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Particular type of attributes data processes (Xt)N:

range of Xt of categorical nature, i. e., :

Xt has discrete and non-metric range (state space)

consisting of finite number m+1 of categories with m ∈ N.

Sometimes range exhibits natural ordering, then ordinal range.

Otherwise, without inherent order, nominal range.

Here, we assume that

Xt takes one of finite number of unordered categories.

To simplify notations:

range coded as S = {0, . . . ,m}, just lexicographic order.
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Quality-related applications:

Xt describes result of inspection of item,

leads to classification Xt = i for an i = 1, . . . ,m iff

tth item was non-conforming of type ‘i’,

or Xt = 0 for conforming item.

Examples:

• Mukhopadhyay (2008): non-conforming ceiling fan cover ac-

cording to most predominant paint defect,

e. g., ‘poor covering’ or ‘bubbles’.

• Ye et al. (2002): monitoring of network traffic data with

different types of audit events.
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During last few years, increasing research interest

in monitoring of categorical processes,

e. g., Chen et al. (2011), Ryan et al. (2011), Weiß (2012).

Restriction with these works:

underlying process assumed serially independent

in its in-control state, i. e., X1, X2, . . . i. i. d.

Researchers and practitioners often ill at ease when being

concerned with time-dependent categorical data:

concepts for categ. serial dependence not well communicated,

simple (ARMA-like) models not known to broader audience.
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Outline:

• Brief survey of approaches for

modeling and analyzing categorical processes.

Then two strategies for monitoring categorical process:

• If process evolves too fast to be monitored continuously, take

segments from process at selected times,

plot sample statistic on control chart.

Here, carefully consider serial dependence within sample.

• If possible to continuously monitor the process, then serial

dependence taken into account between plotted statistics.
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• Stationary real-valued time series:

huge toolbox for analyzing and modeling such time series

readily available and well-known to broad audience.

E. g., time series

visualized by simply plotting observations against time,

marginal location/dispersion by mean/variance,

serial dependence quantified in terms of autocorrelation.

Enumerable models, basic ARMA or extensions.
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• Categorical but ordinal time series:

time series plot still feasible by arranging

possible outcomes in natural ordering along Y axis,

location could be measured by median.

• Nominal time series: tailor-made solutions required.

Notations concerning (Xt)Z with range S = {0, . . . ,m}, m > 1:

time-invariant marginal probabilities π := (π0, . . . , πm)>

with πi := P (Xt = i) ∈ (0; 1) and π0 = 1− π1 − . . .− πm.

Sample counterpart: π̂ with relative frequencies from X1, . . . , XT .
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• Visual analysis: few proposals (Weiß, 2008),

reasonable substitute of time series plot still missing.

• Location: (empirical) mode.

• Dispersion: two possible extremes,

one-point distribution (no dispersion) and

uniform distribution (maximal dispersion).

Several measures available (Weiß & Göb, 2008),

recommendation: (empirical) Gini index,

νG = m+1
m (1−∑mj=0 π

2
j ) and ν̂G = m+1

m
T

T−1 (1−∑mj=0 π̂
2
j ).
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(Empirical) Gini index,

νG = m+1
m (1−∑m

j=0 π
2
j ) and ν̂G = m+1

m
T

T−1 (1−∑m
j=0 π̂

2
j ).

Theoretical Gini index νG has range [0; 1],

where increasing values indicate increasing dispersion,

with extremes νG = 0 iff Xt has one-point distribution,

and νG = 1 iff Xt has uniform distribution.

Empirical Gini index ν̂G unbiased in i. i. d. case (Weiß, 2013).
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• Serial dependence:

several measures available (Weiß & Göb, 2008; Weiß, 2013),

relying on lagged

bivariate probabilites, pij(k) := P (Xt = i,Xt−k = j),

with empirical counterpart p̂ij(k) being relative

frequency of (i, j) within pairs (Xk+1, X1), . . . , (XT , XT−k).

Recommendation: (empirical) Cohen’s κ,

κ(k) =

∑m
j=0

(
pjj(k)− π2j

)
1− ∑m

j=0 π
2
j

, κ̂(k) :=
1

T
+

∑m
j=0

(
p̂jj(k)− π̂2j

)
1− ∑m

j=0 π̂
2
j

.
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(Empirical) Cohen’s κ,

κ(k) =

∑m
j=0

(
pjj(k)− π2j

)
1− ∑m

j=0 π
2
j

, κ̂(k) :=
1

T
+

∑m
j=0

(
p̂jj(k)− π̂2j

)
1− ∑m

j=0 π̂
2
j

.

