).
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Poisson INAR(1) Processes

The INAR(1) model . . .

• is of simple structure,

• essential properties known explicitly,

• is easy to fit to data,

• is easy to interpret,

• applies well to real-world problems, . . .

In a nutshell: A simple model for autocorrelated counts,

which is well-suited for SPC!
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Poisson INAR(1): Dependence & Jumps

Basic properties concerning the serial dependence structure

of Poisson INAR(1) processes:

• autocorrelation ρ(k) := Corr[Nt, Nt−k] = αk,

• pk|l := P (Nt = k | Nt−1 = l)

=
∑min (k,l)

j=0

(l
j

)
αj(1− α)l−j · P (εt = k − j).
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Poisson INAR(1): Dependence & Jumps

Explicit expression for

bivariate probability generating function (pgf):

pNt,Nt−k
(z1, z2) = exp

( µ
1−α (z1 − 1)

)
· exp

( µ
1−α (z2 − 1)

)

· exp
( µ
1−α (z1 − 1)(z2 − 1) · αk

)
,

which is essentially a function of ρ(k).

⇒ Particular type of bivariate Poisson distribution.
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Poisson INAR(1): Dependence & Jumps

Taking partial derivatives, one obtains from pNt,Nt−k
(z1, z2)

that

E[Nt | Nt−k = x] = µ
1−α · (1− αk) + αk · x,

V [Nt | Nt−k = x] = (1− αk) · ( µ
1−α + αk · x),

also see Freeland (1998).
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Poisson INAR(1): Dependence & Jumps

From pNt,Nt−k
(z1, z2), one can derive the explicit expression

P (Nt = Nt−k ± j) =

exp (−2 µ
1−α (1− αk)) · Ij(2

µ
1−α (1− αk)), j ∈ N0,

where

Ij(z) :=
∞∑

k=0

(z
2)

k · (z
2)

k+j

k! · (k + j)!

denotes the modified Bessel function of the first kind.
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Poisson INAR(1): Dependence & Jumps

Distribution of jumps Jt := Nt −Nt−1:

P (Jt = ±j) = exp (−2µ) · Ij (2µ) , j ∈ N0.
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Poisson INAR(1): Dependence & Jumps

(. . . )

⇒ Important properties of the distribution of jumps:

Mean and skewness of Jt are equal to 0,

its variance equals 2µ, and

the excess of Jt is given by 1
2µ.
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Poisson INAR(1): Dependence & Jumps

Final remark:

Similar results are also derived for

higher-order jumps Jt
(k) := Nt −Nt−k.

Also INMA(q) models show a similar dependence structure

and a similar distribution of jumps.

For further details, see Weiß (2008a).
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Poisson INAR(1) Processes

Poisson INAR(1) model:

(Nt)N0
is stationary Poisson INAR(1) process with innova-

tions (εt)N ∼ Po(µ). So Nt ∼ Po( µ
1−α).

State of statistical control: µ = µ0 and α = α0.
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Controlling INAR(1) Processes – Concepts

Weiß (2007) proposed the following control charts:

• c-Chart for Poisson INAR(1),

• Residual control chart,

• Conditional control chart,

• Moving average control chart.

Simulation study for ARL performance.
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Controlling INAR(1) Processes – Concepts

Disadvantages of the charts proposed by Weiß (2007):

• charts cannot be applied universally,

• often insensitive towards a change only in the serial de-

pendence structure, i. e., where mean unaffected,

• exact ARLs are extremely difficult to obtain.

Therefore, . . .
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Combined Jumps Chart – Concept

The standard c-chart:

Observed counts Nt plotted on chart with control region

Cc(l, u) := {l, . . . , u}, l, u ∈ N0, 0 ≤ l < µN,0 < u.

Process considered as being in control unless Nt 6∈ Cc(l, u).
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Combined Jumps Chart – Concept

The new jumps chart:

Observed jumps Jt := Nt−Nt−1 plotted on chart with con-

trol region

Cj(k) := {−k, . . . , k}, k ∈ N.

Process considered as being in control unless Jt 6∈ Cj(k).

Possible choice of k: k :=
⌊
3 · √2µ0

⌋
.
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Combined Jumps Chart – Concept

Proposition: (Weiß, 2008b)

Let (Nt)N0
be stationary Poisson INAR(1) process.

Then (Nt, Jt)N is bivariate Markov chain, range N0 × Z.
Transition probabilities

p(n, j | m, i) := P (Nt = n, Jt = j | Nt−1 = m, Jt−1 = i)

= δj,n−m · pn|m.

Marginal probabilities

p(n, j) := P (Nt = n, Jt = j) = pn,n−j.
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Combined Jumps Chart – Concept

Idea: Combine c- and jumps chart, i. e., monitor both Nt

and Jt simultaneously.

Advantages:

• c-part sensitive to changes in the mean, jumps-part sen-

sitive to changes in the dependence structure (decreased

dependence ⇒ larger jumps).

• (Nt, Jt)N Markov chain ⇒ exact ARL computation with

approach of Brook & Evans (1972).
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Combined Jumps Chart – Concept

Combined Jumps Chart:

Let l, u, k ∈ N0 with l < u and k ≤ u− l.

Observed pairs (Nt, Jt) plotted simultaneously on c-chart

with control region Cc(l, u) and jumps chart with control

region Cj(k).

Process considered as being in control

unless Nt 6∈ Cc(l, u) or Jt 6∈ Cj(k).
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Combined Jumps Chart – Concept

Combined Jumps Chart: ARL computation.

Exact ARL computation through solving appropriate system

of linear equations

(I−Q) · µ = 1.

Dimension of matrix determined by number of reachable

in-control states.

For details and proofs, see Weiß (2008b).
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Combined Jumps Chart – Concept

Real-data example:

CJ chart, design

(l, u, k) = (2,19,10),

applied to

claims count data

(Freeland, 1998).

In-control model:

µ0 = 5.2

and α0 = 0.40.
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Combined Jumps Chart – Concept

ARL performance

of above

CJ chart

with design

(l, u, k) = (2,19,10):

ARL(µ) für Design (2,19,10)
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Combined Jumps Chart – ARL Performance

We study three types of out-of-control situations:

• α = α0 is fixed, but µ varies,

• µ = µ0 is fixed, but α varies,

⇒ Marginal process mean µ
1−α is affected.

• Marginal process mean µN = µ
1−α = µ0

1−α0
is fixed, but α

varies, and therefore also µ = µN · (1− α).
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Combined Jumps Chart – ARL Performance
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Combined Jumps Chart – ARL Performance
α = 0.3 fixed.
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Combined Jumps Chart – ARL Performance
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µ = µ0 fixed, but α varies: ∆α := α− α0.
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Combined Jumps Chart – ARL Performance
µ = 9.8 fixed.
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Combined Jumps Chart – ARL Performance

(a)

µ/(1−α)=µ0/(1−α0) fixed, α0=0.4.
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(b)

µ/(1−α) = 14 fixed.
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1−α = µ0
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fixed, but α varies: ∆α := α− α0.

(b) µ
1−α = 14 fixed, but α varies compared to α0 = 0.3.
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Conclusions

• INAR(1) model:
Simple, easily interpretable model, well-suited for real-

world problems from SPC.

New results concerning serial dependence structure and

distribution of jumps.

• Combined Jumps chart:
Exact ARL computation with Markov chain approach,

sensitive to various types of out-of-control situations,

only three design parameters.

But design has to be selected carefully!
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