Controlling Jumps in Poisson INAR(1) Processes.

Christian H. Weiß
University of Würzburg
Institute of Mathematics
Department of Statistics

For references in this talk, see

Weiß, C.H. (2008b). Controlling jumps in correlated processes of Poisson counts. Manuscript submitted to Applied Stochastic Models in Business and Industry.

Weiß, C.H. (2008a). Serial Dependence and Regression of Poisson INARMA Models. Journal of Statistical Planning and Inference 138(10), 2975-2990.

Weiß, C.H. (2007). Controlling correlated processes of Poisson counts. QREI 23(6), 741-754.

Christian H. Weiß - University of Würzburg

Poisson INAR(1) Processes

Definition \& Properties

Definition of INAR(1) process:

Let $\left(\epsilon_{t}\right)_{\mathbb{N}}$ be i.i.d. process with marginal distribution $\operatorname{Po}(\mu)$, let $\alpha \in(0 ; 1)$. Let $N_{0} \sim \operatorname{Po}\left(\frac{\mu}{1-\alpha}\right)$. If the process $\left(N_{t}\right)_{\mathbb{N}_{0}}$ satisfies

$$
N_{t}=\alpha \circ N_{t-1}+\epsilon_{t}, \quad t \geq 1
$$

plus sufficient independence conditions, then it follows a stationary Poisson INAR(1) model with marginal distribution $\operatorname{Po}\left(\frac{\mu}{1-\alpha}\right)$.

McKenzie (1985), Al-Osh \& Alzaid $(1987,1988)$

Christian H. Weiß - University of Würzburg

Poisson INAR(1) Processes

Binomial thinning, due to Steutel \& van Harn (1979):
N discrete random variable with range $\{0, \ldots, n\}$ or \mathbb{N}_{0}. Binomial thinning

$$
\alpha \circ N:=\sum_{i=1}^{N} X_{i},
$$

where X_{i} are independent Bernoulli trials $\sim B(1, \alpha)$.
Guarantees that right-hand side always integer-valued:

$$
N_{t}=\alpha \circ N_{t-1}+\epsilon_{t}
$$

Interpretation of $\operatorname{INAR(1)}$ process:

$$
\underbrace{N_{t}}_{\text {Population at time } t}=\underbrace{\alpha \circ N_{t-1}}_{\text {Survivors of time } t-1}+\underbrace{\epsilon_{t}}_{\text {Immigration }}
$$

Interpretation applies well to many real-world problems:

- N_{t} : number of users accessing web server, ϵ_{t} : number of new users, $\alpha \circ N_{t-1}$: number of previous users still active.
- ... and many more, see Weiß (2007).

Christian H. Weiß - University of Würzburg

Poisson INAR(1) Processes

The INAR(1) model . . .

- is of simple structure,
- essential properties known explicitly,
- is easy to fit to data,
- is easy to interpret,
- applies well to real-world problems, ...

In a nutshell: A simple model for autocorrelated counts, which is well-suited for SPC!

Christian H. Weiß - University of Würzburg

Poisson INAR(1) Processes

Dependence and Jumps

Poisson INAR(1): Dependence \& Jumps

Basic properties concerning the serial dependence structure of Poisson INAR(1) processes:

- autocorrelation $\rho(k):=\operatorname{Corr}\left[N_{t}, N_{t-k}\right]=\alpha^{k}$,
- $p_{k \mid l}:=P\left(N_{t}=k \mid N_{t-1}=l\right)$

$$
=\sum_{j=0}^{\min ^{2}(k, l)}\binom{l}{j} \alpha^{j}(1-\alpha)^{l-j} \cdot P\left(\epsilon_{t}=k-j\right) .
$$

Poisson INAR(1): Dependence \& Jumps

Explicit expression for
bivariate probability generating function (pgf):

$$
\begin{array}{r}
p_{N_{t}, N_{t-k}}\left(z_{1}, z_{2}\right)=\exp \left(\frac{\mu}{1-\alpha}\left(z_{1}-1\right)\right) \cdot \exp \left(\frac{\mu}{1-\alpha}\left(z_{2}-1\right)\right) \\
\cdot \exp \left(\frac{\mu}{1-\alpha}\left(z_{1}-1\right)\left(z_{2}-1\right) \cdot \alpha^{k}\right),
\end{array}
$$

which is essentially a function of $\rho(k)$.
\Rightarrow Particular type of bivariate Poisson distribution.