Theoretical κ(k) has range [−
∑m
j=0 π

2
j

1−
∑m
j=0 π

2
j
; 1],

where 0 corresponds to serial independence.

Signed serial dependence: (Weiß & Göb, 2008)

• perfect (unsigned) serial dependence at lag k ∈ N

iff for any j, p·|j(k) one-point distribution,

• perfect positive (negative) dependence

iff all pi|i(k) = 1 (all pi|i(k) = 0).
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(Empirical) Cohen’s κ,

κ(k) =

∑m
j=0

(
pjj(k)− π2j

)
1− ∑m

j=0 π
2
j

, κ̂(k) :=
1

T
+

∑m
j=0

(
p̂jj(k)− π̂2j

)
1− ∑m

j=0 π̂
2
j

.

Empirical κ̂(k) nearly unbiased in i. i. d. case,

distribution well approximated by normal distribution N(0, σ2)

with (Weiß, 2011)

T σ2 = 1−
1+ 2

∑m
j=0 π

3
j − 3

∑m
j=0 π

2
j(

1− ∑m
j=0 π

2
j

)2 .

⇒ testing for significant serial dependence in categorical t. s.,

serial dependence plot.
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(Non-industrial) Example for serial dependence plot:

morning twilight song of Wood Pewee,

composed of three different phrases, length T = 1327:
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Several models for categorical processes, e. g.,

(Hidden) Markov models, regression models, . . . , here:

NDARMA(p, q) model by Jacobs & Lewis (1983).
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(Xt)Z, (εt)Z: categorical processes with state space S;

(εt)Z: i. i. d. with marginal π, εt independent of (Xs)s<t.

For ϕq > 0, with φp > 0 if p ≥ 1, let

Dt = (αt,1, . . . , αt,p, βt,0, . . . , βt,q) ∼MULT (1;φ1, . . . , φp, ϕ0, . . . , ϕq)

be i. i. d. and independent of (εt)Z, (Xs)s<t.

(Xt)Z is NDARMA(p, q) process if

Xt = αt,1 ·Xt−1 + . . .+ αt,p ·Xt−p + βt,0 · εt+ . . .+ βt,q · εt−q.
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Properties of NDARMA processes: (Weiß & Göb, 2008)

• Marginal distribution P (Xt = j) = πj;

• κ(k) ≥ 0, equality κ(k) = v(k);

• Yule-Walker-type equations

κ(k) =
p∑

j=1
φj · κ(|k − j|) +

q−k∑
i=0

ϕi+k · r(i) for k ≥ 1,

where r(i) = 0 for i < 0, r(0) = ϕ0, and

r(i) =
∑i−1
j=max {0,i−p} φi−j ·r(j) +

∑q
j=0 δij ·ϕj for i > 0.

⇒ Model identification as in ARMA case!
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Take (non-overlapping) segments of length n > 1

at times t1, t2, . . . with tk − tk−1 > n sufficiently large,

i. e., samples Xtk, . . . , Xtk+n−1.

Proceedings paper: detailed survey about

• Sample-based monitoring for binary case,

• and for categorical but i. i. d. case.

• Brief discussion about approaches for

ordinal data and compositional data.
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Let Nk
(n) = (Nk; 0

(n), . . . , Nk;m
(n))> with

Nk; i
(n) being the absolute frequency of state ‘i’ in

sample Xtk, . . . , Xtk+n−1 such that Nk; 0(n)+ . . .+Nk;m
(n) = n.

• If (Xt)N i. i. d., then Nk ∼
i. i. d.

MULT(n; π0, . . . , πm)

with covariance matrix nΣ, where

Σ = (σij) is given by σij =
{
πi(1− πi) if i = j,
−πiπj if i 6= j.
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Let Nk
(n) = (Nk; 0

(n), . . . , Nk;m
(n))> with

Nk; i
(n) being the absolute frequency of state ‘i’ in

sample Xtk, . . . , Xtk+n−1 such that Nk; 0(n)+ . . .+Nk;m
(n) = n.

• If (Xt)N DAR(1) process with autoregressive parameter ρ,

then κ(k) = ρk and

Nk ∼
i. i. d.

MM(n; π0, . . . , πm; ρ) (Wang & Yang, 1995)

with asymptotic covariance matrix c · nΣ, where

c := 1+ 2 ·
∞∑
i=1

κ(i) =
1+ ρ

1− ρ
.