Poisson INAR(1): Dependence \& Jumps

Taking partial derivatives, one obtains from $p_{N_{t}, N_{t-k}}\left(z_{1}, z_{2}\right)$ that

$$
\begin{aligned}
& E\left[N_{t} \mid N_{t-k}=x\right]=\frac{\mu}{1-\alpha} \cdot\left(1-\alpha^{k}\right)+\alpha^{k} \cdot x \\
& V\left[N_{t} \mid N_{t-k}=x\right]=\left(1-\alpha^{k}\right) \cdot\left(\frac{\mu}{1-\alpha}+\alpha^{k} \cdot x\right)
\end{aligned}
$$

also see Freeland (1998).

From $p_{N_{t}, N_{t-k}}\left(z_{1}, z_{2}\right)$, one can derive the explicit expression

$$
\begin{aligned}
& P\left(N_{t}=N_{t-k} \pm j\right)= \\
& \quad \quad \exp \left(-2 \frac{\mu}{1-\alpha}\left(1-\alpha^{k}\right)\right) \cdot I_{j}\left(2 \frac{\mu}{1-\alpha}\left(1-\alpha^{k}\right)\right), \quad j \in \mathbb{N}_{0},
\end{aligned}
$$

where

$$
I_{j}(z):=\sum_{k=0}^{\infty} \frac{\left(\frac{z}{2}\right)^{k} \cdot\left(\frac{z}{2}\right)^{k+j}}{k!\cdot(k+j)!}
$$

denotes the modified Bessel function of the first kind.

Poisson $\operatorname{INAR(1):~Dependence~\& ~Jumps~}$

Distribution of jumps $J_{t}:=N_{t}-N_{t-1}$:

$$
P\left(J_{t}= \pm j\right)=\exp (-2 \mu) \cdot I_{j}(2 \mu), \quad j \in \mathbb{N}_{0}
$$

Christian H. Weiß - University of Würzburg

Poisson INAR(1): Dependence \& Jumps

(...)
\Rightarrow Important properties of the distribution of jumps:

Mean and skewness of J_{t} are equal to 0 ,
its variance equals 2μ, and
the excess of J_{t} is given by $\frac{1}{2 \mu}$.

Poisson INAR(1): Dependence \& Jumps

Final remark:

Similar results are also derived for
higher-order jumps $J_{t}(k):=N_{t}-N_{t-k}$.

Also INMA (q) models show a similar dependence structure and a similar distribution of jumps.

For further details, see Weiß (2008a).

Controlling Poisson INAR(1) Processes

Control Concepts

Poisson INAR(1) Processes

Poisson INAR(1) model:

$\left(N_{t}\right)_{\mathbb{N}_{0}}$ is stationary Poisson INAR(1) process with innovations $\left(\epsilon_{t}\right)_{\mathbb{N}} \sim \operatorname{Po}(\mu)$. So $N_{t} \sim \operatorname{Po}\left(\frac{\mu}{1-\alpha}\right)$.

State of statistical control: $\mu=\mu_{0}$ and $\alpha=\alpha_{0}$.

Weiß (2007) proposed the following control charts:

- c-Chart for Poisson $\operatorname{INAR}(1)$,
- Residual control chart,
- Conditional control chart,
- Moving average control chart.

Simulation study for $A R L$ performance.

Controlling INAR(1) Processes - Concepts

Disadvantages of the charts proposed by Weiß (2007):

- charts cannot be applied universally,
- often insensitive towards a change only in the serial dependence structure, i. e., where mean unaffected,
- exact $A R L$ s are extremely difficult to obtain.

Therefore, . . .

The Combined Jumps Chart

Control Concept

The standard c-chart:
Observed counts N_{t} plotted on chart with control region

$$
\mathcal{C}_{c}(l, u):=\{l, \ldots, u\}, \quad l, u \in \mathbb{N}_{0}, \quad 0 \leq l<\mu_{N, 0}<u
$$

Process considered as being in control unless $N_{t} \notin \mathcal{C}_{c}(l, u)$.

The new jumps chart:
Observed jumps $J_{t}:=N_{t}-N_{t-1}$ plotted on chart with control region

$$
\mathcal{C}_{j}(k):=\{-k, \ldots, k\}, \quad k \in \mathbb{N} .
$$

Process considered as being in control unless $J_{t} \notin \mathcal{C}_{j}(k)$.

Possible choice of $k: \quad k:=\left\lfloor 3 \cdot \sqrt{2 \mu_{0}}\right\rfloor$.

Combined Jumps Chart - Concept

Proposition: (Weiß, 2008b)

Let $\left(N_{t}\right)_{\mathbb{N}_{0}}$ be stationary Poisson $\operatorname{INAR}(1)$ process.
Then $\left(N_{t}, J_{t}\right)_{\mathbb{N}}$ is bivariate Markov chain, range $\mathbb{N}_{0} \times \mathbb{Z}$.
Transition probabilities

$$
\begin{aligned}
p(n, j \mid m, i) & :=P\left(N_{t}=n, J_{t}=j \mid N_{t-1}=m, J_{t-1}=i\right) \\
& =\delta_{j, n-m} \cdot p_{n \mid m}
\end{aligned}
$$

Marginal probabilities

$$
p(n, j):=P\left(N_{t}=n, J_{t}=j\right)=p_{n, n-j}
$$

Combined Jumps Chart - Concept

Idea: Combine c - and jumps chart, i. e., monitor both N_{t} and J_{t} simultaneously.

Advantages:

- c-part sensitive to changes in the mean, jumps-part sensitive to changes in the dependence structure (decreased dependence \Rightarrow larger jumps).
- $\left(N_{t}, J_{t}\right)_{\mathbb{N}}$ Markov chain \Rightarrow exact $A R L$ computation with approach of Brook \& Evans (1972).

Combined Jumps Chart - Concept

Combined Jumps Chart:

Let $l, u, k \in \mathbb{N}_{0}$ with $l<u$ and $k \leq u-l$.
Observed pairs (N_{t}, J_{t}) plotted simultaneously on c-chart with control region $\mathcal{C}_{c}(l, u)$ and jumps chart with control region $\mathcal{C}_{j}(k)$.

Process considered as being in control
unless $N_{t} \notin \mathcal{C}_{c}(l, u)$ or $J_{t} \notin \mathcal{C}_{j}(k)$.

Combined Jumps Chart - Concept

Combined Jumps Chart: $A R L$ computation.
Exact $A R L$ computation through solving appropriate system of linear equations

$$
(\mathbf{I}-\mathbf{Q}) \cdot \mu=1
$$

Dimension of matrix determined by number of reachable in-control states.

For details and proofs, see Weiß (2008b).

Real-data example:

CJ chart, design
$(l, u, k)=(2,19,10)$,
applied to
claims count data

(Freeland, 1998).
In-control model:
$\mu_{0}=5.2$
and $\alpha_{0}=0.40$.

ARL performance
of above
CJ chart
with design
$(l, u, k)=(2,19,10):$

The Combined Jumps Chart

$A R L$ Performance

We study three types of out-of-control situations:

- $\alpha=\alpha_{0}$ is fixed, but μ varies,
- $\mu=\mu_{0}$ is fixed, but α varies,
\Rightarrow Marginal process mean $\frac{\mu}{1-\alpha}$ is affected.
- Marginal process mean $\mu_{N}=\frac{\mu}{1-\alpha}=\frac{\mu_{0}}{1-\alpha_{0}}$ is fixed, but α varies, and therefore also $\mu=\mu_{N} \cdot(1-\alpha)$.

$\alpha=\alpha_{0}$ fixed, but μ varies: $\Delta \mu:=\mu-\mu_{0}$.

Christian H. Weiß - University of Würzburg

Combined Jumps Chart - ARL Performance

Christian H. Weiß - University of Würzburg

$\mu=\mu_{0}$ fixed, but α varies: $\Delta \alpha:=\alpha-\alpha_{0}$.

UNi
 Combined Jumps Chart - $A R L$ Performance

$\mu=9.8$ fixed, but α varies compared to $\alpha_{0}=0.3$.

Christian H. Weiß - University of Würzburg

(a)
(a) $\frac{\mu}{1-\alpha}=\frac{\mu_{0}}{1-\alpha_{0}}$ fixed, but α varies: $\Delta \alpha:=\alpha-\alpha_{0}$.
(b) $\frac{\mu}{1-\alpha}=14$ fixed, but α varies compared to $\alpha_{0}=0.3$.

Christian H. Weiß - University of Würzburg

Conclusions

- INAR(1) model:

Simple, easily interpretable model, well-suited for realworld problems from SPC.
New results concerning serial dependence structure and distribution of jumps.

- Combined Jumps chart:

Exact $A R L$ computation with Markov chain approach, sensitive to various types of out-of-control situations, only three design parameters.
But design has to be selected carefully!

Christian H. Weiß - University of Würzburg

Thank You

for Your Interest!

Christian H. Weiß
University of Würzburg
Institute of Mathematics
Department of Statistics