⇒ effect of serial dependence within sample.
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Sample statistics to be monitored:

• Pearson’s χ2-statistic (Duncan, 1950)

C
(n)
k =

m∑
j=0

(Nk; j − nπ0; j)2

nπ0; j
,

where π0 := (π0; 0, . . . , π0;m)> in-control categ. probabilities.

• Gini statistic (Weiß, 2012)

G
(n)
k =

1− n−2 ∑m
j=0N

2
k; j

1− ∑m
j=0 π

2
0; j

,

motivated by conforming probability

π0; 0� π0; 1, . . . , π0;m (i. e., low categorical dispersion).
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Proceedings paper: simulation study for diverse scenarios,

asymptotic distributions for C(n)
k , G

(n)
k

available for arbitrary NDARMA processes (Weiß, 2013),

but too imprecise for chart design.

Illustrative example: (Mukhopadhyay, 2008)

π0 = (0.769,0.081,0.059,0.022,0.023,0.022,0.025)>

with Gini dispersion 0.463, sample size n = 150.

DAR(1) dependence, where ρ = 0 expresses i. i. d. case.
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n = 150, π0 = (0.769,0.081,0.059,0.022,0.023,0.022,0.025)>:

In-control ARL performance if i. i. d. design, i. e.,

Pearson with uP = 22.41094, Gini with uG = 1.327252.
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⇒ Strong influence of serial dependence on chart design.
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n = 150, π0 = (0.769,0.081,0.059,0.022,0.023,0.022,0.025)>:

Out-of-control ARL performance

for π1; 0 = (1− shift)π0; 0, π1; k =
1−shift·π0; 0

1−π0; 0 π0; k otherwise.
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⇒ Decaying power with increasing serial dependence.
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Log-likelihood ratio CUSUM constitutes feasible approach.

Ryan et al. (2011): i. i. d. case, where π1 denotes relevant out-

of-control distribution. Then

St = max {0, St−1 + Lt} with S0 := 0,

where Lt = ln
(
Pπ1(Xt)/Pπ0(Xt)

)
with Pπ(Xt = i) = πi.

Following Mousavi & Reynolds (2009) (→ binary Markov chain),

one may define
Lt = ln

Pπ1(Xt|Xt−1, . . . , Xt−p)
Pπ0(Xt|Xt−1, . . . , Xt−p)


for Markov-dependent categorical process.
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Illustrative example:

DAR(1) process (Xt)N with autoregressive parameter ρ.

Approaches for St = max {0, St−1 + Lt}:

• i. i. d.-CUSUM statistic

Lt = ln
Pπ1(Xt)

Pπ0(Xt)
= ln

π1;Xt
π0;Xt

,

but with adjusted limits; or

• adjusted CUSUM statistic:

Lt = ln
(1− ρ)π1;Xt + δXt,Xt−1 ρ

(1− ρ)π0;Xt + δXt,Xt−1 ρ
.
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Proceedings paper: scenarios from Ryan et al. (2011), i. e.,

Case 1: π0 = (0.65,0.25,0.10)>, π1 = (0.4517,0.2999,0.2484)>;
Case 2: π0 = (0.94,0.05,0.01)>, π1 = (0.8495,0.0992,0.0513)>;
Case 3: π0 = (0.994,0.005,0.001)>, π1 = (0.9848,0.0099,0.0053)>;
Case 4: π0 = (0.65,0.20,0.10,0.05)>, π1 = (0.3960,0.3283,0.1734,0.1023)>.

with dispersion νG ≈ 0.758,0.171,0.018 and 0.7.

Illustration:
i. i. d.-CUSUM i. i. d.-CUSUM, adj. adj. CUSUM

Case ρ h ARL0 ARL1 h ARL0 ARL1 h ARL0 ARL1
2 0 2.8 501.8 36.3

0.25 2.8 245.7 37.2 3.85 509.8 52.4 2.55 503.4 45.6
0.5 2.8 170.8 39.3 5.2 500.2 72.6 2.25 508.4 58.8
0.75 2.8 155.2 48.3 7.6 500.7 107.8 1.7 514.7 86.0

⇒ adjusted CUSUM shows best power.
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• Monitoring of serially dependent categorical processes:

Shewhart charts for sample-based monit. (Pearson, Gini),

LR-CUSUM for continuous monitoring; simulations required

for chart design and performance evaluation.

Future research:

• Sample-based CUSUM Lk = ln
(
Pπ1(Nk

(n))/Pπ0(Nk
(n))

)
,

but distribution of Nk
(n) difficult.

• Unique charts for categorical & compositional data.

• Phase I application of categorical control charts.

• Process capability indices for categorical data.
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